
The Continuing Arms Race



8Multi-Variant Execution
Environments
Bart Coppens, Bjorn De Sutter, Stijn Volckaert

Memory corruption vulnerabilities are a common problem in software imple-
mented in C/C++. Attackers can exploit these vulnerabilities to steal sensitive data
and to seize or disrupt the system on which the software is executed. Memory safety
techniques can, in principle, eliminate these vulnerabilities [Nagarakatte et al.
2009, Nagarakatte et al. 2010] but are prohibitively expensive in terms of runtime
overhead [Szekeres et al. 2013].

Instead, modern operating systems and compilers deploy exploit mitigations
such as Address Space Layout Randomization (ASLR) [PaX Team 2004a], Data Exe-
cution Prevention (DEP, a.k.a. W⊕X) [PaX Team 2004b], and stack canaries [Cowan
et al. 1998]. These exploit mitigations incur minimal performance overhead, but are
limited in scope—often only defending against one particular type of exploit—and
can be bypassed with only modest effort.

Up-and-coming exploit mitigations, such as control-flow integrity [Abadi et al.
2005a, Tice et al. 2014], require more effort to bypass [Göktas et al. 2014a, Davi et al.
2014, Carlini et al. 2015e, Evans et al. 2015, Schuster et al. 2015], but, similar to the
aforementioned defenses, they defend only against attacks of one particular type:
code reuse.

The ubiquity of multi-core processors has made Multi-Variant Execution En-
vironments (MVEEs) an increasingly attractive option to provide strong, com-
prehensive protection against memory corruption exploits, while still incurring
only a fraction of the runtime overhead of full memory safety. MVEEs have been
shown to successfully defend against several types of attacks, including code
reuse [Volckaert et al. 2015], information leakage [Koning et al. 2016], stack buffer
overflows [Salamat et al. 2009], and code injection [Cox et al. 2006].



212 Chapter 8 Multi-Variant Execution Environments

The underlying idea is to run several diversified instances of the same program,
often referred to as variants or replicas, side by side on equivalent program inputs.
The MVEE’s main component, the monitor, feeds all variants these equivalent in-
puts and monitors the variants’ behavior. The diversity techniques used to generate
the variants ensure that the variants respond differently to malicious inputs, while
leaving the behavior under normal operating conditions unaffected. The MVEE
monitor detects the diverging behavior and halts the execution of the variants be-
fore they can harm the system. This implies that the variants must, to some extent,
be executed in lockstep: potentially harmful operations in a variant are only exe-
cuted when the consistency with the other variants has been validated.

In recent years, over half a dozen systems have been proposed that match the
above description. While most of them show many similarities, some authors have
made radically different design choices. In this chapter, we discuss the design
of MVEEs and provide implementation details about our own MVEE, the Ghent
University Multi-Variant Execution Environment, or GHUMVEE, and its extensions.
GHUMVEE has been open sourced and can be downloaded from http://github.com/
stijn-volckaert/ReMon/.

8.1 General Design of an MVEE
Broadly speaking, there are two key factors that distinguish the high-level designs
of existing MVEEs: monitoring granularity and placement in the software stack. In
this section, we review these factors, point out their implications, and justify the
design choices we made for GHUMVEE.

8.1.1 Monitoring Granularity
Monitoring the variants’ behavior can be done at many granularities, ranging from
monitoring only explicit I/O operations to system calls, function calls, or even
individual instructions. In practice, however, existing MVEEs either monitor at I/O-
operation granularity or at system call granularity. Among the MVEEs that monitor
at system call granularity, there are some that monitor all system calls, while the
others monitor only “sensitive” calls. There is some debate over what the ideal
monitoring granularity is. Coarse-grained monitoring yields better performance
but might not guarantee the integrity of the system.

Most MVEEs monitor at system call granularity. On modern operating systems
that offer page-level memory protection, each application is confined to its own
address space. An application must therefore use system calls to interact with the

http://github.com/stijn-volckaert/ReMon/


8.1 General Design of an MVEE 213

system in any meaningful way. The same holds for exploits. If the ultimate goal of
an attack is to compromise the target system, then the attack’s payload must invoke
system calls to interact with the system.

It makes little sense to monitor at finer granularity levels for the sole purpose
of comparing variants’ behavior. The premise of multi-variant execution is that the
variants are constructed such that they react differently to malicious input. While
a given malicious input might be sufficient to seize control of one specific variant,
it will not have the desired effect on other variants. These other variants will either
crash or behave differently. As several authors have argued in the literature, both
of these outcomes are visible at the system call level [Salamat et al. 2009, Cox et al.
2006].

8.1.2 Placement in the Software Stack
The placement of the MVEE within the software stack has far-reaching conse-
quences for the MVEE’s security and performance properties. This placement is
motivated by the conflicting goals of ensuring maximum security and maximum
performance. To maximize performance, it is of vital importance to minimize the
overhead on the interaction between the variants and the monitor. Since most
monitors intervene in each system call invocation, such interactions can occur fre-
quently.

All existing monitors interact synchronously with the variants. When a variant
instigates an interaction with the monitor, it must wait until the monitor returns
the control flow to the variant before it may resume its execution. To achieve
maximum performance, it therefore is of vital importance to minimize this waiting
time, which is dominated by the latency on the monitor-variant interaction. If the
monitor runs as a separate process (Cross-Process, or CP), then the interaction
latency is high because the kernel must perform a context switch to transfer the
control from the variant to the monitor. Context switches are notoriously slow as
they require a page table and a Translation Lookaside Buffer (TLB) flush [Belay et al.
2012]. CP monitors can therefore be detrimental for the variants’ performance.

The advantage of CP monitors is that they are portable and easy to implement
because they rely solely on the operating system’s standardized debugging inter-
faces, and they are strongly isolated from the variants, since address spaces form a
hardware-enforced boundary between processes. Placing the monitor outside the
variants’ address spaces therefore protects it from misbehaving variants. Table 8.1
illustrates that most authors recognize the importance of such a hardware-enforced
boundary. Almost all the existing monitors prioritize security over performance



214 Chapter 8 Multi-Variant Execution Environments

Table 8.1 Classification of Existing MVEEs Based on Their Position in the Software Stack

Unprivileged Level (UL) Privileged Level (PL)

In-Process (IP) VARAN [Hosek and Cadar 2015] N-Variant Systems [Cox et al. 2006]
RAVEN [Co et al. 2016]
MvArmor [Koning et al. 2016]

Cross-Process
(CP)

DieHard [Berger and Zorn 2006]
Cavallaro [Cavallaro 2007]
Orchestra [Salamat et al. 2009]
Tachyon [Maurer and Brumley 2012]
Mx [Hosek and Cadar 2013]
GHUMVEE [Volckaert et al. 2013]

IP+CP ReMon [Volckaert et al. 2016]

and run cross-process. These monitors correspond with the label “CP/UL” (Cross-
Process/Unprivileged Level) in Figure 8.1.

N-Variant Systems [Cox et al. 2006], RAVEN [Co et al. 2016], and MvArmor
[Koning et al. 2016] are notable exceptions. These monitors run within the same
address space as the variants (In-Process, or IP) but are protected from misbe-
having variants because the monitors operate at a higher privilege level (kernel
level for N-Variant Systems and RAVEN, supervisor level for MvArmor). This de-
sign is represented by “IP/PL” (In-Process/Privileged Level) in Figure 8.1. This is,
at least in principle, the ideal approach. However, it does have the downside of
enlarging the Trusted Computing Base (TCB). This is undesirable from a secu-
rity standpoint [Rushby 1981]. An additional disadvantage is that the program-
ming interfaces that are available at the privileged level are non-standardized and

Shared mem

CP/UL

Variant 1 Variant 2

IP/ULIP/UL

Kernel/supervisorIP/PL

Monitor

Figure 8.1 Possible placements of an MVEE in the software stack.



8.1 General Design of an MVEE 215

architecture-specific. IP/PL monitors are therefore significantly harder to port to
other platforms than CP monitors.

VARAN finally implements a third design that is represented by “IP/UL” in
Figure 8.1 [Hosek and Cadar 2015]. VARAN is a reliability-oriented IP monitor,
embedded into the variants. It consists of several components, each of which can
communicate directly with the variant in which it is embedded. VARAN primarily
intends to increase the reliability of software, e.g., by running two variants, one
with and one without a new patch applied to them, to test that the patch does
not introduce unintended side effects. It therefore uses a less secure design than
the aforementioned “CP/UL” and “IP/PL” MVEEs. VARAN’s authors also recognize
this fact.

GHUMVEE is a security-oriented MVEE and is therefore implemented as
a CP/UL MVEE. In Section 8.5 we also describe a hybrid design called ReMon
[Volckaert et al. 2016]. ReMon is based on GHUMVEE, but it also includes an in-
process component and a small kernel component, which makes ReMon a hybrid
CP+IP/UL+PL MVEE.

8.1.3 Monitor-Variant and Monitor-Monitor Interaction
The MVEE’s monitor and the variants interact whenever the variants trigger an
event that is subject to monitoring. These events typically include executing a
system call and raising a processor exception (e.g., by executing a privileged in-
struction or causing a segmentation fault). Each interaction requires transferring
the control flow from the variant to the monitor and back, and may require copy-
ing the register context or memory contents of the variant to the monitor. Several
mechanisms exist to fulfill each of these tasks. The placement of the monitor in
the software stack defines which mechanisms are available.

8.1.3.1 Control-Flow Transfer
The most trivial way to transfer control from the variant to the monitor and back
is to invoke the monitor directly using a branch instruction. This is only possible
for IP/UL monitors, which operate in the same address space and at the same
privilege level as the variants. This control-flow transfer method is efficient but not
very secure, as the variants typically invoke the monitor at their own discretion.
Compromised variants could, for example, easily execute a system call without
invoking the monitor first.

IP/PL monitors, which operate in the same address space but at a higher priv-
ilege level than the variants, cannot be invoked directly. Instead, these monitors



216 Chapter 8 Multi-Variant Execution Environments

must be invoked by the kernel or supervisor’s system call and trap handlers, ei-
ther by patching these handlers or by installing hooks. When a variant executes
a system call or triggers an exception, the processor transfers control to the ker-
nel/supervisor’s system call handler or exception handler, and the handler must
then invoke the monitor. This interaction method is fully secure. Since the moni-
tor invocation is handled by the kernel/supervisor, compromised variants are not
able to escape the monitoring mechanism.

CP/UL monitors, which operate in a separate address space, cannot be invoked
directly either. Instead, they rely on the operating system’s debugging interface
to “attach” to the variant, thus establishing a debugger-debuggee relationship be-
tween the monitor on one side and the variants on the other side. With such a rela-
tionship in place, the operating system will suspend the execution of the debuggee
(variant) whenever it triggers an event that requires the attention of the the de-
bugger (monitor). The operating system will then schedule the monitor and make
information about the event available to the monitor. This interaction method is
also fully secure but incurs significant runtime overhead, since synchronous inter-
action between two separate processes requires context and TLB flushes.

ReMon, the hybrid design we describe in Section 8.5, consists of both an IP mon-
itor and a CP monitor. ReMon has a system call broker component that intercepts
system calls in kernel space and invokes the appropriate monitor based on a user-
defined policy. The system call broker can invoke either the CP monitor, using the
operating system’s debugging interface, or the IP monitor, by pointing the user-
space program counter at the IP monitor’s known entry point before exiting kernel
space. ReMon’s system call handling mechanism is fully secure and more efficient
than the one used by CP/UL monitors.

8.1.3.2 Register Context and Data Transfer
The MVEE’s monitor requires access to the variant’s register context, e.g., to read
the system call number, and to the variant’s virtual memory, e.g., to read system
call arguments.

The variant’s virtual memory can be accessed directly by all IP/UL and IP/PL
monitors, as these monitors share their address space with the variant. IP/UL
monitors also share their register contexts with the variant and can therefore access
this context directly. IP/PL monitors do not share their register contexts with the
variant. Instead, they must access a copy of this context. The processor stores
this copy at a pre-defined location whenever it changes the privilege level. The
performance overhead incurred by having to access the copy of the register context
is negligible.



8.2 Implementation of GHUMVEE 217

CP monitors can access neither the register context nor the variant’s memory
directly. Instead, they rely on the OS’s debugging interfaces to transfer this infor-
mation to the monitor’s address space. Such transfers incur significant runtime
overhead.

8.1.3.3 Inter-monitor Communication
Some MVEE designs, particularly the IP/UL ones, use multiple monitor instances,
each embedded into or assigned to just one variant. The instances frequently com-
municate with each other, e.g., to verify if all variants execute the same system call.
While most operating systems offer a variety of options for inter-process commu-
nication, all MVEEs that fall into this category use a ring buffer backed by a shared
memory region for inter-monitor communication.

8.1.3.4 Performance Implications
Koning et al. [2016] conducted the most comprehensive study to compare monitor-
variant interaction mechanisms. Through a series of micro-benchmarks, they
showed that intercepting system calls and invoking the monitor in kernel space,
similar to N-Variant Systems’ IP/PL monitor [Cox et al. 2006], generally yields the
highest performance. Using hardware virtualization features to intercept system
calls and running the monitor in supervisor mode, similar to MvArmor’s IP/PL
monitor [Koning et al. 2016], is marginally faster than a kernel-based design if the
monitor can emulate the system call, and up to 7.59× slower if the call cannot be
emulated. Intercepting system calls using the OS’s debugging interface, as is done
in all existing CP/UL monitors, is up to two orders of magnitude slower than the
mechanisms used in IP/PL monitors.

Prior to this study, Volckaert et al. [2013] compared data transfer mechanisms
used in CP/UL monitors and showed that GHUMVEE’s ptrace extension yields sig-
nificantly faster monitor-variant data transfers than Orchestra’s shared-memory-
based mechanism [Salamat et al. 2009], while the latter, in turn, is significantly
faster than regular ptrace-based data transfers.

8.2 Implementation of GHUMVEE
GHUMVEE is a CP/UL monitor and thus relies on the OS’s debugging interface to set
up and communicate with the variants. GHUMVEE launches the variants by forking
them off its main thread and by executing a sys_execve system call in the context
of the forked-off processes. Prior to this call, the newly created variant processes
establish a link between GHUMVEE’s monitor and themselves by requesting to
be placed under a monitor’s supervision after which they raise a SIGSTOP signal.



218 Chapter 8 Multi-Variant Execution Environments

The kernel suspends the variants after they have raised this signal, and it reports
their status to the monitor. The monitor can then resume the variants and begin to
monitor their execution.

8.2.1 Monitoring System Calls
Like most MVEEs, GHUMVEE monitors the variants’ behavior at the system call
interface by intervening at the kernel level at the entry and exit of every system call.
GHUMVEE leverages the operating system’s debugging API to place the variants
under the monitor’s control, to intercept the variants’ system calls, and to run the
variants in lockstep. The monitor suspends each variant that enters or exits from a
system call until all variants have reached the same entry or return point. When this
happens, the variants are said to have reached a RendezVous Point (RVP) (sometimes
referred to as a synchronization point).

The monitor asserts that the variants are in equivalent states whenever they
reach such an RVP by comparing the system call arguments. Two sets of system
call arguments are considered equivalent if they are identical (in the case of non-
pointer arguments) or if the data they refer to is identical (in the case of pointer
arguments). Salamat [2009] gives a formal definition of equivalent states.

If the variants are not in equivalent states at an RVP, the monitor raises an
alarm and takes the appropriate action. GHUMVEE considers all tasks that share
an address space with one of the variants that caused the discrepancy as tainted,
and it therefore terminates these tasks. Do note that this does not necessarily
stop the entire program. It is becoming a common practice to compartmentalize
complex programs, such as web browsers and web servers, into multiple, mostly
independent tasks that do not share address spaces. In some modern web browsers,
for example, every open tab is backed by a separate process. Should GHUMVEE
detect a discrepancy when running multiple variants of such a process, it would
only terminate the browser tab that caused the discrepancy.

Reliability-oriented monitors that are, e.g., used to test new software patches may
differ from security-oriented monitors, such as GHUMVEE, with respect to system
call monitoring. For example, VARAN does not enforce lockstep execution [Hosek
and Cadar 2015]. Instead, it lets the master variant run ahead of the slave variants
and caches the arguments and results of all the master variant’s system calls so that
they may be consulted by the slave variants at a later point.

8.2.2 Transparent Execution
Many system calls require special handling to ensure that the multi-variant exe-
cution is transparent to the end user. With the exception of runtime overhead,



8.2 Implementation of GHUMVEE 219

Variant 1 Variant 2Monitor

Kernel
brk

write

brk

write

Time Time

Figure 8.2 Transparently executing I/O-related system calls.

the end user should not be able to notice that more than one variant of the pro-
gram is running. GHUMVEE therefore uses a master/slave replication model. One
of the variants is the designated master variant and the other variants are slaves.
GHUMVEE ensures that only the master variant can execute system calls that have
visible effects on the rest of the operating system. Specifically, these are the system
calls that correspond with I/O operations. Whenever the variants reach an RVP at
the start of an I/O-related system call, GHUMVEE verifies that the variants are in
equivalent states, and then overwrites the system call number in the slave variants
with that of a system call with no visible effects. GHUMVEE currently uses sys_

getpid for this purpose since it is a trivial and fast system call. When GHUMVEE
subsequently resumes all variants, only the master variant executes the intended
I/O operation.

At the next RVP, when all variants have returned from their system call, GHUM-
VEE copies the results of the system call from the address space of the master to
the address space of the slave variants. We refer to this mechanism as master calls.
System calls that do not require special handling, other than consistency checking,
and that may therefore be executed by all variants are called normal calls. In Fig-
ure 8.2, the handling of the normal call brk is shown, as well as that of the master
call write.

8.2.3 Injecting System Calls and Restarting Variants
On top of the above tasks, GHUMVEE can also inject new system calls and, as a
result, rewind variants to their initial state. Injecting system calls can be useful
to add new functionality to the variants transparently. To inject a system call in
a variant, GHUMVEE waits until the variant has reached an RVP. At this point,



220 Chapter 8 Multi-Variant Execution Environments

GHUMVEE stores a backup of the register context of the variant and overwrites
the system call arguments.

Many system calls accept arguments that are stored in data buffers. To inject
such arguments, GHUMVEE searches for a writable memory page in the variant
that is large enough for the arguments. If the variant is multi-threaded, GHUMVEE
searches for the variant’s thread-local stack, in order not to corrupt memory that
might be used by other tasks that share an address space with the variant.

GHUMVEE then reads and stores the original content of the memory page and
writes the arguments into that page; it then resumes the variant and waits until the
injected system call returns. At that point, GHUMVEE restores the original contents
of the overwritten memory page and restores the original register context, prior to
the system call injection.

Restarting variants to their initial state is a trivial extension of this system. To
support restarting, GHUMVEE stores the original arguments of the sys_execve

call that was used to start the variant as well as the environment variables [GNU.org
2017] at the time of the original sys_execve invocation. Whenever a variant
reaches an RVP, GHUMVEE can restore the original environment variables and
inject a new sys_execve call with those original arguments using the mechanism
described above to restart the variant. GHUMVEE uses this restart mechanism to
enforce disjoint code layouts, as we will explain in Section 8.4.

8.3 Inconsistencies and False Positive Detections
MVEEs must feed all variants the same input in order to guarantee that they be-
have identically under normal operating conditions. For explicit input operations,
such as reading an incoming packet from a socket, the monitor can satisfy this re-
quirement by applying the master call mechanism we described in Section 8.2.2 to
system calls, such as sys_read.

In some cases this is not sufficient, however. Several sources of input can be
accessed directly, without invoking any system calls. The variants often behave
differently after reading input from such sources. This can lead to false positive
detections by the monitor. In this section, we summarize the sources of input that
can be accessed directly and describe how we provide consistent input from such
sources to all variants.

8.3.1 Shared Memory
All commodity operating system kernels offer a file-mapping API and an Inter-
Process Communication (IPC) API to share physical memory pages among multiple
processes.



8.3 Inconsistencies and False Positive Detections 221

The file-mapping API, which can be accessed through the sys_mmap system call
on Linux systems, allows programmers to associate individual physical memory
pages with regions within a file on the file system. The associated file is often
referred to as the backing file. When a page fault is triggered on a physical page
that is backed by a file, which happens when this page is accessed for the first time,
the operating system loads the contents for the page from the associated region in
the backing file. The operating system will also write the contents of the page back
to the file should the page ever become dirty.

The programmer can specify which region of the backing file each memory page
corresponds to and whether or not the changes should be written back to the file.
However, even if the programmer requests that changes be written back to the file,
the operating system will only do so if the programmer has opened the backing
file with read/write access. For some backing files, such as system libraries, the
operating system denies any requests made by a non-privileged user to open the
file with read/write access and instead allows only read access.

Programmers often use file mapping as an efficient way to access files. A mapped
file can be accessed directly, without having to invokesys_readorsys_write calls.
The file-mapping API is also commonly used to create shared memory pages. A
program can create a temporary file with read/write access and map this temporary
file into its own address space. Other programs can then map the same file into
their address spaces, thus sharing the associated physical memory pages with the
program that created the file.

Programmers can also use the IPC API, which can be accessed through the
sys_ipc or sys_shmget/sys_shmat system calls on Linux systems, to create and
map shared physical memory pages not associated with a backing file. These pages
have a unique identifier. Programs that know this unique identifier can map the
associated physical pages into their virtual address spaces.

Shared memory pages often constitute a problem within an MVEE. Variants can
read from shared memory pages without invoking a system call and, consequently,
are not subject to the lockstep execution mechanism we discussed in Section 8.2.1
when doing so. The MVEE’s monitor therefore cannot guarantee that the variants
will read the same input from shared memory pages that are being written to by an
external process. Similarly, the variants could also write to the pages directly, which
prevents the MVEE’s monitor from asserting that the variants write the same data
to the pages.

A possible solution to this problem is to revoke the variants’ access rights to
all shared memory pages. Each read from or write to the shared pages would
then result in a page fault. The operating system would translate this page fault
into a SIGSEGV signal, which is normally passed down to the program so it can



222 Chapter 8 Multi-Variant Execution Environments

invoke its signal handler. When a debugger is attached, however, a notification
is sent to the debugger first and the actual signal is not passed to the program
until the debugger has approved it. In an MVEE, this mechanism could be used
to intercept all accesses to shared memory. For each SIGSEGV signal that results
from a read operation on a shared memory page, the monitor could perform the
read operation itself and replicate the results to all variants. For write operations,
the monitor could perform the write itself. The monitor could then prevent the
SIGSEGV signal from being delivered, thus effectively emulating all accesses to the
shared memory pages. Emulating accesses to shared memory is, unfortunately,
prohibitively slow [Maebe et al. 2003] and completely negates the performance
benefits of using shared memory in the first place.

In GHUMVEE, we therefore opted to deny all requests to map shared memory,
unless the monitor can assert that the accesses to the shared memory will not
result in inconsistencies. Specifically, GHUMVEE denies all requests to map shared
memory through the System V IPC API, since any pages mapped through this API
can always be written by external processes that know the page identifiers.

For file mappings, on the other hand, GHUMVEE does allow read-only shared
mappings that are backed by files to which the user does not have write access.
Such mappings have content that is completely static (i.e., the pages cannot be
written to by either the variants or any external process that runs at the same
privilege level). The monitor can therefore still guarantee that the variants will
receive the same input. Allowing read-only shared mappings is necessary to support
dynamically linked programs since the program interpreter’s preferred method of
loading shared libraries is by mapping them using the file-mapping API.1

GHUMVEE does not allow read/write shared mappings. The monitor generally
returns an EPERM error when a variant attempts to establish such a mapping, thus
indicating that the mapping is not allowed. In specific cases, however, read/write
shared mappings are used not to communicate with external processes but instead
simply as an efficient way to access files. To handle these cases, we implemented a
mapping-type-override method. With this method, GHUMVEE changes the mapping
type from shared to private by overriding the arguments of the sys_mmap call that
is used to set up the mapping. Private mappings are implemented using Copy-On-
Write (COW) paging. The operating system will therefore create a private copy of
the privately mapped page when a variant attempts to write to it for the first time.
From that point onward, external processes can no longer influence the contents of

1. The program interpreter is a user-space OS component responsible for loading programs and
setting up their initial virtual address space.



8.3 Inconsistencies and False Positive Detections 223

the privately mapped page, which eliminates the need for the monitor to replicate
the contents of the pages to all variants. The monitor does, however, still verify
whether the variants all write the same contents to the privately mapped pages by
comparing the page contents when they are unmapped. If the contents of the pages
do not match, the monitor raise an alarm. If they do match, however, the monitor
writes the contents back to the backing file.

GHUMVEE’s handling of shared memory is similar to Cavallaro’s MVEE
[Cavallaro 2007] but is more advanced than other security-oriented MVEEs because
those do not support the mapping-type-override method.

8.3.2 Timing Information
Interactive and real-time applications frequently need to measure the length of a
time interval to guarantee that they function correctly. Media players, for example,
need to know exactly when to start rendering a frame. For such applications, the
timing information must be accurate, precise, and accessible with minimal over-
head. Both processor vendors and kernel programmers therefore offer an interface
to access timing information with minimal overhead.

All x86 processors since the original Pentium support the ReaD TimeStamp
Counter (RDTSC) instruction, which reads the value of a special-purpose register
that counts the number of clock cycles since the processor was powered on [Intel
2014]. This number can be divided by the clock frequency to accurately measure
the length of a time interval.

The 64-bit x86 version of the Linux kernel, as well as recent versions of the
32-bit x86 kernel, implement the Virtual Dynamic Shared Object (VDSO) [Linux
Programmer’s Manual 2017a]. The VDSO is a small, dynamically linked library
that is mapped into every running program’s virtual address space. It consists of
two memory pages: an executable memory page that contains code and a read-
only memory page that contains timing information. The VDSO implements virtual
system call functions. Each virtual system call is an optimized version of one of the
system calls that is exposed by the kernel. Unlike the system call they correspond
to, however, the virtual system calls execute entirely in user space, thus avoiding the
often costly mode and/or context switches that come with the execution of a normal
system call. Linux currently offers virtual system calls for each API that exposes
timing information.

Both the RDTSC instruction and the VDSO are therefore sources of timing infor-
mation that can be accessed without invoking an actual system call. Once again,
an MVEE’s monitor cannot guarantee that the variants that access this information
receive consistent input.



224 Chapter 8 Multi-Variant Execution Environments

GHUMVEE implements work-arounds for both problems. GHUMVEE’s monitor
sets the Time Stamp Disable (TSD) flag in the CR4 register of the processor within
the context of each running variant [Intel 2014]. Setting this flag discards the
variants’ privileges to execute the RDTSC instruction. Whenever the variants try to
execute an RDTSC instruction, the processor raises a general protection fault. The
operating system translates this fault into aSIGSEGV signal and notifies the monitor
accordingly. Whenever the monitor receives such a notification, it disassembles the
instruction that caused the fault. If the instruction is indeed an RDTSC, GHUMVEE
executes the instruction on the variants’ behalf and replicates the results.

To eliminate the inconsistencies caused by the VDSO, GHUMVEE overrides
the arguments of each sys_execve system call. This call is used to execute a
program. GHUMVEE changes the name of the program that must be executed into
the name of a small loader program we have created. This small loader program,
which we aptly call the GHUMVEE Program Loader (GPL),2 deletes the ELF auxiliary
vector entry argument that specifies the location of the VDSO [Linux Programmer’s
Manual 2017b]. Afterward, GPL manually maps the original program into the virtual
address space, sets up the initial stack exactly as it would have been set up had
GHUMVEE not overridden the arguments of the sys_execve call, and passes the
control to the original program. A program never invokes the VDSO directly but
instead uses the wrappers provided by the C standard library (libc). If the ELF
auxiliary vector entry for the VDSO is missing, however, libc falls back to using
the original system call that each virtual system call corresponds to. These original
system calls are intercepted by GHUMVEE’s monitor. An alternative solution could
be to replace the VDSO with a custom library that leverages GHUMVEE’s USRVP
replication infrastructure (see Section 8.3.7) to replicate the master variant’s system
call results to all slave variants.

To the best of our knowledge, GHUMVEE is the only existing MVEE that handles
the RDTSC instruction correctly. Along with Hosek and Cadar, who independently
proposed a solution of their own, we were also the first to handle system calls in the
VDSO correctly [Hosek and Cadar 2015]. Our proposed solutions have a minimal
performance impact on the many applications we tested. The RDTSC instruction
is typically only used during the start-up and shutdown of a program, e.g., to
measure the runtime of individual threads. Our proposed solution for the VDSO
does significantly impact the latency on executing individual timing-related system
calls. In Section 8.5, we propose a new monitor design that reduces this impact to
a bare minimum.

2. GPL is available under the BSD 3-clause license at http://github.com/stijn-volckaert/ReMon/
tree/master/MVEE_LD_Loader.

http://github.com/stijn-volckaert/ReMon/tree/master/MVEE_LD_Loader


8.3 Inconsistencies and False Positive Detections 225

8.3.3 File Operations
Multi-variant execution should be transparent to the variants and to external ob-
servers. GHUMVEE therefore uses the master call mechanism to ensure that I/O
operations are only performed once. With this mechanism, only the master variant
performs the actual I/O operations, and the monitor replicates the results to the
slave variants. Intuitively, it might also make sense to use master calls for system
calls that open, modify, or close file descriptors. Regular files, however, might be
mapped into the variants’ address spaces using the file-mapping API. If we apply the
master call mechanism to such files, any subsequent file-mapping request would
fail in all slave variants. GHUMVEE therefore allows slave variants to open, modify,
and close file descriptors for regular files.

The master call mechanism must still be used to open, modify, and close
other file descriptors, such as sockets, however. Certain system calls, such as sys_
accept, operate only on file descriptors associated with sockets that are in listening
state. Since only one socket can listen on each port, GHUMVEE uses master calls
for all socket operations.

Since some file descriptors are opened only in the master variant and some
are opened in all variants, the same file descriptor might have different values
in the different variants. As GHUMVEE must ensure that the multi-variant execu-
tion is transparent to the variants, the monitor replicates the same file descriptor
values to all variants, regardless of whether or not they have actually opened the
file. Whenever the variants perform a normal system call that they must all exe-
cute, GHUMVEE maps the replicated file descriptor value back to the original file
descriptor value at the system call entrance site. When the call returns, GHUM-
VEE maps the original file descriptor value back to the replicated file descriptor
value.

Although few details on how other MVEEs handle file descriptors are available,
we assume that most of them use a similar solution to ours. One notable exception
is Orchestra. Orchestra’s monitor performs most I/O operations on behalf of the
variants. Variants running in Orchestra therefore do not open any file descriptors
other than those for regular files.

8.3.4 Signal Handling
UNIX systems use signals as a general-purpose mechanism to send processes notifi-
cations [Linux Programmer’s Manual 2017c]. Each notification has a signal number
associated with it, and the signal number generally defines the notification’s mean-
ing. For example, when a program performs an invalid memory access, the kernel
sends it a SIGSEGV signal.



226 Chapter 8 Multi-Variant Execution Environments

Broadly speaking, we can distinguish between two kinds of signals. Control-flow
signals, such as SIGSEGV, are sent as a direct consequence of a program’s normal
control flow. The program cannot continue executing until the kernel has handled
the control-flow signal. If a control-flow signal is not blocked and the program has
registered a signal handler function for the signal in the handler table, the signal
is delivered synchronously. Asynchronous signals, on the other hand, originate from
an external source, and the program may continue executing while the kernel is
handling the delivery of an asynchronous signal.

Supporting control-flow signals in an MVEE is generally straightforward, as they
occur at the same point in each variant’s execution. Supporting asynchronous sig-
nals sent to the variants is extremely challenging, however. These signals can easily
trigger behavioral divergences in the variants if their delivery is not meticulously
controlled by the MVEE’s monitor. Since the monitor generally only intervenes in
the variants when they execute a system call, the variants may execute freely for the
most part. Consequently, one variant can easily run ahead of the others, and they
are generally not in equivalent states until they reach an RVP.

If the behavior of a signal handler used to handle an asynchronous signal de-
pends on the state of the variant in any way, delivering these asynchronous signals
directly all but guarantees behavioral divergence and thus a false positive alarm.
MVEEs that support asynchronous signals therefore attempt to defer their delivery
until the variants reach an RVP. At an RVP, the variants are in equivalent states,
and the asynchronous signals can be delivered synchronously without inducing a
divergence.

While the general principle of deferred synchronous signal delivery is simple,
its implementation is not. To the best of our knowledge, GHUMVEE is the only
MVEE that overcomes all the intricacies of asynchronous signal delivery and im-
plements deferred synchronous signal delivery correctly. We refer to Volckaert’s
PhD dissertation for a full overview of challenges that need to be overcome when
implementing deferred signal delivery in an MVEE [Volckaert 2015]. These chal-
lenges include, but are not limited to, correct handling of blocked and ignored
signals, support for per-thread signal masks, support for system call interruption,
support for master call interruption, and support for sys_sigsuspend and sys_

rt_sigsuspend.
GHUMVEE’s mechanism for handling asynchronous signal delivery is opti-

mized for correctness rather than performance. During our evaluation, we con-
cluded that almost every program that relies on signal handling still functions
correctly inside GHUMVEE. The only exception is the john-the-ripper program
in the phoronix 4.8.3 benchmark suite. This program waits for signals to be de-



8.3 Inconsistencies and False Positive Detections 227

livered in a busy loop, in which no system calls are used. Therefore, if GHUMVEE
intercepts a signal that is delivered to the variants, it indefinitely defers the delivery
of the signal because the variants never reach another system call RVP. One solu-
tion could be to start a timer when a signal is intercepted and to force the delivery
of the signal when the timer expires.

Orchestra’s mechanism for signal handling is optimized for performance rather
than correctness [Salamat et al. 2009]. Orchestra uses a heuristic to determine
whether a signal can be safely delivered, even if its variants have not reached a
system call RVP yet. However, Orchestra does not handle signals that interrupt
system calls correctly.

VARAN’s signal-handling mechanism is ideal with respect to performance and
correctness [Hosek and Cadar 2015]. VARAN is an IP monitor and therefore does
not rely on the ptrace API. Furthermore, VARAN forces its follower variants not to
invoke system calls at all. Instead, the follower variants just wait for the results of
the leader variants’ system calls. In VARAN, the leader variant accepts and processes
incoming signals without delay. While the follower variants generally do not receive
signals at all, the leader variant logs the metadata associated with the signal into the
event streaming buffer. This metadata provides the follower variants with sufficient
information to replay the invocation of the signal handler truthfully.

8.3.5 Address-Sensitive Behavior
Most of the sources of inconsistencies in the behavior of single-threaded variants
can be eliminated or mitigated by the monitor itself. The one notable exception is
address sensitivity, a problem frequently encountered in real-world software. The
monitored behavior of address-sensitive programs depends on their address space
layout. Any form of code, data, or address space layout diversification we use in
the variants can therefore lead to false positive detections by the monitor. We have
identified three problematic idioms that lead to address sensitivity, and we discuss
them now.

Address-Sensitive Data Structures. We have frequently encountered programs that
use data structures whose runtime layout and shape depends on numerical pointer
values. This practice is especially common among programs that rely on glib, the
base library of the GNOME desktop suite. glib exposes interfaces that C programs
may use to create, manage, and access hash tables and binary trees. The default
behavior of these glib data structures is to insert new elements based on their
location in memory: the (hash) keys used to select buckets and to order elements are



228 Chapter 8 Multi-Variant Execution Environments

based on the numerical pointer values. The problem in general is that the address-
sensitive behavior induces changes in the shape of allocated data structures, i.e.,
in the way they are linked via pointer chains.

Applying diversification techniques that result in diversified address space lay-
outs and shapes eventually yields divergences in the variants’ system call and syn-
chronization behavior. For example, in address-sensitive hash tables an insertion
of the same object can trigger a hash table collision and a subsequent memory al-
location request (e.g., through a sys_mmap call) to resize the table in some variants
but not in others.

While it might seem sensible to tolerate small variations in the system call
behavior, we typically cannot allow variations in the memory allocation behavior
of the variants, which we are bound to see in programs with address-sensitive data
structures. Variations in the memory allocation behavior cause a ripple effect in
multi-threaded variants: tolerating a minor discrepancy early on leads to bigger
and bigger discrepancies in the synchronization behavior and, consequently, in
the system call of the variants, to the point where we can no longer distinguish
between benign discrepancies and compromised variants.

Dynamic memory allocators are the instigators of this ripple effect. For example,
GNU libc’s ptmalloc attempts to satisfy any memory allocation request by reserv-
ing memory in one of its arenas. All accesses to the allocator’s internal bookkeep-
ing structures must be thread-safe. It therefore relies on thread synchronization to
ensure safety. As we discuss in the next section, GHUMVEE replicates the master
variant’s synchronization operations in the slave variants. Thus, if the variants be-
have differently with respect to memory allocations, the replicated synchronization
information might be misinterpreted by other variants because it does not match
their actual behavior. From that point onward, such variants will no longer replay
synchronization operations in the same order as the master and will therefore typ-
ically diverge from the master with respect to the system call behavior.

Allocation of Aligned Memory Regions. An additional problem we identified in pt-

malloc is its requirement that any memory region it allocates through sys_mmap

is aligned to a large boundary of, e.g., 1 MiB. The operating system only guarantees
that newly allocated memory regions are aligned to a boundary equal to the size of
a physical memory page. To bridge this gap, ptmalloc always allocates twice the
memory it needs and subsequently deallocates the region before and the region
after the boundary. When running multiple variants that use this memory alloca-
tor, the sizes of the deallocated upper and lower regions might differ. Worse yet,
in some cases the newly allocated memory might already be aligned to the desired



8.3 Inconsistencies and False Positive Detections 229

boundary and ptmalloc therefore only deallocates the upper region. This might
trigger false positive detections in MVEEs that execute their variants in lockstep,
since some variants may deallocate the lower and the upper region while others
only deallocate the upper region.

Writing Output That Contains Pointers. Some programs output numerical pointer
values. Unlike the previous problematic idioms, writing out pointers often leads to
only minor differences in the system call behavior, and we have not encountered
any cases where writing out pointers triggers a ripple effect. It is therefore sensible
to tolerate minor differences in the program output.

One problem to deal with, however, is that pointers are not always easily rec-
ognizable in a program’s output. Some programs encode pointers, e.g., by storing
them as an offset relative to a global variable or object. Encoded pointers are often
smaller than the size of a memory word.

Similarly, many programs and libraries use partially uninitialized structures as
arguments for a system call. The uninitialized portions of these structures may
contain leftovers of previous allocations. These leftovers often include pointers.
While it can often be considered a bug to pass uninitialized structures to the kernel,
there are cases where the programmer and the compiler are not to blame. An
optimizing compiler aligns members of a data structure to their natural boundary.
If necessary, padding bytes are inserted between the members. These padding bytes
are never used, and it is therefore acceptable that they are not initialized. If that is
the case, and they overlap with remainders of previously allocated objects, this can
once again lead to minor variations in the output behavior.

All of the above idioms lead to discrepancies in the variants’ system call behavior
and/or synchronization behavior. Small variations in the system call behavior can in
some cases be tolerated, especially if the variations are limited to the arguments of
a single system call. Variations in the synchronization behavior cannot be tolerated,
however, as we argue in the next section.

8.3.6 Nondeterminism in Parallel Programs
Except for the few cases we discussed in the previous sections, single-threaded
variants produce the same outputs when given the same program inputs. The same
is not true of multi-threaded variants, in which threads may communicate directly
through shared memory, without using system calls. In these variants, the output
also depends on the runtime thread interleaving. Security-oriented MVEEs, which
run variants in strict lockstep, must therefore control the thread interleaving such
that each variant makes the same system calls with equivalent arguments.



230 Chapter 8 Multi-Variant Execution Environments

Two lines of research address exactly this challenge. On the one hand, there are
the Deterministic Multi-Threading (DMT) systems, which repeat the same thread
interleaving when given the same program inputs [Basile et al. 2002, Reiser et al.
2006, Berger et al. 2009, Liu et al. 2011, Merrifield and Eriksson 2013, Cui et al. 2013,
Olszewski et al. 2009, Lu et al. 2014, Devietti et al. 2009, Bergan et al. 2010, Zhou
et al. 2012]. On the other hand, there are online Record/Replay (R/R) systems, which
capture the thread interleaving in one running instance of a program and impose
this captured schedule in a concurrently running instance [Basile et al. 2006, Lee
et al. 2010, Basu et al. 2011].

DMT systems are an ill fit in the context of MVEEs, as such systems are likely to
impose a different thread interleaving whenever the program code or code layout
changes. Thus, running diversified variants in which the code layout differs with
near certainty and with DMT on top of an MVEE will still result in different thread
interleavings and, consequently, divergent behavior. We refer to our earlier work
for an in-depth reasoning to support this argument [Volckaert et al. 2017].

In GHUMVEE, we therefore opt for the second option. R/R systems usually
capture the thread interleaving at the granularity of synchronization operations
(e.g., pthread mutex operations). The underlying thought is that in data-race-free
programs, any inter-thread communication must, by definition, be protected by
critical sections. Imposing an equivalent synchronization operation schedule in
every execution of the program thus trivially leads to a thread interleaving that is
equivalent for each run. Since synchronization operations are not likely to differ
between diversified variants, R/R systems are a much better fit than DMT in the
context of an MVEE.

8.3.7 User-Space Rendezvous Points
In order to maintain equivalent system call behavior, even in parallel programs
or in programs that feature address-sensitive behavior, we introduce user-space
rendezvous points (USRVPs). Conceptually, we add these USRVPs to any operation
in the variants’ code if (i) the operation may affect the variants’ system call behavior
and (ii) the operation may produce different results in each variant. At each USRVP,
we insert calls to a replication agent. This replication agent is a shared library
we forcefully load into each variant’s address space. As shown in Figure 8.3, the
replication agent captures the results of the instrumented operation in the master
variant and stores them in a circular buffer that is visible to all variants. The agent
then forces the slave variants to overwrite the results of their own instrumented
operations with the results produced by the master variant.



8.3 Inconsistencies and False Positive Detections 231

replication 
agent

replication 
agent

Replication
agent

Replication
agent

Replication
buffer Slave variants

Master variant

KernelGHUMVEE

Figure 8.3 Using replication agents to replicate nondeterministic program behavior.

We developed three components that help a developer with the implementation
of USRVPs and replication agents:3

The GHUMVEE replication API. The GHUMVEE replication API can be used
to generate the replication agents and the USRVPs. The API consists of a set
of preprocessor macros that expand into C functions. These C functions im-
plement the recording and forwarding logic of the replication agent. In the
master variant, the generated function can retrieve the results of the instru-
mented operation by calling a programmer-specified function. It can then
record the input into a circular buffer. In the slave variants, the generated
function retrieves the results from the circular buffer. The replication API
further allows the programmer to specify whether or not the slaves should
also execute the instrumented operation. This may be necessary, e.g., if the
instrumented operation has side effects that may affect future system call
and synchronization behavior.

The Lazy hooker. The generated USRVP functions can be embedded in the
variant by registering them with a shared library, which we call “the lazy
hooker.” This library monitors the dynamic loading process of the variants
and determines whether or not a USRVP generated with the above API should
be installed. At the time of the registration, the lazy hooker may insert the
USRVP function immediately, if the specified library has already been loaded,
or it can defer the insertion until the program loads the library.

3. We refer interested readers to Volckaert’s Ph.D. thesis for an extensive discussion that includes
usage examples [Volckaert 2015].



232 Chapter 8 Multi-Variant Execution Environments

The LinuxDetours library. We insert the USRVP functions using LinuxDe-

tours, a runtime code-patching library we developed for use in GHUMVEE.
The library is named after Microsoft’sDetours library and implements a sub-
set of the official Detours API [Hunt and Brubacher 1999]. LinuxDetours
can redirect calls to functions and generate trampolines that may be used to
call the original function, without interception.

8.3.7.1 USRVP Applications
GHUMVEE currently relies on USRVPs for two purposes. First, we add USRVPs to
all thread synchronization operations in order to embed our R/R system into the
variants. Thanks to our replication APIs and infrastructure, we were able to con-
struct an R/R system that captures the order of thread synchronization operations
in the master variant and replays an equivalent order in the slave variants. Con-
trary to most existing R/R systems, which capture only high-level synchronization
operations, such as pthread mutex operations, we capture the order of all thread
synchronization operations, including individual atomic instructions.

Second, we add USRVPs to operations on address-dependent data structures,
such as the ones described in Section 8.3.5. At these USRVPs, we capture values such
as pointer hashes and pointer comparison results used by sorting algorithms, and
we force all the variants to use the same values. Thanks to our USRVPs, GHUMVEE
can ensure that address-dependent data structures potentially allocated at different
memory locations have the same shape in all variants.

It is important to note that USRVPs are application specific. Although we be-
lieve that the identification of USRVP insertion points can be automated to some
extent, some help from the application developer will always be required. We re-
fer to our earlier work for details on USRVP insertion point identification, the
construction of efficient replication agents and R/R systems, and automation op-
portunities [Volckaert et al. 2013, Volckaert et al. 2017].

Evaluation and Comparison with other MVEEs
We applied our replication API and infrastructure to run a variety of applications, in-
cluding the SPLASH-2x and PARSEC 2.1 parallel benchmark suites and two popular,
though now outdated, desktop programs: the Firefox 3.6 browser and the LibreOf-
fice 4.5 office suite.

To run the parallel benchmark suites, we constructed a replication agent that
contains an R/R system and embedded this agent into glibc. This R/R replication
agent is called from the more than 1,000 USRVPs we added to thread synchroniza-



8.4 Comprehensive Protection against Code-Reuse Attacks 233

tion operations in the glibc, libgomp, libpthread, and libstdc++ libraries, as
well as a few of the program binaries.

To run Firefox and LibreOffice, we constructed five different replication agents,
each one supporting a particular address-sensitive data structure.

To the best of our knowledge, GHUMVEE is the only MVEE to date that has any
provisions to eliminate inconsistencies resulting from address-sensitive behavior
and user-space synchronization operations.

8.4 Comprehensive Protection against Code-Reuse Attacks
In 2007 Shacham presented the first Return-Oriented Programming (ROP) attacks
for the x86 architecture [Shacham 2007]. He demonstrated that ROP attacks, unlike
return-to-libc attacks, can be crafted to perform arbitrary computations, provided
that the attacked application is sufficiently large. ROP attacks were later generalized
to architectures such as SPARC [Buchanan et al. 2008], ARM [Kornau 2010], and
many others.

8.4.1 Disjoint Code Layouts
As an alternative protection against user-space ROP attacks, we present Disjoint
Code Layouts (DCL). With this diversification technique, GHUMVEE ensures that
no code segments in the variants’ address spaces overlap. Lacking overlapping
code segments, no code gadgets co-exist in the different variants to be executed
during ROP attacks. Hence no ROP attacks can alter the behavior of all variants
consistently. Our design and implementation of DCL offers many advantages over
existing solutions:

. DCL offers complete immunity against user-space ROP attacks rather than
just raising the bar for attackers.

. The execution slowdown incurred by this form of diversification is minimal.

. A single version of the application binary suffices to protect against ROP
attacks. Optionally, our monitor supports the execution and replication of
multiple diversified binaries of an application to protect against other types
of exploits as well.

. DCL is compatible with existing compilers and existing solutions such as
stack canaries [Cowan et al. 1998] and control-flow integrity [Abadi et al.
2005a, Tice et al. 2014].

. Unlike some existing techniques for memory layout diversification in MVEEs,
DCL causes only marginal memory footprint overhead within the protected



234 Chapter 8 Multi-Variant Execution Environments

application’s address space. Thus, DCL can protect programs that flirt with
address space boundaries on, e.g., 32-bit systems. Systemwide, DCL does
of course still cause considerable memory overhead due to its duplication
of process-local data regions, such as the heap and writable pages. Still,
GHUMVEE with DCL outperforms memory-checking tools in this regard.

Our technique of DCL is implemented mostly inside GHUMVEE’s monitor. Its
support for DCL is based on the following Linux features:

. In general, any memory page that might at some point contain executable
code is mapped through a sys_mmap2 call. When the program interpreter
(e.g., ld-linux) or the standard C library (e.g., glibc) load an executable
or shared library, the initial sys_mmap2 requests that the entire image be
mapped with PROT_EXEC rights. Subsequent sys_mmap2 and sys_mprotect

calls then adjust the alignment and protection flags for non-executable parts
of the image. (The few exceptions are discussed later.)

. Even with ASLR enabled, Linux allows for mapping pages at a fixed address
by specifying the desired address in the addr argument of the sys_mmap2

call.

. When a variant enters a system call, this constitutes an RVP for GHUMVEE,
at which point GHUMVEE can modify the system call arguments before the
system call is passed on to the OS. Consequently, GHUMVEE can modify the
addr arguments of all sys_mmap2 calls to control the variant’s address space.

As shared libraries are loaded into memory from user space (i.e., by the pro-
gram interpreter component to which the kernel transfers control when returning
from the sys_execve system call used to launch a new process), GHUMVEE can
fully control the location of all loaded shared libraries. It suffices to replace the
arguments of any sys_mmap2 call invoked with PROT_EXEC protection flags and
originating from within the interpreter. Some simple bookkeeping in the moni-
tor then suffices to enforce that the code mapped in the different variants does not
overlap, i.e., that whenever one variant maps code onto some address in its address
space, the other ones do not map code there.

8.4.2 Mapping Segments Normally Mapped by the Kernel
Some code regions require special handling, however. Under normal circum-
stances the kernel maps the program image (i.e., the main binary’s segments),
the program interpreter, and the VDSO. When ASLR is enabled, it maps them at
randomized addresses. But randomized addresses in all the variants do not suffice



8.4 Comprehensive Protection against Code-Reuse Attacks 235

to guarantee disjoint code layout. Because GHUMVEE cannot intervene in decision
processes in kernel space, it therefore needs to prevent the kernel from mapping
them and instead have them mapped from user space, i.e., by the program inter-
preter. GHUMVEE can then again intercept the mapping system calls and enforce
non-overlapping mappings of code regions.

Disjoint Program Images. The standard way to launch new applications is to fork
off a running process and invoke a sys_execve system call. For example, to read a
directory’s contents with the ls tool, the shell forks and invokes

sys_execve("/bin/ls", {"ls", ...}, ...);

The kernel then clears the virtual address space of the forked process and maps
the mentioned components and a main process stack into its now empty address
space.

Mapping the program image from within user space is rather trivial. It suffices
to load a program indirectly, rather than directly, with a slightly altered system call

sys_execve("/lib/ld-linux.so.2", {"ld-linux.so.2", "/bin/ls",

argv[1], ...}, NULL);

If a program is loaded indirectly, the kernel maps only the program interpreter, the
VDSO, and the initial stack into memory. The remainder of the loading process is
handled by the interpreter from within user space. Through indirect invocation,
GHUMVEE can override the sys_mmap2 request in the interpreter that maps the
program image. In order to allow GHUMVEE to choose a different address for the
program image in each variant, the program needs be compiled into a Position-
Independent Executable (PIE). Recent versions of GCC and LLVM can do so without
introducing significant overheads.

At this point, it is important to point out that GHUMVEE does not itself launch
applications through this altered system call. Instead, GHUMVEE lets the original,
just forked-off processes invoke the standard system call, after which GHUMVEE
intercepts that system call and overrides its arguments before passing them to the
kernel. This way, GHUMVEE can control the layout of the variants’ processes it
spawns itself as well as the layout of all the processes subsequently spawned within
the variants. This is an essential feature to provide complete protection in the case
of multi-process applications, such as applications that are launched through shell
scripts.



236 Chapter 8 Multi-Variant Execution Environments

Program Interpreter. Even with the above indirect program invocation, we cannot
prevent the kernel itself from mapping the program interpreter. Hence the indirect
invocation does not suffice to ensure that no code regions overlap in the variants.

In Linux, the interpreter is only mapped when the kernel loads a dynamically
linked program. To prevent that loading even when launching dynamically linked
programs, we developed a statically linked loader program, hereafter referred to as
the GHUMVEE Program Loader (GPL). Whenever an application is launched under
the control of GHUMVEE, it is launched by launching GPL and having GPL load
the actual application. Launching GPL is again done by intercepting the original
sys_execve calls in GHUMVEE and rewriting their arguments.

VDSO. In each variant launched by GHUMVEE, the copy of GPL is started under
GHUMVEE’s control. At GPL’s entry point, GHUMVEE first checks whether the
VDSOs, which were allocated randomly in each variant with ASLR, are disjoint. If
they are not, GHUMVEE restarts new variants until a layout is obtained in which
the VDSOs are disjoint. Until recently, the Linux kernel mapped the VDSO anywhere
between 1 and 1,023 pages below the stack on the i386 platform. It was therefore not
uncommon that GHUMVEE had to restart one or more variants. However, a single
restart takes less than 4 ms on our system, so the overall performance overhead is
negligible.

After ensuring that the VDSOs are disjoint, GPL manually maps the program
interpreter through sys_mmap2 calls. This way, GHUMVEE can override the base
addresses of the variants’ interpreters to map them onto regions that contain no
code in the other variants.

Program Stack. Next, GPL sets up an initial stack in each variant with the exact
same layout as when the interpreter would have been loaded by the kernel. Setting
up this stack requires several modifications to the stack that the kernel had set up
for GPL itself, but this is rather simple to implement.

GPL then transfers control to GHUMVEE through a pseudo system call. GHUM-
VEE intercepts this call and modifies the call number and arguments such that the
kernel unmaps GPL in each variant. Upon return from the call to GHUMVEE, it
transfers control to the program interpreter. When the variants then resume, they
have fully disjoint code layouts.

Original Program and Shared Libraries. In each variant, the interpreter then contin-
ues to load and map the original program and the shared libraries, all of which will
be subject to DCL as GHUMVEE intercepts the invoked system calls. Afterward, the



8.4 Comprehensive Protection against Code-Reuse Attacks 237

interpreter passes control to the program in each of the variants, which are then
all ready to start executing the actual programs.

Assuming that the original program stack is protected by W⊕X, the summarized
loading and mapping process is rather complicated, but from the user’s perspective
this completely transparent launching process allows us to control, in user space,
the exact base address of every region that might contain executable code during
the execution of the actual program launched by the user.

The end result is two or more variants with completely disjoint code regions.
Any divergence in I/O behavior caused by a ROP attack successfully attacking one
variant will be detected and aborted by the monitor.

8.4.3 Disjoint Code Layout vs. Address Space Partitioning
Cox et al. and Cavallaro independently proposed to combat memory exploits with
essentially identical techniques they called Address Space Partitioning (ASP) [Cox
et al. 2006] and Non-Overlapping Address Spaces [Cavallaro 2007], respectively. We
will refer to both as ASP.

ASP ensures that addresses of program code (and data) are unique to each
variant, i.e., that no virtual address is ever valid for more than one variant. ASP
does this by effectively dividing the amount of available virtual memory by N ,
with N being the number of variants running inside the system. We relaxed this
requirement. In DCL, only code addresses must be unique among the variants,
but data addresses can occur in multiple variants. So for real-life programs, DCL
reduces the amount of available virtual memory by a much smaller fraction than N .

Another significant difference between both of the proposed ASP techniques
and DCL is that both implementations of ASP require modifications to either the
kernel or the program loader. Cox’s N-Variant Systems was fully implemented in
kernel space. This way, N-Variant Systems can easily determine where each mem-
ory block should be mapped. Cavallaro’s ASP implementation requires a patched
program loader (ld-linux.so.2) to remap the initial stack and override future map-
ping requests. By contrast, GHUMVEE and DCL do not rely on any changes to the
standard loader, standard libraries, or kernel installed on a system. As such, DCL
can much more easily be deployed selectively, i.e., for part of the software stack
running on a machine, similar to how PIE is used for selected programs on current
Linux distributions. As is the case with the relaxed monitoring policies we describe
in Section 8.5, by refraining from modifying core system libraries, GHUMVEE of-
fers the end user a great degree of flexibility in when, how, and where its security
features should be used.



238 Chapter 8 Multi-Variant Execution Environments

Finally, whereas DCL relies on PIE [Murphy 2012] to achieve non-overlapping
code regions in the variants, both presented forms of ASP rely on standard, non-
PIE ELF binaries, despite the fact that PIE support was added to the GCC/binutils
toolchain in 2003, well before ASP was proposed. Those non-PIE binaries cannot be
relocated at load time. Enabling ASP is therefore only possible by compiling mul-
tiple versions of the same ELF executable, each at a different fixed address. ASP
tackles this problem by deploying multiple linker scripts for generating the nec-
essary versions of the executable. Unlike regular ELF executables, PIE executables
can be relocated at load time. So our DCL solution requires only one, PIE enabled,
version of each executable. This feature can again facilitate widespread adoption
of DCL.

8.4.4 Compatibility Considerations
Programs that use self-modifying or dynamically compiled, decrypted, or down-
loaded code may require special treatment when run with DCL. Particularly, GHUM-
VEE needs to ensure that these programs cannot violate the DCL guarantees. We
therefore clarify how GHUMVEE interacts with the program variants in a number
of scenarios.

Changing the protection flags of memory pages that were not initially mapped as
executable is not allowed. GHUMVEE keeps track of the initial protection flags for
each memory page. If the initial protection flags do not include the PROT_EXECflag,
the memory page was not subject to DCL at the time it was mapped and GHUMVEE
therefore refuses any requests to make the page executable by returning the EPERM
error from thesys_mprotect call that is used to request the change. This inevitably
prevents some JIT engines from working out of the box. However, adapting the JIT
engine to restore compatibility is trivial. It suffices to request that any JIT region be
executable at the time it is initially mapped.

Changing the protection flags of memory pages that were initially mapped as
executable is allowed without restrictions. GHUMVEE does not deny any sys_

mprotect requests to change the protection flags of such pages.
Programs that use the infamous “double-mmap method” to generate code that

is immediately executable do not work in GHUMVEE. With the double-mmap
method, JIT regions are mapped twice—once with read/write access and once
with read/execute access [Moser 2006, Drepper 2006]. The code is generated by
writing into the read/write region and can then be executed from the read/execute
region. On Linux, a physical page can only be mapped at two distinct locations
with two distinct sets of protection flags through the use of one of the APIs for
shared memory. As we discussed in Section 8.2, GHUMVEE does not allow the



8.4 Comprehensive Protection against Code-Reuse Attacks 239

use of shared memory. Applications that use the double-mmap method therefore
would not work. That being said, in this particular case we do not consider our
lack of support for bi-directional shared memory as a limitation. Any attacker
with sufficient knowledge of such a program’s address space layout would be able
to write executable code directly, which renders protection mechanisms such as
W⊕X useless. The double-mmap method is therefore nothing short of a recipe
for disaster. In practice, we only witnessed this method being used once, in the
vtablefactory of LibreOffice.

8.4.5 Protection Effectiveness
We cannot provide a formal proof of the effectiveness of DCL. Informally, we can
argue that by intercepting all system calls, GHUMVEE can ensure that not a single
region in the virtual memory address space has its protections set to PROT_EXEC

in more than one variant. Furthermore, GHUMVEE’s replication ensures that all
variants receive exactly the same input. This is the case for input provided through
system calls and through signals. Combined, these features ensure that when an
attacker passes an absolute address to the application by means of a memory
corruption exploit, the code at that address is executable in no more than one
variant. The operating system’s memory protection makes the variants crash as
soon as they try to execute code in their non-executable or missing page at the same
virtual address.

We should point out, however, that this protection only works against external
attacks, i.e., attacks triggered by external inputs that feed addresses to the program.
Artificial ROP attacks set up from within a program itself, as is done in the runtime
intrusion prevention evaluator (RIPE) [Wilander et al. 2011], are not necessarily
prevented, because in such attacks return addresses are computed within the pro-
grams themselves. For those return addresses, different values are hence computed
within the different variants, rather than being replicated and intercepted by the
replication engine.

To validate the above claimed effectiveness of GHUMVEE with DCL to some
extent, we constructed four ROP attacks against high-profile targets. The attacks
are available at http://github.com/stijn-volckaert/ReMon/.

Our first attack is based on the Braille tool by Bittau et al. [2014]. It exploits a
stack buffer overflow vulnerability (CVE-2013-2028) in the nginx web server. The
attack first uses stack reading to leak the stack canary and the return address at the
bottom of the vulnerable function’s stack frame. From this address, it calculates
the base address of the nginx binary and uses prior knowledge of the nginx binary
to set up a ROP chain. The ROP program itself grants the attacker a remote shell. We

http://github.com/stijn-volckaert/ReMon/


240 Chapter 8 Multi-Variant Execution Environments

tested this attack by compiling nginx with GCC 4.8, with both PIE and stack canaries
enabled. The attack succeeds when nginx is run natively with ASLR enabled and
when nginx is run inside GHUMVEE with only one variant. If we run the attack on
two variants, however, it fails to leak the stack canary. While attempting to leak
the stack canary, at least one variant crashes for every attempt. Whenever a variant
crashes, GHUMVEE assumes that the program is under attack and shuts down all
other variants in the same logical process. Despite the repeatedly crashing worker
processes, the master process manages to restart workers quickly enough to keep
the server available throughout the attack.

While GHUMVEE with DCL blocks this attack, the attack probably would not
have worked even with DCL disabled: with more than one variant, the attack’s stack-
reading step can only succeed if every variant uses the same value for its stack canary
and the same base address for the nginx binary. To prove that DCL does indeed stop
ROP attacks, we therefore constructed three other attacks against programs that do
not use stack canaries and for which we read the memory layout directly from the
/proc interface rather than through stack reading.

Our second attack exploits a stack buffer overflow (CVE-2010-4221) in the
proftpd FTP server. The attack scans the proftpd binary and the libc library
for gadgets for the ROP chain, and reads the load addresses of proftpd and libc

from /proc/pid/maps to determine the absolute addresses of the gadgets. The
gadgets are combined in a ROP chain that loads and transfers control to an arbi-
trary payload. In our proof of concept, this payload ends with an execve system call
used to copy a file. The buffer containing the ROP chain is sent to the application
over an unauthenticated FTP connection. The attack succeeds when proftpd is run
natively with ASLR enabled and also when run inside GHUMVEE with only one vari-
ant. When run with two variants, GHUMVEE detects that one variant crashes while
the other attempts to perform a sys_execve call. GHUMVEE therefore assumes
that an attack is in progress, and it shuts down all variants in the same logical
process. During the attack, proftpd’s master process manages to restart worker
processes quickly enough to keep the server available throughout the attack.

Our third attack exploits a stack-based buffer overflow (CVE-2012-4409) in
mcrypt, an encryption program intended to replace crypt. The attack loads ad-
dresses of the mcrypt binary and the libc library from the /proc interface to
construct a ROP chain, which is sent to the mcrypt application over a pipe. The
attack succeeds when mcrypt is run natively with ASLR enabled and also when run
inside GHUMVEE with only one variant. When run with two variants, GHUMVEE
detects a crash in one variant and an attempt to perform a system call in the other.
It therefore shuts down the program to prevent any damage to the system.



8.5 Relaxed Monitoring 241

Our fourth attack exploits a stack-based buffer overflow vulnerability (CVE-2014-
0749) in the TORQUE resource manager server. The attack reads the load address of
the pbs_server process, constructs a ROP chain to load and execute an arbitrary
payload from found gadgets, and sends it to the server over an unauthenticated
network connection. The attack succeeds when TORQUE is run natively with ASLR
enabled and also when run inside GHUMVEE with only one variant. When run with
two variants, GHUMVEE detects a crash in one variant and an attempt to perform a
system call in the other. It therefore shuts down the program to prevent any damage
to the system.

8.5 Relaxed Monitoring
Most of the security-oriented MVEEs that preceded GHUMVEE incur non-negligible
runtime performance overhead. This overhead can be attributed to two key design
decisions: the strict lockstep synchronization model for system calls and the CP/UL
operation of the MVEE’s monitor.

Both of these design decisions aggressively favor security over performance. In
this section, we revisit these key decisions and present a new MVEE design called
ReMon. ReMon incurs significantly lower runtime overhead than other CP/UL
MVEEs, while maintaining a high level of security.

Our design is motivated by the fact that a security policy of monitoring all sys-
tem calls is overly conservative [Garfinkel et al. 2004, Provos 2003]. Many system
calls cannot affect any state outside of the process making the system call. Only
a small set of sensitive system calls are potentially useful to an attacker. Thanks
to its IP-MON component discussed below, ReMon supports configurable relax-
ation policies that allow non-sensitive calls to execute without being cross-checked
against other variants.

8.5.1 ReMon Design and Implementation
Like GHUMVEE, ReMon supervises the execution of multiple diversified program
variants that run in parallel. ReMon’s main goals are (i) to monitor all security-
sensitive system calls—hereafter referred to as “monitored calls”—issued by these
variants; (ii) to force monitored calls to execute in lockstep; (iii) to disable moni-
toring and lockstepping for non-security-sensitive system calls—hereafter referred
to as “unmonitored calls”—thus allowing the variants to execute these calls as ef-
ficiently as possible while still providing them with consistent system call results;
and (iv) to support configurable monitoring relaxation policies that define which



242 Chapter 8 Multi-Variant Execution Environments

Kernel

GHUMVEE

Variant

sys_read(…)1

IP-MON

2 +
&RB

43 2′

IK Broker-
interceptor

4′

IK Broker-
verifier 

Figure 8.4 ReMon’s major components and interactions.

subset of all system calls is considered non-security-sensitive, and therefore should
not be monitored. ReMon uses three main components to attain these goals:

GHUMVEE is the security-oriented CP monitor implemented as discussed in the
preceding sections. Although GHUMVEE can be used in stand-alone fashion,
it only handles monitored calls when used as part of ReMon.

IP-MON is an in-process monitor loaded into each variant as a shared library. IP-
MON provides the application with the necessary functionality to replicate
the results of unmonitored calls.

IK-B is a small in-kernel broker that forwards unmonitored calls to IP-MON and
monitored calls to GHUMVEE. IK-B also enforces security restrictions on IP-
MON and provides auxiliary functionality that cannot be implemented in
user space. The broker is aware of the system calls that IP-MON handles and
of the relaxation policy that is in effect.

These three components interact whenever a variant executes a system call,
as shown in Figure 8.4. Our kernel-space system call broker, IK-B, intercepts the
system call ⃝1 and either forwards it to IP-MON ⃝2 or to GHUMVEE ⃝2′ . The call is
forwarded to IP-MON only if the variant has loaded an IP-MON that can replicate
the results of the call, and if the active relaxation policy allows the invoked call to
be executed as an unmonitored call. If these two criteria are not met, IK-B uses the
standard ptrace facilities to forward the call to GHUMVEE instead, which handles
it exactly as a regular CP-MVEE.

In the former case, IK-B forwards the call by overwriting the program counter
so that the system call returns to a known “system call entry point” in IP-MON’s



8.5 Relaxed Monitoring 243

executable code. While doing so, IK-B gives IP-MON a one-time authorization to
complete the execution of the call without having the call reported to GHUMVEE.
The broker grants this authorization by passing a random 64-bit token ⃝2 as an
implicit argument to the forwarded call. IP-MON then performs a series of security
checks and eventually completes the execution of the forwarded call by restarting
it ⃝3 . IP-MON can choose to restart the call with or without the authorization
token still intact. If the token is intact upon reentering the kernel, IK-B allows the
execution of the system call to complete and returns the call’s results to IP-MON
⃝4 . If the token is not intact, or if IP-MON executes a different system call, or if the
first system call executed after a token has been granted does not originate from
within IP-MON itself, IK-B revokes the token and forces the call to be forwarded to
GHUMVEE ⃝4′ .

IP-MON generally executes unmonitored system calls only in the master vari-
ant and replicates the results of the system call to the slave variants through the
Replication Buffer (RB) discussed in Section 8.5.1.2. The slaves wait for the master
to complete its system call and copy the replicated results from the RB when they
become available.

Although IP-MON allows the master variant to run ahead of the slaves, it still
checks if the variants have diverged. To do so, the master’s IP-MON deep-copies
all its system call arguments into the RB, and the slaves’ IP-MONs compare their
own arguments with the recorded ones when they invoke IP-MON. This measure
minimizes opportunities for asymmetrical attacks (cf. Section 8.5.2).

8.5.1.1 Securing the Design
The IK-B verifier only allows variants to complete the execution of unmonitored
system calls if those calls originate from within an IP-MON instance having a
valid one-time authorization token. As only the IK-B interceptor can generate valid
tokens, this mechanism forces every unmonitored system call to go through IK-B. At
the same time, it also ensures that IP-MON can only execute unmonitored system
calls if it is invoked by IK-B and it is invoked through its intended entry point. This
mechanism is, in essence, a form of control-flow integrity [Abadi et al. 2005a]. It
also allows us to hide the location of the RB, thereby preventing the RB from being
accessed from outside IP-MON. Protecting the RB is of critical importance to the
security of our MVEE, as we discuss in Section 8.5.2. To fully hide the location of
the RB while still allowing benign accesses, we ensure that the pointer to the RB is
only stored in kernel memory.

IK-B loads the RB pointer and the token into designated processor registers
whenever it forwards a call to IP-MON, and IP-MON is designed and implemented



244 Chapter 8 Multi-Variant Execution Environments

such that it does not leak these sensitive values into user-space-accessible memory.
First, we compile IP-MON using gcc and use the -ffixed-reg option to remove
the RB pointer and authorization token’s designated registers from gcc’s register
allocator. This ensures that the sensitive values never leak to the stack nor to
any other register. Second, we carefully craft specialized accessor functions to
access the RB. These functions may temporarily load the RB pointer into other
registers, e.g., to calculate a pointer to a specific element in the RB, but they
restore these registers to their former values upon returning. We also force IP-
MON to destroy the RB pointer and authorization token registers themselves upon
returning to the system call site. Finally, we use inlining to avoid indirect control-
flow instructions from IP-MON’s system call entry point. This ensures that IP-
MON’s control flow cannot be diverted to a malicious function that could leak the
RB pointer or authorization token.

ReMon further prevents discovery of the RB through the /proc/maps interface: it
forcibly forwards all system calls accessing the maps file to GHUMVEE and it filters
the data read from the file. This requires marking the maps file as a special file, as
described in Section 8.5.1.6.

To prevent IP-MON itself from being tampered with, we also force all system
calls that could adversely affect IP-MON to be forwarded to GHUMVEE. These calls
(e.g., sys_mprotect and sys_mremap) are then subject to the default lockstep
synchronization mechanism.

8.5.1.2 The IP-MON Replication Buffer
Like the replication agents discussed in Section 8.3.7, IP-MON must be embedded
into all variants, so it consists of multiple independent copies, one per variant.
These copies must cooperate, which requires an efficient communication channel.
Although a socket or FIFO could be used, we opted for an RB stored in a memory
segment and shared by all the variants.

To increase the scalability of our design, we opted not to use a true circular
buffer. Instead, we use a linear RB. When our RB overflows, we signal GHUMVEE
using a system call. GHUMVEE then waits for all variants to synchronize, resets
the buffer to its initial state, and resumes the variants. Involving GHUMVEE as an
arbiter avoids costly read/write sharing on RB variables that keep track of where
data starts and ends in the RB. Instead, each variant thread only reads and writes
its own RB position. The implementation of the IP-MON RB is nearly identical to
that of the RBs GHUMVEE uses to support USRVPs (see Section 8.3.7).



8.5 Relaxed Monitoring 245

/* read(int fd, void * buf, size_t count) */

MAYBE_CHECKED(read) {

// check if our current policy allows us to dispatch read

// calls on this file as unmonitored calls

return !can_read(ARG1);

}

CALCSIZE(read) {

// reserve space for 3 register arguments

COUNTREG(ARG);

COUNTREG(ARG);

COUNTREG(ARG);

// one buffer whose maximum size is in argument 3 of syscall

COUNTBUFFER(RET, ARG3);

}

PRECALL(read) {

// compare the args each variant passed to the call.

// if they match, we allow only the master to complete the call,

// while the slaves wait for the master’s results.

CHECKREG(ARG1);

CHECKPOINTER(ARG2);

CHECKREG(ARG3);

return MASTERCALL | MAYBE_BLOCKING(ARG1);

}

POSTCALL(read) {

// replicate the results

REPLICATEBUFFER(ARG2, ret);

}

Listing 8.1 Replicating the read system call in IP-MON.

8.5.1.3 Adding System Call Support
ReMon currently supports well over 200 system calls. To provide a fast path, IP-
MON supports a subset of 67 system calls. However, adding support to IP-MON for
a new system call is generally straightforward. IP-MON offers a set of C macros to
describe how to handle the replication of the system call and its results.

As an example, Listing 8.1 shows IP-MON’s code for the read system call. The
code is split across four handler functions that each implement one step in the
handling of a system call using the C macros provided by IP-MON.

First, the MAYBE_CHECKED function is called to determine if the call should be
monitored by GHUMVEE. If the MAYBE_CHECKED handler returns true, IP-MON



246 Chapter 8 Multi-Variant Execution Environments

forces the original system call to be forwarded to GHUMVEE (⃝4′ ) by destroying the
authorization token and restarting the call.

IP-MON uses a fixed-size RB to replicate system call arguments, results, and
other system call metadata. Prior to restarting the forwarded call, we therefore need
to calculate the maximum size this information may occupy in the RB. If the size of
the data as calculated by the CALCSIZE handler exceeds the size of the RB, IP-MON
forces the original system call to be forwarded to GHUMVEE. If the data size does
not exceed the size of the RB, but it is bigger than the available portion of the RB,
the master waits for the slaves to consume the data already in the RB, after which
it resets the RB.

Next, if IP-MON has decided not to forward the original system call to GHUM-
VEE, it calls the PRECALL handler. In the context of the master variant, this function
logs the forwarded call’s arguments, call number, and a small amount of metadata
into the RB. This metadata consists of a set of boolean flags that indicate whether
or not the master has forwarded the call to GHUMVEE, whether or not the call
is expected to block when it is resumed, etc. If the function is called in a slave
variant’s context, IP-MON performs sanity checking by comparing the slave’s ar-
guments with the master’s arguments. If they do not match, IP-MON triggers an
intentional crash, thereby signaling GHUMVEE through the ptrace mechanism
and causing a shutdown of the MVEE.

The return value of the PRECALL handler determines whether the original call
should be resumed or aborted. By returning the MASTERCALL constant from the
PRECALL handler, for example, IP-MON instructs the master variant to resume
the original call and the slave variants to abort the original call. Alternatively, the
original call may be resumed or aborted in all variants.

Finally, IP-MON calls the POSTCALL handler. Here, the master variant copies
its system call return values into the RB.

The slave variants instead wait for the return values to appear in the RB. De-
pending on the aforementioned system call metadata, the handler may wait using
either a spin-wait loop, if the system call was not expected to block, or a specialized
condition variable, whose implementation we describe in Section 8.5.1.7.

8.5.1.4 System Call Monitoring Policies
There are many ways to draw the line between system calls to be monitored by
GHUMVEE and system calls to be handled by IP-MON. We propose two concrete
monitoring relaxation policies.

The first option is spatial exemption, where certain system calls are either un-
conditionally handled by IP-MON and not monitored by GHUMVEE, or handled by



8.5 Relaxed Monitoring 247

IP-MON only if their system call arguments meet certain criteria. IP-MON comes
with several predefined levels of spatial exemption, which the program developer
or administrator can choose from. However, regardless of which level of spatial
exemption is selected, GHUMVEE always monitors system calls that relate to allo-
cation and management of process resources and threads, as we consider these sys-
tem calls dangerous no matter what. These system calls include all signal-handling
system calls as well as those that (i) allocate, manage, and close file descriptors
(FDs); (ii) map, manage, and unmap memory regions; and (iii) create, control, and
kill threads and processes. We refer to our earlier work for a full overview of IP-
MON’s spatial exemption policies [Volckaert et al. 2016].

The second option is temporal exemption, where IP-MON probabilistically ex-
empts system calls from the monitoring policy if similar calls have been repeatedly
approved by the monitor. We observe that many programs, especially those with
high system call frequencies, often repeatedly invoke the same sequence of system
calls. If a series of system calls is approved by GHUMVEE, then one possible tempo-
ral relaxation policy is to stochastically exempt some fraction of the identical system
calls that follow within some time window or range. Note that temporal relaxation
policies must be highly unpredictable; deterministic policies (e.g., “Exempt sys-
tem calls X, Y, Z from monitoring after N approvals within an M millisecond time
window”) are insecure. In other words, care must be taken to ensure that tempo-
ral relaxation does not allow adversaries to coerce the MVEE into a state where
potentially dangerous system calls are not monitored.

8.5.1.5 IP-MON Initialization
IK-B does not forward any system calls to IP-MON until IP-MON explicitly registers
itself through a new system call we added to the kernel. When this call is invoked,
the kernel first attempts to report the call to GHUMVEE, which receives the notifi-
cation and can decide if it wants to allow IP-MON to register.

The registration system call expects three arguments. The first argument is
the set of “unmonitored” calls supported by IP-MON. If the IP-MON registration
succeeds, IK-B forwards any system call in this set to IP-MON from that point
onward, as we explained earlier. GHUMVEE can modify this set of system calls or,
potentially, prevent the registration altogether. The second and third arguments
are a pointer to the RB and a pointer to the entry point function that should be
invoked when IK-B forwards a call to IP-MON.

The RB pointer must be valid and must point to a writable region. IP-MON
must therefore set up an RB that it shares with all the other variants. We use the
System V IPC facilities to create, initialize, and map the RB [man-pp. project 2017b].



248 Chapter 8 Multi-Variant Execution Environments

GHUMVEE arbitrates the RB initialization process to ensure that all the variants
attach to the same RB.

8.5.1.6 The IP-MON File Map
GHUMVEE arbitrates all system calls that create/modify/destroy FDs, including
sockets. It thus maintains metadata, such as the type of each FD (regular/pipe/
socket/poll-fd/special). It also tracks which FDs are in non-blocking mode. System
calls that operate on non-blocking FDs always return immediately, regardless of
whether or not the corresponding operation succeeds.

Variants can map a read-only copy of this metadata into their address spaces
using the same mechanism we use for the RB. We refer to this metadata as the
IP-MON file map. We maintain exactly 1 byte of metadata per FD, resulting in a
page-sized file map. For some system calls, IP-MON uses the file map to determine
if the call is to be monitored or not, as per the monitoring policy.

8.5.1.7 Blocking System Calls
Its file map permits IP-MON to predict whether an unmonitored call can block or
not. IP-MON handles blocking calls efficiently. If the master variant knows that a
call will block, it instructs the slaves to wait on an optimized and highly scalable
IP-MON condition variable (as opposed to a slower spin-read loop) until the results
become available. IP-MON uses the futex (7) API to implement wait and wake
operations. This allowed us to implement several optimizations.

For each system call invocation, IP-MON allocates a separate structure within
the RB. Each individual structure contains a condition variable. Slave variants
must wait on only the condition variable associated with the system call results
they are interested in. Using separate condition variables for each system call
invocation prevents an unnecessary bottleneck that would arise when using just
a single variable, because the slave variants might progress at different paces.
Furthermore, IP-MON tracks whether or not there are variants waiting for the
results of a specific system call invocation. If none are waiting when the master has
finished writing its system call results into the buffer, no FUTEX_WAKE operation
is needed to resume the slaves. IP-MON does not have to reuse condition variables
because a new condition variable is allocated for each system call invocation. Thus,
IP-MON does not have to reset condition variables to their initial state after it has
used one to signal slave variants.

8.5.2 Security Analysis
Unlike previous MVEEs, ReMon eschews fixed monitoring policies and instead
allows security/performance trade-offs to be made on a per-application basis.



8.5 Relaxed Monitoring 249

With respect to integrity, we already pointed out that a CP MVEE monitor
and its environment are protected by (i) running it in an isolated process space
protected by a hardware-enforced boundary to prevent user-space tampering with
the monitor from within the variants; (ii) enforcing lockstep, consistent, monitored
execution of all system calls in all variants to prevent malicious impact of a single
compromised variant on the monitor; and (iii) diversity among the variants to
increase the likelihood that attacks cause observable divergence, i.e., that they fail
to compromise the variants in consistent ways.

With those three properties in place, it becomes exceedingly hard for an at-
tacker to subvert the monitor and to execute arbitrary system calls. Nevertheless,
MVEEs do not protect against attacks that exploit incorrect program logic or leak
information through side-channel attacks. This is similar to many other code-reuse
mitigations such as software diversity, software fault isolation [Wahbe et al. 1993],
and control-flow integrity [Abadi et al. 2005a].

In ReMon, monitored system calls are still handled by a CP monitor, so mali-
cious monitored calls are as hard to abuse as they are in existing CP MVEEs. For
unmonitored calls, IP-MON relaxes the first two of the above three properties. The
master variants can run ahead of the slaves and the system call consistency checks
in the slaves’ IP-MON, so an attacker could try to hijack the master’s control with a
malicious input to execute at least one, and possibly multiple, unmonitored calls
without verification by a slave’s IP-MON. An attacker could also attempt to locate
the RB and feed malicious data to the slaves, in order to stall them or to tamper
with their consistency checks. This way, the attacker could increase the window of
opportunity to execute unmonitored calls in the master.

As long as the attacker executes unmonitored calls only according to a given re-
laxation policy, those capabilities by definition pose no significant security threat:
unmonitored calls are exactly those calls that are defined by the chosen policy to
pose either no security threat at all or an acceptable security risk. However, an at-
tacker can also try to bypass IP-MON’s policy verification checks on conditionally
allowed system calls to let IP-MON pass calls unmonitored that should have been
monitored by GHUMVEE according to the policy. Therefore, we now consider sev-
eral aspects of these attack scenarios.

Unmonitored Execution of System Calls. ReMon ensures that IP-MON can only ex-
ecute unmonitored system calls if it is invoked by IK-B through its intended sys-
tem call entry point. When invoked properly, IP-MON performs policy verification
checks on conditionally allowed system calls, as well as the security checks a CP
monitor normally performs. An attacker that manages to compromise a program
variant could jump over these checks in an attempt to execute unmonitored system



250 Chapter 8 Multi-Variant Execution Environments

calls directly. Such an attack would, however, be ineffective thanks to the authoriza-
tion mechanism we described in Section 8.5.1.1.

Manipulating the RB. We designed IP-MON so that it never stores a pointer to the
RB, nor any pointer derived thereof, in user-space-accessible memory. Instead, IK-
B passes an RB pointer to IP-MON, and IP-MON keeps the RB pointer in a fixed
register. To access the RB, the attacker must therefore find its location by random
guessing or by mounting side-channel attacks.

ReMon’s current implementation uses RBs that are 16 MiB and located on
different addresses in each variant. This gives the RB pointer 24 bits of entropy
per variant, which makes guessing attacks unlikely to succeed.

Furthermore, because neither IP-MON nor the application needs to know the
exact location of the RB and because every invocation of IP-MON is routed through
IK-B, we could extend IK-B to periodically move the RB to a different virtual address
by modifying the variants’ page table entries. This would further decrease the
chances of a successful guessing attack.

Diversified Variants. Our current implementation of ReMon deploys the combined
diversification of ASLR and DCL [Volckaert et al. 2015]. ReMon, however, support
all other kinds of automated software diversity techniques as well. We refer to the
literature for an overview of such techniques [Larsen et al. 2014]. The security eval-
uations in the literature, including demonstrations of resilience against concrete
attacks, therefore still apply to ReMon.

8.6 Evaluation
We performed both performance and functional correctness evaluations of the
different optimization techniques and protection schemes we implemented for
GHUMVEE. We consider GHUMVEE as our baseline MVEE, against which we com-
pare the spatial relaxation as implemented by ReMon.

8.6.1 Baseline GHUMVEE
To ensure that the approaches and design decisions taken in the development of
GHUMVEE are applicable to a wide range of real-life programs, we have evaluated
the functional correctness and the overhead imposed by our baseline MVEE on a
wide range of applications. This includes not only the typical computationally heavy
benchmarks, such as SPEC CPU2006, but also server applications and graphical
applications. Unless otherwise mentioned, we evaluated our baseline MVEE with
GHUMVEE monitoring two variants with DCL enabled.



8.6 Evaluation 251

All SPEC benchmarks can successfully run on top of GHUMVEE without the
need to apply any patches. One benchmark, 416.gamess, can trigger a false positive
intrusion detection in GHUMVEE because it unintentionally prints a small chunk
of uninitialized memory to a file. When ASLR is enabled, the uninitialized data
differs from one variant to another. In GHUMVEE, we whitelisted the responsible
system call to prevent the false positive. The average overhead on SPEC CPU2006
is 7.2%.

We also tested GHUMVEE on several interactive desktop programs that build
on large graphical user interface environments, including GNOME tools such
as gcalctool, KDE tools such as kcalc, and MPlayer. None of these programs
needed patches to run on top of GHUMVEE.

The method of overriding the mapping type for file-backed shared memory was
necessary to support KDE applications. These programs use file-backed shared
memory to read and write configuration files efficiently. Our method did not cause
noticeable slowdowns when running such programs. This overriding method will
likely not work for all programs, however.

Our decision to disallow read/write shared mappings and the use of the System V
IPC API in commodity applications does not constitute a big problem either. While
shared memory is the preferred method for graphical applications to communicate
with the display server, we have not seen a single application that does not have
a fallback method in place for when GHUMVEE’s monitor rejects the request
to map shared memory pages. This fallback method typically yields significantly
worse performance but is still acceptable in many situations. MPlayer, for example,
also relies on shared memory for hardware-accelerated playback of movies. When
running MPlayer in GHUMVEE, it falls back to software-rendered playback.

Early on in GHUMVEE’s development, we also tested Firefox and LibreOffice.
For LibreOffice, we tested operations such as opening and saving files, editing var-
ious types of documents, running the spell checker, etc. For Firefox, we tested
opening several web pages. We repeated tests in which GHUMVEE spawned be-
tween one and four variants from the same executable, and tests were conducted
with and without ASLR enabled. Although these tests were successful, both Libre-
Office and Firefox needed extensive patching to be able to run in the context of an
MVEE. These patches were needed to eliminate (benign) data races and address-
sensitive behavior (cf. Section 8.3.5) and to embed our implicit-input replication
agents and synchronization agents.

We not only verified the functional correctness but also evaluated the usabil-
ity of interactive and real-time applications. Except for small start-up overheads,
no significant usability impact was observed. For example, with two variants and



252 Chapter 8 Multi-Variant Execution Environments

without hardware support, MPlayer was still able to play 720p HD H.264 movies in
real time without dropping a single frame, and 1080p Full HD H.264 movies at a
frame drop rate of approximately 1%. Because none of the dropped frames were
keyframes, playback was still fluent.

Finally, while we can apply our DCL protection with each variant using the same
program binary, we did also successfully run programs for which we created a dif-
ferent diversified program binary for each variant. While we only created program
binaries to which we applied code randomization techniques [Larsen et al. 2014],
we believe that there are no fundamental limitations to the types of diversity tech-
niques GHUMVEE can support.

8.6.2 Disjoint Code Layouts
We evaluated the DCL protection with GHUMVEE on two machines. The first ma-
chine has two Intel Xeon E5-2650L CPUs with 8 physical cores and a 20 MB L3 cache
each. It has 128GB of main memory and runs a 64-bit Ubuntu 14.04 LTS OS with a
Linux 3.13.9 kernel. The second machine has an Intel Core i7 870 CPU with 4 phys-
ical cores and an 8 MB L3 cache. It has 32GB of main memory and runs a 32-bit
Ubuntu 14.10 OS with a Linux 3.16.7 kernel. On both machines, we disabled hyper-
threading and all dynamic frequency and voltage scaling features. Furthermore, we
compiled both kernels with a 1,000 Hz tick rate to minimize the monitor-variant
interaction latency.

Execution Time Overhead
To evaluate the execution time overhead of GHUMVEE and DCL on compute-
intensive applications, we ran each of the SPEC CPU2006 benchmarks five times
on their reference inputs. From each set of five measurements, we eliminated the
first one to account for I/O-cache warm-up. On the 64-bit machine, we compiled all
benchmarks using GCC 4.8.2. On the 32-bit machine, we used GCC 4.9.1. All bench-
marks were compiled at optimization level -O2 and with the -fno-aggressive-

loop-optimizationsflag. We did not use the-pieflag for the native benchmarks.
Although running with more than two variants does not improve DCL’s protection,
we have also included the benchmark results for three and four variants for the
sake of completeness.

As shown in Figures 8.5 and 8.6, the runtime overhead of DCL is rather low
overall.4 On our 32-bit machine, the average overhead across all SPEC benchmarks

4. The 434.zeusmp benchmark maps a very large code section and therefore does not run with
more than two variants on our 32-bit machine.



8.6 Evaluation 253

Native non-PIE

100

80

60

40

20

0

GHUMVEE + DCL + PIE (2 variants) GHUMVEE + DCL + PIE (3 variants) GHUMVEE + DCL + PIE (4 variants)

400.perlb
ench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.lib
quantu

m

464.h264ref

471.om
netp

p

473.astar

483.xalancbm
k

410.bwaves

416.gam
ess

433.m
ilc

434.zeusm
p

435.gro
m

acs

436.cactu
sADM

437.le
slie

3d

444.nam
d

447.dealll

450.soplex

453.povray

454.calculix

459.G
em

sFDTD

465.to
nto

470.lb
m

481.w
rf

482.sphin
x3

Average

Figure 8.5 Relative performance of 32-bit protected SPEC 2006 benchmarks.

Native non-PIE

100

80

60

40

20

0

GHUMVEE + DCL + PIE (2 variants) GHUMVEE + DCL + PIE (3 variants) GHUMVEE + DCL + PIE (4 variants)

400.perlb
ench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.lib
quantu

m

464.h264ref

471.om
netp

p

473.astar

483.xalancbm
k

410.bwaves

416.gam
ess

433.m
ilc

434.zeusm
p

435.gro
m

acs

436.cactu
sADM

437.le
slie

3d

444.nam
d

447.dealll

450.soplex

453.povray

454.calculix

459.G
em

sFDTD

465.to
nto

470.lb
m

481.w
rf

482.sphin
x3

Average

Figure 8.6 Relative performance of 64-bit protected SPEC 2006 benchmarks.

was 8.94%. On our 64-bit machine, which has much larger CPU caches, the aver-
age overhead was only 6.37%. That being said, a few benchmarks do stand out in
terms of overhead. On i386, we see that 470.lbm performs remarkably worse than
on AMD64. We also see several benchmarks that perform much worse than aver-
age on both platforms, including 429.mcf, 471.omnetpp, 483.xalancbmk, and
450.soplex. For each of these benchmarks, though, our observed performance
losses correlate very well with the figures in Jaleel’s cache sensitivity analysis for
SPEC [Jaleel 2007].

A second factor that definitely plays its role is PIE itself. While our figures only
show the native performance for the original, non-PIE, benchmarks, we did mea-
sure the native performance for the PIE version of each benchmark as well. For the
most part we did not see significant differences between PIE and non-PIE, except
for the 400.perlbench and 429.mcf benchmarks on the AMD64 platform. These
benchmarks slow down by 10.98% and 11.93%, respectively, by simply using PIE.



254 Chapter 8 Multi-Variant Execution Environments

8.6.3 ReMon and IP-MON
We evaluated the performance of IP-MON’s spatial relaxation policy on both syn-
thetic benchmark suites and on a set of server benchmarks. We conducted all of
our experiments on a machine with two 8-core Intel Xeon E5-2660 processors each
having 20 MB of cache, 64 GB of RAM, and a gigabit Ethernet connection, running
the x86_64 version of Ubuntu 14.04.3 LTS. This machine runs the Linux 3.13.11
kernel, to which we applied the IK-B patches. We used the official 2.19 versions of
GNU’s glibc and libpthreads in our experiments, but we did apply a small patch
of less than 10 LoC to glibc to reinitialize IP-MON’s thread-local storage variables
after each fork. As before, we disabled hyper-threading as well as frequency and
voltage scaling to maximize reproducibility of our measurements.

Address space layout randomization was enabled in our tests, and we configured
ReMon to map IP-MON and its associated buffers at non-overlapping addresses in
all variants.

Synthetic Benchmark Suites
We evaluated ReMon on the PARSEC 2.1, SPLASH-2x, and Phoronix benchmark
suites5. These benchmarks cover a wide range in system call densities and patterns
(e.g., bursty vs. spread over time, and mixes of sensitive and non-sensitive calls) as
well as various scales and schemes of multi-threading, the most important factors
contributing to the overhead of traditional CP-MVEEs that we want to overcome
with IP-MON.

We evaluated all five levels of our spatial exemption policy on some of the
Phoronix benchmarks, and show the performance of the NONSOCKET_RW_LEVEL

policy on the other suites. We used the largest available input sets for all bench-
marks and ran the multi-threaded benchmarks with four worker threads and used
two variants for all benchmarks. We excluded PARSEC’s canneal benchmark from
our measurements because it purposely causes data races that result in divergent
behavior when running multiple variants. This makes the benchmark incompatible
with MVEEs. We also excluded SPLASH’s cholesky benchmark due to incompati-
bilities with the version of the gcc compiler we used.

The results for these benchmarks are shown in Figures 8.7 and 8.8. The baseline
overhead was measured by running ReMon with IP-MON and IK-B disabled. In this
configuration, GHUMVEE runs as a stand-alone MVEE.

5. C. Segulja kindly provided his data race patches for PARSEC and SPLASH [Segulja and Abdel-
rahman 2014].



8.6 Evaluation 255

4

3

2

1

0

B
LA

C
K

SC
H

O
LE

S

B
O

D
Y

T
R

AC
K

D
E

D
U

P

FA
C

E
SI

M

FE
R

R
E

T

FL
U

ID
A

N
IM

AT
E

FR
E

Q
M

IN
E

R
AY

T
R

AC
E

ST
R

E
A

M
C

LU
ST

E
R

SW
A

PT
IO

N
S

V
IP

S

X
26

4

G
E

O
M

E
A

N

B
A

R
N

E
S

FF
T

FM
M

LU
_C

B

LU
_N

C
B

O
C

E
A

N
_C

P

O
C

E
A

N
_N

C
P

R
A

D
IO

SI
T

Y

R
A

D
IX

R
AY

T
R

AC
E

VO
LR

E
N

D

W
AT

E
R

_N
SQ

U
A

R
E

D

W
AT

E
R

_S
PA

T
IA

L

G
E

O
M

E
A

N

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 ti

m
e

1.
09

1.
04 1.
15

1.
03

3.
53

1.
69

1.
11

1.
03

1.
04 1.
11 1.

28 1.
33

1.
06

1.
05

1.
03

1.
00 1.

16
0.

97 1.
07

1.
07

1.
10

1.
03 1.
11 1.
16 1.
22

1.
11 1.

48
1.

52
1.

03
1.

02
1.

55
1.

13
1.

01
1.

00
0.

94
0.

95 1.
06

1.
05

1.
09

1.
05

1.
63

1.
38

1.
05

1.
05 1.

17
1.

02 1.
22

1.
07

1.
04

1.
02

4.
20

1.
21 1.
29

1.
10

SPLASH-2x

No IP-MON IP-MON/NONSOCKET_RW_LEVEL

PARSEC 2.1

Figure 8.7 Performance overhead for PARSEC 2.1 and SPLASH-2x benchmark suites (two variants).

30

25

20

15

10

5

0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

N
E

T
W

O
R

K
LO

O
PB

AC
K

1.
0.

1

N
G

IN
X

1.
1.

0

C
O

M
PR

E
SS

G
ZI

P-
1.

1.
0

E
N

C
O

D
E

FL
AC

-1
.5

.0

E
N

C
O

D
E

O
G

G
-1

.4
.1

M
E

N
C

O
D

E
R

1.
4.

1

PH
PB

E
N

C
H

1.
1.

0

U
N

PA
C

K
LI

N
U

X
-1

.0
.0

G
E

O
M

E
A

N

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 ti

m
e

25
.4

6
25

.3
6

24
.8

9
17

.0
3

9.
18

3.
00

9.
77

7.
76

7.
74

7.
58

6.
65

3.
71

1.
11

1.
11

1.
04

1.
04

1.
04

1.
05 1.

17
1.

17
1.

08
1.

02
1.

02
1.

02 1.
09

1.
10

1.
06

1.
01

1.
01

1.
01 1.
05

1.
04

1.
01

1.
00

1.
00

1.
00

No IP-MON
IP-MON/NONSOCKET_RO_LEVEL
IP-MON/SOCKET_RO_LEVEL

2.
48

1.
90

1.
90

1.
13

1.
13

1.
13

1.
47

1.
48

1.
44

1.
22

1.
17

1.
17

2.
46

2.
31

2.
24

1.
93

1.
75

1.
41

IP-MON/BASE_LEVEL
IP-MON/NONSOCKET_RW_LEVEL
IP-MON/SOCKET_RW_LEVEL

Figure 8.8 Comparison of IP-MON’s spatial relaxation policies in a set of Phoronix benchmarks
(two variants).

GHUMVEE generally performs well in these benchmarks. Our machine can run
the variants on disjoint CPU cores, which means that only the additional pressure
on the memory subsystem and the MVEE itself cause performance degradation
compared to the benchmarks’ native performance. Yet, we still see the effect of
enabling IP-MON. For PARSEC 2.1, the relative performance overhead decreases



256 Chapter 8 Multi-Variant Execution Environments

from 21.9% to 11.2%. For SPLASH-2x, the overhead decreases from 29.2% to 10.4%.
In Phoronix, the overhead drops from 146.4% to 41.2%. Particularly interesting
are the dedup (PARSEC 2.1), water_spatial (SPLASH-2x) and network_loopback

(Phoronix) benchmarks, which feature very high system call densities of over 60 K
system call invocations per second. In these benchmarks, the overheads drop
from 252.9% to 69.4%, from 320% to 20.7%, and from 2446% to 200%, respectively.
Furthermore, the Phoronix results clearly show that different policies allow for
different security-performance trade-offs.

Server Benchmarks
Server applications are great candidates for execution and monitoring by MVEEs
because they are frequently targeted by attackers and they often run on many-
core machines with idle CPU cores that can run variants in parallel. In this sec-
tion, we specifically evaluate our MVEE on applications used to evaluate other
MVEEs. These applications include the Apache web server (used to evaluate Or-
chestra [Salamat et al. 2009]), thttpd (ab) and lighttpd (ab) (used to evaluate
Tachyon [Maurer and Brumley 2012]), lighttpd (http_load) (used to evaluate
Mx [Hosek and Cadar 2013]), and beanstalkd, lighttpd (wrk), memcached, ng-
inx (wrk), and redis (used to evaluate VARAN [Hosek and Cadar 2015]). We
use the same client and server configurations described by the creators of those
MVEEs.

We tested IP-MON by running a benchmark client on a separate machine that
was connected to our server via a local gigabit link. We evaluated three scenarios. In
the first scenario, we used the gigabit link as is and therefore simulated an unlikely
worst-case scenario since the latency on the gigabit link was very low (less than
0.125ms). In the second scenario, we added a small amount of latency (bringing
the total average latency to 2ms) to the gigabit link to simulate a realistic worst-case
scenario (average network latencies in the U.S. are 24–63 ms [Commission 2014]).
In the third scenario, which we only evaluated to allow for comparison with existing
MVEEs, we simulated a total average latency of 5ms. We used Linux’ built-in netem

driver to simulate the latency [man-pp. project 2017a].
Figure 8.9 shows the unlikely and the realistic scenarios side by side. For each

benchmark, we measured the overhead IP-MON introduces when running between
two and seven parallel variants with the spatial exemption policy at theSOCKET_RW_
LEVEL. We also show the overhead for running two variants with IP-MON disabled.
The latter case represents the best-case scenario without IP-MON.



8.6 Evaluation 257

8

7

6

5

4

3

2

1

0

B
E

A
N

ST
A

LK
D

r1
57

d8
8b

LI
G

H
T

T
PD

1.
4.

36
 (w

rk
)

M
E

M
C

AC
H

E
D

1.
4.

17

N
G

IN
X

1.
5.

12
 (w

rk
)

R
E

D
IS

3.
0.

3

A
PA

C
H

E
1.

3.
29

 (A
B)

T
H

T
T

PD
2.

26
 (A

B)

LI
G

H
T

T
PD

1.
4.

36
 (A

B)

LI
G

H
T

T
PD

1.
4.

36
 (h

tt
p_

lo
ad

)

B
E

A
N

ST
A

LK
D

r1
57

d8
8b

LI
G

H
T

T
PD

1.
4.

36
 (w

rk
)

M
E

M
C

AC
H

E
D

1.
4.

17

N
G

IN
X

1.
5.

12
 (w

rk
)

R
E

D
IS

3.
0.

3

A
PA

C
H

E
1.

3.
29

 (A
B)

T
H

T
T

PD
2.

26
 (A

B)

LI
G

H
T

T
PD

1.
4.

36
 (A

B)

LI
G

H
T

T
PD

1.
4.

36
 (h

tt
p_

lo
ad

)

N
or

m
al

iz
ed

 r
un

ti
m

e 
ov

er
he

ad

7 replicas6 replicas5 replicas4 replicas

3 replicas2 replicas2 replicas (no IP-MON)

Unlikely scenario on local gigabit network
(~0.1 ms latency)

Realistic scenario on low-latency network
(2 ms latency)

Figure 8.9 Server benchmarks in two network scenarios for two to seven variants with IP-MON
and two variants without IP-MON.

8.6.4 Comparison to Existing MVEEs
Table 8.2 compares GHUMVEE’s and ReMon’s performance with the results re-
ported for other MVEEs in the literature [Hosek and Cadar 2013, Hosek and Cadar
2015, Maurer and Brumley 2012, Salamat et al. 2009]. We omitted some MVEEs
from this comparison because we could not find (i) enough published performance
results for these MVEEs or (ii) sufficient information about the setup in which
these MVEEs were evaluated to allow for a meaningful comparison with ReMon
and GHUMVEE.

Since each MVEE was evaluated in a different experimental setup, the table
also lists two features that have a significant impact on the performance overhead.
These are the network latencies, because higher latencies hide server-side over-
head, and the CPU cache sizes, as some of the memory-intensive SPEC benchmarks
benefit significantly from larger caches, in particular with multiple concurrent vari-
ants.

From a performance overhead perspective, the worst-case setup in which Mx and
Tachyon were evaluated had the benchmark client running on the same (localhost)
machine as the benchmark server. For VARAN, two separate machines resided in
the same rack and were hence connected by a very-low-latency gigabit Ethernet.



Ta
bl

e
8.

2
Co

m
pa

ri
so

n
of

Ex
is

tin
g

M
VE

Es
(t

w
o

va
ri

an
ts

)

O
ri

en
ta

ti
on

R
el

ia
bi

lit
y

M
V

E
E

Se
cu

ri
ty

M
V

E
E

Ta
ch

yo
n

M
x

VA
R

A
N

O
rc

he
st

ra
G

H
U

M
V

E
E

R
eM

on

N
et

w
or

k
lo

ca
lh

os
t

lo
ca

lf
ew

ho
ps

co
as

t-
to

-
co

as
t

lo
ca

lh
os

t
U

SA
-U

K
(1

50
m

s)
sa

m
e

ra
ck

gi
ga

bi
t

lo
ca

l
gi

ga
bi

t
lo

ca
l

gi
ga

bi
t

lo
ca

l
gi

ga
bi

t
lo

ca
l

gi
ga

bi
t

(5
m

s)

C
PU

ca
ch

e
si

ze
..

.8
M

B
..

.
8

M
B

20
M

B
..

.2
0

M
B

..
.

R
ep

or
te

d
ov

er
he

ad
s:

ap
ac

he
(a

b)
2.

4%
50

%
70

%
34

%
2.

4%

lig
ht

tp
d

(a
b)

79
0%

27
2%

30
%

0%
22

6%
55

%
0%

th
tt

pd
(a

b)
13

20
%

17
%

0%
0%

22
3%

73
%

2.
7%

lig
ht

tp
d

(h
tt

pl
d)

24
9%

4%
1.

0%
10

8%
45

%
3.

5%

re
di

s
15

72
%

5%
6%

11
48

%
45

%
0.

1%

be
an

st
al

kd
52

%
12

59
%

45
%

0.
6%

m
em

ca
ch

ed
14

%
76

%
8.

4%
0.

3%

n
gi

n
x

(w
rk

)
28

%
56

4%
19

4%
0.

8%

lig
ht

tp
d

(w
rk

)
12

%
60

3%
16

9%
0.

7%

SP
E

C
C

PU
20

06
17

.9
%

7.
2%

3.
1%

SP
E

C
in

t2
00

6
17

.6
%

14
.2

%
12

.1
%

3.
9%

SP
E

C
fp

20
06

18
.3

%
3.

8%
2.

5%



8.7 Conclusion 259

The worst-case setups in which ReMon and Orchestra were evaluated consist of
two separate machines connected by a low-latency gigabit link. In these unlikely
worst-case scenarios for servers, the differences in setups hence favor ReMon and
Orchestra over VARAN, and VARAN over Tachyon and Mx.

In the best-case setups in which Mx and Tachyon were evaluated, one of the
machines was located on the U.S. West Coast, while the other was located in
England (Mx) or the U.S. East Coast (Tachyon). In ReMon’s best-case setup, we used
a gigabit link with a simulated 5 ms latency. So in the more realistic setups and for
the server benchmarks, the differences favor Mx and Tachyon over ReMon.

This comparison demonstrates that ReMon outperforms existing non-hardware-
assisted security-oriented MVEEs while approaching the efficiency of reliability-
oriented MVEEs.

8.7 Conclusion
In this chapter, we presented GHUMVEE, the most efficient non-hardware-assisted
security-oriented MVEE to date. GHUMVEE is equipped to support a wide range of
realistic programs, including those that contain user-space thread synchronization
operations and address-sensitive data structures.

GHUMVEE supports disjoint code layouts, a practical technique to stop code-
reuse attacks that rely on payloads containing absolute code addresses. It also
supports relaxation policies and selective lockstepping, two techniques that further
boost GHUMVEE’s efficiency.

Acknowledgments
The authors thank Per Larsen, the Agency for Innovation by Science and Technology
in Flanders (IWT), and the Fund for Scientific Research - Flanders.

This material is based upon work partially supported by the Defense Advanced
Research Projects Agency (DARPA) under contracts FA8750-15-C-0124, FA8750-15-
C-0085, and FA8750-10-C-0237, by the National Science Foundation under award
number CNS-1513837 as well as gifts from Mozilla, Oracle, and Qualcomm.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DARPA), its Contracting Agents, or
any other agency of the U.S. Government.





References

M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. 2005a. Control-flow integrity: Principles,
implementations, and applications. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS), pp. 340–353. DOI: 10.1145/1102120
.1102165. 12, 25, 38, 39, 62, 82, 86, 95, 97, 110, 114, 117, 139, 141, 173, 174, 181, 186,
211, 233, 243, 249

M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. 2005b. A theory of secure control flow.
In Proceedings of the 7th International Conference on Formal Methods and Software
Engineering (ICFEM). DOI: 10.1007/11576280_9. 182, 186

M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. 2009. Control-flow integrity: Principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur., 13(1). DOI: 10.1145/
1609956.1609960. 181, 189, 208

A. Acharya and M. Raje. 2000. MAPbox: Using parameterized behavior classes to confine
untrusted applications. In Proceedings of the 9th USENIX Security Symposium (SSYM),
pp. 1–17. 16

P. Akritidis. 2010. Cling: A memory allocator to mitigate dangling pointers. In USENIX
Security Symposium, pp. 177–192. 84, 173, 178

P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. 2008. Preventing memory error
exploits with WIT. In Proceedings of the 29th IEEE Symposium on Security and Privacy
(S&P), pp. 263–277. DOI: 10.1109/SP.2008.30. 8, 58, 82, 84, 114, 173, 176, 178

P. Akritidis, M. Costa, M. Castro, and S. Hand. 2009. Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-bounds errors. In USENIX Security
Symposium, pp. 51–66. 84, 173, 178

Aleph One. 1996. Smashing the stack for fun and profit. Phrack, 7. 11, 17

A. Alexandrov, P. Kmiec, and K. Schauser. 1999. Consh: Confined execution environment
for Internet computations. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1
.1.57.488. DOI: 10.1.1.57.488. 16

G. Altekar and I. Stoica. 2010. Focus replay debugging effort on the control plane. In USENIX
Workshop on Hot Topics in Dependability. 89

http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1007/11576280_9
http://dx.doi.org/10.1145/1609956.1609960
http://dx.doi.org/10.1145/1609956.1609960
http://dx.doi.org/10.1109/SP.2008.30
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.488
http://dx.doi.org/10.1.1.57.488


262 References

S. Andersen and V. Abella. August 2004. Changes to functionality in Windows XP service
pack 2—part 3: Memory protection technologies. http://technet.microsoft.com/
en-us/library/bb457155.aspx. 9, 19, 184

J. Ansel. March 2014. Personal communication. 53

J. Ansel, P. Marchenko, Ú. Erlingsson, E. Taylor, B. Chen, D. Schuff, D. Sehr, C. Biffle, and
B. Yee. 2011. Language-independent sandboxing of just-in-time compilation and
self-modifying code. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 355–366. DOI: 10.1145/1993316.1993540.
58, 59

O. Arias, L. Davi, M. Hanreich, Y. Jin, P. Koeberl, D. Paul, A.-R. Sadeghi, and D. Sullivan.
2015. HAFIX: Hardware-assisted flow integrity extension. In Proceedings of the 52nd
Design Automation Conference (DAC), pp. 74:1–74:6. DOI: 10.1145/2744769.2744847.
182, 208, 209

J.-P. Aumasson and D. J. Bernstein. 2012 SipHash: A fast short-input PRF. In 13th
International Conference on Cryptology in India (INDOCRYPT). 73

M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny. 2014. You can run but
you can’t read: Preventing disclosure exploits in executable code. In ACM Conference
on Computer and Communications Security (CCS). DOI: 10.1145/2660267.2660378, pp.
1342–1353. 65, 173, 177

M. Backes and S. Nürnberger. 2014. Oxymoron: Making fine-grained memory randomization
practical by allowing code sharing. In 23rd USENIX Security Symposium, pp. 433–447.
64, 66

A. Balasubramanian, M. S. Baranowski, A. Burtsev, and A. Panda. 2017. System programming
in Rust: Beyond safety. In Workshop on Hot Topics in Operating Systems (HotOS), pp.
94–99. DOI: 10.1145/3102980.3103006. 79

C. Basile, Z. Kalbarczyk, and R. Iyer. 2002. A preemptive deterministic scheduling
algorithm for multithreaded replicas. In Proceedings of the International Conference
on Dependable Systems and Networks, pp. 149–158. DOI: 10.1109/DSN.2003.1209926.
230

C. Basile, Z. Kalbarczyk, and R. K. Iyer. 2006. Active replication of multithreaded applications.
IEEE Transactions on Parallel and Distributed Systems (TPDS), 17(5):448–465.
DOI: 10.1109/TPDS.2006.56. 230

A. Basu, J. Bobba, and M. D. Hill. 2011. Karma: Scalable deterministic record-replay. In
Proceedings of the International Conference on Supercomputing, pp. 359–368. DOI:
10.1145/1995896.1995950. 230

M. Bauer. 2006. Paranoid penguin: an introduction to Novell AppArmor. Linux J., (148):13.
16

A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and C. Kozyrakis. 2012. Dune:
Safe user-level access to privileged CPU features. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp. 335–348. 213

http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://dx.doi.org/10.1145/1993316.1993540
http://dx.doi.org/10.1145/2744769.2744847
http://dx.doi.org/10.1145/2660267.2660378
http://dx.doi.org/10.1145/3102980.3103006
http://dx.doi.org/10.1109/DSN.2003.1209926
http://dx.doi.org/10.1109/TPDS.2006.56
http://dx.doi.org/10.1145/1995896.1995950


References 263

T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. 2010. CoreDet: A compiler and
runtime system for deterministic multithreaded execution. ACM SIGARCH Computer
Architecture News, 38(1):53–64. DOI: 10.1145/1735971.1736029. 230

E. Berger, T. Yang, T. Liu, and G. Novark. 2009. Grace: Safe multithreaded programming for
C/C++. ACM Sigplan Notices, 44(10):81–96. 230

E. D. Berger and B. G. Zorn. 2006. DieHard: Probabilistic memory safety for unsafe languages.
ACM SIGPLAN Notices, (6):158–168. DOI: 10.1145/1133255.1134000. 214

E. Bhatkar, D. C. Duvarney, and R. Sekar. 2003. Address obfuscation: An efficient approach
to combat a broad range of memory error exploits. In Proceedings of the USENIX
Security Symposium (SSYM), pp. 105–120. 10

S. Bhatkar and R. Sekar. 2008. Data space randomization. In Proceedings of the 5th
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), pp. 1–22. DOI: 10.1007/978-3-540-70542-0_1. 11, 85

S. Bhatkar, R. Sekar, and D. C. DuVarney. 2005. Efficient techniques for comprehensive
protection from memory error exploits. In Proceedings of the 14th USENIX Security
Symposium (SSYM), pp. 17–17. http://dl.acm.org/citation.cfm?id=1251398.1251415.
10, 95

D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi. 2015. Timely rerandomization
for mitigating memory disclosures. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS), pp. 268–279. DOI: 10.1145/2810103
.2813691. 11

A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh. 2014. Hacking blind. In
Proceedings of the 35th IEEE Symposium on Security and Privacy (S&P), pp. 227–242.
DOI: 10.1109/SP.2014.22. 62, 140, 141, 182, 239

D. Blazakis. 2010. Interpreter exploitation. In Proceedings of the 4th USENIX Conference on
Offensive Technologies, pp. 1–9. 59

T. Bletsch, X. Jiang, and V. Freeh. 2011. Mitigating code-reuse attacks with control-flow
locking. In Proceedings of the 27th Annual Computer Security Applications Conference,
pp. 353–362. DOI: 10.1145/2076732.2076783. 208, 209

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. 2011. Jump-oriented programming: A new
class of code-reuse attack. In Procceedings of the 6th ACM Symposium on Information,
Computer, and Communications Security (ASIACCS), pp. 30–40. DOI: 10.1145/1966913
.1966919. 20, 81, 82, 117

E. Bosman and H. Bos. 2014. Framing signals—a return to portable shellcode. In IEEE
Symposium on Security and Privacy (S&P), pp. 243–258. DOI: 10.1109/SP.2014.23. 31,
140

K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and A.-R. Sadeghi. 2016.
Leakage-resilient layout randomization for mobile devices. In 23rd Annual Network
and Distributed System Security Symposium (NDSS). 68

http://dx.doi.org/10.1145/1735971.1736029
http://dx.doi.org/10.1145/1133255.1134000
http://dx.doi.org/10.1007/978-3-540-70542-0_1
http://dl.acm.org/citation.cfm?id=1251398.1251415
http://dx.doi.org/10.1145/2810103.2813691
http://dx.doi.org/10.1145/2810103.2813691
http://dx.doi.org/10.1109/SP.2014.22
http://dx.doi.org/10.1145/2076732.2076783
http://dx.doi.org/10.1145/1966913.1966919
http://dx.doi.org/10.1145/1966913.1966919
http://dx.doi.org/10.1109/SP.2014.23


264 References

S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and A. Shubina. 2011. Exploit pro-
gramming: From buffer overflows to “weird machines” and theory of computation.
Usenix ;login: issue: December 2011, volume 36, number 6. 19

E. Buchanan, R. Roemer, H. Shacham, and S. Savage. 2008. When good instructions go
bad: Generalizing return-oriented programming to RISC. In Proceedings of the 15th
ACM Conference on Computer and Communications Security (CCS), pp. 27–38. DOI:
10.1145/1455770.1455776. 233

M. Budiu, Ú. Erlingsson, and M. Abadi. Architectural support for software-based protection.
In Proceedings of the 1st Workshop on Architectural and System Support for Improving
Software Dependability (ASID), pp. 42–51. DOI: 10.1145/1181309.1181316. 208, 209

N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and M. Franz. 2016. Control-
flow integrity: Precision, security, and performance. Computing Research Repository
(CoRR). 50(1). http://arxiv.org/abs/1602.04056. 12, 28, 62, 82

N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer. 2017. Control-
flow integrity: precision, security, and performance. ACM Computing Surveys. DOI:
10.1145/3054924. 12

J. Butler and anonymous. 2004. Bypassing 3rd party Windows buffer overflow protection.
Phrack, 11. 17

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. 2015. Control-flow bending: On
the effectiveness of control-flow integrity. In Proceedings of the 24th USENIX Security
Symposium, pp. 161–176. http://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/carlini. 15, 20, 21, 59, 81, 82, 97, 137, 182, 183,
185, 186, 188, 200, 204, 211

N. Carlini and D. Wagner. 2014. ROP is still dangerous: Breaking modern defenses. In
Proceedings of the 23rd USENIX Security Symposium, pp. 385–399. http://dl.acm.org/
citation.cfm?id=2671225.2671250. 15, 53, 82, 84, 86, 97, 114, 137, 139, 140, 176, 177,
179, 182, 183, 184, 186, 188, 200, 202, 209

M. Castro, M. Costa, and T. Harris. 2006. Securing software by enforcing data-flow integrity.
In Proceedings of the 7th Symposium on Operating Systems Design and Implementation
(OSDI), pp. 147–160. 11, 86

M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly, P. Barham, and
R. Black. 2009. Fast byte-granularity software fault isolation. In ACM Symposium on
Operating Systems Principles, pp. 45–58. DOI: 10.1145/1629575.1629581. 86, 93

L. Cavallaro. 2007. Comprehensive memory error protection via diversity and taint-tracking.
PhD thesis, Universita Degli Studi Di Milano. 214, 223, 237

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy. 2010.
Return-oriented programming without returns. In Proceedings of the 17th ACM
Conference on Computer and Communications Security (CCS), pp. 559–572. DOI:
10.1145/1866307.1866370. 20, 81, 117, 183, 184, 185, 186, 200, 202

http://dx.doi.org/10.1145/1455770.1455776
http://dx.doi.org/10.1145/1181309.1181316
http://arxiv.org/abs/1602.04056
http://dx.doi.org/10.1145/3054924
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
http://dl.acm.org/citation.cfm?id=2671225.2671250
http://dl.acm.org/citation.cfm?id=2671225.2671250
http://dx.doi.org/10.1145/1629575.1629581
http://dx.doi.org/10.1145/1866307.1866370


References 265

S. Checkoway and H. Shacham. 2010. Escape from return-oriented programming: Return-
oriented programming without returns (on the x86). Technical report CS2010-0954,
UC San Diego. http://cseweb.ucsd.edu/~hovav/dist/noret.pdf. 200, 202

P. Chen, Y. Fang, B. Mao, and L. Xie. 2011. JITDefender: A defense against JIT spraying
attacks. In 26th IFIP International Information Security Conference, volume 354, pp.
142–153. 60

P. Chen, R. Wu, and B. Mao. 2013. JITSafe: A framework against just-in-time spraying attacks.
IET Information Security, 7(4):283–292. DOI: 10.1049/iet-ifs.2012.0142. 59, 60

S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. 2005 Non-control-data attacks
are realistic threats. In Proceedings of the 14th USENIX Security Symposium.
http://dl.acm.org/citation.cfm?id=1251398.1251410. 21, 184

X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida. 2015. StackArmor:
Comprehensive protection from stack-based memory error vulnerabilities for
binaries. In Symposium on Network and Distributed System Security (NDSS). 173,
178

Y. Chen, D. Zhang, R. Wang, R. Qiao, A. M. Azab, L. Lu, H. Vijayakumar, and W. Shen.
2017. NORAX: Enabling execute-only memory for COTS binaries on AArch64. In IEEE
Symposium on Security and Privacy (S&P), pp. 304–319. DOI: 10.1109/SP.2017.30. 68

Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. 2014. ROPecker: A generic and practical
approach for defending against ROP attacks. In Proceedings of the 21st Synposium on
Network and Distributed System Security (NDSS). 117, 118, 119, 127, 173, 176, 182, 209

M. Co, J. W. Davidson, J. D. Hiser, J. C. Knight, A. Nguyen-Tuong, W. Weimer, J. Burket, G. L.
Frazier, T. M. Frazier, and B. Dutertre, et al. 2016. Double Helix and RAVEN: A system
for cyber fault tolerance and recovery. In Proceedings of the 11th Annual Cyber and
Information Security Research Conference, p. 17. DOI: 10.1145/2897795.2897805. 214

F. B. Cohen. 1993. Operating system protection through program evolution. Computers &
Security, 12(6): 565–584. DOI: 10.1016/0167-4048(93)90054-9. 62

Corelan. 2011. Mona: A debugger plugin/exploit development Swiss army knife.
http://redmine.corelan.be/projects/mona. 136

C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle, and V. Gligor. 2000. SubDomain:
Parsimonious server security. In Proccedings of the 14th USENIX Conference on System
Administration, pp. 355–368. 16

C. Cowan, S. Beattie, J. Johansen, and P. Wagle. 2003. Pointguard™: Protecting pointers from
buffer overflow vulnerabilities. In Proceedings of the 12th USENIX Security Symposium
(SSYM), pp. 7–7. http://dl.acm.org/citation.cfm?id=1251353.1251360. 11, 63, 76, 82,
85

C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. 1998. StackGuard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In Proceedings of the 7th USENIX Security Symposium, volume 81, pp.
346–355. 61, 63, 82, 95, 211, 233

http://cseweb.ucsd.edu/~hovav/dist/noret.pdf
http://dx.doi.org/10.1049/iet-ifs.2012.0142
http://dl.acm.org/citation.cfm?id=1251398.1251410
http://dx.doi.org/10.1109/SP.2017.30
http://dx.doi.org/10.1145/2897795.2897805
http://dx.doi.org/10.1016/0167-4048(93)90054-9
http://redmine.corelan.be/projects/mona
http://dl.acm.org/citation.cfm?id=1251353.1251360


266 References

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong,
and J. Hiser. 2006. N-variant systems: A secretless framework for security through
diversity. In Proceedings of the 15th USENIX Security Symposium, 9. 211, 213, 214, 217,
237

S. Crane, A. Homescu, and P. Larsen. 2016. Code randomization: Haven’t we solved this
problem yet? In IEEE Cybersecurity Development (SecDev). DOI: 10.1109/SecDev.2016
.036. 66

S. Crane, P. Larsen, S. Brunthaler, and M. Franz. 2013. Booby trapping software. In New
Security Paradigms Workshop (NSPW), pp. 95–106. DOI: 10.1145/2535813.2535824. 68

S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler, and M.
Franz. 2015. Readactor: Practical code randomization resilient to memory disclosure.
In 36th IEEE Symposium on Security and Privacy (S&P), pp. 763–780. DOI: 10.1109/SP
.2015.52. 11, 60, 66, 76, 173, 178

S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-R. Sadeghi, T. Holz, B. De
Sutter, and M. Franz. 2015. It’s a TRaP: Table randomization and protection against
function-reuse attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS), pp. 243–255. DOI: 10.1145/2810103.2813682. 11,
68, 77, 159, 171, 173, 178

J. Criswell, N. Dautenhahn, and V. Adve. 2014. KCoFI: Complete control-flow integrity for
commodity operating system kernels. In IEEE Symposium on Security and Privacy
(S&P), pp. 292–307. DOI: 10.1109/SP.2014.26. 58

H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A. Gibson, and R. E. Bryant.
2013. Parrot: A practical runtime for deterministic, stable, and reliable threads. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP), pp.
388–405. DOI: 10.1145/2517349.2522735. 230

D. Dai Zovi. 2010. Practical return-oriented programming. Talk at SOURCE Boston, 2010. 117

L. Dalessandro, D. Dice, M. Scott, N. Shavit, and M. Spear. 2010. Transactional mutex locks.
In Proceedings of the 16th International Euro-Par Conference on Parallel Processing: Part
II, pp. 2–13. 44

T. H. Y. Dang, P. Maniatis, and D. Wagner. 2015. The performance cost of shadow stacks and
stack canaries. In Proceedings of the 10th ACM Symposium on Information, Computer,
and Communications Security (ASIACCS), pp. 555–566. DOI: 10.1145/2714576.2714635.
10, 137, 208

DarkReading. November 2009. Heap spraying: Attackers’ latest weapon of choice. http://www
.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428.
133

L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nurnberger, and A.-R.
Sadeghi. 2012. MoCFI: A framework to mitigate control-flow attacks on smartphones.
In Proceedings of the 19th Annual Network and Distributed System Security Symposium
(NDSS). 58, 208

http://dx.doi.org/10.1109/SecDev.2016.036
http://dx.doi.org/10.1145/2535813.2535824
http://dx.doi.org/10.1109/SP.2015.52
http://dx.doi.org/10.1109/SP.2015.52
http://dx.doi.org/10.1145/2810103.2813682
http://dx.doi.org/10.1109/SP.2014.26
http://dx.doi.org/10.1145/2517349.2522735
http://dx.doi.org/10.1145/2714576.2714635
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428


References 267

L. Davi, P. Koeberl, and A.-R. Sadeghi. 2014. Hardware-assisted fine-grained control-
flow integrity: Towards efficient protection of embedded systems against software
exploitation. In Annual Design Automation Conference—Special Session: Trusted Mobile
Embedded Computing (DAC), pp. 1–6. DOI: 10.1145/2593069.2596656. 173, 174, 209

L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose. 2014. Stitching the gadgets: On the
ineffectiveness of coarse-grained control-flow integrity protection. In Proceedings
of the 23rd USENIX Security Symposium, pp. 401–416. http://dl.acm.org/citation
.cfm?id=2671225.2671251. 15, 43, 53, 82, 84, 86, 97, 114, 139, 140, 169, 174, 176, 177,
179, 182, 183, 184, 186, 188, 200, 209, 211

L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose. 2015. Isomeron:
Code randomization resilient to (just-in-time) return-oriented programming.
In 22nd Annual Network and Distributed System Security Symposium (NDSS). DOI:
10.14722/ndss.2015.23262. 64

L. Davi, A.-R. Sadeghi, and M. Winandy. 2011. ROPdefender: A detection tool to defend
against return-oriented programming attacks. In ACM Symposium on Information,
Computer, and Communications Security (ASIACCS), pp. 40–51. DOI: 10.1145/1966913
.1966920. 139, 141

L. de Moura and N. Bjørner. 2009. Generalized, efficient array decision procedures. In Formal
Methods in Computer Aided Design (FMCAD). DOI: 10.1109/FMCAD.2009.5351142. 161

L. M. de Moura and N. Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pp. 337–340. 140, 161

T. de Raadt. 2005. Exploit mitigation techniques. http://www.openbsd.org/papers/ven05-
deraadt/index.html. 8

J. Dean, D. Grove, and C. Chambers. 1995. Optimization of object-oriented programs using
static class hierarchy analysis. In European Conference on Object-Oriented Programming
(ECOOP), pp. 77–101. 32

D. Dechev. 2011. The ABA problem in multicore data structures with collaborating
operations. In 7th International Conference on Collaborative Computing: Net-
working, Applications, and Worksharing (CollaborateCom), pp. 158–167. DOI:
10.4108/icst.collaboratecom.2011.247161. 44

L. Deng, Q. Zeng, and Y. Liu. 2015. ISboxing: An instruction substitution based data
sandboxing for x86 untrusted libraries. In 30th International Conference on ICT
Systems Security and Privacy Protection, pp. 386–400. 41

L. P. Deutsch and A. M. Schiffman. 1984. Efficient implementation of the Smalltalk-80
system. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pp. 297–302. DOI: 10.1145/800017.800542. 54

J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. 2008. HardBound: Architectural
support for spatial safety of the C programming language. In International Conference
on Architectural Support for Programming Languages and Operating Systems, pp. 103–
114. DOI: 10.1145/1353534.1346295. 109

http://dx.doi.org/10.1145/2593069.2596656
http://dl.acm.org/citation.cfm?id=2671225.2671251
http://dl.acm.org/citation.cfm?id=2671225.2671251
http://dx.doi.org/10.14722/ndss.2015.23262
http://dx.doi.org/10.1145/1966913.1966920
http://dx.doi.org/10.1145/1966913.1966920
http://dx.doi.org/10.1109/FMCAD.2009.5351142
http://www.openbsd.org/papers/ven05-deraadt/index.html
http://www.openbsd.org/papers/ven05-deraadt/index.html
http://dx.doi.org/10.4108/icst.collaboratecom.2011.247161
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.1145/1353534.1346295


268 References

J. Devietti, B. Lucia, L. Ceze, and M. Oskin. 2009. DMP: Deterministic shared mem-
ory multiprocessing. ACM SIGARCH Computer Architecture News, 37(1):85–96.
DOI: 10.1145/1508244.1508255. 230

D. Dewey and J. T. Giffin. 2012. Static detection of C++ vtable escape vulnerabilities in binary
code. In Symposium on Network and Distributed System Security (NDSS). 171

D. Dhurjati, S. Kowshik, and V. Adve. June 2006. SAFECode: Enforcing alias analysis for
weakly typed languages. SIGPLAN Notices, 41 (6): 144–157. DOI: 10.1145/1133255
.1133999. 82, 84

U. Drepper. April 2006. SELinux memory protection tests. http://www.akkadia.org/drepper/
selinux-mem.html. 238

V. D’Silva, M. Payer, and D. Song. 2015. The Correctness-Security Gap in Compiler
Optimization. In LangSec’15: Second Workshop on Language-Theoretic Security. DOI:
10.1109/SPW.2015.33. 16

T. Durden. 2002. Bypassing PaX ASLR protection. Phrack, 11. 10, 17

EEMBC. The embedded microprocessor benchmark consortium: EEMBC benchmark suite.
http://www.eembc.org. 206

Ú Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. Necula. 2006. XFI: Software guards
for system address spaces. In Proceedings of the 7th USENIX Symposium on Operating
System Design and Implementation, pp. 75–88. 58, 86, 95

H. Etoh and K. Yoda. June 2000. Protecting from stack-smashing attacks. Technical report,
IBM Research Division, Tokyo Research Laboratory. 63

C. Evans. 2013. Exploiting 64-bit Linux like a boss. http://scarybeastsecurity.blogspot.com/
2013/02/exploiting-64-bit-linux-like-boss.html. 117

I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. E. Shrobe, S. Sidiroglou-
Douskos, M. Rinard, and H. Okhravi. 2015. Missing the point(er): On the effectiveness
of code pointer integrity. In 36th IEEE Symposium on Security and Privacy, (S&P), pp.
781–796. DOI: 10.1109/SP.2015.53. 11, 62, 87

I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S. Sidiroglou-
Douskos. 2015. Control jujutsu: On the weaknesses of fine-grained control flow
integrity. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 901–913. DOI: 10.1145/2810103.2813646. 20,
21, 59, 82, 97, 137, 211

Federal Communications Commission. 2014. Measuring broadband America—2014.
http://www.fcc.gov/reports/measuring-broadband-america-2014. 256

C. Fetzer and M. Suesskraut. 2008. SwitchBlade: Enforcing dynamic personalized system
call models. In Proceedings of the 3rd European Conference on Computer Systems, pp.
273–286. DOI: 10.1145/1357010.1352621. 16

A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina. 2011. SmartDec: Approaching C++
decompilation. In Working Conference on Reverse Engineering (WCRE). 171

B. Ford and R. Cox. 2008. Vx32: Lightweight user-level sandboxing on the x86. In Proceedings
of the USENIX ATC, pp. 293–306. 8, 9

http://dx.doi.org/10.1145/1508244.1508255
http://dx.doi.org/10.1145/1133255.1133999
http://dx.doi.org/10.1145/1133255.1133999
http://www.akkadia.org/drepper/selinux-mem.html
http://www.akkadia.org/drepper/selinux-mem.html
http://dx.doi.org/10.1109/SPW.2015.33
http://www.eembc.org
http://scarybeastsecurity.blogspot.com/2013/02/exploiting-64-bit-linux-like-boss.html
http://scarybeastsecurity.blogspot.com/2013/02/exploiting-64-bit-linux-like-boss.html
http://dx.doi.org/10.1109/SP.2015.53
http://dx.doi.org/10.1145/2810103.2813646
http://www.fcc.gov/reports/measuring-broadband-america-2014
http://dx.doi.org/10.1145/1357010.1352621


References 269

M. Frantzen and M. Shuey. 2001. StackGhost: Hardware facilitated stack protection. In
USENIX Security Symposium. 139, 141

I. Fratric. 2012. Runtime prevention of return-oriented programming attacks. http://github
.com/ivanfratric/ropguard/blob/master/doc/ropguard.pdf. 139, 173, 176

Gaisler Research. LEON3 synthesizable processor. http://www.gaisler.com. 183, 206

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare,
B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M.
Chang, and M. Franz. 2009. Trace-based just-in-time type specialization for dynamic
languages. In Proceedings ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 465–478. DOI: 10.1145/1543135.1542528. 50

T. Garfinkel, B. Pfaff, and M. Rosenblum. 2004. Ostia: A delegating architecture for secure
system call interposition. In Network and Distributed System Security Symposium
(NDSS). 241

R. Gawlik and T. Holz. 2014. Towards automated integrity protection of C++ virtual function
tables in binary programs. In Annual Computer Security Applications Conference
(ACSAC), pp. 396–405. 171, 173, 176, 182

R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz. 2016. Enabling client-side
crash-resistance to overcome diversification and information hiding. In 23rd Annual
Network and Distributed System Security Symposium (NDSS). 68

X. Ge, M. Payer, and T. Jaeger. 2017. An evil copy: How the loader betrays you. In Network
and Distributed System Security Symposium (NDSS). DOI: 10.14722/ndss.2017.23199 .
15

J. Gionta, W. Enck, and P. Ning. 2015. HideM: Protecting the contents of userspace memory
in the face of disclosure vulnerabilities. In 5th ACM Conference on Data and Application
Security and Privacy (CODASPY), pp. 325–336. DOI: 10.1145/2699026.2699107. 65

GNU.org. The GNU C library: Environment access. http://www.gnu.org/software/libc/
manual/html_node/Environment-Access.html. 220

E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. 2014a. Out of control: Overcoming
control-flow integrity. In Proceedings of the 35th IEEE Symposium on Security and
Privacy (S&P), pp. 575–589. DOI: 10.1109/SP.2014.43. 15, 53, 82, 84, 86, 97, 114, 124,
125, 126, 129, 134, 136, 137, 139, 140, 174, 175, 177, 182, 183, 186, 188, 200, 202, 211

E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Portokalidis. 2014b. Size
does matter: Why using gadget-chain length to prevent code-reuse attacks is hard.
In Proceedings of the 23rd USENIX Security Symposium. http://dl.acm.org/citation
.cfm?id=2671225.2671252. 122, 139, 140, 169, 177, 179, 182, 186, 188, 209

E. Göktaş, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Portokalidis, C. Giuffrida, and H.
Bos. 2016. Undermining information hiding (and what to do about it). In Proceedings
of the 25th USENIX Security Symposium, pp. 105–119. 11, 68

I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. 1996. A secure environment for
untrusted helper applications: Confining the wily hacker. In Proceedings of the 6th
USENIX Security Symposium (SSYM). 16

http://github.com/ivanfratric/ropguard/blob/master/doc/ropguard.pdf
http://github.com/ivanfratric/ropguard/blob/master/doc/ropguard.pdf
http://www.gaisler.com
http://dx.doi.org/10.1145/1543135.1542528
http://dx.doi.org/10.1145/2699026.2699107
http://www.gnu.org/software/libc/manual/html_node/Environment-Access.html
http://www.gnu.org/software/libc/manual/html_node/Environment-Access.html
http://dx.doi.org/10.1109/SP.2014.43
http://dl.acm.org/citation.cfm?id=2671225.2671252
http://dl.acm.org/citation.cfm?id=2671225.2671252


270 References

Google Chromium Project. 2013. Undefined behavior sanitizer. http://www.chromium.org/
developers/testing/undefinedbehaviorsanitizer. 7

B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. 2017. ASLR on the line: Practical cache
attacks on the MMU. In Annual Network and Distributed System Security Symposium
(NDSS). 67

Y. Guillot and A. Gazet. 2010. Automatic binary deobfuscation. J. Comput. Virol. 6(3): pp.
261–276. DOI: 10.1007/s11416-009-0126-4. 160

I. Haller, E. Göktaş, E. Athanasopoulos, G. Portokalidis, and H. Bos. 2015. ShrinkWrap:
VTable protection without loose ends. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), pp. 341–350. DOI: 10.1145/2818000.2818025. 136

I. Haller, Y. Jeon, H. Peng, M. Payer, H. Bos, C. Giuffrida, and E. van der Kouwe. 2016.
TypeSanitizer: Practical type confusion detection. In ACM Conference on Computer
and Communication Security (CCS). DOI: 10.1145/2976749.2978405. 7

N. Hasabnis, A. Misra, and R. Sekar. 2012. Light-weight bounds checking. In IEEE/ACM
Symposium on Code Generation and Optimization. DOI: 10.1145/2259016.2259034. 84

Hex-Rays. 2017. IDA Pro. http://www.hex-rays.com/index.shtml. 128

M. Hicks. 2014. What is memory safety? http://www.pl-enthusiast.net/2014/07/21/memory-
safety/. 4

E. Hiroaki and Y. Kunikazu. 2001. ProPolice: Improved stack-smashing attack detection.
IPSJ SIG Notes, pp. 181–188. 11

J. Hiser, A. Nguyen, M. Co, M. Hall, and J. W. Davidson. 2012. ILR: Where’d my gadgets
go? In 33rd IEEE Symposium on Security and Privacy (S&P), pp. 571–585. DOI:
10.1109/SP.2012.39. 11, 66

J. D. Hiser, D. Williams, A. Filipi, J. W. Davidson, and B. R. Childers. 2006. Evaluating
fragment construction policies for SDT systems. In Proceedings of the 2nd Inter-
national Conference on Virtual Execution Environments (VEE), pp. 122–132. DOI:
10.1145/1134760.1134778. 8, 9

U. Hölzle, C. Chambers, and D. Ungar. 1991. Optimizing dynamically-typed object-oriented
languages with polymorphic inline caches. In European Conference on Object-Oriented
Programming (ECOOP), pp. 21–38. 54

U. Hölzle, C. Chambers, and D. Ungar. 1992. Debugging optimized code with dynamic
deoptimization. In Proceedings ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 32–43. DOI: 10.1145/143103.143114. 54

A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. 2013. Librando: Transparent
code randomization for just-in-time compilers. CCS ’13, pp. 993–1004. DOI:
10.1145/2508859.2516675. 58, 59

A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz. 2013. Profile-guided
automated software diversity. In IEEE/ACM Symposium on Code Generation and
Optimization, pp. 1–11. DOI: 10.1109/CGO.2013.6494997. 85

http://www.chromium.org/developers/testing/undefinedbehaviorsanitizer
http://www.chromium.org/developers/testing/undefinedbehaviorsanitizer
http://dx.doi.org/10.1007/s11416-009-0126-4
http://dx.doi.org/10.1145/2818000.2818025
http://dx.doi.org/10.1145/2976749.2978405
http://dx.doi.org/10.1145/2259016.2259034
http://www.hex-rays.com/index.shtml
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://dx.doi.org/10.1109/SP.2012.39
http://dx.doi.org/10.1145/1134760.1134778
http://dx.doi.org/10.1145/143103.143114
http://dx.doi.org/10.1145/2508859.2516675
http://dx.doi.org/10.1109/CGO.2013.6494997


References 271

P. Hosek and C. Cadar. 2013. Safe software updates via multi-version execution. In
Proceedings of the 2013 International Conference on Software Engineering (ICSE’13),
pp. 612–621. DOI: 10.1109/ICSE.2013.6606607. 214, 256, 257

Petr Hosek and Cristian Cadar. 2015. Varan the unbelievable: An efficient n-version execution
framework. In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pp. 339–353.
DOI: 10.1145/2694344.2694390. 214, 215, 218, 224, 227, 256, 257

H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. 2015. Automatic generation of
data-oriented exploits. In 24th USENIX Security Symposium, pp. 177–192. http://
www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu.
21

R. Hund, C. Willems, and T. Holz. 2013. Practical timing side channel attacks against kernel
space ASLR. In IEEE Symposium on Security and Privacy (S&P), pp. 191–205. DOI:
10.1109/SP.2013.23. 82, 86, 141

G. Hunt and D. Brubacher. 1999. Detours: Binary interception of win32 functions. In Usenix
Windows NT Symposium, pp. 135–143. 232

Intel. 2013. Intel Architecture Instruction Set Extensions Programming Reference.
http://download-software.intel.com/sites/default/files/319433-015.pdf. 108

Intel.2013. Introduction to Intel memory protection extensions. http://software.intel.com/
en-us/articles/introduction-to-intel-memory-protection-extensions. 93

Intel. 2013. Intel 64 and IA-32 Architectures Software Developer’s Manual—Combined Volumes
1, 2a, 2b, 2c, 3a, 3b, and 3c. 178

Intel. 2014. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2: Instruction
Set Reference, A–Z. 2014. 223, 224

Itanium C++ ABI. http://mentorembedded.github.io/cxx-abi/abi.html. 32

A. Jaleel. 2007. Memory characterization of workloads using instrumentation-driven
simulation—a pin-based memory characterization of the SPEC CPU2000 and SPEC
CPU2006 benchmark suites. technical report. http://www.glue.umd.edu/~ajaleel/
workload/. 253

D. Jang, Z. Tatlock, and S. Lerner. 2014. SAFEDISPATCH: Securing C++ virtual calls from
memory corruption attacks. In Symposium on Network and Distributed System Security
(NDSS). 32, 173, 176

jduck. 2010. The latest Adobe exploit and session upgrading. http://bugix-security.blogspot
.de/2010/03/adobe-pdf-libtiff-working-exploitcve.html. 182

T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang. 2002. Cyclone: A
safe dialect of C. In USENIX Annual Technical Conference. 5, 82, 84, 88, 95

N. Joly. 2013. Advanced exploitation of Internet Explorer 10/Windows 8 overflow (Pwn2Own
2013). http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_
Windows8_Pwn2Own_2013.php. 117, 124, 162

M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev. 2012. Branch regulation: Low-
overhead protection from code reuse attacks. In Proceedings of the 39th Annual

http://dx.doi.org/10.1109/ICSE.2013.6606607
http://dx.doi.org/10.1145/2694344.2694390
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
http://dx.doi.org/10.1109/SP.2013.23
http://download-software.intel.com/sites/default/files/319433-015.pdf
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://mentorembedded.github.io/cxx-abi/abi.html
http://www.glue.umd.edu/~ajaleel/workload/
http://www.glue.umd.edu/~ajaleel/workload/
http://bugix-security.blogspot.de/2010/03/adobe-pdf-libtiff-working-exploitcve.html
http://bugix-security.blogspot.de/2010/03/adobe-pdf-libtiff-working-exploitcve.html
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php


272 References

International Symposium on Computer Architecture (ISCA). http://dl.acm.org/citation
.cfm?id=2337159.2337171. DOI: 10.1109/ISCA.2012.6237009. 182, 209

M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-Ghazaleh. 2013. Scrap:
Architecture for signature-based protection from code reuse attacks. In IEEE 19th
International Symposium on High Performance Computer Architecture (HPCA2013), pp.
258–269. DOI: 10.1109/HPCA.2013.6522324. 209

C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. 2006. Address space layout permutation (ASLP):
Towards fine-grained randomization of commodity software. In Proceedings of the
22nd Annual Computer Security Applications Conference (ACSAC), pp. 339–348. DOI:
10.1109/ACSAC.2006.9. 11, 85

V. Kiriansky, D. Bruening, and S. P. Amarasinghe. 2002. Secure execution via program
shepherding. In Proceedings 11th USENIX Security Symposium, pp. 191–206. 8, 9

K. Koning, H. Bos, and C. Giuffrida. 2016. Secure and efficient multi-variant execution
using hardware-assisted process virtualization. In Proceedings of the International
Conference on Dependable Systems and Networks, pp. 431–442. DOI: 10.1109/DSN
.2016.46. 211, 214, 217

T. Kornau. 2010. Return oriented programming for the ARM architecture. Ph.D. thesis,
Master’s thesis, Ruhr-Universitat Bochum. 233

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. 2014a. Code-pointer
integrity. In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pp. 147–163. 9, 10, 59, 62, 105, 106, 107, 173, 178, 179

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. 2014b. Code-Pointer
Integrity website. http://dslab.epfl.ch/proj/cpi/. 179

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, and D. Song. 2015. Poster: Getting the point
(er): On the feasibility of attacks on code-pointer integrity. In 36th IEEE Symposium
on Security and Privacy (S&P). 87

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. 2014. SoK: Automated software diversity.
In Proceedings of the 35th IEEE Symposium on Security and Privacy (S&P), pp. 276–291.
DOI: 10.1109/SP.2014.25. 11, 62, 66, 250, 252

C. Lattner and V. Adve. 2005. Automatic pool allocation: Improving performance by
controlling data structure layout in the heap. In ACM Conference on Programming
Language Design and Implementation, pp. 129–142. DOI: 10.1145/1064978.1065027.
91, 108

C. Lattner, A. Lenharth, and V. Adve. 2007. Making context-sensitive points-to analysis
with heap cloning practical for the real world. In ACM Conference on Programming
Language Design and Implementation, pp. 278–289. DOI: 10.1145/1273442.1250766.
91, 108

B. Lee, C. Song, T. Kim, and W. Lee. 2015. Type casting verification: Stopping an emerging
attack vector. In USENIX Security 15, pp. 81–96. http://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/lee. 7

http://dl.acm.org/citation.cfm?id=2337159.2337171
http://dl.acm.org/citation.cfm?id=2337159.2337171
http://dx.doi.org/10.1109/ISCA.2012.6237009
http://dx.doi.org/10.1109/HPCA.2013.6522324
http://dx.doi.org/10.1109/ACSAC.2006.9
http://dx.doi.org/10.1109/DSN.2016.46
http://dslab.epfl.ch/proj/cpi/
http://dx.doi.org/10.1109/SP.2014.25
http://dx.doi.org/10.1145/1064978.1065027
http://dx.doi.org/10.1145/1273442.1250766
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee


References 273

D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and J. Flinn. 2010. Respec:
Efficient online multiprocessor replayvia speculation and external determinism. ACM
SIGARCH Computer Architecture News, 38(1):77–90. DOI: 10.1145/1736020.1736031.
230

J. Lettner, B. Kollenda, A. Homescu, P. Larsen, F. Schuster, L. Davi, A.-R. Sadeghi, T. Holz, and
M. Franz. 2016. Subversive-C: Abusing and protecting dynamic message dispatch. In
USENIX Annual Technical Conference (ATC), pp. 209–221. 70, 140

E. Levy. 1996. Smashing the stack for fun and profit. Phrack, 7. 61

J. Li, Z. Wang, T. K. Bletsch, D. Srinivasan, M. C. Grace, and X. Jiang. 2011. Comprehensive
and efficient protection of kernel control data. IEEE Transactions on Information
Forensics and Security, 6(4):1404–1417. DOI: 10.1109/TIFS.2011.2159712. 82, 86

C. Liebchen, M. Negro, P. Larsen, L. Davi, A.-R. Sadeghi, S. Crane, M. Qunaibit, M. Franz,
and M. Conti. 2015. Losing control: On the effectiveness of control-flow integrity
under stack attacks. In ACM Conference on Computer and Communications Security
(CCS). DOI: 10.1145/2810103.2813671. 182, 183, 205

Linux Man-Pages Project. 2017a. tc-netem(8)—Linux manual page. 256

Linux Man-Pages Project. 2017b. shmop(2)—Linux manual page. 247

Linux Programmer’s Manual. 2017a. vdso(7)—Linux manual page. 223

Linux Programmer’s Manual. 2017b. getauxval(3)—Linux manual page. 224

Linux Programmer’s Manual. 2017c. signal(7)—Linux manual page. 225

T. Liu, C. Curtsinger, and E. Berger. 2011. DTHREADS: Efficient deterministic multithread-
ing. In Proceedings of the 23rd ACM Symposium on Operating System Principles (SOSP),
pp. 327–336. DOI: 10.1145/2043556.2043587. 230

LLVM. The LLVM compiler infrastructure. http://llvm.org/. 102

K. Lu, X. Zhou, T. Bergan, and X. Wang. 2014. Efficient deterministic multithreading without
global barriers. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pp. 287–300. DOI: 10.1145/2555243
.2555252. 230

K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee. 2015. ASLR-Guard: Stopping
address space leakage for code reuse attacks. In ACM Conference on Computer and
Communications Security (CCS), pp. 280–291. DOI: 10.1145/2810103.2813694. 68

J. Maebe, M. Ronsse, and K. D. Bosschere. 2003. Instrumenting JVMs at the machine code
level. In 3rd PA3CT symposium, volume 19, pp. 105–107. 222

G. Maisuradze, M. Backes, and C. Rossow. 2003. What cannot be read, cannot be leveraged?
Revisiting assumptions of JIT-ROP defenses. In USENIX Security Symposium. 67

M. Marschalek. 2014. Dig deeper into the IE vulnerability (cve-2014-1776) exploit.
http://www.cyphort.com/dig-deeper-ie-vulnerability-cve-2014-1776-exploit/. 182

A. J. Mashtizadeh, A. Bittau, D. Mazieres, and D. Boneh. 2014. Cryptographically enforced
control flow integrity. http://arxiv.org/abs/1408.1451. 86

http://dx.doi.org/10.1145/1736020.1736031
http://dx.doi.org/10.1109/TIFS.2011.2159712
http://dx.doi.org/10.1145/2810103.2813671
http://dx.doi.org/10.1145/2043556.2043587
http://llvm.org/
http://dx.doi.org/10.1145/2555243.2555252
http://dx.doi.org/10.1145/2555243.2555252
http://dx.doi.org/10.1145/2810103.2813694
http://www.cyphort.com/dig-deeper-ie-vulnerability-cve-2014-1776-exploit/
http://arxiv.org/abs/1408.1451


274 References

A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. 2015. CCFI: Cryptographically
enforced control flow integrity. In ACM Conference on Computer and Communications
Security (CCS), pp. 941–951. DOI: 10.1145/2810103.2813676. 72, 76, 77

M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell. 2013. System V application binary interface:
AMD64 architecture processor supplement. http://x86-64.org/documentation/abi
.pdf. 150

M. Maurer and D. Brumley. 2012. Tachyon: Tandem execution for efficient live patch testing.
In USENIX Security Symposium, pp. 617–630. 214, 256, 257

S. McCamant and G. Morrisett. 2006. Evaluating SFI for a CISC architecture. In Proceedings
of the 15th USENIX Security Symposium. 41, 59, 68, 86

H. Meer. 2010. Memory corruption attacks: The (almost) complete history. In Proceedings of
Blackhat USA. 62

T. Merrifield and J. Eriksson. 2013. Conversion: Multi-version concurrency control for main
memory segments. In Proceedings of the 8th ACM European Conference on Computer
Systems (EuroSys), pp. 127–139. DOI: 10.1145/2465351.2465365. 230

Microsoft Corp. November 2014. Enhanced mitigation experience toolkit (EMET) 5.1.
http://technet.microsoft.com/en-us/security/jj653751. 173, 176

Microsoft Developer Network. 2017. Argument passing and naming conventions.
http://msdn.microsoft.com/en-us/library/984x0h58.aspx. 149, 151, 154

V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz. 2015. Opaque control-
flow integrity. In Proceedings of the 22nd Annual Network and Distributed System
Security Symposium (NDSS). http://www.internetsociety.org/doc/opaque-control-flow-
integrity. 173, 177, 182

J. R. Moser. 2006. Virtual machines and memory protections. http://lwn.net/Articles/210272/.
238

G. Murphy. 2012. Position independent executables—adoption recommendations for
packages. http://people.redhat.com/~gmurphy/files/pie.odt. 238

S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. 2012. Watchdog: Hardware for safe
and secure manual memory management and full memory safety. In International
Symposium on Computer Architecture, pp. 189–200. DOI: 10.1145/2366231.2337181.
109

S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. 2015. Everything you want to know about
pointer-based checking. In First Summit on Advances in Programming Languages
(SNAPL). DOI: 10.4230/LIPIcs.SNAPL.2015.190. 5

S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. 2009. SoftBound: Highly
compatible and complete spatial memory safety for C. In ACM Sigplan Notices,
volume 44, pp. 245–258. DOI: 10.1145/1542476.1542504. 4, 5, 36, 82, 84, 88, 91, 97,
99, 101, 102, 110, 112, 211

S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. 2010. CETS: Compiler
enforced temporal safety for C. In ACM Sigplan Notices, volume 45, pp. 31–40. DOI:
10.1145/1806651.1806657. 6, 83, 84, 88, 89, 91, 98, 108, 173, 178, 211

http://dx.doi.org/10.1145/2810103.2813676
http://x86-64.org/documentation/abi.pdf
http://dx.doi.org/10.1145/2465351.2465365
http://technet.microsoft.com/en-us/security/jj653751
http://msdn.microsoft.com/en-us/library/984x0h58.aspx
http://www.internetsociety.org/doc/opaque-control-flow-integrity
http://www.internetsociety.org/doc/opaque-control-flow-integrity
http://lwn.net/Articles/210272/
http://people.redhat.com/~gmurphy/files/pie.odt
http://dx.doi.org/10.1145/2366231.2337181
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.190
http://dx.doi.org/10.1145/1542476.1542504
http://dx.doi.org/10.1145/1806651.1806657


References 275

G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. 2005. CCured: Type-safe
retrofitting of legacy software. ACM Transactions on Programming Languages and
Systems, 27(3):477–526. DOI: 10.1145/1065887.1065892. 5, 82, 84, 88, 95

Nergal. December 2001. The advanced return-into-lib(c) exploits (PaX case study). Phrack,
58 (4): 54. http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-
lib(c)%20exploits%20(PaX%20case%20study)_by_nergal.txt. 81, 82, 185, 203

B. Niu. 2015. Practical control-flow integrity. Ph.D. thesis, Lehigh University. 26, 37, 39, 56,
60

B. Niu and G. Tan. 2013. Monitor integrity protection with space efficiency and separate
compilation. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), pp. 199–210. DOI: 10.1145/2508859.2516649. 39, 82, 86, 173, 175

B. Niu and G. Tan. 2014a. Modular control-flow integrity. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
DOI: 10.1145/2594291.2594295. 26, 27, 40, 44, 58, 82, 110, 114, 182

B. Niu and G. Tan. 2014b. RockJIT: Securing just-in-time compilation using modular control-
flow integrity. In ACM Conference on Computer and Communication Security (CCS), pp.
1317–1328. DOI: 10.1145/2660267.2660281. 9, 26, 34

B. Niu and G. Tan. 2015. Per-input control-flow integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 914–926. DOI:
10.1145/2810103.2813644. 14, 30, 59

A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida. 2016. Poking holes in
information hiding. In 25th USENIX Security Symposium, pp. 121–138. 11, 68, 94

M. Olszewski, J. Ansel, and S. Amarasinghe. 2009. Kendo: Efficient deterministic
multithreading in software. ACM Sigplan Notices, 44(3):97–108. DOI: 10.1145/1508244
.1508256. 230

K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. 2010. G-Free: Defeating return-
oriented programming through gadget-less binaries. In Proceedings of the 26th Annual
Computer Security Applications Conference (ACSAC), pp. 49–58. DOI: 10.1145/1920261
.1920269. 173, 177, 210

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2013. Transparent ROP exploit mitigation
using indirect branch tracing. In Proceedings of the 22nd USENIX Security Symposium,
pp. 447–462. 117, 118, 119, 127, 173, 176, 182, 209

A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, Thorsten Holz, Herbert Bos, Elias
Athanasopoulos, and Cristiano Giuffrida. 2017. Marx: Uncovering class hiearchies in
C++ programs. In Annual Network and Distributed System Security Symposium (NDSS).
67

PaX Team. 2004a. Address space layout randomization. http://pax.grsecurity.net/docs/
aslr.txt, 2004a. 82, 85, 211

PaX Team. 2004b PaX non-executable pp. design & implementation. http://pax.grsecurity
.net/docs/noexec.txt, 2004b. 8, 211

http://dx.doi.org/10.1145/1065887.1065892
http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-lib(c)%20exploits%20(PaX%20case%20study)_by_nergal.txt
http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-lib(c)%20exploits%20(PaX%20case%20study)_by_nergal.txt
http://dx.doi.org/10.1145/2508859.2516649
http://dx.doi.org/10.1145/2594291.2594295
http://dx.doi.org/10.1145/2660267.2660281
http://dx.doi.org/10.1145/2810103.2813644
http://dx.doi.org/10.1145/1508244.1508256
http://dx.doi.org/10.1145/1508244.1508256
http://dx.doi.org/10.1145/1920261.1920269
http://dx.doi.org/10.1145/1920261.1920269
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/noexec.txt
http://pax.grsecurity.net/docs/noexec.txt


276 References

M. Payer. 2012. Safe loading and efficient runtime confinement: A foundation for secure
execution. Ph.D. thesis, ETH Zurich. http://nebelwelt.net/publications/12PhD. DOI:
10.1109/SP.2012.11. 8

M. Payer, A. Barresi, and T. R. Gross. 2015. Fine-grained control-flow integrity through
binary hardening. In Proceedings of the 12th Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA). DOI: 10.1007/978-3-319-20550-2_8.
10, 14, 58, 173, 174

M. Payer and T. R. Gross. 2011. Fine-grained user-space security through virtualization.
In Proceedings of the 7th International Conference on Virtual Execution Environments
(VEE). DOI: 10.1145/1952682.1952703. 8, 9

A. Pelletier. 2012. Advanced exploitation of Internet Explorer heap overflow (Pwn2Own 2012
exploit). VUPEN Vulnerability Research Team (VRT) blog. http://www.vupen.com/
blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-
1876.php. 124, 131

J. Pewny and T. Holz. 2013. Control-flow restrictor: Compiler-based CFI for iOS. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC), pp.
309–318. DOI: 10.1145/2523649.2523674. 58

Phoronix. Phoronix test suite. http://www.phoronix-test-suite.com/. 114

A. Prakash, X. Hu, and H. Yin. 2015. vfGuard: Strict protection for virtual function calls in
COTS C++ binaries. In Symposium on Network and Distributed System Security (NDSS).
58, 160, 170, 171, 173, 176, 182

N. Provos. 2003. Improving host security with system call policies. In Proceedings of the 12th
USENIX Security Symposium SSYM), volume 12, pp. 18–18. http://dl.acm.org/citation
.cfm?id=1251353.1251371. 16, 241

H. P. Reiser, J. Domaschka, F. J. Hauck, R. Kapitza, and W. Schröder-Preikschat. 2006.
Consistent replication of multithreaded distributed objects. In IEEE Symposium on
Reliable Distributed Systems, pp. 257–266. DOI: 10.1109/SRDS.2006.14. 230

R. Roemer, E. Buchanan, H. Shacham, and S. Savage. 2012. Return-oriented programming:
Systems, languages, and applications. ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34.
DOI: 10.1145/2133375.2133377. 20, 117, 181, 185

R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane, C. Liebchen, P. Larsen,
L. Davi, M. Franz, A.-R. Sadeghi, and H. Okhravi. 2017. Address oblivious code reuse:
On the effectiveness of leakage resilient diversity. In Annual Network and Distributed
System Security Symposium (NDSS). 69

J. M. Rushby. 1981. Design and verification of secure systems. In Proceedings of the 8th ACM
Symposium on Operating Systems Principles (SOSP), pp. 12–21. DOI: 10.1145/800216
.806586. 214

M. Russinovich, D. A. Solomon, and A. Ionescu. 2012. Windows Internals, Part 1. Microsoft
Press, 6th edition. ISBN 978-0-7356-4873-9. 155, 175

SafeStack. Clang documentation: Safestack. http://clang.llvm.org/docs/SafeStack.html. 102

http://nebelwelt.net/publications/12PhD
http://dx.doi.org/10.1109/SP.2012.11
http://dx.doi.org/10.1007/978-3-319-20550-2_8
http://dx.doi.org/10.1145/1952682.1952703
http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
http://dx.doi.org/10.1145/2523649.2523674
http://www.phoronix-test-suite.com/
http://dl.acm.org/citation.cfm?id=1251353.1251371
http://dl.acm.org/citation.cfm?id=1251353.1251371
http://dx.doi.org/10.1109/SRDS.2006.14
http://dx.doi.org/10.1145/2133375.2133377
http://dx.doi.org/10.1145/800216.806586
http://dx.doi.org/10.1145/800216.806586
http://clang.llvm.org/docs/SafeStack.html


References 277

B. Salamat. 2009. Multi-variant execution: Run-time defense against malicious code
injection attacks. Ph.D. thesis, University of California at Irvine. 218

B. Salamat, T. Jackson, A. Gal, and M. Franz. 2009. Orchestra: Intrusion detection using
parallel execution and monitoring of program variants in user-space. In Proceedings
of the 4th ACM European Conference on Computer Systems (EuroSys), pp. 33–46. DOI:
10.1145/1519065.1519071. 211, 213, 214, 217, 227, 256, 257

J. Salwan. 2011. ROPGadget. http://shell-storm.org/project/ROPgadget/. 136

F. Schuster. July 2015. Securing Application Software in Modern Adversarial Settings. Ph.D.
thesis, Katholieke Universiteit Leuven. 140

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. 2015. Counterfeit
object-oriented programming: On the difficulty of preventing code reuse attacks in
C++ applications. In 36th IEEE Symposium on Security and Privacy (S&P), pp. 745–762.
DOI: 10.1109/SP.2015.51. 15, 20, 67, 70, 97, 140, 182, 183, 184, 185, 186, 200, 204,
211

F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag, and T. Holz. 2014.
Evaluating the effectiveness of current anti-ROP defenses. In Research in Attacks,
Intrusions, and Defenses, volume 8688 of Lecture Notes in Computer Science. DOI:
10.1007/978-3-319-11379-1_5. 139, 140, 177, 182, 186, 188, 209

E. J. Schwartz, T. Avgerinos, and D. Brumley. 2010. All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In IEEE Symposium on Security and Privacy (S&P). DOI: 10.1109/SP.2010.26.
86

E. J. Schwartz, T. Avgerinos, and D. Brumley. 2011. Q: Exploit hardening made easy. In
Proceedings of the 20th USENIX Conference on Security (SEC), pp. 25–25. 136

C. Segulja and T. S. Abdelrahman. 2014. What is the cost of weak determinism? In Proceedings
of the 23rd International Conference on Parallel Architectures and Compilation, pp. 99–
112. DOI: 10.1145/2628071.2628099. 254

J. Seibert, H. Okhravi, and E. Söderström. 2014. Information leaks without memory
disclosures: Remote side channel attacks on diversified code. In Proceedings of
ACM Conference on Computer and Communications Security (CCS), pp. 54–65. DOI:
10.1145/2660267.2660309. 141, 182

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. 2012. AddressSanitizer: A fast
address sanity checker. In USENIX Annual Technical Conference, pp. 309–318. 82, 84,
173, 178

F. J. Serna. 2012. CVE-2012-0769, the case of the perfect info leak. http://media.blackhat
.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf. 63, 117

H. Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS’07), pp. 552–561. DOI: 10.1145/1315245.1315313.
62, 172, 184, 185, 186, 200, 233

http://dx.doi.org/10.1145/1519065.1519071
http://shell-storm.org/project/ROPgadget/
http://dx.doi.org/10.1109/SP.2015.51
http://dx.doi.org/10.1007/978-3-319-11379-1_5
http://dx.doi.org/10.1109/SP.2010.26
http://dx.doi.org/10.1145/2628071.2628099
http://dx.doi.org/10.1145/2660267.2660309
http://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf
http://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf
http://dx.doi.org/10.1145/1315245.1315313


278 References

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. 2004. On the
effectiveness of address-space randomization. In Proceedings of ACM Conference on
Computer and Communications Security (CCS), pp. 298–307. DOI: 10.1145/1030083
.1030124. 62

N. Shavit and D. Touitou. 1995. Software transactional memory. In Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 204–213.
28

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi. 2013.
Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization. In 34th IEEE Symposium on Security and Privacy (S&P), pp. 574–588.
DOI: 10.1109/SP.2013.45. 10, 20, 49, 63, 82, 86, 117, 141, 177, 182, 184, 186, 203

K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Polychronakis. 2016. Return
to the zombie gadgets: Undermining destructive code reads via code inference
attacks. In 37th IEEE Symposium on Security and Privacy (S&P), pp. 954–968. DOI:
10.1109/SP.2016.61. 70

Solar Designer. 1997a. “return-to-libc” attack. Bugtraq. 203

Solar Designer.1997b. lpr LIBC RETURN exploit. http://insecure.org/sploits/linux.libc.return
.lpr.sploit.html. 203

C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski. 2015. Exploiting and protecting dynamic
code generation. In Network and Distributed System Security Symposium (NDSS). 49,
58, 60

A. Sotirov. 2007. Heap feng shui in JavaScript. In Proceedings of Black Hat Europe. 132

E. H. Spafford. January 1989. The internet worm program: An analysis. SIGCOMM Comput.
Commun. Rev., 19 (1): 17–57. ISSN 0146-4833. DOI: 10.1145/66093.66095. 61

SPARC. SPARC V8 processor. http://www.sparc.org. 206

R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter. 2009.
Breaking the memory secrecy assumption. In 2nd European Workshop on System
Security (EUROSEC), pp. 1–8. DOI: 10.1145/1519144.1519145. 63, 117

D. Sullivan, O. Arias, L. Davi, P. Larsen, A.-R. Sadeghi, and Y. Jin. 2016. Strategy without
tactics: Policy-agnostic hardware-enhanced control-flow integrity. In IEEE/ACM
Design Automation Conference (DAC), pp. 83.2:1–6. DOI: 10.1145/2897937.2898098.
209

L. Szekeres, M. Payer, T. Wei, and D. Song. 2013. SoK: Eternal war in memory. In Proceedings
International Symposium on Security and Privacy (S&P). DOI: 10.1109/SP.2013.13. 2,
61, 82, 85, 211

L. Szekeres, M. Payer, L. Wei, D. Song, and R. Sekar. 2014. Eternal war in memory. IEEE
Security and Privacy Magazine. DOI: 10.1109/MSP.2013.47. 2

A. Tang, S. Sethumadhavan, and S. Stolfo. 2015. Heisenbyte: Thwarting memory disclo-
sure attacks using destructive code reads. In ACM Conference on Computer and
Communications Security (CCS), pp. 256–267. DOI: 10.1145/2810103.2813685. 70

http://dx.doi.org/10.1145/1030083.1030124
http://dx.doi.org/10.1145/1030083.1030124
http://dx.doi.org/10.1109/SP.2013.45
http://dx.doi.org/10.1109/SP.2016.61
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://dx.doi.org/10.1145/66093.66095
http://www.sparc.org
http://dx.doi.org/10.1145/1519144.1519145
http://dx.doi.org/10.1145/2897937.2898098
http://dx.doi.org/10.1109/SP.2013.13
http://dx.doi.org/10.1109/MSP.2013.47
http://dx.doi.org/10.1145/2810103.2813685


References 279

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and G. Pike.
2014. Enforcing forward-edge control-flow integrity in GCC & LLVM. In Proceedings
of the 23rd USENIX Security Symposium. http://dl.acm.org/citation.cfm?id=2671225
.2671285. 58, 86, 173, 175, 182, 204, 208, 211, 233

M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. 2011. On the expressiveness
of return-into-libc attacks. In Proceedings of the 14th International Conference on Recent
Advances in Intrusion Detection (RAID), pp. 121–141. DOI: 10.1007/978-3-642-23644-
0_7. 117, 140, 183, 184, 185, 200, 204

A. van de Ven. August 2004. New security enhancements in Red Hat Enterprise Linux
v.3, update 3. http://people.redhat.com/mingo/exec-shield/docs/WHP0006US_
Execshield.pdf. 9, 82

V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska, H. Bos, and C.
Giuffrida. 2015. PathArmor: Practical ROP protection using context-sensitive CFI.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS), pp. 927–940. DOI: 10.1145/2810103.2813673. 14, 137

V. van der Veen, N. D. Sharma, L. Cavallaro, and H. Bos. 2012. Memory errors: The past,
the present, and the future. In Proceedings of the 15th International Conference on
Research in Attacks, Intrusions, and Defenses (RAID), pp. 86–106. DOI: 10.1007/978-3-
642-33338-5_5. 61

S. Volckaert. 2015. Advanced Techniques for multi-variant execution. Ph.D. thesis, Ghent
University. 226, 231

S. Volckaert, B. Coppens, and B. De Sutter. 2015. Cloning your gadgets: Complete ROP
attack immunity with multi-variant execution. IEEE Trans. on Dependable and Secure
Computing, 13 (4): 437–450. DOI: 10.1109/TDSC.2015.2411254. 211, 250

S. Volckaert, B. Coppens, B. De Sutter, K. De Bosschere, P. Larsen, and M. Franz. 2017.
Taming parallelism in a multi-variant execution environment. In Proceedings of
the 12th European Conference on Computer Systems (EuroSys), pp. 270–285. DOI:
10.1145/3064176.3064178. 230, 232

S. Volckaert, B. Coppens, A. Voulimeneas, A. Homescu, P. Larsen, B. De Sutter, and M. Franz.
2016. Secure and efficient application monitoring and replication. In USENIX Annual
Technical Conference (ATC), pp. 167–179. 214, 215, 247

S. Volckaert, B. De Sutter, T. De Baets, and K. De Bosschere. 2013. GHUMVEE: Efficient,
effective, and flexible replication. In 5th International Symposium on Foundations and
Practice of Security (FPS), pp. 261–277. 214, 217, 232

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. 1993. Efficient software-based fault
isolation. In Proceedings of the 14th ACM Symposium on Operating System Principles,
pp. 203–216. DOI: 10.1145/168619.168635. 8, 9, 41, 68, 249

Z. Wang and X. Jiang. 2010. HyperSafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P), pp. 380–395. DOI: 10.1109/SP.2010.30. 58, 208

http://dl.acm.org/citation.cfm?id=2671225.2671285
http://dl.acm.org/citation.cfm?id=2671225.2671285
http://dx.doi.org/10.1007/978-3-642-23644-0_7
http://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
http://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
http://dx.doi.org/10.1145/2810103.2813673
http://dx.doi.org/10.1007/978-3-642-33338-5_5
http://dx.doi.org/10.1007/978-3-642-33338-5_5
http://dx.doi.org/10.1109/TDSC.2015.2411254
http://dx.doi.org/10.1145/3064176.3064178
http://dx.doi.org/10.1145/168619.168635
http://dx.doi.org/10.1109/SP.2010.30


280 References

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. 2012. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), pp. 157–168. DOI: 10.1145/2382196
.2382216. 11, 173, 177

R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway. 2010. Capsicum: Practical
capabilities for UNIX. In 19th USENIX Security Symposium, pp. 29–46. 16

T. Wei, T. Wang, L. Duan, and J. Luo. 2011. INSeRT: Protect dynamic code generation against
spraying. In International Conference on Information Science and Technology (ICIST),
pp. 323–328. DOI: 10.1109/ICIST.2011.5765261. 59

J. Werner, G. Baltas, R. Dallara, N. Otternes, K. Snow, F. Monrose, and M. Polychronakis.
2016. No-execute-after-read: Preventing code disclosure in commodity software.
In 11th ACM Symposium on Information, Computer, and Communications Security
(ASIACCS), pp. 35–46. DOI: 10.1145/2897845.2897891. 70

J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen. 2011. RIPE: Runtime
intrusion prevention evaluator. In Proceedings of the 27th Annual Computer Security
Applications Conference, pp. 41–50. DOI: 10.1145/2076732.2076739. 109, 239

R. Wojtczuk. 1998. Defeating Solar Designer’s non-executable stack patch. http://insecure
.org/sploits/non-executable.stack.problems.html. 20, 81, 82, 203

C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. 2002. Linux security
modules: General security support for the Linux kernel. In Proceedings 11th USENIX
Security Symposium. 16

R. Wu, P. Chen, B. Mao, and L. Xie. 2012. RIM: A method to defend from JIT spraying attack.
In 7th International Conference on Availability, Reliability, and Security (ARES), pp.
143–148. DOI: 10.1109/ARES.2012.11. 59

Y. Xia, Y. Liu, H. Chen, and B. Zang. 2012. CFIMon: Detecting violation of control flow
integrity using performance counters. In IEEE/IFIP Conference on Dependable Systems
and Networks (DSN), pp. 1–12. DOI: 10.1109/DSN.2012.6263958. 173, 176

F. Yao, J. Chen, and G. Venkataramani. 2013. JOP-alarm: Detecting jump-oriented
programming-based anomalies in applications. In IEEE 31st International Conference
on Computer Design (ICCD), pp. 467–470. DOI: 10.1109/ICCD.2013.6657084. 209

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and N.
Fullagar. 2009. Native client: A sandbox for portable, untrusted x86 native code. In
30th IEEE Symposium on Security and Privacy (S&P), pp. 79–93. DOI: 10.1109/SP.2009
.25. 8, 39, 86

B. Zeng, G. Tan, and Ú. Erlingsson. 2013. Strato: A retargetable framework for low-level
inlined-reference monitors. In USENIX Security Symposium, pp. 369–382. 58, 86

B. Zeng, G. Tan, and G. Morrisett. 2011. Combining control-flow integrity and static analysis
for efficient and validated data sandboxing. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), pp. 29–40. DOI: 10.1145/2046707
.2046713. 58, 59, 86

http://dx.doi.org/10.1145/2382196.2382216
http://dx.doi.org/10.1145/2382196.2382216
http://dx.doi.org/10.1109/ICIST.2011.5765261
http://dx.doi.org/10.1145/2897845.2897891
http://dx.doi.org/10.1145/2076732.2076739
http://insecure.org/sploits/non-executable.stack.problems.html
http://insecure.org/sploits/non-executable.stack.problems.html
http://dx.doi.org/10.1109/ARES.2012.11
http://dx.doi.org/10.1109/DSN.2012.6263958
http://dx.doi.org/10.1109/ICCD.2013.6657084
http://dx.doi.org/10.1109/SP.2009.25
http://dx.doi.org/10.1145/2046707.2046713
http://dx.doi.org/10.1145/2046707.2046713


References 281

C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song. 2015. VTint: Defending virtual function
tables’ integrity. In Symposium on Network and Distributed System Security (NDSS).
DOI: 10.14722/ndss.2015.23099 . 160, 173, 176, 182

C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou. 2013.
Practical control flow integrity and randomization for binary executables. In 34th
IEEE Symposium on Security and Privacy (S&P), pp. 559–573. DOI: 10.1109/SP.2013.44.
38, 82, 86, 97, 110, 114, 117, 118, 119, 127, 136, 169, 173, 174, 182, 208, 209

M. Zhang and R. Sekar. 2013. Control flow integrity for COTS binaries. In Proceedings
of the 22nd USENIX Security Symposium, pp. 337–352. http://dl.acm.org/citation
.cfm?id=2534766.2534796. 38, 82, 86, 97, 110, 114, 117, 118, 119, 127, 136, 173, 174,
182, 208, 209

H. W. Zhou, X. Wu, W. C. Shi, J. H. Yuan, and B. Liang. 2014. HDROP: Detecting ROP
attacks using performance monitoring counters. In Information Security Practice and
Experience, pp. 172–186. Springer International Publishing. DOI: 10.1007/978-3-319-
06320-1_14. 173, 177

X. Zhou, K. Lu, X. Wang, and . Li. 2012. Exploiting parallelism in deterministic shared
memory multiprocessing. Journal of Parallel and Distributed Computing, 72(5):716–
727. DOI: 10.1016/j.jpdc.2012.02.008. 230

http://dx.doi.org/10.1109/SP.2013.44
http://dl.acm.org/citation.cfm?id=2534766.2534796
http://dl.acm.org/citation.cfm?id=2534766.2534796
http://dx.doi.org/10.1007/978-3-319-06320-1_14
http://dx.doi.org/10.1007/978-3-319-06320-1_14
http://dx.doi.org/10.1016/j.jpdc.2012.02.008

	Contents
	Preface
	1, How Memory Safety Violations Enable Exploitation of Programs
	2. Protecting Dynamic Code
	3. Diversity and Information Leaks
	4. Code-Pointer Integrity
	5. Evaluating Control-Flow Restricting Defenses
	6. Attacking Dynamic Code
	7. Hardware Control Flow Integrity
	8. Multi-Variant Execution Environments
	References
	Contributor Biographies

