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Abstract—GPUs and other accelerators are popular devices for accelerating compute-intensive, parallelizable applications. However,
programming these devices is a difficult task. Writing efficient device code is challenging, and is typically done in a low-level programming
language. High-level languages are rarely supported, or do not integrate with the rest of the high-level language ecosystem. To overcome
this, we propose compiler infrastructure to efficiently add support for new hardware or environments to an existing programming language.
We evaluate our approach by adding support for NVIDIA GPUs to the Julia programming language. By integrating with the existing
compiler, we significantly lower the cost to implement and maintain the new compiler, and facilitate reuse of existing application code.
Moreover, use of the high-level Julia programming language enables new and dynamic approaches for GPU programming. This greatly
improves programmer productivity, while maintaining application performance similar to that of the official NVIDIA CUDA toolkit.

Index Terms—Graphics processors, very high-level languages, code generation, retargetable compilers
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1 INTRODUCTION

To satisfy ever higher computational demands, hardware
vendors and software developers look at accelerators, spe-
cialized processors that are optimized for specific, typically
parallel workloads, and perform much better at them than
general-purpose processors [1], [2], [3], [4], [5]. Multiple hard-
ware vendors are working on such accelerators and release
many new devices every year. These rapid developments
make it difficult for developers to keep up and gain sufficient
experience programming the devices. This is exacerbated by
the fact that many vendors only provide low-level toolchains,
such as CUDA or OpenCL, which offer full control to reach
peak performance at the cost of developer productivity [6].

To improve developer productivity, programmers com-
monly use high-level programming languages. However,
these languages often rely on techniques and functionality
that are hard to implement or even incompatible with
execution on typical accelerators, such as interpretation,
tracing Just-in-Time (JIT) compilation, or reliance on a
managed runtime library. To remedy this, implementations
of high-level languages for accelerators generally target a
derived version of the language, such as a restricted subset
or an embedded Domain Specific Language (DSL), in which
incompatible features have been redefined or adjusted.

Modern extensible languages offer the means to realize
such programming language derivatives [7]. For example,
Lisp-like languages feature powerful macros for processing
syntax, Python’s decorators make it possible to change the
behavior of functions and methods, and the Julia program-
ming language supports introspection of each of its Inter-
mediate Representations (IRs). However, these facilities do
not encourage reuse of existing compiler functionality. Most
derived languages use a custom compiler, which simplifies
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the implementation but hinders long-term maintainability
when the host language gains features or changes semantics.
It also forces users to learn and deal with the inevitable
divergence between individual language implementations.

This paper presents a vision in which the high-level
language compiler exposes interfaces to alter the compilation
process (Section 2). Implementations of the language for
other platforms can use these interfaces together with other
extensible programming patterns to ensure that source code
is compiled to compatible and efficient accelerator machine
code. To demonstrate the power of this approach, we have
added such interfaces to the reference compiler of the Julia
language (Section 4), and used it to add support for NVIDIA
GPUs (Section 5). We show that the resulting toolchain makes
it possible to write generic and high-level GPU code, while
performing similar to low-level CUDA C (Section 6). All code
implementing this framework is available as open-source
software on GitHub, and can be easily installed using the
Julia package manager. Our contributions are as follows:

• We introduce interfaces for altering the compilation
process, and implement them in the Julia compiler.

• We present an implementation of the Julia language
for NVIDIA GPUs, using the introduced interfaces.

• We analyze the performance of benchmarks from the
Rodinia suite ported to Julia. We show that kernels
programmed in Julia perform similar to CUDA C
code compiled with NVIDIA’s reference compiler.

• We demonstrate high-level programming with this
toolchain, and show that Julia GPU code can be highly
generic and flexible, without sacrificing performance.

2 VISION

Our proposed solution to the difficulty in integrating high-
level languages and accelerators is a set of interfaces to
the high-level language’s general purpose compiler, that
provide fine-grained access to the different IRs and to the
processes that generate and optimize those IRs. With these
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Figure 1. Abstract overview of the proposed toolchain.

interfaces, developers can influence the existing language
implementation and, e.g., improve compatibility with new
hardware or run-time environments without the need for a
custom compiler or an embedded language subset.

Figure 1 shows an overview of the proposed toolchain.
An external device package uses the introduced interfaces
to add support for new hardware, without modifying the
existing language implementation. For example, it could
refuse to generate code for certain language features, such as
exceptions or dynamic memory allocations, or replace their
code with compatible or optimized alternatives.

Such a setup has multiple advantages. For one, it keeps
the existing language implementation stable, while new
implementations can be developed independently as external
packages. This makes it easier to experiment, as these
packages do not need to meet the support, quality, or
licensing requirements of the existing implementation. It
also makes it easier to cope with the rapid development pace
of accelerator hardware, providing the means for vendors to
contribute more effectively to the language ecosystem.

Another important advantage is the ability to reuse
the existing language implementation, whereas current
implementations of high-level languages for accelerators
often reimplement large parts of the compiler. For example,
Numba is a JIT compiler for Python, building on the
CPython reference language implementation. As Figure 2
shows, the Numba compiler takes Python bytecode and
compiles it to optimized machine code. Due to the high-
level nature of Python bytecode, the Numba interpreter and
subsequent compilation stages duplicate much functionality
from CPython: CFG construction, type inference, liveness
analysis, and implementations of built-in functions. As a
result, each release of Numba is tailored to the specifics
of certain CPython versions [8], and needs to be updated
when changes are made to the language implementation. The
semantics of code also differ slightly depending on whether
it is interpreted by CPython or compiled with Numba [8],
further impeding compatibility with existing Python code.

Our proposed compiler interfaces allow to share func-
tionality between an existing language implementation and
external derivatives, avoiding needless reimplementation
of functionality by reconfiguring the existing compiler to
generate code compatible with the platform at hand. This not
only facilitates external language implementations. It also im-
proves compatibility with existing code as it avoids inevitable
differences between individual compiler implementations.
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Figure 2. CPython and Numba compilation processes for host and device.

In some cases, even more reuse of existing infrastructure
than suggested in Figure 1 is possible. When the main
compiler’s back-end also targets accelerators, there is no need
to reimplement a back-end in the device package. Instead,
that existing back-end compiler can then be used for host
and device code. Even if this is not the case, it might not be
necessary to reimplement a full device back end in the device
package: If third-party device code generators can be reused,
the device back end only has to translate the low-level IR
code to an IR accepted by that third-party code generator.

Conceptually, the compiler interfaces shown in Figure 1
are generally applicable. Their actual instantiation, however,
will be specific to the host language and accelerator at hand.
We expect further research into such interfaces to generalize
the design and improve reusability across languages and
accelerators. For now, we will design the interfaces around a
single language and accelerator platform.

For this work, we chose to target Graphics Processing
Units (GPUs), massively parallel accelerators that require
specialized code, yet are usable for many kinds of ap-
plications. Specifically, we focus on Compute Unified De-
vice Architecture (CUDA) GPUs, because of their mature
toolchain and hardware availability. We target this hardware
from the Julia programming language, a high-level technical
computing language built on the Low-Level Virtual Machine
(LLVM) compiler framework. As Section 3.2 will explain,
Julia is a good fit for accelerator programming, while offering
flexible tools to extend the language, e.g., for the purpose of
targeting new hardware. Given its use of LLVM, and LLVM’s
capabilities to target both CPUs and CUDA GPUs, we do
not need to reimplement a device back-end ourselves.

3 BACKGROUND

3.1 GPU Accelerators
GPUs are massively parallel accelerators that can speed up
compute-intensive general-purpose applications. However,
that generality is constrained: Most GPUs need to be treated
like a coprocessor (with separate memory spaces, controlled
by a host processor, mostly unable to perform input/output
operations, etc.), and can only efficiently execute codes
that exhibit specific kinds of parallelism. As a result, GPUs
are relatively hard to program: Programmers have to deal
with the intricacies of coprocessor programming, and need
experience with parallel programming to assess if and how
specific problems can be solved effectively on a GPU.
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Vendor-supported development environments for GPU
accelerators typically work with low-level programming lan-
guages. NVIDIA’s CUDA, for instance, uses CUDA C, while
AMD and Intel GPUs are programmed using OpenCL C.
The constructs in these low-level languages map closely to
available hardware features, making it possible to reach peak
performance, as potentially costly abstractions are avoided.
However, the lack of such abstractions also complicates
GPU programming, not only requiring parallel programming
skills and domain knowledge to map the problems, but
also low-level programming competence and GPU hardware
know-how for the actual implementations [6]. Furthermore,
due to a lack of abstractions, these implementations are
often hardware-specific, or perform significantly worse on
different hardware [9]. Libraries like CUB [10] or Thrust [11]
aim to raise the abstraction level and portability using
C++ templates, but fall short due to the low-level nature
of C++ and limited applicability across vendor toolkits.

Alternatively, developers can use optimized host libraries
that are called from the host processor and not directly from
the device. Hardware vendors provide libraries for popular
interfaces like BLAS [12] and LAPACK [13]. There also exist
third-party libraries like ArrayFire [14] and ViennaCL [15]
that abstract over devices and platforms. These libraries
typically export a C Application Programming Interface
(API), which eases their use outside of the vendor-supplied
development environment. For example, the CUDA BLAS
library cuBLAS [16] can be used from Python [17], Julia [18],
Octave [19], etc. However, compilers for these languages
cannot reason about code in the libraries, and they cannot
optimize code across calls to it. Moreover, library-driven
development requires programming in terms of abstractions,
which are typically coarse-grained to amortize the cost of
configuring the accelerator, initiating execution, etc. Most
libraries are also unable to compose their abstractions with
custom device code. As a result, library-based programming
can be unfit for implementing certain types of applications.

Using high-level languages to program accelerators di-
rectly provides a middle ground between high-level host
libraries and direct programming with vendor toolkits: Direct
programming offers fine-grained control over compilation
and execution, while the use of a high-level language and its
abstraction capabilities improve programmer productivity.
However, existing high-level languages implementations
for accelerators do not integrate well with the rest of
the language. Embedded DSL such as PyGPU or Copper-
head [20], [21] come with a learning curve, and programmers
have to adapt their code. Continuum Analytics’ Numba [8]
reimplements support for a subset of the Python language
that is appropriately called nopython because it does not
support many of the high-level features of Python because
these features do not map well onto GPUs, while duplicating
compiler functionality from the CPython reference implemen-
tation as shown in Figure 2. Our proposed interfaces serve
to avoid this duplication, and integrate with the existing
language implementation for the purpose of improved code
compatibility and more effective compiler implementation.

3.2 Julia Programming Language
Julia is a high-level, high-performance dynamic program-
ming language for technical computing [22]. It features

Listing 1
Single-dispatch polymorphism and branches that leads to unstable

functions, returning differently-typed objects based on run-time values.

1 function intersect(a::Rect, b) # returns Rect or Line
2 if isa(b,Rect) return c::Rect
3 else if isa(b,Line) return c::Line
4 end
5 end
6 function intersect(a::Line, b) # returns Rect or Line
7 return c
8 end

Listing 2
Functionality of Listing 1 expressed through multiple dispatch.

1 function intersect(a::Rect, b::Rect) # returns Rect
2 return c::Rect
3 end
4 function intersect(a::Rect, b::Line) # returns Line
5 return c::Line
6 end

a type system with parametric polymorphism, multiple
dispatch, metaprogramming capabilities, and other high-
level features [23]. The most remarkable aspect of the
language and its main implementation is speed: carefully
written Julia code performs exceptionally well on traditional
microprocessors, approaching the speed of code written in
statically-compiled languages like C or FORTRAN [24], [25].

Julia’s competitive performance originates from clever
language design that avoids the typical compilation and exe-
cution uncertainties associated with dynamic languages [26].
For example, Julia features a systemic vocabulary of types,
with primitive types (integers, floats) mapping onto machine-
native representations. The compiler uses type inference to
propagate type information throughout the program, tagging
locations (variables, temporaries) with the type known at
compile time. If a location is fully typed and the layout of
that type is known, the compiler can often use stack memory
to store its value. In contrast, uncertainty with respect to
the type of a location obligates variably-sized run-time heap
allocations, with type tags next to values and dynamic checks
on those tags as is common in many high-level languages.

Similarly, types are used to express program behavior and
eliminate execution uncertainty by means of multiple dis-
patch. This type of function dispatch selects an appropriate
method based on the run-time type of all of its arguments. It
is a generalization of single-dispatch polymorphism of, e.g.,
C++, in which only the “this” type is used to disambiguate
a method call. For example, Listing 1 does not use multiple
dispatch and defines intersect methods that only dispatch
on the first argument, returning differently-typed objects
by branching on the type of values. Conversely, Listing 2
defines multiple methods that dispatch on all arguments, and
consequently are more narrowly-typed in terms of arguments
and returned values. In the case of a sufficiently typed call,
this enables the compiler to dispatch statically to the correct
method and avoid run-time branches, possibly even stack-
allocating the returned value if its layout is known.

The combination of this design and aggressive special-
ization on run-time types enables the Julia compiler to
generate mostly statically-typed intermediate code, without
the need for JIT compilation techniques traditionally used
by high-level language implementations (tracing, specula-
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Figure 3. Overview of the compilation process for Julia GPU code with
CUDAnative.jl by means of compiler extension interfaces. Dashed arrows
indicate generic interactions; solid arrows represent the flow of code.

tive execution, deoptimization, etc.). This allows the Julia
developers to outsource the back-end part of the compilation
flow to existing compiler frameworks for static languages. In
particular, the Julia IR is a good fit for the LLVM compiler
framework, which is commonly used as a basis for industrial-
strength compilers for static languages [27]. The Julia com-
piler targets this framework by emitting LLVM IR as the
low-level IR from Figure 1, and uses the vast array of LLVM
optimization passes (often tailored for or assuming statically-
typed straight-line IR) to optimize code and ultimately
compile it to high-performance CPU machine code. The
left part of Figure 3 shows this existing Julia compilation tool
flow. In the remainder of this paper, we refer to it as the main
compiler because it is the part of the flow that will generate
machine code for the main, general-purpose CPU(s) that
serve as a host to accelerators. The last main processing step,
CPU code generation, is implemented entirely by means of
LLVM. To facilitate interactions with this C++ library, those
parts of the Julia compiler that interface with LLVM are also
written in C++, making it possible to directly invoke its APIs.

As a testament to the performance this design can achieve,
most of the Julia standard library is written in Julia itself
(with some obvious exceptions for the purpose of reusing
existing libraries), while offering good performance [24], [25].
The managed runtime library is only required for dynamic
code that might trigger compilation, and certain language
features such as garbage collection and stack unwinding.

Coincidentally, this design also makes the language
well-suited for accelerator programming. Such hardware
often features a different architecture and Instruction Set
Architecture (ISA), operating independently from the main
processor, with control and data transfers happening over a
shared bus. In many cases, this makes it hard or impossible
to share code, such as runtime libraries, between host and
device. With Julia, however, it is entirely possible to write
high-level code that boils down to self-contained, static IR, a
prerequisite for many accelerator programming models.

In addition, Julia features powerful metaprogramming
and reflection capabilities, as shown in Table 1. Source code
can be introspected and modified using macros, or using
the parse and eval functions. The high-level Julia IR
is accessible with the code_lowered and code_typed

Table 1
Existing metaprogramming interfaces in Julia to access compiler IRs.

Access Modify
1 AST 3 3

2 Julia IR 3 3

3 LLVM IR 3 3
Machine code 3 indirectly

reflection functions, and can be modified with generated
functions. These mechanisms are powerful, flexible, and
user-friendly, because they have been co-designed together
with the source language and the tool flow in support
of metaprogramming and reflection, and because Julia is
a homoiconic programming language, i.e., code can be
accessed and transformed as structured data from within
the language. As such, these interfaces already offer some
of the flexibility required to target new hardware, e.g., to
define constructs with non-standard semantics or special
code generation without the need for new language features.
As we will discuss in the next section, however, their support
does not yet suffice for targeting accelerators like GPUs.

Low-level LLVM IR can be inspected by invoking
code_llvm and injected via the llvmcall metapro-
gramming interface. Machine code is accessible through
code_native and can be inserted indirectly as inline as-
sembly in LLVM IR. These interfaces are much less powerful
and flexible, however. Most importantly, the interfaces to
LLVM IR only pass string representations of the IR code.
This generic and neutral form of interface fits the separation
of concerns between Julia and LLVM. It suffices for the main
compiler because (i) metaprogramming and reflection do
not require interfaces at the LLVM IR level, (ii) llvmcall
is currently only used to inject small, literal snippets of
LLVM IR, e.g., to add support for atomics, and (iii) the main
compiler is implemented mostly in C++, and thus has direct
access to the LLVM IR builder interfaces.

However, as we will discuss in the next section, these
string-based interfaces to the lower-level IRs do not suffice
for targeting accelerators from within device packages.

4 EFFECTIVE EXTENSIBLE PROGRAMMING

As discussed in Section 2, we propose to integrate high-level
programming languages with accelerator hardware by means
of extension interfaces to the existing compiler that was, and
will continue to be, developed by and large to target general-
purpose hardware. The existing interfaces to manipulate the
different IRs as discussed in the previous section provide a
good starting point, but they do not yet suffice.

First, although they make it possible to improve compati-
bility with accelerators by manipulating general purpose IR
or generating compatible IR from scratch, they fall short in
reusing and repurposing the main compiler’s IR-generating
components. Section 4.1 proposes our solution to make the
compiler generate accelerator-optimized IR in the first place.

Secondly, the string-based interfaces to the lower-level
IRs do not let the device package reuse main compiler
functionality to generate and inject low-level IR code. As
targeting accelerators such as GPUs requires more than
injecting predetermined code snippets, this lack of reuse
is problematic. Section 4.2 presents a solution to this issue.
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Table 2
Additional interfaces for controlling code generation processes.

Reconfigure Replace
AST - -

4 Julia IR InferenceParams InferenceHooks

5 LLVM IR CodegenParams CodegenHooks

Machine code - -

4.1 Front-end IR Interfaces

As a starting point to generate accelerator code, the language
should offer access to the different representations of source
code in the compiler, such as syntax trees, IRs, and machine
code. This makes it possible to implement functionality that
cannot be expressed in the source language by manually
emitting intermediate code, without the need to alter the
language or compiler. It can also be used to transform IR,
or use it as a starting point for further compilation. In the
case of the Julia programming language, there already exist
several metaprogramming interfaces that provide access to
those intermediate forms of code, as shown in Table 1.

For external language implementations, having access to
the code generated for each IR level is insufficient. In addi-
tion, access to the IR code should be augmented with access
to the processes that generate that code. When compiling
code for an environment that, e.g., does not support the Julia
runtime library, the compiler needs to avoid calls to it. A
typical case is that of exceptions, which rely on the runtime
for stack unwinding and error reporting. In the main Julia
compiler, these calls to the runtime are generated as part of
the code generation process that lowers Julia IR to LLVM IR.
To generate code that does not require the runtime library
without altering the code generation process, the compiler
needs to rid the Julia IR from exceptions, or remove calls to
the runtime from the generated LLVM IR. Both approaches
are fragile, because they involve modeling behavior of the
main compiler and duplicating functionality from it.

To overcome this problem and improve the reusability
of the compiler, we added the four interfaces from Table 2
that offer additional control over code generation processes.
More specifically, both the lowering of Abstract Syntax Trees
(ASTs) to Julia IR, and Julia IR to LLVM IR can now be
altered through parameters and hooks to reconfigure or
replace individual components of these code generation
processes. Applied to the above example of code generation
without a runtime library, a so-called CodegenParam could
be used to disallow exceptions altogether, or alternatively a
CodegenHook could change the generated code not to rely
on the runtime library. The GPU back end from Section 5
uses these interfaces to replace or customize code generation
functionality for exceptions, dynamic memory allocation
such as garbage collection, and other functionality that
typically requires runtime support libraries, Of course, the
nature of these parameters and hooks are specific to the
language and its compiler, but the approach is generic and
enables extensive reuse of existing functionality.

For now, we have only introduced such interfaces to
the processes that generate Julia and LLVM IR; The parsing
phase that converts source-code to an AST is superficial and
generic enough not to need adjustment for GPU execution,

while machine code generation is extremely target-specific
and does not offer many opportunities for reuse.

4.2 Back-end IR Interfaces

The codegen step in the main compiler translates (i.e., lowers)
Julia IR constructs into LLVM IR. The C++ part of the
codegen implementation directly invokes LLVM IR builder
interfaces to do so; the part implemented in Julia itself uses
the aforementioned string-based interfaces.

For the device package in support of an accelerator, we
want to avoid both mechanisms as much as possible. The
string-based approach is too fragile; the C++ approach is
not productive enough for the package developer (likely
an expert in Julia and in his targeted accelerators, but not
necessarily in C++ APIs). We hence strive for providing the
necessary interfaces and functionality to let developers create
new language implementations for accelerators in the Julia
language itself, and shielding them from as many LLVM
details as possible. This greatly lowers the required effort to
support new hardware, as much less code is required when
the necessary accelerator-oriented compiler functionality can
be written in a productive programming language. As a
testament thereto, the GPU support presented in Section 5
only requires about 1500 lines of code (LOC).

Furthermore, no changes to the language’s compiler
are then required, which enables the distribution of the
new language implementations (i.e., the device packages)
independent from the existing implementation, e.g., with a
built-in package manager. The new implementation can be
quickly iterated and improved upon, while keeping the core
language and its compiler stable. Such a development model
is especially interesting for accelerator vendors, where the
rapid pace of hardware developments necessitates frequent
changes to the toolchain. This contrasts with the relatively
slow developments in host compilers and with sometimes
conservative upgrade policies by system administrators.

To facilitate interactions with LLVM, we have created
the LLVM.jl package, which is available at https://github.
com/maleadt/LLVM.jl. It provides a high-level wrapper to
the LLVM C API, using Julia’s powerful Foreign Function
Interface (FFI) to interact efficiently with the underlying
libraries. The package can be used to inspect, modify or emit
LLVM IR. It greatly improves the usability of the extension
interfaces that operate at the LLVM IR level. In addition, the
package enables reuse of back-end compiler functionality that
are part of LLVM, including the vast array of optimization
passes that are part of LLVM, or the many back ends to
generate machine code from LLVM IR.

Listing 3 shows an example use of LLVM.jl for imple-
menting the necessary lowering from Julia IR to LLVM IR.
Specifically, this shows how to implement a custom function
for loading values from a pointer using the LLVM.jl interfaces.
In Julia IR, accessing, e.g., an element in an array, is modeled
with a call to the unsafe_load function from the standard
Julia library. Its body contains a call to an intrinsic function
that is recognized by the codegen processing step in the main
Julia compiler, which then lowers it to appropriate LLVM IR
code. Implementing an optimized version of unsafe_load
for loading values on accelerators using the same intrinsics
mechanism would similarly require the introduction of one

https://github.com/maleadt/LLVM.jl
https://github.com/maleadt/LLVM.jl
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Listing 3
Using LLVM.jl to implement functions that generate their own IR.

1 # loading a value from a pointer
2 @generated function load(p::Ptr{T}) where {T}
3 eltyp = LLVM.convert(LLVM.Type, T)
4
5 # create a LLVM module and function
6 mod = LLVM.Module("llvmcall")
7 param_typs = [LLVM.PointerType(eltyp)]
8 ft = LLVM.FunctionType(eltyp, param_typs)
9 f = LLVM.Function(mod, "load", ft)

10 # generate IR
11 LLVM.Builder() do builder
12 bb = LLVM.BasicBlock(f, "entry")
13 LLVM.position!(builder, bb)
14 ptr = LLVM.parameters(f)[1]
15 val = LLVM.load!(builder, ptr) # the actual load
16 LLVM.ret!(builder, val)
17 end
18 # inject the IR and call it
19 return :( llvmcall($f, $T, Tuple{Ptr{$T}}, p) )
20 end
21
22 @test load(pointer([42])) == 42

or more intrinsics in the main compiler, and writing the
necessary lowering support in C++ using LLVM APIs. This
is cumbersome, inflexible, and unproductive.

By contrast, the code in Listing 3 shows how to load
a value from a pointer with Julia metaprogramming and
the LLVM.jl package.1 It is implemented using a generator
function, declared with @generated on line 2, which builds
the expressions that should be executed at run time. Gener-
ator functions are invoked during type-inference, for every
combination of argument types the function is invoked with.
In this case, this function generates LLVM IR and returns an
llvmcall expression that injects the code into the compiler,
effectively returning the IR that will have to be executed
in the application. Note that this is much stronger than
using macros: on line 3, the pointer argument p is not only
known by name, but its type Ptr{T} as determined by type
inference in the Julia compiler is also known to the generator
function, with T being a type variable referring to the actual
runtime element type of the pointer. The generated code
hence depends on the inferred types, and can be customized
and optimized for it at each invocation of load in the Julia
IR. In the next section, we will discuss how this can be
exploited to generate memory accesses optimized for the
different types of memories in a GPU memory hierarchy.

Without the LLVM.jl interface, the load function body
would have been full of string manipulations, which would
have been a nightmare in terms of code readability. More-
over, it would have contained cases for every supported
pointer type, and the optimization for, e.g., different types of
memories, would be hard or impossible.

5 CUDA LANGUAGE IMPLEMENTATION

Eating our own dog food, we used the infrastructure from
Section 4 to develop a GPU implementation of Julia that
targets NVIDIA hardware via the CUDA toolkit. This im-
plementation is an instantiation of the device package in
Figure 1. It is distributed as a regular Julia package named

1. To avoid uninteresting clutter in our illustration of LLVM.jl,
we show a simplified load function instead of the full unsafe_load.

CUDAnative.jl, available at https://github.com/JuliaGPU/
CUDAnative.jl, and does not require any modifications to
the underlying Julia compiler. It supports a subset of the
Julia language, but that subset has proven extensive enough
to implement real-life GPU applications and build high-level
abstractions. s The device package actually consists of three
major components, as shown on the right of Figure 3: a
standard library of GPU-specific functionality, a compiler
to generate GPU machine code from Julia sources, and
a runtime system to invoke the compiler and manage it
together with the underlying GPU hardware. Together with
the main compiler, which serves as a JIT compiler for host
CPUs, this package serves as a JIT compiler for CUDA GPUs.

5.1 Standard Library

The CUDAnative.jl standard library focuses on providing
definitions for low-level GPU operations that are required for
writing effective GPU applications. For example, to access
registers containing current thread and block indexes, define
synchronization barriers, or allocate shared memory.

Whereas many languages would implement these defini-
tions using compiler intrinsics – built-in functions handled
specially by the compiler – the Julia language is expressive
enough to implement much of this functionality using Julia
code itself. Built-in functions might still be necessary to
implement very low-level interactions, but the amount of
these functions and their responsibilities are greatly reduced.
For example, where CPython implements the print function
entirely in C as part of the compiler, Julia only relies on a
write function to write bytes to standard output.

Even when the language isn’t expressive enough, intrin-
sics can be avoided by generating lower-level code directly
using the metaprogramming interfaces from Table 1. For
example, atomics are implemented with literal snippets
of LLVM IR and wrapped in user-friendly language con-
structs by means of macros. The GPU standard library in
CUDAnative.jl relies heavily on this type of programming,
with help from the LLVM API wrapper from Section 4.2 to
facilitate interactions with the LLVM IR.

Julia’s expressiveness and metaprogramming functional-
ity make it possible for most of the Julia standard library to be
written in Julia itself. This makes the standard library much
easier to extend or override, e.g., using type-based multiple
dispatch as demonstrated in Listing 2. CUDAnative.jl relies
on this extensibility to improve compatibility or performance
of existing language features, as the next section illustrates.

5.1.1 Pointers with Address Spaces
Pointer address spaces identify, in an abstract way, where
pointed-to objects reside. They serve optimization purposes
such as identifying pointers to garbage-collected memory,
or have a physical meaning depending on the hardware
being targeted. In the case of Parallel Thread Execution (PTX)
code emitted for NVIDIA GPUs, address spaces differentiate
between state spaces: storage areas with particular char-
acteristics in terms of size, access speed, sharing between
threads, etc. The PTX compiler uses this information to
emit specialized memory operations, such as ld.global or
st.shared. If no address space is specified, untagged oper-
ations are emitted (ld or st) which make the GPU determine

https://github.com/JuliaGPU/CUDAnative.jl
https://github.com/JuliaGPU/CUDAnative.jl
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Listing 4
Optimized GPU pointers in CUDAnative.jl, building on Listing 3.

1 # custom pointer with address-space information
2 struct DevPtr{T,AS}
3 ptr::Ptr{T}
4 end
5 # loading an indexed value from a pointer
6 @generated function unsafe_load(p::DevPtr{T,AS},

i::Int=1)
where {T,AS}

7 eltyp = LLVM.convert(LLVM.Type, T)
8 # create a LLVM module and function
9 ...

10 # generate IR
11 LLVM.Builder() do builder
12 ...
13 # load from ptr with AS
14 ptr = LLVM.gep!(builder, LLVM.parameters(f)[1],

[parameters(f)[2]])
15 devptr_typ = LLVM.PointerType(eltyp, AS)
16 devptr = LLVM.addrspacecast!(builder,ptr,devptr_typ)
17 val = LLVM.load!(builder, devptr)
18 ...
19 end
20 # inject the IR and call it
21 ...
22 end

the state space at run time by checking against a memory
window. While implementing initial CUDA support for Julia,
we observed that these untagged operations significantly
lower the performance of memory-intensive benchmarks.

LLVM’s existing optimizations to infer address spaces
across memory operations [28] fall short when memory
allocation sites are invisible. Pointers passed to a kernel as
arguments, which happens often when entry-point kernels
take (pointers to) arrays as arguments, have their allocation
in host code, which is invisible to the GPU compiler.

In Julia, pointers are represented by Ptr objects: reg-
ular objects with no special meaning, and operations on
these pointers are implemented using normal methods. As
such, we can easily define our own pointer type. Listing 4
shows how CUDAnative.jl provides a custom DevPtr type
representing a pointer with address-space information. By
implementing the excepted method interface, which includes
the unsafe_load method defined on line 6, DevPtr objects
can be used in place of Ptr objects. This then yields
specialized memory operations that perform better.

The implementation of unsafe_load in Listing 4 uses
the metaprogramming techniques explained in Section 4.2. A
generator function builds specialized LLVM IR and injects it
back in the compiler, with the relevant address-space-specific
load on lines 16 and 17. This allows to implement low-level
functionality that cannot be expressed using pure Julia code,
without the need for additional compiler intrinsics.

Note how the DevPtr type from line 2 only contains a
single ptr field and as such has the exact same memory lay-
out as the existing Ptr type. The address space information
is only known by the type system, and does not affect the
memory representation of run-time pointers.

5.1.2 NVIDIA Device Library
Another important source of low-level GPU operations in
CUDAnative.jl is libdevice, a bitcode library shipped as
part of the CUDA toolkit. This library contains common
functionality implemented for NVIDIA GPUs, including
math primitives, certain special functions, bit manipula-

tion operations, etc. The CUDAnative.jl package provides
wrappers for these operations, compatible with counterpart
functionality in the Julia standard library. This often raises
the abstraction level, and improves usability. For example,
libdevice provides 4 different functions to compute the
absolute value: __nv_abs and __nv_llabs for respectively
32-bit and 64-bit integers, and similarly __nv_fabs and
__nv_fabsf for 32-bit and 64-bit floating-point values.
The Julia wrapper provides the same functionality, but as
different methods of a single generic function abs.

5.2 GPU Compiler

Together with the main Julia compiler, the CUDAnative.jl
infrastructure of Figure 3 instantiates the design from Fig-
ure 1, with the unaltered Julia IR and the unaltered LLVM IR
as the high and low-level IRs. Together with host Julia code,
device code is processed by the main compiler’s parser,
which lowers syntactical constructs and expands macros.
Both host and device code can include application code as
well as library code, and there is no inherent difference
between either type of code. There is no need for an
explicit annotation or encapsulation of device code, greatly
improving opportunities for code reuse. For example, barring
use of incompatible language features, much of the Julia
standard library can be used to implement device code.

The main interface for calling functions on a
GPU resembles a call to an ordinary Julia function:
@cuda (config...) function(args...), where the
config tuple indicates the launch configuration similar
to the triple angle bracket syntax in CUDA C. Because
of the way @cuda is implemented in the GPU standard
library using metaprogramming, the Julia compiler invokes
the GPU compiler in CUDAnative.jl whenever such a call
occurs in the code. That GPU compiler then takes over the
compilation of the called code. Using the existing interfaces
from Table 1, the new interfaces from Table 2, and the
LLVM.jl wrapper, the GPU compiler configures and invokes
the existing main compiler components for lowering the
(expanded) AST into GPU-oriented Julia IR, for performing
high-level optimizations on it, for generating GPU-oriented
LLVM IR, and for performering low-level optimizations
on that IR. Through the new inferfaces, the execution of
these compilation steps is repurposed with new GPU-specific
functionality that is implemented in GPU extensions in the
CUDAnative.jl. For the front end, most of the GPU-specific
functionality actually resides in the GPU standard library as
discussed in the previous section; the front-end extensions in
the GPU compiler are therefore minimal.

The resulting low-level, GPU-optimized LLVM IR is then
compiled to PTX by means of the LLVM NVPTX back end,
which is again accessed with the LLVM.jl wrapper package
from Section 4.2. This use of an external GPU back-end
compiler rather than one embedded in the device package
diverges from the design in Figure 1, as was already hinted
in Section 2. For its CPU back end, the Julia compiler already
relies on CPU LLVM back ends. So any Julia distribution
already includes LLVM. The fact that LLVM can also generate
excellent PTX code for CUDA devices when it is fed well-
formed and optimized LLVM IR code [28], voids the need for
including a third-party GPU compiler or a reimplementation
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thereof in the device package. Without putting any burden on
system administrators or users to install additional packages
or tools, we can simply reuse the LLVM PTX back end.

Before generating machine code, LLVM optimization
passes extensively optimize the LLVM IR. As part of that pro-
cess, Julia and CUDAnative.jl lower specific constructs and
optimize certain patterns. One optimization that drastically
improves performance, is rewriting the calling convention of
entry-point functions. Semantically, Julia passes objects of an
immutable type by copying, while mutable types are passed
by reference. The actual calling convention as generated by
the Julia compiler also passes aggregate immutable types by
reference, while maintaining the aforementioned semantics.
In the case of GPU code, this means that not the aggregate
argument itself, but only a pointer to the argument will
be stored in the designated state space (see Section 5.1.1).
This space has special semantics that map well onto typical
function argument behavior —read-only access instead of
read-write, per-kernel sharing instead of per-thread— and
typically offers better performance than loading arguments
from other memories. However, by passing arguments by
reference only the pointer will be loaded from parameter
space, and not the underlying objects. In other words, the
Julia array objects that themselves contain pointers to the
actual buffers to be manipulated by the GPU, are not moved
into designated GPU memories to optimize performance.

To solve this problem, we let the GPU compiler enforce an
adapted calling convention for entry-point kernel functions:
Immutable aggregates are also passed by value, instead of
by reference. This does not change semantics, as objects of
mutable types are still passed by reference. We implement
this change at the LLVM IR level by generating a wrapper
function that takes values as arguments, stores said values
in a stack slot, and passes references to those slots to
the original entry-point function. After forced inlining and
optimization, all redundant operations disappear. Finally, the
CUDAnative.jl runtime passes all immutable arguments by
value instead of by reference. This yields a speedup of up to
20% on memory-intensive Rodinia benchmarks.

This optimization provides an excellent example of the
code reuse enabled by our tool flow design and the added
extension interfaces. Due to that reuse, the code to build the
wrapper function and perform the necessary optimizations
to inline the code requires less than 100 lines of Julia code.

5.3 CUDA API Wrapper

The CUDAnative.jl package provides functionality related
to compiling code for CUDA GPUs, but another important
aspect of GPU applications is to interface directly with the
device, e.g., to allocate memory, upload compiled code, and
manage execution of kernels. CUDA provides two mostly
interchangeable interfaces for this: the low-level driver
API, and the runtime API with higher-level semantics and
automatic management of certain resources and processes.

The example CUDA C vector addition in Listing 5 uses
the runtime API to initialize and upload memory, launch
the kernel, and fetch results. The syntax for calling kernels
(line 21) hides much of the underlying complexity: setting-up
a parameter buffer, initializing the execution configuration,
acquiring a reference to the compiled kernel code, etc.

Listing 5
Vector addition in CUDA C, using the CUDA run-time API.

1 #define cudaCall(err) // check return code for error
2 #define frand() (float)rand() / (float)(RAND_MAX)
3 __global__ void vadd(const float *a, const float *b,

float *c) {
4 int i = blockIdx.x * blockDim.x + threadIdx.x;
5 c[i] = a[i] + b[i];
6 }
7 const int len = 100;
8
9 int main() {

10 float *a = new float[len], *b = new float[len];
11 for (int i = 0; i < len; i++) {
12 a[i] = frand(); b[i] = frand();
13 }
14 float *d_a, *d_b, *d_c;
15 cudaCall(cudaMalloc(&d_a, len * sizeof(float)));
16 cudaCall(cudaMemcpy(d_a, a, len * sizeof(float),

cudaMemcpyHostToDevice));
17 cudaCall(cudaMalloc(&d_b, len * sizeof(float)));
18 cudaCall(cudaMemcpy(d_b, b, len * sizeof(float),

cudaMemcpyHostToDevice));
19 cudaCall(cudaMalloc(&d_c, len * sizeof(float)));
20
21 vadd<<<1, len>>>(d_a, d_b, d_c);
22
23 float *c = new float[len];
24 cudaCall(cudaMemcpy(c, d_c, len * sizeof(float),

cudaMemcpyDeviceToHost));
25 cudaCall(cudaFree(d_c));
26 cudaCall(cudaFree(d_b));
27 cudaCall(cudaFree(d_a));
28 return 0;
29 }

Listing 6
Vector addition in Julia using CUDAdrv.jl and CUDAnative.jl.

1 function vadd(a, b, c)
2 i = (blockIdx().x-1) * blockDim().x + threadIdx().x
3 c[i] = a[i] + b[i]
4 return
5 end
6
7 len = 100
8 a = rand(Float32, len)
9 b = rand(Float32, len)

10
11 d_a = CUDAdrv.Array(a)
12 d_b = CUDAdrv.Array(b)
13 d_c = similar(d_a)
14
15 @cuda (1,len) vadd(d_a, d_b, d_c)
16 c = Base.Array(d_c)

To improve the usability of the CUDA API from Ju-
lia, we have created CUDAdrv.jl, which is available at
https://github.com/JuliaGPU/CUDAdrv.jl. This is a pack-
age wrapping the CUDA driver API. It offers the same level
of granularity as the driver API, but wrapped in high-level
Julia constructs for improved productivity. Similar to the
runtime API, it automates management of resources and
processes, but always allows manual control for low-level
programming tasks. This makes the wrapper suitable for
both application developers and library programmers.

Listing 6 shows a Julia implementation of the vector
addition from Listing 5, using CUDAdrv.jl for all device
interactions. It shows how the API wrapper vastly simplifies
common operations: Memory allocation and initialization
is encoded through different constructors of the custom
Array type, API error codes are automatically checked
and converted to descriptive exceptions, GPU memory is
automatically freed by the Julia garbage collector, etc.

https://github.com/JuliaGPU/CUDAdrv.jl
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Listing 7
Lowered code generated from the @cuda invocation in Listing 6.

1 # results of compile-time computations
2 ## at parse time
3 grid = (1,1,1)
4 block = (len,1,1)
5 shmem = 0
6 stream = CuDefaultStream()
7 func = vadd
8 args = (d_a, d_b, d_c)
9 ## during type inference

10 types = (CuDeviceArray{Float32,2,AS.Global},
CuDeviceArray{Float32,2,AS.Global}
CuDeviceArray{Float32,2,AS.Global})

11 partial_key = hash(func, types)
12 # determine the run-time environment
13 age = method_age(func, $types)
14 ctx = CuCurrentContext()
15 key = hash(partial_key, age, ctx)
16 # cached compilation
17 kernel = get!(kernel_cache, key) do
18 dev = device(ctx)
19 cufunction(dev, func, types)
20 end
21
22 cudacall(kernel, types, args,

grid, block, shmem, stream)

5.4 Run-time System
While no particular attention was paid so far to the fact
that the Julia compiler is a JIT compiler, the CUDAnative.jl
run-time system makes it possible to program GPUs using
dynamic programming principles, and to invoke those
programs almost at the speed of statically-compiled kernels.

Whereas calling a kernel from CUDA C is a fully static
phenomenon, our @cuda Julia macro enables a much more
dynamic approach. The GPU compiler is invoked, and hence
kernels are compiled, upon their first use, i.e., right before
an @cuda function call is first evaluated. At that point,
the invoked kernel and its functions are specialized and
optimized for both the active device and the run-time types
of any arguments. For additional, later occurrences of kernel
invocations on arguments with different run-time types,
newly specialized and optimized code is generated.

The specialized host code that is generated from the
@cuda invocation in Listing 6 is shown in Listing 7. Lines
3 to 11 contain the result of compile-time computations:
Arguments to the @cuda macro are decoded during macro
expansion, and a generator function (not shown) precom-
putes values and determines the kernel function signature.
This signature can differ from the types of the objects passed
to @cuda, e.g., the invocation on line 15 in Listing 6 passes
CUDAdrv.Arrays, but the kernel is compiled for GPU-
compatible CuDeviceArray objects. The run-time conver-
sion of CUDAdrv.Array objects to their CuDeviceArray
counterpart happens as part cudacall on line 22.

In addition to recompiling specialized and optimized
kernels for changing run-time types, the CUDAnative.jl
runtime keeps track of the so-called method age, which
indicates the time of definition of the function or any of its
dependents. The concept of method age is already supported
in the main Julia compiler in support of dynamic method
redefinitions: Whenever a source code fragment is edited,
the containing method’s age changes, and the new version
will be used for future method calls.

CUDAnative.jl also supports this concept of age. At
run time, the method age and the active CUDA context

are queried. These determine whether a kernel needs to
be recompiled: A newer age indicates a redefinition of the
method or any callee, while the context determines the active
device and owns the resulting kernel object. These properties
are hashed with the type signature, and used to query the
compilation cache on line 17 of Listing 7. Upon a cache miss,
the kernel is compiled and added to the cache. Finally, control
is handed over to CUDAdrv.jl on line 22 where cudacall
converts the arguments and launches the kernel.

The above calling sequence has been carefully optimized:
Run-time operations are avoided as much as possible, caches
are used to prevent redundant computations, code is special-
ized and aggressively inlined to avoid unnecessary dynamic
behavior (e.g., iterating or introspecting arguments or their
types), etc. The fast path, i.e. when no device code needs to
be compiled, contains only the bare minimum interactions
with the Julia compiler and CUDA API. As a result, the time
it takes to launch a kernel is almost equivalent to a fully static
kernel call in CUDA C, despite all dynamic programming
capabilities. When code does need to be compiled, the time it
takes to do so is acceptably low for interactive programming
purposes, as will be evaluated in Section 6.2.2.

The support for method redefinitions with CUDAnative.jl
makes it possible to program a GPU interactively, e.g., using
Project Jupyter, a popular programming environment among
scientists and teachers for programming interactively in
Julia, Python or R [29]. The environment centers around so-
called notebooks, documents that can contain both computer
code, the results from evaluating that code, and other
rich-text elements. The contents of these notebooks can be
changed or evaluated in any order and at any time, requiring
a great deal of flexibility from the underlying execution
environment, e.g., to recompile code whenever it has been
edited. CUDAnative.jl makes it possible to use this highly
dynamic style of programming in combination with GPUs,
for example to develop GPU kernels by iteratively redefining
device methods and evaluating the output or performance.

This capability provides an excellent demonstration of
the advantages of (i) our vision of adding interfaces for main
compiler repurposing, and (ii) our implementation of CUDA
support by means of a pure Julia device package. This enables
tight integration of GPU support into the existing compiler,
which in turn makes the integration of GPU support in a
project like Jupyter seamless, both for the developers of the
GPU support, and from the perspective of Jupyter users, who
get the same interactivity for host and GPU programming.
All we needed was a careful design of the compilation cache,
which was needed anyway, and 5 lines of code to include the
method age in the hashes used to access the cache.

6 EVALUATION

To demonstrate the full capabilities of our framework, we
present a two-fold evaluation: First, we experimentally evalu-
ate the performance that can be obtained when programming
GPUs in Julia, using mostly standard benchmarks.

Secondly, we illustrate the high-level programming capa-
bilities of the infrastructure, for which we have implemented
kernels using high-level Julia constructs. We demonstrate
how these constructs can be applied to GPU programming
without sacrificing performance.
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6.1 Experimental Set-up
CUDA C code is compiled with the NVIDIA CUDA compiler
version 9.1.85, NVIDIA driver 390.59, and Linux 4.9.0 from
Debian Stretch (64-bit). Julia measurements are done with
the first release candidate of Julia 0.7 and publicly available
Julia packages CUDAnative.jl 0.8.4, CUDAdrv.jl 0.8.4 and
LLVM.jl 0.9.12 using LLVM 6.0. Our test system contains an
NVIDIA GeForce GTX 1080 GPU, two quad-core Intel Xeon
E5-2637 v2s CPUs, and 64GB of DDR3 ECC memory.

6.2 Performance
To asses the performance of GPU kernels written in Julia,
we have ported CUDA C benchmarks from the Rodinia
suite that is commonly used to evaluate CUDA kernel
compilers to CUDAnative.jl [30]. Our ports are available
at https://github.com/JuliaParallel/rodinia/. To enable an
accurate performance comparison, we have translated the
kernel code as literally as possible, without performing
optimizations or changes to make them more Julia idiomatic.
Still, there are plenty of semantic differences between the
C and Julia language that required a significant effort:
Pointers to arrays are represented by objects (ruling out
pointer arithmetic), indexing is column major and uses 1-
based indices, types of literals as well as their promotion
behavior differs, etc. Having limited resources, we selected
the smallest benchmarks of the suite (in terms of line count),
taking also into account the use of GPU features that are not
yet supported by CUDAnative.jl, such as constant memory.
Apart from the latter, our selection of benchmark is in no way
biased by the features of their kernels. The non-kernel code
was mostly translated literally from C to Julia, sometimes at
the expense of performance. For example, many benchmarks
initialize matrices with double for loops, processing elements
in row-major order. As Julia uses column-major storage, we
changed the iteration order of these loops, unless that would
result in a major redesign of the benchmark.

6.2.1 Methodology
Table 3 presents some relevant features of the benchmarks,
as well as the experimental results. All execution times are
reported in milliseconds, and show the mean value with error
margins determined by propagating the standard deviation
across operations [31]. The results are obtained by launching
each benchmark multiple times on a fully idle machine,
where each process first runs the application code 5 times
to warm up the system. We measure execution times with
the nvprof tool from the CUDA toolkit, and use the NVTX
library to extend the profile with CPU timings. Benchmark
inputs are the defaults parameters from Rodinia 3.1.

Some interesting observations can be made up-front. First,
the often near-zero fractions in columns (b/a) and (d/c)
indicate that the Rodinia benchmarks spend only a fraction
of their time in GPU kernels. As our contributions are almost
exclusively in the generation of those kernels, it follows that
total execution time of Rodinia benchmarks is not a good
metric to evaluate our contributions. Secondly, the small error
rates on kernel execution times reveal that, despite their short
run times, they are very well suited for a reliable comparison
of kernel performance, i.e., for assessing our contributions.
Finally, those short run times result from running kernels on

unrealistically small data sets, and are not representative of
kernel run times in real-world GPU deployments. The ratio
between the kernel run times and other contributions to the
total execution times is therefore mostly meaningless.

6.2.2 JIT Compilation Times
The latter remark is particularly the case for the sub-second
execution times (column e) spent on Julia JIT compilation.
The large fractions of the total runtime spent on JIT com-
pilation is more a side-effect of the benchmarks’ short-
running kernels than of the excessive compilation times.
As real-world GPU applications typically execute the same
kernels on the same types of data over and over again, for
which kernels only need to be compiled once, their sub-
second JIT compilation times will be amortized (almost)
completely in real-world applications. Even within our range
of benchmarks running anywhere in between 1ms and
6827 ms, this amortization can already be observed in the
decreasing numbers in column (e/c). We thus conclude that
the Julia JIT compilation is fast enough not to impose a
performance burden for real-world GPU applications.

It is noteworthy that almost no JIT compilation time
is spent outside the kernels: almost all non-kernel code,
i.e, almost all host code, is either precompiled, such as the
code in all used Julia packages2, or interpreted according to
heuristics in the Julia compiler.

In interactive programming settings such as Jupyter,
kernels are recompiled when their code has been edited, or
when other code edits result in kernels being invoked on new
data types. Moreover, while code is still being developed,
it will often be invoked on smaller data sets for testing. In
such a setting, individual kernel JIT compilation times do
matter, as they are not amortized. For the Rodinia kernels
from Table 3, individual kernel compilation times range from
12 to 283 ms, with a median compilation time of 70 ms; this
is sufficiently low for realistic interactive development.

The JIT compilation times are strongly correlated with
the sizes of the kernels in number of PTX instructions, more
so than with the number of Julia LOC, with correlation
coefficients of respectively 0.91 and 0.69. One reason is loop
unrolling: when the compiler unrolls loops, even small ones
in LOC can become big in terms of IR that the compiler
needs to handle. The PTX sizes for Julia kernels are typically
somewhat larger than, and in some cases notably smaller
than, the CUDA sizes, without this resulting in comparably
large performance differences. The reason is that PTX code,
be it statically-compiled CUDA C or JIT-compiled Julia,
is further optimized by the PTX assembler as part of the
CUDA driver before execution. That final optimization step
performs several peephole optimizations, removing most
remaining differences between PTX versions of the kernels.

6.2.3 Kernel Performance
On average, we measure a speedup of 4% compared to
CUDA C kernels compiled with nvcc, the official com-
piler by NVIDIA for CUDA C code. This shows how
CUDAnative.jl can be realistically used for GPU kernel
programming. Furthermore, the result is close to the relative

2. With the official package from https://github.com/JuliaLang/
PackageCompiler.jl

https://github.com/JuliaParallel/rodinia/
https://github.com/JuliaLang/PackageCompiler.jl
https://github.com/JuliaLang/PackageCompiler.jl
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GPU kernels total - JIT

lud 3 263 1.1 ±6.2% 126 1588 0.42 ±0.7% 39% 202 478.9 ±1.0% 110 2586 0.48 ±0.4% 0.10% 477.5 ±1.0% 100% 1.4 ±5.4% 0.29% 1.14 1.26

particlefilter 4 611 60.1 ±0.5% 152 2063 38.60 ±0.2% 64% 409 522.5 ±1.8% 123 1304 34.30 ±1.3% 6.56% 480.5 ±1.8% 92% 42.0 ±2.3% 8.04% 0.89 0.70

backprop 2 631 40.6 ±4.7% 56 230 0.19 ±0.3% 0% 317 105.8 ±3.7% 54 257 0.17 ±0.8% 0.16% 62.3 ±1.8% 59% 43.5 ±6.4% 41.14% 0.88 1.07

nw 2 340 50.9 ±15.2% 118 1341 1.89 ±0.2% 4% 255 214.7 ±3.0% 110 633 1.94 ±0.2% 0.90% 169.1 ±1.2% 79% 45.6 ±9.8% 21.26% 1.03 0.90

leukocyte 3 1665 181.8 ±1.1% 384 1474 86.09 ±0.1% 47% 856 725.2 ±2.9% 275 1344 67.92 ±0.1% 9.37% 434.0 ±1.7% 60% 291.2 ±4.6% 40.16% 0.79 1.60

pathfinder 1 166 196.9 ±2.3% 49 163 0.25 ±0.5% 0% 140 237.2 ±2.8% 52 152 0.25 ±0.8% 0.10% 38.7 ±2.1% 16% 198.6 ±3.0% 83.70% 1.01 1.01

hotspot 1 265 137.4 ±1.3% 91 237 0.11 ±0.5% 0% 228 184.7 ±1.7% 87 247 0.11 ±0.3% 0.06% 65.4 ±1.7% 35% 119.3 ±1.7% 64.61% 1.03 0.87

nn 1 270 253.6 ±1.6% 11 53 0.03 ±0.7% 0% 148 505.7 ±3.7% 11 61 0.03 ±1.6% 0.01% 100.1 ±1.8% 20% 405.6 ±4.2% 80.21% 1.00 1.60

bfs 2 184 1278.1 ±0.9% 33 143 6.49 ±0.2% 1% 135 1688.4 ±2.2% 28 161 6.03 ±0.1% 0.36% 40.4 ±1.5% 2% 1648.0 ±2.3% 97.61% 0.93 1.29

streamcluster 1 952 6457.2 ±5.1% 28 202 510.61 ±0.5% 8% 647 6827.6 ±3.4% 30 162 501.95 ±0.0% 7.35% 31.2 ±1.8% 0% 6796.4 ±3.4% 99.54% 0.98 1.05

average ±3.9% ±0.4% 16% ±2.6% ±0.6% ±1.6% ±4.3% 0.96 1.10

LOC LOC PTX

JULIA/CUDA CCUDA C

total - JITGPU kernels
kernels

(e) (f = c-e)(a)
(f/c) (d/b) (f/a)(e/c)(d/c)LOC PTX (b/a)

benchmark

JULIA

run time run time run time run time run time run time

total totalGPU kernel JIT compilation

(b) (c) (d)
LOC

Table 3
Rodinia benchmark features and performance of CUDAnative.jl vs CUDA C.

speedup of 1% as achieved by gpucc on a wider range of
Rodinia benchmarks [28]. gpucc is an open-source compiler
for CUDA C code, built on the same LLVM back end
as CUDAnative.jl. We can conclude from this result that
using Julia for GPU kernel programming does not incur
a substantial slowdown. The difference in performance
compared to gpucc can be attributed to only testing a subset
of Rodinia, but also to improved vectorization due to variable
alignment characteristics that differ from C.

The slowdown as observed with the lud benchmark can
be attributed to Julia defaulting to 64-bit integers on 64-bit
hardware, whereas C language compilers only use 32 bits
to represent int values. The large speedups as seen with
particlefiler, backprop and leukocyte are a result
of load-store vectorization at the LLVM level whereas nvcc
relies on ptxas to perform this optimization on PTX code.
These optimizations are peephole transformations that work
on low-level machine code, and as such are less powerful
than optimizations by LLVM on its higher-level compiler IR.

6.2.4 Application Performance
For the sake of completeness, the last column reports the wall
clock execution times excluding JIT compilation time. On the
one hand, these times are not very relevant, as our contribu-
tions are not related directly to host code. On the other hand,
the numbers show that the host computation times of Julia
code compare pretty well to those of CUDA C code, despite
the fact that we invested a limited effort to optimize the
literally translated Julia code. Where benchmarks perform
considerably worse, this is due to the ports being literal
translations of CUDA C. For example, leukocyte depends
on global mutable data that necessitates heap allocations
given Julia semantics, and processes data in row-major order.
The nn benchmark generates large amounts of heap-allocated
string objects during parsing. This could be solved by using
the high-performance TextParse.jl package, but such an
implementation would differ significantly from the C version
of the benchmark. On average, our measurements show that
for the host part of Julia GPU applications, performance
comparable to that of programs written in C can be expected.
This result is consistent with existing literature [24], [25].

For GPU applications, which also performs GPU-related
tasks in the form of API interactions such as memory copies,
device configuration, etc., this result is novel. It stems from
the design of CUDAdrv.jl: Although the Julia wrappers to
the CUDA APIs are high-level, they work on the same
abstraction level as CUDA. This improves usability, but

Table 4
GPU and CPU execution times for an empty kernel.

GPU time CPU time
CUDA C (5.88 ± 0.23) µs (12.77 ± 0.23) µs

CUDAdrv.jl (7.28 ± 0.76) µs (13.85 ± 0.78) µs
CUDAnative.jl (7.19 ± 0.46) µs (13.38 ± 0.52) µs

maintains flexibility while avoiding performance traps. The
actual library calls use Julia’s high-performance C FFI, which
generates code to call C functions without run time overhead.

The comparable host-GPU interaction performance be-
tween CUDA C and Julia applications also results from their
comparable kernel launching times. With statically compiled
C, the run-time cost of launching a kernel is dominated by the
CUDA libraries. In the case of CUDAnative.jl, Section 5.4 de-
scribed how launching a kernel entails many more tasks with
the goal of a highly dynamic programming environment:
converting arguments, (re)compiling code, instantiating a
CUDA module and function object, etc. These code paths
have been carefully optimized to avoid run-time overhead
as much as possible. To determine this overhead, we launch
an empty kernel and measure the elapsed execution time,
both on the GPU using CUDA events and on the CPU using
regular wall-clock timers. Table 4 shows these measurements
for statically-compiled C code using the CUDA driver API,
Julia code performing the exact same static operations with
CUDAdrv.jl, and dynamic Julia code using CUDAnative.jl to
compile and execute the empty kernel. Neither of the GPU
and CPU time measurements show significant overhead
when only using CUDAdrv.jl. With CUDAnative.jl, which
internally uses CUDAdrv.jl, minimal overhead is introduced
by the check for the current method age. We consider this
negligible: In the case of realistic kernels it is dwarfed by the
time to copy the kernel parameter buffer to the device.

6.3 Lines of Code
As discussed above, we maintained the semantics of the
original CUDA C benchmarks in their Julia translation. Even
then, we were able to express many operations much more
succinctly. For example, interactions with the file system
(reading paths and processing their contents), memory man-
agement, generating output, etc. can be written in fewer lines
of code, relying on higher-level language features like string
interpolation or scoped resource cleanup. As a technical
computing language, Julia also provides high-level tools to
process data, such as an interface to BLAS, and syntax to
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Listing 8
Using CuArrays.jl to perform a fused broadcast on the GPU.

1 X = CuArray(rand(42))
2 f(x) = 3x^2 + 5x + 2
3 Y = f.(2 .* X.^2 .+ 6 .* X.^3 .- sqrt.(X))

Listing 9
Equivalent CUDA C kernel code for the fused broadcast in Listing 8.

Host code has been omitted for brevity, and would be similar to Listing 5.

1 __device__ double f(double x) {
2 return 3*pow(x, 2) + 5*x + 2;
3 }
4 __global__ void kernel(double *X, double *Y, int N) {
5 int i = blockIdx.x * blockDim.x + threadIdx.x;
6 if (i < N) Y[i] = f(2*X[i]+6*pow(X[i],3)-sqrt(X[i]));
7 }

express operations on multidimensional data compactly [32].
Finally, the CUDA APIs are similarly accessible through high-
level wrappers, which are semantically equivalent to the C
APIs but allow for much more succinct invocations.

As a result, the LOC counts in Table 3 show an average
reduction of 37% in LOC for the host part of the benchmarks.
The device LOC only decreases 8%, as GPU code does
not interface with complicated APIs, and as it does not
use multidimensional expressions but typically processes
scalar items as per the GPU’s execution model. Even so, this
style of Julia GPU programming significantly improves the
programming experience, with, e.g., dynamic types, checked
arithmetic, an improved programming environment, etc. On
average, the total application LOC is reduced by 31%.

With this approach of providing high-level wrappers
for APIs, developer effort is significantly lowered, but
familiarity with GPUs and their programming model is still
a requirement. The next section will discuss a higher-level
approach, with abstractions that obviate GPU experience.

6.4 High-level GPU Programming
To demonstrate the high-level programming potential of
this infrastructure, we use CuArrays.jl [33]. This package
defines an array type for data that lives on the GPU, but
exposes host-level operations that are implemented using
the infrastructure from this paper to execute on the device.
For example, constructing a CuArray object will allocate
data on the GPU using CUDAdrv.jl, adding two such host
objects together will queue an addition kernel on the GPU
using CUDAnative.jl, etc. Certain other functionality is
implemented using optimized host libraries like cuBLAS
or cuDNN, but that is not relevant to the work in this paper.

The example from Listing 8 shows how to load the
CuArrays.jl package, generate input data and upload it
to the GPU on line 1, defining an auxiliary function for
the sake of this example on line 2, and finally a series
of element-wise operations including a call to the newly
defined function on line 3. These operations, prefixed by a
dot to indicate the element-wise application, are syntactically
fused together into a single broadcast operation [32]:
Y = broadcast(x -> f(2x^2+6x^3-sqrt(x)), X)
where the first argument is a lambda containing the fused
operations from line 3. The implementation of broadcast in
CuArrays.jl then compiles this function using CUDAnative.jl,
inlining calls to both the lambda and underlying function f.

Listing 10
Reducing an array of custom objects on the GPU.

1 # illustrational type that implements addition
2 struct Point{T}
3 x::T
4 y::T
5 end
6 +(a::Point{T}, b::Point{T}) where {T} =
7 Point(a.x+b.x, a.y+b.y)
8 data = [Point(rand(Int64)%100, rand(Int64)%100)

for _ in 1:42]
9 X = CuArray(data)

10 Y = reduce(+, #=neutral element=# Point(0,0), X)

Conceptually, broadcasting a function over GPU arrays
like CuArray is straightforward: Each thread processes one
element, the grid is constructed relatively naively, there
are no cross-thread dependencies, etc. However, the actual
implementation relies on several advanced properties of the
Julia language and compiler. Julia specializes functions on the
types of its arguments, including the shape of each container.
This makes it possible to write generic code, nonetheless
compiled to statically typed assembly without type checks.
Furthermore, every function in Julia has its own type. This
permits use of higher-order arguments, even user-defined
ones as in Listing 8, that still result in specialized code
without, e.g., indirect function calls or calls to the runtime. In
fact, the PTX code generated from Listing 8 is identical to that
generated from the equivalent CUDA C in Listing 9, with the
exception of slightly different inlining decisions made by the
various compilers. The amount of source code, however, is
dramatically reduced: Kernels can be expressed much more
naturally, and API interactions (not shown in Listing 9 for
the sake of brevity) disappear for most use cases.

Besides relatively simple operations such as broadcast,
CuArrays.jl implements other data processing algorithms
optimized for GPUs. This includes a parallel reduce imple-
mentation based on shuffle instructions [34]. These allow
to exchange data between threads within the same thread
block without using shared memory or need to synchronize
execution. The implementation of shuffle in CUDAnative.jl
exposes a fully generic interface that specializes on the
argument types, whereas even the official CUDA C intrinsics
are limited to certain primitive types. As a result, reducing
a CuArray offers the same flexibility as described for
broadcast. Listing 10 demonstrates reducing an array of
custom objects using the + operator (more complex operators
are supported but would make the example more confusing).
Again, the invocation on line 10 compiles to a single kernel
specialized on each of the arguments to reduce. This
specialization includes generating sequences of 32-bit shuffle
instructions to move the 128-bit Point{Int64} objects
between threads, courtesy of a generated function producing
LLVM IR with LLVM.jl as explained in Section 4. The final ab-
straction completely hides this complexity and demonstrates
how metaprogramming can be used to override function
behavior selectively and use LLVM.jl to tap into the full
potential of the underlying compiler.

The abstractions from this section are idiomatic Julia
code, made possible by the CUDAnative.jl JIT compiler.
CuArrays.jl demonstrates the power of such abstractions,
by combining the convenience of a host library containing
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predefined abstractions, with the flexibility and performance
of manual device programming. This greatly improves pro-
grammer productivity, while offering the necessary expres-
siveness to target, e.g., GPUs or other parallel accelerators.
More importantly, these abstractions also obviate knowledge
about the GPU or its programming model: Algorithms can
be expressed as generic operations on multidimensional data,
instead of GPU-specific kernels that operate on scalar values.

Finally, generic programming enables composability with
existing, GPU agnostic applications and libraries. For exam-
ple, the Flux.jl package provides a flexible machine learning
platform capable of implementing a variety of standard
machine learning models [35]. Its machine learning core
is implemented with operations on generic array types. By
initializing the model with a GPU array like CuArray, it will
automatically be evaluated on the GPU, without needing to
adapt any Flux.jl code to encode GPU support. Moreover,
the models are not restricted to the array operations as
implemented in the Julia standard libraries, in CuArray.jl,
or in Flux.jl. With multiple dispatch, it is always possible
to implement custom replacement operations. This might
be useful, e.g., when GPUs are released in the future with
new hardware features. These replacement operations can be
implemented using broadcast as discussed above, or even
as raw kernels. In both cases, they will seamlessly integrate
in the existing code base. This approach therefore combines
the ease-of-use of high-level array-based interfaces, with the
flexibility of low-level kernel programming.

7 RELATED WORK

In recent times, many developments have added support
for GPUs and similar accelerators to general purpose, high-
level languages without depending on a lower-level, device
specific language such as CUDA or OpenCL. One popular
approach is to host a DSL in the general-purpose language,
with properties that allow it to compile more easily for, e.g.,
GPUs. For example, Accelerate defines an embedded array
language in Haskell [36], while Copperhead works with
a functional, data-parallel subset of Python [21]. Parakeet
uses a similar Python subset, with less emphasis on the
functional aspect [37], whereas PyGPU specializes its DSL
for image processing algorithms [20]. Other research defines
entirely new languages, such as Lime [38], Chestnut [39]
or HIPAcc [40]. In each of these cases, the user needs to
gain explicit knowledge about this language, lowering his
productivity and impeding reuse of existing code.

We propose compiler infrastructure to write code for
accelerators directly in the high-level source language, tightly
integrated with the main compiler and language ecosystem.
Rootbeer targets similar programmability with Java, but
requires manual build-time actions to post-process and
compile kernel source code [41]. Jacc features automatic run-
time compilation and extraction of implicit parallelism, but
requires the programmer to construct manually an execution
task-graph using a relatively heavy-weight API [42].

By extending the main compiler, we greatly reduce the
effort required to support new targets. This type of exten-
sible programming has been extensively researched in the
past [43], and has seen a recent revival [7], but to our knowl-
edge has not focused on extensibility of compiler processes

for the purpose of targeting new hardware and environments
with minimal code duplication. The Rust language has
experimental support for NVIDIA GPUs that does reuse
low-level LLVM infrastructure, but lacks integration with
the higher levels of the compiler and focuses on statically
compiling device code with little run-time interactions or
optimizations [44]. NumbaPro, being a Python compiler,
does target a much higher-level language and interface, with
corresponding run-time interactions like JIT compilation
based on the kernel type signature [8]. However, it uses
a custom Python compiler which significantly complicates
the implementation and is not fully compatible with the
Python language specification.

8 CONCLUSION AND FUTURE WORK

Conclusion: We presented an approach for efficiently
adding support for new hardware or other environments to
an existing programming language. We proposed a set of in-
terfaces to repurpose the existing compiler, while maximizing
reuse of functionality. We implemented these interfaces in the
compiler for the high-level Julia programming language, and
used that infrastructure to add support for NVIDIA GPUs.
We then used the Rodinia benchmark suite to show how
Julia can be used to write GPU code that performs similar
to CUDA C. By integrating with the existing compiler, code
compatibility is improved and many existing Julia packages
can be used on the GPU without extra effort.

Our work on CUDAnative.jl makes it possible to apply
high-level principles to GPU programming, for example
dynamically typed kernels or interactive programming tools
like Jupyter. Furthermore, CUDAnative.jl and its GPU JIT
compiler make it possible to create highly flexible, high-level
abstractions. The CuArrays.jl package demonstrates this,
with a interface that combines the convenience of host-level
libraries with the flexibility of manual device programming.

Status: Our changes to the Julia compiler have been
accepted, and have been part of it since version 0.6. The
extension interfaces are already being used by other re-
searchers and developers to add support for more platforms
to the Julia compiler, from similar hardware like AMD GPUs,
to WebAssembly for targeting web browsers. These new
developments invariably make use of LLVM.jl, and often
mimic the design of CUDAnative.jl as a starting point.

Our packages are critical to large parts of the Julia GPU
infrastructure for NVIDIA GPUs. Furthermore, they work out
of the box with Jupyter, enabling interactive programming
and effective use of GPU hardware.

Future Work: We plan to improve support for GPU
hardware features, and create high-level abstractions that
maintain the ability to express low-level behavior. This
includes a unified approach to GPU memory types, id-
iomatic support for communication primitives, etc. We are
also working on compiler improvements to enable even
more powerful abstractions, for example contextual method
dispatch based on run-time device properties. This can both
enhance expressiveness of the abstractions, and improve
performance of the generated code.
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