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ABSTRACT

The software needs of scientists and engineers are growing and their programs are becoming more compute-
heavy and problem-specific. This has led to an influx of non-expert programmers, who need to use and program
high-performance computing platforms.

With the continued stagnation of single-threaded performance, using hardware accelerators such as GPUs or
FPGAs is necessary. Adapting software to these compute platforms is a difficult task, especially for non-expert
programmers, leading to applications being unable to take advantage of new hardware or requiring extensive
rewrites.

We propose a programming model that allows non-experts to benefit from high-performance computing,
while enabling expert programmers to take full advantage of the underlying hardware. In this model, programs
are generically typed, the location of the data is encoded in the type system, and multiple dispatch is used to
select functionality based on the type of the data. This enables rapid prototyping, retargeting and reuse of
existing software, while allowing for hardware specific optimization if required.

Our approach allows development to happen in one source language enabling domain experts and perfor-
mance engineers to jointly develop a program, without the overhead, friction, and challenges associated with
developing in multiple programming languages for the same project.

We demonstrate the viability and the core principles of this programming model in Julia using realistic
examples, showing the potential of this approach for rapid prototyping, and its applicability for real-life en-
gineering. We focus on usability for non-expert programmers and demonstrate that the potential of the un-

derlying hardware can be fully exploited.

1. Introduction

It is a truth universally acknowledged that efficient programming of
high-performance computing (HPC) systems, be it GPUs or clusters, is
difficult and best left to experts. It is therefore often the case that in
domains such as engineering and scientific computing, software de-
velopment happens in distinct phases or modes. First, there is rapid
prototyping, then there is performance engineering. Existing ap-
proaches to bridge the gap between these two worlds fail in several
ways. For example, some enforce overly rigid frameworks, e.g., by re-
stricting programmers to predetermined data types or functions. Others
combine multiple languages or dialects thereof for the different phases,
and struggle with what is known as the two-language problem [1]. The
failures of existing approaches eventually result in a loss of productivity
and innovation capacity, because the developed solutions all too often
are one-offs, not readily used by others or hard to integrate inside other
systems. As a result, engineers, scientists and other domain experts with
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large scale problems are still searching for a solution that lets them
innovate quickly, scale initial prototypes to real-world datasets, and
continuously improve, adapt and develop their code, without having to
sacrifice either expressiveness or performance.

Rapid prototyping, fluent collaboration, and speedy innovation re-
quire simplicity and expressiveness (at an abstract level), easy code
reuse, extensibility, and composability. This implies that code should be
agnostic to and ideally work with all relevant data-types. It should
hence be developed in terms of abstract or generic types.

Performance engineering requires to some extent similar features.
The reason is that on the one hand performance engineering involves
knowledge of and tuning for specific hardware at hand. This requires
the ability to specialize low-level aspects of computations and com-
munications to fit the hardware. However, while it is often believed
that changing the used hardware type requires changes in the source
language or calling libraries, we are convinced that this notion has
hindered the use of hardware accelerators.
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On the other hand performance also requires knowledge of the
domain and tuning for the context in which the solution is used. As for
the latter, naive system-level performance engineers waste their energy
on teraflops. Sophisticated scientists and engineers know when they can
take a larger time step or search step in their differential equation or
optimization than their software library considers “safe”. This is not
cheating or reckless. This is experienced performance engineering. The
kind one probably will not find in a textbook. Sparse linear algebra
takes applications far. Structured linear algebra can take applications
farther. New algorithms are imagined all the time, but does one have to
rewrite huge parts of code to even find out whether a new algorithm
will show promise?

Any proposed approach must therefore answer the following ques-
tion: How easy is it to apply special knowledge to gain performance, be
it knowledge from the application domain, or knowledge about the
hardware and system level? In light of this question, this paper goes
past the notion of writing performant code that accomplishes a task
perhaps as a “one-off”, for oneself or a small team. Rather, we explore
the tension between obtaining large performance from hardware ac-
celerators and the productivity benefits that come from maximizing
simplicity. In our vision, a code writer should not ask only how much
performance he can get, but rather how easily can he get performance,
how many people can he share the reached performance with, is he
siloed or is his performance extensible, and will others and even himself
be able to make use of his hard work in even a few short years, or when
his organization buys new hardware next month.

In line with this vision, this paper sets out an approach that tears
down the traditional wall between rapid prototyping and performance
engineering. This paper argues and demonstrates that this is possible
with one language, i.e., one co-design of composable and extensible
programming abstractions that implement the necessary separations of
concerns on the one hand, and of compilation tools capable of specia-
lization on the other hand. With such a design, we can prevent that
developed applications and, equally important if not more, libraries are
no longer siloed or one-offs.

A core concept in our approach is that of array abstractions. Arrays
are natural language elements for engineers and scientists. So the use of
arrays and abstractions of arrays and of operations on them (map,
reduce,...) simplifies their lives and improves their expressiveness and
productivity. Arrays can be dense, sparse, triangular, or structured.
Arrays can also be on a CPU, GPU, homogeneously distributed, or
heterogeneously distributed. Software developers typically think of the
mathematical structure (dense,...) and the hardware structure (CPU,...)
separately. They seem so very different. This paper argues that this does
not need to be the case, and proposes the advantages of remembering
that structure and storage can both be treated as abstractions. As we
will demonstrate, this allows us to melt the distinction between math-
ematical structure and architectural structure, and hence enable all
necessary forms of performance engineering.

To build our case and demonstrate the viability and advantages of
our approach, we build on Julia [1-3] and its rich set of array ab-
stractions [4]. We have extended it with a powerful GPU compiler [5],
and combine array abstractions we developed for GPU computing [6]
and distributed computing [7] to enable transparent distributed het-
erogeneous computing. All of our work is open-source, and has been
contributed to and integrated with the upstream repositories.

The main contributions of this paper are the following:

e We present a set of array abstractions and implementations thereof
in the CuArrays.jl and DistributedArrays.jl packages that enable
rapid development of solutions for real-world engineering problems,
and at the same time enable the exploitation of heterogeneous high-
performance hardware.

o We demonstrate the composability of the abstractions and under-
lying infrastructure, and show how it facilitates separation of con-
cerns regarding what is computed, where the underlying data is
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stored, and how communication happens.

e We discuss portability issues and argue how the proposed abstrac-
tions handle them.

e We present a performance evaluation that demonstrates the extent
of the composability and the ease with which the potential of het-
erogeneous hardware can be exploited.

This paper is structured as follows. First, Section 2 introduces three
examples with which we will later demonstrate the usability of our
approach. All three examples are instances of rapid prototyping and
exploration that could build the foundation for a larger project.
Section 3 and 4 introduce the characteristics of Julia and its array ab-
stractions that help us achieve our goals of composability and usability.

Section 5 then introduces the two packages CuArrays.jl and Dis-
tributedArrays.jl that implement the aforementioned array abstractions
for respectively GPUs and for distributed environments. Due to the
nature of array abstractions in Julia, these two packages transparently
compose to provide a solution for distributed heterogeneous computing
in Julia. Section 6 shows how this applies to each of our examples, and
Section 7 analyzes the performance of these applications. Section 8 then
compares our approach to other research and discusses related work.
Finally, Section 9 draws conclusions, summarizes the current status of
our work, and discusses future work.

2. Use cases

For the purpose of explaining concepts in this paper, we introduce
three examples that are relevant to computer-based engineering tech-
niques: the power method to calculate eigenvalues, gradient descent to
minimize a loss function, and the Kronecker product of two matrices.
These examples represent different levels of application complexity,
and demonstrate different aspects of our approach. We have im-
plemented the examples in Julia [2], using high-level, idiomatic code
that stays as close as possible to the original mathematical descriptions.
To emphasize this, these and other code listings that contain code that
would be written by regular users, e.g., during application prototyping,
are put in a green box. Code that requires more in-depth knowledge of
the language is listed in orange, while code that would only be written
by expert programmers, e.g., as part of a library, is shown in a red box.

2.1. Power iteration

The power method serves as the first, simplest example. This is an
eigenvalue algorithm, approximating the dominant eigenvalue of a
diagonalizable matrix by means of an iterative algorithm [8]. The as-
sociated eigenvalue is then computed using the Rayleigh quotient. The
Julia implementation in Listing 1 mirrors the high-level descriptions of
these algorithms from the corresponding Wikipedia pages, and uses
simple operations on arrays, such as the dot product, matrix-vector
multiplication, the Euclidean norm of a vector, and element-wise di-
vision. The parameter p of the domeigen function defines the number
of iterations the method should perform.

Note that like all other listings in this paper, Listing 1 is not pseudo
code. It is pretty printed Julia source code. The ability to write such
code, using a Unicode character set, allows engineers to produce very
readable source code, at the mathematical level of abstraction at which
they prefer to reason and to express their ideas.

The raison d’etre of this example is to demonstrate an imperative
application that only uses simple, standard array operations, i.e., lim-
ited to those defined in the base language libraries, and that does not
require additional external functionality.

2.2. Proximal gradient descent

Listing 2 implements a more complex example that combines array
operations with a generically typed external library that extends the
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1 using LinearAlgebra
2 using Random

w

4 function domeigen(A, p)

5 bo = similar (A, size(A, 1))
6 rand! (bg)
7
8

# power iteration

9 by = bo

10 for _ in 1:p

11 bry1 = A * by

12

13 # mormalize

14 br = bry1 / norm(bk+1)
15 end

16

17 # Rayleigh quotient
18 A = (Axbp - bg) / (bg - bg)

19
20 return bg, A
21 end

Listing 1. Power method implementation approximating the dominant eigenvector and eigenvalue of a matrix.

using ForwardDiff: gradient, derivative
using LinearAlgebra

# model
linear_regression(w, b, x)

w*x .+ b

# loss function
abs2(x) = abs(x~2)
mean_squared_error(§, y) = sum(abs2, § .- y) / size(y,2)

© 00U WN -

11 # get gradient w.r.t. to ‘w’
12 lossVw(model, loss, w, b, x, y) = gradient(w -> loss(model(w, b, x), y), w)

14 # get derivative w.r.t. to ‘b’
15 lossOb(model, loss, w, b, x, y) = derivative(b -> loss(model(w, b, x), y), b)

17 # optimization algorithm
18 function proximal_gradient_descent (model, loss, w, b, x, y; lr=.1)

19 w -= 1lmul!(lr, lossVw(model, loss, w, b, x, y))
20 b -= 1r * lossdb(model, loss, w, b, x, y)

21 return w, b

22 end

23

24 function main()
25 # inputs and outputs

26 X =

27 y =

28

29 # initial weights and bias

30 w o=

31 b =

32

33 model = linear_regression

34 loss = mean_squared_error

35 optimize = proximal_gradient_descent

36

37 while current_loss >

38 w, b = optimize(model, loss, w, b, x, y)
39 current_loss = loss(model(w, b, x), y)
40 end

Listing 2. Implementation of the proximal gradient descent method, minimizing a squared error loss function.

31



T. Besard, et al.

base language. The array operations now also include higher-order
abstractions that compose with arbitrary user code.

Specifically, the example implements proximal gradient descent to
minimize the squared error loss of a linear regression model. The ex-
ample uses the ForwardDiff.jl package [9] to determine the gradient
and derivative of the loss function as defined by the user. This package
implements forward-mode automatic differentiation in Julia. Under the
hood, it specializes user code to generate efficient machine code for
computing derivatives. The ability to differentiate arbitrary user code
distinguishes this Julia package from others. Many existing machine
learning frameworks either require engineers to pick functions from a
fixed library of functions for which gradients have been defined, while
others can compute custom derivatives but only if the original function
had been specified as a computational graph. By enabling us to differ-
entiate arbitrary imperative code, the ForwardDiff.jl package improves
productivity as well as flexibility of machine learning frameworks built
on top of this package.

The proximal gradient descent function takes parameters
that are common to many machine-learning algorithms: w and b for
respectively the vector of weights and the bias, while x and y represent
the inputs and outputs that should be learned. The learning rate para-
meter 1r is optional and defaults to 0.1. The function is to be called
iteratively. The weights and bias are updated in every iteration until the
loss falls below an acceptable threshold.

Note that both the model and loss functions, of which lines 5 and 9
show examples, are defined independently from the optimization al-
gorithm in proximal gradient descent. The model and loss
functions are passed to the optimization algorithm as arguments, and
they are simply passed on to anonymous functions (lambdas) that are
themselves fed to the gradient and derivative functions from the
ForwardDiff.jl library on 12 and 15. This generalizes the implementa-
tion and makes it possible for the developer to iterate independently on
each aspect of the implementation (loss, model, and optimization al-
gorithm).

From the compiler’s perspective, the gradient (line 12) and de-
rivative (line 15) functions return dynamically-generated code. The
Julia run-time compiler then generates specialized and statically opti-
mized machine code. The design of the Julia language and its compiler,
described in detail in Section 3, makes it possible to deliver good per-
formance and enable code generation for accelerators, such as GPUs,
that require static code.

The simple code of Listing 2 performs various operations on arrays
much like those in Listing 1, but it also uses abstractions that compose
with user code. For example, the loss function on line 9 calls the
standard library operation sum with the user-defined function abs2,
which is applied to all elements before they are summed. We will later
discuss how this makes it possible to separate the concerns of appli-
cation code from how the underlying abstractions are implemented.

The demonstrated composability with an external library, together
with the portability to heterogeneous computing devices, greatly im-
proves the ability to reuse code.

2.3. Kronecker product

Finally, we describe a scenario where a more advanced user pro-
totypes an algorithm by means of declarative code instead of an im-
perative subprogram. Specifically, Listing 3 implements the Kronecker
product of two matrices, AQB, where every element of the first matrix
is multiplied with every element of the second matrix:
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[ AuB - AB

AQ® B = : :
| AB -+ ApnB
[ Ai1By; AnByg o A Bn AinBig |
Alprl Alprq """ Alanl Alanq
AmlBll Amlqu """ AmnBll Amnqu
7Am1Bp1 Amprq ””” Amanl : Amanqi

As opposed to defining an imperative function that constructs an
output matrix and eagerly computes the value for every element, we
define a Kronecker type that lazily computes individual values when
requested. This is called a structured matrix [10]. It is also a common
pattern in the Julia programming language, which provides many such
array as part of the standard library. This example will demonstrate
how our approach is composable with such infrastructure from the
standard library.

Like all arrays, the Kronecker type it is a subtype of the
AbstractArray type, which mandates certain method definitions.
One of those methods is the get index method, which is used to get the
value of an array that corresponds with a certain index. Whereas this
method typically loads from memory, we implement it for the
Kronecker type to compute a single value according to the definition
of the Kronecker product.

Expressing computation declaratively using lazy arrays has several
advantages: first and foremost, it saves on memory usage and avoids
unnecessary computations. Furthermore, we can provide optimized
implementations of certain methods by using problem-specific knowl-
edge. For example, in the case of the Kronecker product we know from
Lancaster and Farahat [11] that for matrices A and B the norm can be
computed as:

lIA® B| =|[Al [B]|

We use this property of the Kronecker product to implement an
optimized version of the norm function in Listing 4. This optimization
greatly improves performance, as it prevents materialization of the
Kronecker wrapper while reducing the size of matrices that need to be
processed.

The approach from Listing 3 also composes with other lazy wrap-
pers. For example, the Julia standard library avoids materializing ma-
trix transpositions by using a Transpose wrapper that implements the
expected indexing semantics. This wrapper type is also part of the
AbstractArray hierarchy. It can hence be used as an input to our
Kronecker type without materializing the wrapper. Other opportu-
nities for composability will be discussed in Section 6.3.

3. The Julia perspective

The above examples are written in Julia, a high-level, high-perfor-
mance dynamic programming language originally designed for tech-
nical computing [2]. This section explains how the design of this lan-
guage and its run-time compiler enables our approach towards rapid
prototyping for heterogeneous platforms.

The Julia programming language features a type system with
parametric polymorphism, multiple dispatch, metaprogramming cap-
abilities, and other high-level features [12]. Many of these features
encourage code reuse. For example, code can be fully untyped, as
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1 struct Kronecker{T,N,AT} <: AbstractArray{T,N}

2 A:: AT

3 B::AT

4 function Kronecker (A::AT, B::AT) where

5 {T, N, AT<:AbstractArray{T,N}}
6 new{T,N,AT}(A, B)

7 end

8 end

9

10 Base.size(K::Kronecker) = size(K.A) .* size(K.B)
11

12 function Base.getindex(K::Kronecker, i::Int, j::Int)
13 I,Ix = divrem(i-1, size(B,1))

14 J,Jx = divrem(j-1, size(B,2))

15 K.A[I+1,J+1] * K.B[Ix+1,Jx+1]

16 end

Listing 3. Declarative implementation of the Kronecker product of two matrices.

shown in the examples from Section 2. Such dynamically typed code is
especially interesting during prototyping, where specifying types or
reasoning about their hierarchy is an undesirable non-functional aspect.

Dynamically-typed code also makes it possible to reuse that code
with differently-typed values, as long as all functions that are called are
applicable for the argument types at hand. This is demonstrated in
Listing 5. When the Julia runtime invokes such code, the Julia compiler
specializes the code based on run-time type information. The generated
machine code is specific to the types and hand, and consequently avoids
the performance penalty of performing operations on boxed values or
dispatching dynamically to other methods. Furthermore, code specia-
lization makes it possible to generate statically-typed machine code,
which is essential for heterogeneous computing devices such as GPUs.

Next to method specialization, multiple dispatch is another cor-
nerstone of the Julia programming language. With multiple dispatch,
function calls resolve to methods based on the run-time values of each
of their arguments (as opposed to single-dispatch polymorphism as with
C+ + where only the run-time value of the first argument influences
dispatch). Multiple dispatch allows programmers to write smaller
method definitions with limited responsibilities [12]. This facilitates
code reuse, as it enables fine-grained overloading of functionality when
behavior needs to differ, e.g., when defining new types that are part of
an existing type hierarchy.

Incorporating all arguments in dispatch also makes it possible to
overload methods that would be out-of-reach with single dispatch. For
example, Listing 6 defines a dual number type, an extension of real
numbers with an epsilon component for the purpose of, e.g., automatic
differentiation. Using multiple dispatch, we implement methods for
algebraic addition and multiplication that propagate epsilon compo-
nents by extending respectively the + and * functions from the standard
library on line 12 to 16. The definition on line 14 is not possible in a
single-dispatch language such as Python, where special methods
~ mul and rmul _ exist specifically for the purpose of defining
commutative multiplication as a workaround to overcome the limita-
tions of single-dispatch. Such a workaround does not generalize, how-
ever, and fails to compose with optimized functionality such as matrix-
matrix multiplication as implemented in NumPy. As a result, users
would be forced to reimplement larger pieces of functionality, while

complicating reuse of existing functionality. This pattern is especially
common for operators, and the Julia standard library uses multiple
dispatch extensively to implement these methods [2].

With the definitions from Listing 6, functionality from the standard
library that relies on addition and multiplication can be reused, even if
it combines dual numbers with other types. For example, line 22 shows
the multiplication of a matrix with floating-point dual numbers and a
matrix with integer complex numbers. The resulting matrix contains
elements of type Dual, with complex floating-point values as real and
epsilon components. This is a very powerful demonstration of code
reuse, where the minimal definitions from Listing 6 compose with ex-
tensive functionality from the standard library that implements com-
plex numbers, 2-dimensional arrays, and operations on these types.

4. Abstractions for array programming

This section discusses existing standard and higher-order array ab-
stractions commonly used in Julia. They also form the basis of our
approach as presented in later sections.

Many data science and engineering problems are commonly ex-
pressed in terms of vectorized operations, especially during initial
prototyping. This natural, concise representation makes it easier to
iterate over different prototype implementations. They avoid the ty-
pical non-functional boilerplate of scalar processing of data items such
as specifying loop bounds, indexing calculations, etc. For example, the
high-level code from Section 2 is written entirely using array abstrac-
tions, resulting in readable high-level code.

Many high-level languages such as R or Python require the use of
array operations in order to achieve high performance. These opera-
tions are then implemented in a low-level, high-performance language.
This illustrates the two-language problem as it exists with many high-
level programming languages. The Julia programming language does
not suffer from this problem, as the language has been co-designed with
a JIT-compiler that generates high-quality machine code. The perfor-
mance of scalar, loop-based programs is typically on par with im-
plementations in a low-level language like C. As a result, the array
operations themselves are also implemented in Julia [4], and do not
require a low-level language to achieve high performance. This greatly

1 function LinearAlgebra.norm(K::Kronecker,
2 A = norm(K.A, p)

3 B = norm(K.B, p)
4
5

return A *x B
end

p:

:Real=2)

Listing 4. Optimized computation of the matrix norm for Kronecker products.
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using LinearAlgebra
function user_code (a,

inv(a) * norm(b)
end

b)
user_code (rand (2,2), rand(2,2))

using SparseArrays
user_code (rand (2,2),

© 00U W

sparse (rand (2,2)))
user_code (1, 2)

" ll)

no method matching

user_code ("",

# ERROR: inv (::String)

Listing 5. Illustration of code reuse through dynamic typing.

lowers to barrier to contributing to the Julia project or any of its
packages. Indeed, the number of contributors to the main Julia lan-
guage repository is greater than that of the Python reference im-
plementation, despite the latter being a significantly older and well-
known project.

At the same time, the availability of a JIT compiler enables pow-
erful, higher-order abstractions that compose with arbitrary user code.
The reduce abstraction is a prime example of such an abstraction.
Listing 7 illustrates how the first argument to the reduce function can
be any transformation function that reduces two scalar values. The JIT
compiler specializes the implementation of reduce, which only deals
with the semantics of the abstraction, with the transformation function
as specified by the user. This can be an operation or function from the
standard library, as on line 3, or a user-specified one as shown on line 4.
Furthermore, the underlying storage is implemented by a separate
container type. In the example this is the standard Array, which is
itself specialized on the standard element type Int. However, it is as
easy to use nonstandard types for containers and elements. This is a
clear separation of concerns, facilitating reuse by limiting the respon-
sibility of each aspect of the overall computation.

The expressiveness and performance of these array abstractions
makes it possible to reuse them outside of prototyping code. Array
abstractions on generically typed arrays are used, e.g., in the

ForwardDiff.jl package. The code in the package can be composed with
any concrete array implementation, which makes the package equally
suited for use during prototyping and for reuse as is in optimized pro-
duction code. In Section 5 and 6, we will further focus on portability
through the use of different array types.

4.1. The map, reduce, and broadcast abstractions

The map, reduce, and broadcast functions are higher-order ab-
stractions that are essential to high-level array programming in Julia.
They compose with user code that determines what is computed, while
the methods that implement these abstractions determine how and
where that computation will happen. These implementations can be
specialized on the type of the arguments, selecting an implementation
that maximizes performance or otherwise preserves the array type, e.g.,
to prevent slow memory transfers from or to a heterogeneous com-
puting device.

At its core, map transforms collections of identical shape and size by
applying a function elementwise over the collections, as shown in
Listing 8. The function should accept as many arguments as the amount
of containers passed to map.

The broadcast abstractions generalizes the behavior of map to
containers of heterogeneous shapes by padding dimensions

struct Dual{N<:Number} <: Number
re::N

ep::N

1
2
3
4
5 # constructor with default value for epsilon component
6
7
8

Dual{N}(re::N, ep::N=zero(N)) where {N} = new{N}(re, ep)
end
9
10 using Base: *, +
11
12 *(x::Dual, y::Dual) = Dual(x.re * y.re, x.ep*y.re + x.rexy.ep)
13 #(x::Dual, y::Number) = Dual(x.re * y, x.ep*y)
14 *(x::Number, y::Dual) = Dual(x * y.re, x*y.ep)
15
16 +(x::Dual, y::Dual) = Dual(x.re + y.re, x.ep + y.ep)
17
18
19
20 A = Dual.(rand(Float64, 2,2))
21 B = rand(Complex{Int}, 2)
22 A * B

Listing 6. Illustration of multiple dispatch facilitating reuse by allowing fine-grained method overloads.
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1 a::Array{Int} = [1 2; 3 4]
2

3 reduce (+, a)
4 reduce ((x,y)->2x+y~2, a)

Listing 7. Example use of the reduce abstraction.

accordingly. This greatly improves use with objects of different shape.
For example:

An A €
broadcast(f, A, b, ¢) = broadcast|f, .+ |, b,
Am - Amn Cm

f (A, b, c) f (A, b, c1)

f(Aml, b, cm) f(Amn; b, cm)

The reduce abstraction reduces a container by applying a binary
function along certain dimensions of an array, e.g., to compute the sum
of an array by calling reduce (+, array). A common pattern is to call
reduce after having performed a map. This computation can be per-
formed with a single call to mapreduce instead, slightly improving
performance by avoiding the intermediate array as returned by the
inner map.

Although seemingly simple, these abstractions are very versatile and
capable of expressing a wide range of computations. Furthermore, the
abstractions expose a great deal of parallelism, and are therefore ideal
candidates for parallel programming. This will be discussed in
Section 5.

4.2. Dot expressions

To improve the usability of broadcast, so-called dot expressions can
be used in Julia to denote elementwise transformations [13]. The Julia
parser lowers this syntactic sugar to invocations of the broadcast
function, as illustrated with some examples in Table 1. Elementwise
assignments call the broadcast! function, which performs in-place
assignment to avoid allocating an output container.

Dot expressions that contain multiple elementwise applications are
syntactically fused together and result in a single application of the
broadcast abstraction [13]. Semantically, the parser generates a new
anonymous function that contains the scalar operations from each dot
expression, as shown in Table 1. This not only reduces the number of
invocations of the broadcast machinery, but also enables the compiler
to optimize the fused expression, e.g., by eliminating common sub-
expressions. Fusion also obviates the need for temporary arrays: Inter-
mediate values, such as the result of a.+ b in Table 1, now exist as
scalar values within the fused function, and do not need to be stored
outside of that.

As of Julia 1.0 dot expressions are represented lazily through a first-
class data structure [14]. The Broadcasted data structure represents
the tree of a broadcast expression and is accessible to implementers of
broadcast at run time. This enables fine-grained customization of how

Table 1
Lowering of different forms of broadcast syntax.

Source code Lowered to

f.@@ broadcast(f, a)
b=f. (a) broadcast!(f, b, a)
f. (a.+b).*c broadcast({a, b, ¢) — f(a + b)*c, a, b, c)

broadcast is computed depending on the arguments and output types.
For example, it allows for broadcast expressions on ranges to be cal-
culated eagerly, for custom array types to opt-out of broadcast fusion,
and for splitting broadcast expressions into chunks that can be com-
puted in parallel.

5. Heterogeneous programming with arrays

Programming with the array abstractions from the previous section
makes it possible for application code to only deal with what needs to be
computed, while an underlying array type takes care of where the data
is stored, and how the computations are performed. Now, we will de-
scribe how an array type for storage and execution on a heterogeneous
device can be implemented. We hence temporarily switch to the side of
the programming expert, who has to deliver such an implementation to
support the needs of rapid-prototyping engineers.

At its core, every array type starts with a parametric type definition
that subtypes the AbstractArray type. In the case of an array type
that is backed by actual device memory, as opposed to, e.g., an array
that performs a computation like the example from Listing 3, the type
contains a number of member fields that provide handles to device
memory. In Listing 9, we define such a HeterogeneousArray type
that contains a single field, handle, to store a pointer to device
memory. The constructor on line 8 accepts any array data as input, and
uploads it to the device by using an the to device function that is
provided by the illustrative device back-end package DeviceBackend.jl.
A counterpart function on line 11 implements conversion back to a CPU
array, downloading from device memory using the from device
function.

The AbstractArray type also contains two type parameters, T
and N, for respectively the type and dimensionality of the array. These
type parameters need to be filled in for any concrete instantiation of an
array, and can be used to dispatch to optimized method implementa-
tions that depend on the value of these type parameters. Examples are
an optimized matrix-vector multiplication, or an implementation that
calls a C library that only provides implementations for C data types. In
the case of HeterogeneousArray, the actual values of these type

1 a = [12; 3 4]

2 b= [3 4; 5 6]

3 ¢ =[5 6; 7 8]

4

5 map(x->x+1, a)

6 map (+, a, b)

7 map((x,y,z)->x+y+z, a, b, c)

8

9 broadcast (+, a, 1)

10 broadcast (+, a, [-1; 11D

Listing 8. Example use of the map and broadcast abstractions.
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new{T,N}(to_device (data))

1 using DeviceBacked: to_device, from_device

2

3 struct HeterogeneousArray{T,N} <: AbstractArray{T,N}

4 # member field storing handle to device memory

5 handle::Ptr{T}

6

7 # constructor

8 HeterogeneousArray (data::AbstractArray{T,N}) where {T,N} =
9 end

10

11 Base.convert (::Type{Arrayl}, array::HeterogeneousArray) =

from_device (array.handle)

Listing 9. Storage handling for a heterogeneous array type.

i)
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using DeviceBacked: to_device, from_device
function Base.setindex!(array::HeterogeneousArray,
to_device (array.handle, i, value)
return
end

function Base.getindex(array::HeterogeneousArray,
return from_device (array.handle,
end

i::Integer, value)

i::Integer)

Listing 10. Scalar indexing for a heterogeneous array type.

parameters are deduced by the constructor from the input data.

As part of the AbstractArray interface, custom array types
should implement certain functionality, such as the getindex and
setindex! methods to fetch and to store scalar elements from the
array. Examples of these methods are defined in Listing 3 and 8 of
Listing 10 where we rely on versions of the from device and to -
device functions of the device backend package to load from and store
to device memory.

These scalar access methods are useful because they provide com-
patibility of the array type with existing code that explicitly iterates
over the elements of arrays. For example, the “default” definition of
matrix multiplication for AbstractArrays in the Julia standard li-
brary, which is designed for execution on a host CPU, uses the textbook
algorithm with nested for loops that multiply and accumulate matrix
elements. When that matrix multiplication is invoked on an array of
type HeterogeneousArray, it still computes the correct result, albeit
it very slowly: The nested loops is still executed on the host CPU, and
every element accessed in the array on the device is transferred in-
dividually from the device to the host. This obviously is very slow, and
defeats the entire purpose of auxiliary hardware devices. Still, it pro-
vides compatibility with existing scalar code. Such code can then be
incrementally ported to use array abstractions, and the results can be
verified at every step. This will be further illustrated in Section 6.

For an array type to be usable for engineering purposes, it has to
provide efficient versions of relevant array abstractions. As detailed in
Section 3, the design of the Julia programming language facilitates such

overloads. In Listing 11 we demonstrate how a custom array type can
implement a generic matrix-matrix multiplication that replaces the
aforementioned generic, scalar version of the standard library. The
example uses the @on device macro provided by the DeviceBack-
end.jl package to mark code that should be executed on the device.
Note that the implementation is still fully generic. It can be used with
any element type (e.g., the Dual number type from Section 3) as long as
multiplication and addition are defined for the type. When this method
is invoked, the run-time compiler specializes the code on the actual run-
time arguments, i.e., concrete instances of HeterogeneousArray
with values for the T and N type parameters, and on the execution
context, i.e., @on_device. The illustrative operations on lines 7 and 8
are syntactic sugar underneath of which the abstract getindex and
setindex! as implemented in Listing 10 are still used. But in this
context, they are executed on the device. This obviates the transfers of
the elements to and from the host processor. In the @on device
context, the from device and to_device are specialized to direct
accesses in the device memory, and the computations are performed
directly on the device. How this is achieved technically is out of the
scope of this paper.

Abstractions such as matrix multiplication from Listing 11 as im-
plemented for a heterogeneous array type define both what is executed,
where, and how. By contrast, higher-order abstractions such as
broadcast from Section 4.1 make the user responsible for specifying
only what is computed. Section 6.3 will discuss how this makes it
possible to compose different array types, where each type deals with

1 using DeviceBacked: Qon_device

2

3 function LinearAlgebra.mul!(Y::HeterogeneousArray{T, N},

4 A::HeterogeneousArray{T, N},

5 B::HeterogeneousArray{T, N}) where {T, N}
6 @on_device begin

7 x = A[...] = B[...]

8 Yi...1 =y

9 end

10 end

Listing 11. In-place multiplication for a heterogeneous array type.
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1 using DeviceBacked: @Qon_device
2
3 function Base.copyto!(dest::HeterogeneousArray, op::Broadcasted)
4 @on_device begin
5 I = CartesianIndex(dest)
6 dest [I] = oplI]
7 end
8 end

Listing 12. Implementation of the broadcast interface for a heterogeneous array type.

different aspects of the computation. To support the broadcast ab-
straction, the example from Listing 12 provides an implementation of
the copyto! function for HeterogeneousArray when it is also
passed a Broadcasted tree. This method is responsible for executing a
flattened representation of broadcast expressions in the context of a
certain array type, and is part of the interface that makes up the
broadcast interface. In the case of our HeterogeneousArray type, we
make sure this operation happens on the device by using the Gon -
device macro.

The following sections discuss two concrete packages for which we
relied on the discussed types of interfaces to provide array types for
programming heterogeneous devices: CuArrays.jl for NVIDIA GPUs,
and DistributedArrays.jl to program multiprocessor systems.

5.1. CuArrays.jl

The CuArrays.jl package [6] defines a CuArray type alongside op-
timized implementations of many common array operations for NVIDIA
GPUs. Some of these implementations call out to existing, vendor-pro-
vided libraries such as cuBLAS or cuDNN. These libraries are mature
and optimized for each hardware generation. Other operations, such as
the higher-order abstractions from Section 4 are implemented on top of
CUDAnative.jl [5], a package that compiles arbitrary Julia code to PTX
machine code for NVIDIA GPUs. The performance of code generated by
this package is on-par with the performance of CUDA C as compiled by
the NVIDIA compiler [5].

Availability of a GPU compiler like CUDAnative.jl not only enables
abstractions that compose with user code, but also extends the applic-
ability of other operations. For example, matrix multiplication as im-
plemented by cuBLAS only supports certain real and complex element
types, and is limited to specific dense memory layouts. CuArrays.jl also
provides a generically-typed implementation of matrix multiplication,
similar to the aforementioned textbook implementation, but optimized
for GPUs. Because the implementation is generically typed, it is ap-
plicable to all element types that define multiplication and addition and
supports every memory layout with well-defined indexing semantics.

This is relevant to, e.g., the example from Listing 2, where derivatives
are computed by the ForwardDiff.jl package through a dual number
type. This requires all used array operations, which includes matrix
multiplication, to be applicable to arrays of such element types.

As an example of the low-level kernel programming interface,
Listing 14 shows how to compute an element-wise addition of two
CuArray GPU arrays using CUDAnative.jl. This package works at an
abstraction level similar to CUDA C, where the programmer needs to
provide a kernel function to be executed in parallel according to the
Single Program, Multiple Data (SPMD) programming model. The vadd
function on linel0 is such a function, and is launched on line 16 at
which point the CUDAnative.jl compiler specializes the function on the
types of its arguments in order to generate efficient and GPU-compa-
tible code. Although this is a low-level and explicit interface for pro-
gramming a GPU, the kernel is still written in high-level Julia code:
Kernels are generically typed and specialized upon first use, high-level
language features such as metaprogramming or parametric types are
available, etc. This greatly improves the productivity of kernel pro-
gramming and makes it possible to reuse code that is independent from
the specific execution environment [5]. This includes most of the Julia
standard library, external packages that are not tied to CPU execution,
and even vendor-neutral GPU kernels as implemented by the GPUAr-
rays.jl package. At the same time, CUDAnative.jl still requires the de-
veloper to understand the SPMD model, and the performance char-
acteristics of the underlying GPU hardware.

Line 7 of Listing 14 is an alternative, but semantically equivalent,
high-level vector addition that uses CuArrays.jl to program the GPU. It
uses the dot syntax from Section 4.2 as a shorthand for calling the
broadcast function with a simple scalar function (here, +). This
completely avoids the need to provide a SPMD kernel. The example
demonstrates how users can use the CuArray type with powerful,
higher-order abstractions that often obviate manual kernel program-
ming. However, when flexibility is required, it is still perfectly possible
to go deeper and use CUDAnative.jl to create custom SPMD kernels as
with Listing 13. Both approaches can perfectly coexist in a single ap-
plication.

using CulArrays
a = CulArray(rand(2,2))

= CuArray(rand(2,2))
similar (a)

using CUDAnative

© 00U W
e}
]

10 function vadd(c::CuArray, a::CulArray, b::Culrray)

11 i = (blockIdx().x-1) * blockDim().x + threadIdx().x
12 clil = alil + bl[il

13 return

14 end

15

16 @cuda threads=4 vadd(c, a, b)

Listing 13. Low-level addition of GPU arrays using kernel programming interfaces from CUDAnative.jl.
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1 using CuArrays

2

3 a = Culrray(rand(2,2))
4 b = CulArray(rand(2,2))
5 ¢ = similar (a)

6

7 ¢ .= a .+ b

Listing 14. High-level alternative to Listing 13, adding two GPU arrays using broadcast from CuArrays.jl.

Under the hood, the implementation of broadcast for CuArray
transforms the scalar transformation to a valid SPMD kernel. Listing 15
shows a part of that implementation from the CuArrays.jl package. As
explained in Section 5, the copyto! method is responsible for ex-
ecuting a broadcast expression in the context of a specific array type,
here CuArray. The implementation defines an anonymous kernel on
line 6, which calculates array indices using GPU intrinsics in ac-
cordance with the dimension-matching semantics of the broadcasting
abstraction. The kernel is subsequently executed in parallel on line 14
using CUDAnative.jl. This is similar to the low-level use of CUDAnati-
ve.jl as shown in Listing 14. Note, however, that only the developers of
CuArray.jl need to face this level of complexity; users of the package are
spared of it.

Finally, high-level abstractions can also improve performance. As
mentioned in Section 4.2, the Julia parser syntactically fuses multiple
broadcast expressions together, resulting in fewer calls to the copyto!
method from Listing 15. In the context of GPU programming, the ad-
vantages of broadcast fusion are profound: fewer kernel launches are
required, memory allocations for temporary outputs can be avoided,
and temporaries live on the stack and do not have to be loaded from
global memory.

5.2. DistributedArrays.jl

The DistributedArrays.jl package builds upon Julia’s distributed
computing infrastructure to provide a Global Array-like interface [15].
A DArray is a data structure that distributes an array across a set of
processes, where each process holds a chunk of the total array. The
memory is globally addressable, and Remote Procedure Calls (RPCs) are
issued automatically when accessing memory that is not local to the
process. This makes it possible to support scalar indexing for code
compatibility reasons, while optimized implementations of operations
are aware of the distribution of memory and can avoid communication
overhead.

The type signature of DArray consists of three type parameters: T

and N from the AbstractArray interface for respectively the element
type and dimensionality, and A for the underlying local array type. The
local array type parameter enables a great amount of flexibility, since it
allows DArray to be mostly agnostic to the underlying array type. This
again allows to separate concerns, where the DArray type manages
communication while the underlying array 2 is responsible for the
storage, computation, etc. Section 6.3 will show how this patterns
makes it possible to compose array types that, like DArray, wrap other
arrays.

Listing 16 is an example of an implementation of a high-level ab-
straction for distributed arrays in DistributedArrays.jl. It follows the
owner-computes rule by which each processor performs the computa-
tions on the data it owns. The example implements an in-place map
through a series of RPCs, predominantly operating on local memory and
avoiding unnecessary communication to other processes. The master
process orchestrates the communication between workers and the ac-
tual work is delegated to operations on local data. The example de-
monstrates the aforementioned separation of concerns: The code of
Listing 16 only deals with distributing the map operation, and defers to
the underlying array type for the actual implementation of the ab-
straction.

The example calls remotecall wait from the Julia distributed
infrastructure to invoke an anonymous function on process p that
executes the do. .. end block that follows. The worker process then
accesses the localpart of the target array and localizes through
makelocal those parts of the input data array that are required to
compute the local part of the map. If necessary makelocal fetches and
copies data from other workers, but if the data is already locally
available this copy is avoided. The call to remotecall wait is a
blocking RPC and is wrapped into an @async block, which starts a
lightweight task. Tasks are used to prevent the processes, especially the
master, from blocking on a call since otherwise no progress could be
made and no other RPCs could be issued. Finally, the @sync block waits
on all enclosed tasks to make sure the computation is finished when
returning from the map! function.

occupancy

op)

1 using CUDAnative

2

3 function Base.copyto!(dest::CulArray, bc::Broadcasted)

4 op = Broadcast.preprocess (op)

5

6 function kernel(dest, op::Broadcasted)

7 i = (blockIdx().x-1) * blockDim().x + threadIdx().x
8 I = CartesianIndex (i)

9 dest [I] = opl[I]

10 return

11 end

12

13 numthreads, numblocks = # heuristic to mazimize
14 @cuda threads=numthreads blocks=numblocks kernel (dest,
15

16 return dest

17 end

Listing 15. Low-level implementation of one of the methods that implement the broadcast abstraction, taken from CuArrays.jl.
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1 function Base.map!(f, dest::DArray, data)
2 @sync for p in procs (out)

3 @async remotecall_wait(p, f, dest,

4 local_dest = localpart(dest)

5 map! (f, local_output, makelocal(data,
6 end

7 end

8 end

data) do f,

dest, data

localindices (dest)...))

Listing 16. Low-level implementation of in-place map taken from DistributedArrays.jl.

# prepare a parallel environment
using Distributed

addprocs (2)

computing

using DistributedArrays

distribute (rand(2,2))
similar (a)

a
b

O © 00U WN

=

map! (sin, b, a)

Listing 17. High-level use of the map! abstraction with distributed arrays from DistributedArrays.jl

The distributed computing abstractions as used in Listing 16 are
defined in the Julia standard library. They are built on top of a
ClusterManager interface for launching worker processes on dis-
tributed systems. The standard library implements this interface for
local processes and for networked systems that expose the Secure Shell
(SSH) protocol. External packages can be used to work with managed
clusters, such as ClusterManagers.jl that implements a ClusterMa-
nager subtype for the Slurm workload manager [16], the Portable
Batch System [17], and others. For environments that rely on the
Message Passing Interface (MPI), MPIManager from MPLjl can be used
to communicate with processes over an optimized communication
fabric such as InfiniBand [18]. The design of this infrastructure enables
distributed code that works with distributed processes, such as Dis-
tributedArrays.jl, to be agnostic of the underlying processes and how
they communicate.

The implementation as shown in Listing 16 is written by specialists
that know how the DistributedArrays.jl package is structured, and how
to execute code efficiently in a distributed setting. This complexity is
completely hidden from the end user: Listing 17 shows how to use the
map! abstraction from Listing 16 on a newly allocated DArray. This
does not differ from use of the abstraction with any other array type.
The only code specific to distributed computing deals with launching
local processes by calling addprocs on line 3.

6. Code portability

This section discusses how the examples from Section 2 and other
codes can be ported to other platforms and environments by using the
array types from Section 5. Section 6.1 focuses on the portability of
standalone applications with respect to different array implementations
for different heterogeneous platforms. Section 6.2 focuses on libraries
that provide domain-specific functionality using array abstractions, for
use in standalone applications and/or in compositions with other li-
braries. Such libraries should be generic with respect to array types not
to hinder the portability of the applications or other domain libraries in
which and with which they are used. Finally, Section 6.3 focuses on the
portability and composability of libraries that define new array types
and/or extend existing array abstractions.
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6.1. Application portability

Array-based application code that does not rely on library func-
tionality, such as the example from Listing 1, can be ported trivially. It
suffices to use an appropriate array type by changing the array allo-
cations to use a different constructor, for example, CuArray(...)
instead of Array (...). Operations on these arrays then dispatch to
respective implementations in the corresponding array package. If that
package does not provide certain operations, fallback methods from the
Julia standard library are used. For example, when passing a CuArray
to the domeigen function from Listing 1, the call to rand! dispatches
to an optimized implementation in CuArrays.jl that uses the cuRAND
library. Similarly, the multiplication on line 11 is lowered to a call to
mul!. Several implementations of mul! are provided in CuArrays.jl,
using the cuBLAS library when possible but falling-back to a generic
matrix-matrix multiplication when required for, e.g., element types that
are not supported by cuBLAS. This implementation is written in Julia,
and uses CUDAnative.jl to compile code for the GPU and to execute it
on the GPU.

In the case of array types that support computations with user code,
we can also use code that is built around the higher-order array ab-
stractions from Section 4.1. These abstractions compose with user code,
and require the ability to generate code for the hardware that is tar-
geted by the array type. For example, we can take the example from
Listing 17 and change the call to distribute to create a CuArray
instead. The CuArrays.jl package uses CUDAnative.jl to generate code
for NVIDIA GPUs. Similarly, we can take the example from Listing 14
and execute it with arrays of type DArray{Array}, which would re-
sult in distributed execution on the CPU. DArray itself does not execute
the user code but defers to the inner Array, which uses the Julia
compiler to generate code for the CPU.

Application code can also perform scalar iterations over array ele-
ments, either because the application code is written that way or be-
cause (standard) library operations used in the application code are
implemented as such. As explained in Section 5, this type of iteration
defeats the purpose of heterogeneous programming as it cannot be
implemented efficiently. Still, packages like CuArrays.jl and Dis-
tributedArrays.jl support this type of iteration because it greatly sim-
plifies the effort of porting code. Initially, one can run the application
on heterogeneous hardware without any change to the code, to verify
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the functional correctness of the implementation. Subsequently, per-
formance can be improved by reimplementing methods that rely on
scalar iteration using array abstractions that can be executed efficiently
on heterogeneous hardware. Identifying the methods that need to be
reimplemented is facilitated by API calls that disallows scalar iteration.
For example, both CuArrays.jl and DistributedArrays.jl provide a con-
figuration value allowscalar that, when set to false, triggers errors
upon use of inefficient scalar functionality.

Typical applications also contain multiple allocation sites. For ex-
ample, the domeigen function from Listing 1 takes not only an array as
argument, but also allocates an output container for the resulting ei-
genvector. To avoid hard-coding an array type, Julia provides functions
such as similar to allocate new containers based on existing ones.
These functions make it possible to write generic code that is in-
dependent from the chosen array type. The Julia standard library is
built on top of these generic programming approaches, and rapid pro-
totyping engineers can also use it, to facilitate reuse with different array
types.

In summary, during rapid prototyping, application code can be
written independently from the underlying array types. Porting the
code to different types optimized for different types of heterogeneous
hardware during the prototyping or afterwards requires minimal code
changes, and only serves to improve performance.

6.2. Library portability

When applications use code from libraries, complexity is hidden
behind opaque function calls whose implementations are outside im-
mediate control of the application developer. These implementations
can be complex, might themselves depend on auxiliary libraries, and
should not have to be understood by the application developer in order
to port application code to another platform.

Library code that works with arrays behaves similarly to application
code as described in Section 6.1. As long as the library only uses
functionality mandated by or implemented for AbstractArray, and
allocates new containers using generic functions like similar, it is
possible to reuse the library code with different array types.

However, where application code is often untyped, library code
typically specifies types for function arguments [3]. For code to be
portable, i.e., reusable with different array types, these signatures
should use abstract array types such as AbstractArray or Ab-
stractSparseVector and not their concrete CPU instantiations such
as Array or SparseVector.

This requirement poses no problem in practice, as Julia developers
in general, and library developers in particular, are not unfamiliar with
such patterns of using abstract types to achieve generic array program.
Those patterns are in fact recurring elements in examples, doc-
umentation, and the standard library. Furthermore, many common
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operations on arrays return wrapper objects, for the purpose of lazy
evaluation or to avoid allocations. Those objects require the code to be
generic in order to benefit from said optimizations. For example,
transposing a matrix results in an array of type Transpose, slicing
produces a SubArray, etc. As a result, most library code is already
type-generic and should be reusable in the context of heterogeneous
array programming.

We conclude that the necessary technical support and developer
culture are available and even convenient to achieve portability when
domain-specific libraries are developed and used.

As a concrete library example, consider the already mentioned
ForwardDiff.jl package. It implements methods to compute different
kinds of derivatives of arbitrary user-defined computations on arrays
and their elements [9]. For example, in the machine-learning example
from Listing 2 the gradient and derivative functions are used to
differentiate the loss function of a model for use by a gradient descent
optimization algorithm. The ForwardDiff.jl package is an example of a
high-quality, type-generic library. Simply changing the type of the ar-
rays as passed to the derivatives makes the example from Listing 2 work
on, e.g., a GPU, without requiring any other changes to either the code
in Listing 2 or the underlying library.

However, the performance of the standard implementation of the
ForwardDiff.jl package was not optimal when used with heterogeneous
array types. To identify functionality that needs to be optimized, we
disabled scalar iteration as described in Section 6.1. This revealed that
certain methods of the ForwardDiff.seed! function were im-
plemented using scalar for loops, one of which is shown in lines 2 to 8
of Listing 18. By reimplementing those methods using array abstrac-
tions (lines 11 to 15) they are better suited for execution on, e.g., a
GPU. In this case, the replacement uses a broadcast expression as a
substitute for the scalar for loop. The replacement code is certainly not
more complex.

When the need to redefine a library function to obtain higher per-
formance in a specific application arises, either during or after the
rapid-prototyping phase, the redefinition does not necessarily needs to
happen in the library itself. It can also be done in the application, by
prefixing the function name with the contained module. For example,
to implement the replacement of Listing 18 in an application rather
than in the ForwardDiff.jl library, it suffices to write it down as
function ForwardDiff.seed!... end. When a replacement defi-
nition in an application has exactly the same signature as the original
definition in the library, the replacement overrides the library version.

This capability can be very useful during rapid prototyping and/or
performance optimization: it allows the engineer to overcome defi-
ciencies in third-party libraries without requiring the immediate help of
the owners of those libraries and without having to build and then later
maintain custom versions of those libraries. The effects of these addi-
tional method definitions are global, and can thus be used to influence

# original, scalar implementation

for i in 1:N

end
return duals
end

© 00O Uk WN -

10 # replacement broadcasting wversion

function seed!(duals::AbstractArray{Dual{T,V,N}}, x,
seeds::NTuple{N,Partials{N,V}}) where {T,V,N}

duals[i] = Dual{T,V,N}(x[i], seeds[i])

11 function seed!(duals::AbstractArray{Dual{T,V,N}}, x,

12 seeds::NTuple{N,Partials{N,V}}) where {T,V,N}
13 duals[1:N] .= Dual{T,V,N}.(x[1:N], seeds[1:N])

14 return duals

15 end

Listing 18. Reimplementation of a method from ForwardDiff.jl using array abstractions.
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functionality deep down the library as opposed to only functions that
are called directly by the library.

Furthermore, the original definition in the library can easily be kept
available for the purpose of verifying the replacement implementation.
It suffices to use a dispatch signature that is limited to the hetero-
geneous array type of choice to avoid that the original definition is
overridden. For example, by changing the definition on line 11 to
specify CuArray instead of AbstractArray for the first argument,
the broadcasting version would only be used for GPU arrays, and the
known-good library implementation remains available, and can be used
on Array types to verify the semantical equivalence of the original and
the replacement definitions.

We conclude that even in case when libraries are not fully portable
with respect to array types and abstractions, convenient techniques are
available to a user of the library to resolve the portability issues without
unnecessarily delaying or complicating the prototyping.

6.3. Array infrastructure portability

The previous examples have used arrays in a fairly straightforward
manner, where user code instantiates a concrete subtype of the
AbstractArray type to express where data is stored, array abstrac-
tions are used to describe what is going to be computed, and multiple
dispatch is the core mechanism to influence how computation happens.
This section demonstrates how this separation of concerns makes it
possible to compose multiple array types, and enable reuse of array
infrastructure.

6.3.1. Kronecker products on the GPU

The example from Listing 3 uses a custom array type for efficiently
computing the Kronecker product of two matrices, and provides an
optimized implementation of the norm function computing the matrix
norm using properties of the Kronecker product to improve perfor-
mance. The Kronecker array type is generically typed, and only re-
quires that the two input matrices should be part of the Ab-
stractArray type hierarchy. No so-called glue code is required for the
Kronecker type to work with concrete array types.

For example, we can create objects of type Kronecker {CuArray}
by calling the Kronecker constructor with inputs of type CuArray.
The resulting object can be used as if it were a generic array, with the
Kronecker type influencing what is computed, while the CuArray
type defines how and where the computation happens.

With only the getindex function for scalar indexing defined, array
operations with objects of type Kronecker{. ..} dispatch to generic
implementations as described in Section 5. However, any optimized
method that calls functions on the underlying containers compiles to
specialized code that uses functionality optimized for the contained
array type. For example, with a Kronecker product of CuArrays and
the optimized but still generically-typed implementation of the matrix
norm from Listing 3, calls to the norm function result in an execution
that combines the properties of the Kronecker product that allow for an
efficient calculation of the norm with a well-optimized GPU im-
plementation of the Euclidean norm that is available in the CuArrays.jl
package and that in turn invokes the cuBLAS library. This powerful
example illustrates how multiple array types, each dealing with sepa-
rate concerns, seamlessly compose together to form a high-performance
interface that can still be used generically.

Ideally, it should also be possible to use the broadcast abstraction
from Section 4 in combination with custom array types. However,
currently that does not yet work out of the box. One problem is the
implementation of the type hierarchy in relation to broadcasting when
wrappers are combined. For example, Kronecker{CuArray} is an
AbstractArray, but not a CuArray. In the current language im-
plementation, the compiler’s use of available methods optimized for
CuArray to specialize code depends on the presence of certain artifacts
in the Kronecker class method implementations, such as whether or
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not those (by accident) defer explicitly to the inner CuArray. That
dependency on the occurrence of those artifacts should be avoided, as it
violates the separation of concerns and limits composibility and per-
formance portability in ways a non-expert programmer cannot easily
handle.

We expect this situation to improve in the future, since heavy use of
array wrapper types is relatively new, and the current broadcast in-
frastructure has been designed as recently as Julia 1.0. For now, array
packages such as CuArrays.jl and DistributedArrays.jl provide the ne-
cessary definitions for common array wrappers, such as the ones from
the Julia standard library, to work as expected.

6.3.2. Distributed GPU arrays

Where the previous section combines array types that have separate
responsibilities, we can also compose types that involve similar con-
cerns. For example, both the CuArrays.jl and DistributedArrays.jl
packages define array types that define where data is stored and how
values are computed. The DArray type distributes data across multiple
processes and prefers computations with local memory, while the
CuArray type uses the GPU for storage and parallel execution. As ex-
plained in Section 5.2, the distributed chunks of a DArray are arrays,
typically regular CPU-based Arrays, but we can use CuArray as the
underlying data array, and thereby distribute data and computations
across multiple GPUs. For DArray to be able to wrap and manage an
array, the type only needs to implement the object serialization inter-
face.

Similar to the example in the previous section, the resulting DArray
{CuArray} object implements the AbstractArray interface and can
therefore be used as any other array. This kind of infrastructure port-
ability arises from a clear separation of concerns, each type im-
plementing specific, fine-grained methods with minimal surface area.
Both types are oblivious about one another and generic code can take
advantage of them jointly.

Listing 16 is an example of how DArray separates the responsi-
bilities of communication and computation. Computation is delegated
to a different array type, may it be Array for CPU or CuArray for GPU
execution. Similarly, broadcast of a DArray is implemented by de-
legating the computation to a different array type without having to
specify which array types are supported. This allows new array types to
be bootstrapped quickly and to take advantage of these rich abstrac-
tions. For example, a transposition of any array can be represented as
an object of type Transpose({ . ..} without that array having to solve
the problem of transposing data itself. If there exists a better approach
to transposing this kind of array, it can simply be implemented as an
additional method of the transpose function, specialized for this

type.
7. Performance evaluation

This section analyzes the performance of different array types ap-
plied to the examples from Section 2. We work with the latest stable
version of Julia, 1.0.1, using the official binaries from the homepage.
For auxiliary packages, we also used the latest released versions at the
time of writing: CUDAdrv 0.8.6, CUDAnative 0.9.1, and ForwardDiff
0.9.0. In the case of array packages, CuArrays.jl and Dis-
tributedArrays.jl, we used development branches to incorporate fixes
and improvements to the array types that we developed while working
on this paper.

All measurement are done on a dual processor system, with two
Intel quad-core Xeon E5-2637 v2 CPUs totaling 8 cores and with si-
multaneous multi-threading support for 16 threads. The system is
equipped with 64GB of DDR3 ECC memory, while each CPU has 15MB
of shared cache. The system also contains 2 NVIDIA GPUs: a Kepler-era
GTX TITAN with 6GB memory, and a Pascal-era GeForce GTX 1080
with 8GB memory. We use a 64-bit Debian Stretch running Linux 4.9,
with CUDA 9.0 on NVIDIA driver 390.87.
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Code that targets the CPU by using the Array or DArray{Array}
types is allowed to take advantage of the supported 16 simultaneous
CPU threads. In the case of Array, this is done by configuring the
OpenBLAS library that empowers many of the array abstractions as
implemented for Array to use 16 threads. This implies a single-process
multi-threaded parallelization. In the case of DArray{Array}, single-
threaded multi-process parallelization is used instead. This is done by
configuring the Distributed standard library that is used by
DistributedArrays.jl to launch 16 worker processes, while OpenBLAS is
configured to use only thread per process to avoid oversubscription of
the system. For measurements with a single GPU, we use the GeForce
GTX 1080 in a single process. When targeting multiple GPUs, e.g., with
the DArray{CuArray} type, we use one worker process per GPU.

We used the BenchmarkTools.jl package to collect accurate timings
for the experiments in this paper [19]. Measurements are performed on
an otherwise idle system, after tuning in order to determine the re-
quired execution and sample count for each experiment to yield accu-
rate timings. In the charts below, we report the mean execution time.

The performance evaluation below is limited in scope. We rely on
existing array packages to perform well in the contexts they were de-
signed for, i.e., CuArrays.jl for GPU execution and DistributedArrays.jl
for execution on multi-core CPU computers and distributed systems.
The measurements in this section serve to illustrate how the realistic
problems from Section 2, built on top of array abstractions from
Section 4, can be used with the array types from Section 5 to effortlessly
program heterogeneous systems and to benefit from the increased
performance and/or enlarged scale these systems provide. This does not
necessarily imply optimal or efficient use of the hardware, but we will
show that our approach facilitates that goal.

7.1. Power iteration

The example from Listing 1 is a simple application that uses array
abstractions. It can trivially be executed with a variety of array types,
for which it suffices to change the initial allocation site. Fig. 1 shows
how the execution time of the domeigen function evolves with the
problem size. This time includes all run-time overhead such as the time
to allocate output buffers, launch GPU kernels, and communicate data
across compute nodes.

The results in Fig. 1 highlight several performance characteristics.
First of all, it is clear how regular multi-threaded Arrays have very low
overhead, and scale with increasing problem size as would be expected
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Fig. 1. Time to execute the domeigen function from Listing 1 and compute the
dominant eigenvector and eigenvalue of a N X N matrix. We benchmark for
1000 iterations of the power method, approximating the reference eigenvalue
with sufficient accuracy.
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from working with N x N arrays. A distributed DArray{Array} works
with multiple processes that require Inter-Process Communication
(IPC). This comes with a significant overhead that will be discussed
below, but with large problem sizes the performance shows to scale
identically to multi-threaded arrays that do not require IPC. This shows
how the use of DArray{Array} is viable for large problems, where
performance of multiple processes with IPC is comparable to that of a
multi-threaded application that does not require communication.

The CuArray measurements are for using a single GPU. Again there
is a constant overhead that dominates the performance for small input
sizes, albeit smaller than with DArray{Array}. This overhead is
caused by interactions with the CUDA driver, such as allocating
memory or launching GPU kernels. This overhead is quickly dwarfed
for larger input sizes, however, by the performance improvements that
result from using a GPU. These measurements show how performance
of array applications that work with nontrivial datasets can be easily
improved by using a GPU array type such as CuArray.

As GPUs typically have small memories, they are limited in the
amount of data that can be processed. Although certain operations can
be implemented with so-called out-of-core algorithms that support
working set sizes larger than the available memory, and features like
CUDA Unified Memory make it possible to do so without significantly
changing code, these approaches come at a large performance cost
[20-22]. We did not employ such techniques in the reported experi-
ments. For that reason, the CuArray measurements stop at input size
2!, The alternative solution of using multiple GPUs to extend the
available memory requires careful management of data in order to
reach good levels of performance. This data management has already
been developed as part of DistributedArrays.jl, so we reuse that func-
tionality via objects of type DArray{CuArray} to distribute data au-
tomatically across GPU devices. Fig. 1 shows how this again comes with
a large initial overhead for small input sizes, but ultimately the ap-
proach scales past the limits of using a single GPU and delivers per-
formance that is better than the projected performance of using a single
GPU past its maximal problem size, consistent with the increase in
computing power that arises from using multiple GPUs. It shows how
multiple GPUs can be easily used together to extend the supported
working set size of an array application, while further improving per-
formance despite inefficiencies in the current IPC implementation.

Similarly, DistributedArrays.jl can be used to scale past single
computers without changes to the application, by using one of the
cluster managers as explained in Section 5.2. This makes it possible to
support working set sizes that exceed the available main memory, and
to improve performance by adding more computational power than a
single computer has to offer. As we did not have such a system at our
disposal at the time of writing this paper, we do not present measure-
ments for a distributed system that consists of multiple computers.

7.2. Performance characteristics of DistributedArrays.jl

The above results showed that distributed arrays displays a constant
overhead that only is amortized when the working data is sufficiently
large. Some of that overhead is to be expected because IPC invariably
involves communication, while types such as Array and CuArray
require no such communication. That communication does not explain
all the overhead, however. Some of it is actually caused by several in-
efficiencies in the current implementation of DArray, which we plan to
address in the future.

The first major inefficiency stems from the fact that communication
and computation share the same thread. Julia uses one event loop to
schedule tasks and to allow forward progress to be made when a task is
blocked on IO. The event loop is current implemented using co-
operative tasks, which can lead to the unfortunate situation that a
worker busy with a computation and not yielding back to the event loop
causes other tasks responsible for communication to stall. This in turns
prevents other processes from making progress. Work is currently under
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way to move to a parallel thread runtime where this would not be an
issue.

Another slowdown is due to the many data copies occurring as part
of IPC. The vector-matrix product on line 11 of Listing 1 requires
sending parts of the vector to different processes. As part of that com-
munication, extraneous copies of the data are made: The vector is first
serialized on one process and copied to an IPC socket. Then it is de-
serialized from that socket on another process to be made available as a
vector object again. There are also places within DistributedArray.jl
where unnecessary additional copies are made, such as the current
implementation of copyto! (::Array, ::DArray) where the re-
mote data is first copied into a local buffer and then copied again into
the output array. These redundant copies could be avoided by careful
optimization, and communication could be improved, e.g., by using
hardware capabilities such as Remote Direct Memory Access (RDMA) or
NVLink for GPUs. Such optimizations are very local, and often only
require certain method definitions. As an example, support for efficient
communication between GPUs would require implementations of the
serialize and deserialize methods for CuArray using the CUDA
IPC programming interfaces. Since our system does not support NVLink,
we did not add such definitions, and would have to explore alternative
approaches. For now, the communication overhead is significant. As a
result, the matrix-vector product used in Listing 1 shows little speed-up
with DArray{Array}. It is bound by memory bandwidth and the cost
of communication is much higher than the computational cost of the
operation. When executing Listing 1 with DArray{CuArray}, the
performance benefit of using GPUs overcomes that overhead.

Despite these limitations, distributed arrays are still useful, e.g.,
once the working set size is too big for one machine or one GPU, or
simply when more computational power is required. Furthermore, in
scenarios that require little communication, DistributedArrays.jl scales
nicely as will be demonstrated below.

7.3. Kronecker product

Computation of the Kronecker product from Listing 3 illustrates a
scenario where much less communication is required. The Euclidean
norm can easily be computed on local parts of the input arrays, after
which the partial scalar results can be communicated and used to
compute the total norm. Fig. 2 show how this does not affect mea-
surements with multi-threaded Arrays, which do not require inter-
process communication. The timings hence scale quadratically, as
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Fig. 2. Time to compute matrix norm of the Kronecker product of two N x N
matrices. Measurements marked with “dense” first compute the Kronecker
product in full, while other measurements uses the structured matrix type from
Listing 3 and the accompanying norm calculation from Listing 4.
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would be expected from processing the Kronecker product of N X N
arrays.

For the sake of completeness, timings for a dense computation are
also included, where the Kronecker product is first computed in full,
yielding a N> x N* matrix. Comparing measurements with these dense
computation timings to the timings of the Array implementation that
uses the Kronecker type shows the value of using a a structured matrix
for computing the Kronecker product and for the associated optimized
implementation of, here, the matrix norm. Even for small N, computing
the norm of two N X N input matrices as per the optimized im-
plementation for Kronecker products is faster than materializing the
product and computing the norm of a single N> x N> matrix. The
working set size is of course also significantly reduced.

With fewer communication demands, the measurements for dis-
tributed CPU arrays using DArray{Array} show a much smaller
overhead than were observed for the power iteration example. For
significantly large problem sizes, not only is the scaling behavior
identical to that of multi-threaded Arrays that do not require inter-
process communication, the performance is in fact higher. This shows
that the distributed DArray{Array} is not only interesting for ex-
tending the working set size using distributed systems, but that it can
also improve performance on a single computer as long as the appli-
cation does not require significant IPC. This performance improvement
can be explained by the Non-Unified Memory Access (NUMA) archi-
tecture of our 2-processor system. In the case of Array, the entire array
is allocated once on one of the NUMA nodes and processing from
threads on a different NUMA node results in relatively slow memory
accesses. With DistributedArrays.jl, data is explicitly partitioned across
workers on the system. This results in data allocated in the local NUMA
node, therefore minimizing memory traffic across NUMA zones.

Similar to the previous example, using GPUs through the
CuArrays.jl package significantly improves performance, but comes
with a constant overhead that necessitates large input sizes. With
DArray{CuArray}, we again manage to scale past the memory limit
of a single GPU.

7.4. Proximal gradient descent

In Section 7.2 we mentioned a major performance penalty in the
current implementation of DistributedArrays.jl due to inefficiencies
with IPC. This is particularly noticeable in the machine learning ex-
ample from Listing 2, where the main computational cost comes from
matrix-vector multiplications as part of the proximal -
gradient descent method. These operations require significant
communication, which is troublesome given the current implementa-
tion of IPC in DistributedArrays.jl. Indeed, Fig. 3 shows how distributed
execution with DArrays is completely dominated by the cost of com-
munication, and even drowns out any performance benefits that come
from using GPU hardware. In contrast, local execution with CuArray
shows significant run-time improvements compared to CPU-based
Arrays, but is limited in terms of the working set size. As such, while
the performance of distributed execution is far from optimal at this
point, it makes it possible to scale beyond single devices and benefit
from, e.g., the increase in available memory.

This example illustrates how application performance and potential
improvements of using different array types are currently subject to
application characteristics and how those influence the (composition
of) the underlying array libraries. For example, Fig. 3 shows how the
example from Listing 2 benefits significantly from using a GPU, but
currently does not improve when executed on a distributed system due
to the heavy use of IPC. The example from Listing 1 does not rely as
much on IPC, and Fig. 1 shows how it benefits from using multiple
GPUs in a distributed setting. At the other end of the spectrum, the
example from Listing 3 does hardly use any IPC and as a result Fig. 2
shows how use of distributed CPU and GPU resources yields significant
speedups.
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Fig. 3. Time to perform 25 iterations of proximal gradient descent from
Listing 2 to optimize a network of 100 parameters for N outputs. The im-
plementation uses linear regression as a user defined model and performs en-
ough iterations for the loss to reach 0.01 given random inputs that are nor-
mally-distributed around 0 with a standard deviation of 1.

7.5. Optimization opportunities

The code examples analyzed so far have been written using high-
level, idiomatic code that stays close to the mathematical definitions.
This coding style is common with prototyping code, and as we have
shown does still allow for good performance and portability towards
heterogeneous computing environments.

After the initial prototyping phase in other high-level languages,
developers typically rewrite (part of) their code in a high-performance
language. With a high-level language that is designed for performance,
as Julia is, this translation step can be avoided. Instead the Julia lan-
guage features great performance from the get go, and makes it possible
to optimize code within the language itself to the point where it reaches
or even goes beyond the performance of statically compiled languages
such as C or Fortran [1].

Furthermore, a one-language solution makes it easier for domain
experts and code optimization experts to communicate and work to-
gether. Results can be passed between R&D and production teams, and
prototyping code can be improved until fit for reuse by other projects or
programmers. This avoids one-off solutions, improving the productivity
and performance of future prototyping efforts.

In the remainder of this section, we discuss two different types of
optimizations and their impact on examples from this paper.
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7.5.1. Array programming

In the case of array programming, common optimizations include
using pre-allocated buffers and in-place operations for matrix opera-
tions, replacing operations on small containers with explicit loops,
optimizing the iteration order, etc. By using generically typed func-
tionality, or functionality that is expected to be implemented for all
array types (such as methods from the AbstractArray interface,
common linear algebra operations like matrix-matrix multiplication,
etc), it is possible for such optimizations to be type-generic and reusable
in the context of different array types.

As an example, consider how every iteration of the for loop in the
domeigen function in Listing 1 allocates two temporary containers to
store the outputs of the operations on lines 11 and 14. Listing 19 shows
an alternative version of the code that pre-allocates two containers
before the loop and uses in-place operations to prevent new allocations.
This trivial optimization significantly improves performance, especially
in the case of small inputs where the overhead of allocating memory is
similar to the run time of the actual array operations. For example, with
CPU arrays of size 64 x 64 or smaller, this optimization improves
performance by up to 15%. Furthermore, the change is fully generic and
equally applies to other array types. With CuArrays, where memory
allocations aren’t backed by a high-performance garbage collector, the
improvements are about 5% for all matrix sizes as used in this eva-
luation.

7.5.2. Multiple dispatch

Beyond optimizing the use of array abstractions, it is always pos-
sible to use multiple dispatch for providing fine-grained method over-
loads that optimize critical pieces of underlying functionality. One
obvious example as discussed in Section 6 are method overloads that
avoiding scalar iteration, e.g., in an underlying library that is used by
the application. Although the main purpose of these overloads is to
improve performance when working with heterogeneous computing
devices, the implementations are often generic and can be used for all
array types.

Method overloads can also be specific to an array type, and provide
functionality that only optimizes execution for that type. For example,
the ForwardDiff.jl library as used in Listing 2 performs partial deriva-
tive evaluations on the input vector in chunks [9]. Performing the
evaluations on small smaller chunks uses less memory but requires
more evaluations of the target function. In the case of GPU execution,
larger chunks also require more registers, which might result in in-
efficient use of the GPU’s parallel compute units. ForwardDiff.jl uses a
heuristic to optimize the chunk size and minimize the amount of chunks
given the size of the input vector. Listing 20 shows how to override that
heuristic for GPU arrays by hard-coding an empirically-chosen chunk
size that performs well given a specific application and GPU. Note that a
production-quality version of this function would need to specialize on

function domeigen(A, p)

# power iteration

1
2
3
4
5 by, =
6
7
8

bo
brpy1 = similar (bg)
for in 1:p
mul!(bk+1, A, bk)
9
10 # mormalize
11 by .= bk+1 ./ norm(bk+1)
12 end
13
14 .
15 end

Listing 19. Optimization of the power iteration loop from Listing 1, using pre-allocated buffers and in-place array operations.

44



T. Besard, et al.

Advances in Engineering Software 132 (2019) 29-46

using CulArrays
using ForwardDiff: Chunk,

Chunk (x::CuArray, threshold::Integer =

DEFAULT_CHUNK_THRESHOLD

DEFAULT_CHUNK_THRESHOLD) =

Chunk {8} ()

Listing 20. Optimizing the use of ForwardDiff.jl from Listing 2 for GPU execution.

the performance characteristics of the GPU hardware that backs the
input array.

8. Related work

In this paper we focused on array abstractions and linear algebra,
since that is the programming model most commonly used in the pro-
totyping stage of engineering applications. Indeed MATLAB and NumPy
and a host of other languages that lend themselves more or less natu-
rally to technical computing use the same programming model. High-
level dynamic languages often use this model not only for its ex-
pressibility, but because they can implement the functionality as li-
braries in a low-level programming language and thereby gain perfor-
mance. If they interact with accelerators like GPUs they use libraries,
such as ArrayFire [23], which provide functions that can be called from
the CPU but are executed on a GPU. This split between the program-
ming language that main application developers write in and the pro-
gramming language that is used to implement the libraries, is an in-
stance of the two-language problem [1] and causes composability [24]
and extensibility problems. Once developers exhaust the functionality
of the library and require custom functionality, e.g., because they want
to take advantage of problem-specific knowledge as shown in
Section 2.3, the library approach starts to break down and they have to
resort to writing their code in the low-level language. Numba [25] is a
rare exception since it allows heterogenous programming in the same
language, but it still struggles with composability and allowing for user-
defined array abstractions that encode problem-specific knowledge.

We have shown that this is not a problem in Julia since the ab-
stractions themselves are implemented in the same programming lan-
guage as used by the main application or library developer.
Furthermore we use higher-order array abstractions to separate the
intent of the developer from the actual execution, and we do so in a
composable and extensible manner [14].

The idea of separating the algorithm (what to compute) from the
schedule (how and where to compute) is most prominent in Halide
[26,27]. Halide uses a domain-specific language (DSL) embedded in
C+ + to allow programmers to write pipelines (image algorithms) in-
dependently of the schedule and then specify a schedule and execution
target. Halide allows for automatic scheduling of pipelines, but most
advanced users will want to specify their own, since a programmer with
deep knowledge of the hardware can create an optimal schedule of the
pipeline. Additionally, Distributed Halide [28] allows for the dis-
tributed execution of a Halide pipeline. The Halide approach is de-
clarative and focuses on stencils, which is unfamiliar to a developer
used to high-level languages and their use of array abstractions.

Heterogeneous programming has seen a furor of development in the
realm of machine learning, mainly in the form of frameworks and DSLs
that are capable of transparently using accelerators and scheduling
operations in a distributed heterogeneous manner. Frameworks such as
TensorFlow [29] and PyTorch [30] make it easy to take advantage of
heterogeneous compute resources, but since they are effectively mini
languages embedded in Python with their own compiler infrastructure
and their own implementation of array abstractions, they fail to com-
pose with the larger Python ecosystem and are hard to extend. In pre-
vious work, we discussed the reason for this failure of composability
[31] in the context of machine learning itself. While these frameworks
can be used for engineering workloads, they often require recasting the
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problem at hand in terms of machine learning and do not cater to the
needs of engineers outside machine learning.

On the other side of the spectrum is the development of special
purpose HPC languages such as Chapel [32], IBM’s X10 [33], and
Fortress [34], which were created with any number of good ideas, but
have failed to attract a substantial user base outside of the community
that originally developed it. There are some initial developments to
adapt these HPC languages to heterogeneous computing, but it is not
clear how that will play out and if they will manage to address the
diverse set of challenges in heterogeneous computing, while providing
an attractive and usable programming model.

In C and C+ + there is a host of solutions for heterogeneous pro-
gramming, like CUB [35], Thrust [36], OpenMP [37], OpenACC [38]
and several others. There are also several approaches for distributed
programming like MPI [39], Legion[40], and UPC+ + [41]. Trilinos
[42], PetSC [43], and Kokkos [44], are HPC libraries developed to fa-
cilitate the reuse of common numerical infrastructure and have found a
fervent following in the HPC community. They are large and compli-
cated libraries that achieve excellent performance in cluster environ-
ments, and they are well suited for performance engineers comfortable
with C/C+ +, GPU programming, and distributed programming, but
they are not as usable as higher-level programming languages and re-
quire a higher investment in time and effort to become proficient. They
are thereby less suited for an initial exploration and prototyping phase.

9. Conclusion and future work
Conclusion

We have shown the initial promise of a programming model that is
particularly well suited for rapid prototyping, gradual performance
improvements, and taking advantage of heterogeneous computing re-
sources to tackle problems at scale. It realizes our vision of a unified
development environment without walls between rapid prototyping
and performance engineering. We have demonstrated that non-trivial
applications can be expressed with array abstractions as offered by the
Julia programming language, and how that enables portability through
the use of different array types.

Our work on CuArrays.jl and DistributedArrays.jl has made it pos-
sible to execute realistic array applications on respectively GPUs and
distributed systems. The presented GPU array type builds on our pre-
vious work for compiling Julia code for GPUs [5], and makes it possible
to program the hardware without any knowledge of GPU programming.
We also show how these array packages compose, and make it possible
to target distributed CPUs and GPUs alike.

Status

The initial focus of our work has been on usability and functionality,
supporting common abstractions while offering mechanisms for in-
crementally porting existing code. Nonetheless, performance improve-
ments of applications that use our work are often significant, albeit
inconsistent and dependent on the application characteristics and im-
plementation details of the underlying array library. Specifically, dis-
tributed arrays suffer from several performance deficiencies, but prove
useful to scale past individual systems and benefit from the extended
memory and computing power that distributed systems have to offer.
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Our work is compatible with the latest version of Julia, and our
contributions to the packages as used in this paper are open-source and
have been integrated with the upstream development branches.

Future work

Work is under way to improve performance problems with dis-
tributed arrays as discussed in Section 7.2. This includes moving to a
parallel thread runtime to prevent worker starvation, and improve-
ments to the communication primitives to support high-performance
mechanisms such as RDMA and NVLink.

We are also working on generalized handling of array wrappers in
order to avoid the composability issues as discussed in Section 6.3.
These issues are equally relevant to regular Julia code, outside of het-
erogeneous programming, where array wrappers are increasingly used
as a means to implement operations on arrays efficiently. Case in point,
other developers have recently redesigned the broadcast infrastructure
to better accommodate for deep array hierarchies, and to allow fine-
grained decisions at each level on how broadcasts are processed. In
turn, that work is valuable for heterogeneous programming, e.g., to
control which broadcast expressions are fused into GPU kernels. Ex-
ploiting the synergies between all ongoing developments in this regard
still requires some work.

Finally, there is ongoing work to generalize the abstractions from
Section 4 in order to represent most if not all of the common tensor
comprehensions. This includes the development of tensor and stencil
compilers in Julia, and we predict that such developments could take
advantage of the general strategy outlined here to separate the in-
dividual concerns that involve heterogeneous computing.
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