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Abstract Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate
the same inner loops that benefit from the high instruction-level parallelism (ILP)
support in very long instruction word (VLIW) architectures. Unlike VLIWs,
CGRAs are designed to execute only the loops, which they can hence do more
efficiently. This chapter discusses the basic principles of CGRAs and the wide range
of design options available to a CGRA designer, covering a large number of existing
CGRA designs. The impact of different options on flexibility, performance, and
power-efficiency is discussed, as well as the need for compiler support. The ADRES
CGRA design template is studied in more detail as a use case to illustrate the need
for design space exploration, for compiler support, and for the manual fine-tuning
of source code.

1 Application Domain of Coarse-Grained Reconfigurable
Arrays

Many embedded applications require high throughput. At the same time, the power
consumption of battery-operated devices needs to be minimized to increase their
autonomy. In general, the performance obtained on a programmable processor for
a certain application can be defined as the reciprocal of the application execution
time. Considering that most programs consist of a series P of consecutive phases
with different characteristics, performance can be defined in terms of the operating
frequencies f, the instructions executed per cycle I PC), and instruction count /C),
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of each phase, and in terms of the time overhead involved in switching between the
phases 7, p41 as follows:
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The operating frequencies f, cannot be increased infinitely because of power-
efficiency reasons. Alternatively, a designer can increase the performance by
designing or selecting a system that can execute code at higher IPCs. In a power-
efficient architecture, a high IPC is reached for the most important phases/ € L C
P, with L typically consisting of the compute-intensive inner loops, while limiting
their instruction count I C; and reaching a sufficiently high, but still power-efficient
frequency f;. Furthermore, the time overhead ¢, , 1 as well as the corresponding
energy overhead of switching between the execution modes of consecutive phases
should be minimized if such switching happens frequently. Note that such switching
only happens on hardware that supports multiple execution modes in support of
phases with different characteristics.

Course-Grained Reconfigurable Array (CGRA) accelerators aim for these goals
for the inner loops found in many digital signal processing (DSP) domains. Such
applications have traditionally employed Very Long Instruction Word (VLIW)
architectures such as the TriMedia 3270 [112] and the TI C64 [106], Application-
Specific Integrated Circuits (ASICs), and Application-Specific Instruction Proces-
sors (ASIPs). To a large degree, the reasons for running these applications on VLIW
processors also apply for CGRAs. First of all, a large fraction of the computation
time is spent in manifest nested loops that perform computations on arrays of data
and that can, possibly through compiler transformations, provide a lot of Instruction-
Level Parallelism (ILP). Secondly, most of those inner loops are relatively simple.
When the loops include conditional statements, those can be implemented by
means of predication [70] instead of control flow. Furthermore, none or very few
loops contain multiple exits or continuation points in the form of, e.g., break or
continue statements. Moreover, after inlining the loops are free of function calls.
Finally, the loops are not regular or homogeneous enough to benefit from vector
computing, like on the EVP [8] or on Ardbeg [113]. When there is enough regularity
and Data-Level Parallelism (DLP) in the loops of an application, vector computing
can typically exploit it more efficiently than what can be achieved by converting
the DLP into ILP and exploiting that on a CGRA. So in short, CGRAs are ideally
suited for applications of which time-consuming parts have manifest behavior, large
amounts of ILP and limited amounts of DLP.

Over the last decade, applications from many domains have been accelerated
on CGRAs. These include video processing [7, 17, 18, 67, 71, 100], image pro-
cessing [40], audio processing [103], linear [76] and non-linear [69, 92] algebras,
software-defined radios [11, 12, 25, 104, 110], augmented reality [85], biomedical
applications [44], and Map-Reduce algorithms [62]. In support of these applications,
CGRAs have also been commercialized. The Samsung Reconfigurable Processor,
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the commercialized version of the ADRES CGRA that Samsung and imec initially
developed as a proof-of-concept, has been used in ultra-high definition televisions
and in smartphones, amongst others.

In the remainder of this chapter, Sect.2 presents the fundamental properties
of CGRAs. Section 3 gives an overview of the design options for CGRAs. This
overview help designers in evaluating whether or not CGRAs are suited for their
applications and their design requirements, and if so, which CGRA designs are
most suited. After the overview, Sect. 4 presents a case study on the ADRES CGRA
architecture. This study serves two purposes. First, it illustrates the extent to which
source code needs to be tuned to map well onto CGRA architectures. As we will
show, this is an important aspect of using CGRAs, even when good compiler
support is available and when a very flexible CGRA is targeted, i.e., one that puts
very few restrictions on the loop bodies that it can accelerate. Secondly, our use
case illustrates how Design Space Exploration is necessary to instantiate optimized
designs from parameterizable and customizable architecture templates such as the
ADRES architecture template. Some conclusions are drawn in Sect. 5.

2 CGRA Basics

CGRAs focus on the efficient execution of the type of loops discussed in the
previous section. By neglecting non-loop code or outer-loop code that is assumed
to be executed on other cores, CGRAs can take the VLIW principles for exploiting
ILP in loops a step further to consume less energy and deliver higher performance,
without compromising on available compiler support. Figures 1 and 2 illustrate this.

Higher performance for high-ILP loops is obtained through two main features
that separate CGRA architectures from VLIW architectures. First, CGRA archi-
tectures typically provide more Issue Slots (ISs) than typical VLIWs do. In the
CGRA literature, some other commonly used terms to denote CGRA ISs are
Arithmetic-Logic Units (ALUs), Functional Units (FUs), or Processing Elements
(PEs). Conceptually, these terms all denote the same: logic on which an instruction
can be executed, typically one per cycle. For example, a typical ADRES CGRA [11-
13,24,71,73-75] consists of 16 issue slots, whereas the TI C64 features 8 slots, and

RF O RF 1
im] im] | | T
IS0 IS 1 IS2 IS 3 IS 4 IS5 IS 6 IS7

Fig. 1 An example clustered VLIW architecture with two RFs and eight ISs. Solid directed
edges denote physical connections. Black and white small boxes denote input and output
ports, respectively. There is a one-to-one mapping between input and output ports and physical
connections
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Fig. 2 Part (a) shows an example CGRA with 16 ISs and 4 RFs, in which dotted edges denote
conceptual connections that are implemented by physical connections and muxes as in part (b)

the NXP TriMedia features only 5 slots. The higher number of ISs directly allows
to reach higher IPCs, and hence higher performance, as indicated by Eq.(1). To
support these higher IPCs, the bandwidth to memory is increased by having more
load/store ISs than on a typical VLIW, and special memory hierarchies as found on
ASIPs, ASICs, and other DSPs. These include FIFOs, stream buffers, scratch-pad
memories, etc. Secondly, CGRA architectures typically provide a number of direct
connections between the ISs that allow data to flow from one IS to another without
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needing to pass data through a Register File (RF). As a result, less register copy
operations need to be executed in the ISs, which reduces the IC factor in Eq. (1) and
frees ISs for more useful computations.

Higher energy-efficiency is obtained through several features. Because of the
direct connections between ISs, less data needs to be transferred into and out
of RFs. This saves considerable energy. Also, because the ISs are arranged in a
2D matrix, small RFs with few ports can be distributed in between the ISs as
depicted in Fig.2. This contrasts with the many-ported RFs in (clustered) VLIW
architectures, which basically feature a one-dimensional design as depicted in Fig. 1.
The distributed CGRA RFs consume considerably less energy. Finally, by not
supporting control flow, the instruction memory organization can be simplified.
In statically reconfigurable CGRAs, this memory is nothing more than a set of
configuration bits that remain fixed for the whole execution of a loop. Clearly this
is very energy-efficient. Other CGRAs, called dynamically reconfigurable CGRAs,
feature a form of distributed level-0 loop buffers [59] or other small controllers that
fetch new configurations every cycle from simple configuration buffers. To support
loops that include control flow and conditional operations, the compiler replaces that
control flow by data flow by means of predication [70] or other mechanisms. In this
way, CGRAs differ from VLIW processors that typically feature a power-hungry
combination of an instruction cache, instruction decompression and decoding
pipeline stages, and a non-trivial update mechanism of the program counter.

CGRA architectures have two main drawbacks. Firstly, because they only
execute loops, they need to be coupled to other cores on which all other parts of
the program are executed. This coupling can introduce run-time and design-time
overhead. Secondly, as clearly visible in the example in Fig.2, the interconnect
structure of a CGRA is vastly more complex than that of a VLIW. On a VLIW,
scheduling an instruction in some IS automatically implies the reservation of
connections between the RF and the IS and of the corresponding ports. On CGRAs,
this is not the case. Because there is no one-to-one mapping between connections
and input/output ports of ISs and RFs, connections need to be reserved explicitly
by the compiler or programmer together with ISs, and the data flow needs to be
routed explicitly over the available connections. This can be done, for example,
by programming switches and multiplexors (a.k.a. muxes) explicitly, like the ones
depicted in Fig. 2b. Consequently more complex compiler technology than that of
VLIW compilers [43] is needed to automate the mapping of code onto a CGRA.
Moreover, writing assembly code for CGRAs ranges from being very difficult to
virtually impossible, depending on the type of reconfigurability and on the form of
processor control.

Having explained these fundamental concepts that differentiate CGRAs from
VLIWs, we can now also differentiate them from Field-Programmable Gate Arrays
(FPGAs), where the name CGRA actually comes from. Whereas FPGAs feature
bitwise logic in the form of Look-Up Tables (LUTs) and switches, CGRAs feature
more energy-efficient and area-conscious word-wide 1Ss, RFs, and interconnections.
Hence the name coarse-grained array architecture. As there are much fewer ISs on
a CGRA than there are LUTs on an FPGA, the number of bits required to configure
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the CGRA ISs, muxes, and RF ports is typically orders of magnitude smaller than
on FPGAs. If this number becomes small enough, dynamic reconfiguration can be
possible every cycle. So in short, CGRAs can be seen as statically or dynamically
reconfigurable coarse-grained FPGAs, or as 2D, highly-clustered loop-only VLIWs
with direct interconnections between ISs that need to be programmed explicitly.

3 CGRA Design Space

The large design space of CGRA architectures features many design options. These
include the way in which the CGRA is coupled to a main processor, the type of
interconnections and computation resources used, the reconfigurability of the array,
the way in which the execution of the array is controlled, support for different forms
of parallelism, etc. This section discusses the most important design options and the
influence of the different options on important aspects such as performance, power
efficiency, compiler friendliness, and flexibility. In this context, higher flexibility
equals placing fewer restrictions on loop bodies that can be mapped onto a CGRA.

Our overview of design options is not exhaustive. Its scope is limited to the most
important features of CGRA architectures that feature a 2D array of ISs. However,
the distinction between 1D VLIWs and 2D CGRAs is anything but well-defined.
The reason is that this distinction is not simply a layout issue, but one that also
concerns the topology of the interconnects. Interestingly, this topology is precisely
one of the CGRA design options with a large design freedom.

3.1 Tight Versus Loose Coupling

Some CGRA designs are coupled loosely to main processors. For example, Fig. 3
depicts how the MorphoSys CGRA [60] is connected as an external accelerator to a
TinyRISC Central Processing Unit (CPU) [1]. The CPU is responsible for executing
non-loop code, for initiating DMA data transfers to and from the CGRA and the
buffers, and for initiating the operation of the CGRA itself by means of special
instructions added to the TinyRISC ISA.

This type of design offers the advantage that the CGRA and the main CPU can be
designed independently, and that both can execute code concurrently, thus delivering
higher parallelism and higher performance. For example, using the double frame
buffers [60] depicted in Fig. 3, the MorphoSys CGRA can be operating on data in
one buffer while the main CPU initiates the necessary DMA transfers to the other
buffer for the next loop or for the next set of loop iterations. One drawback is that
any data that needs to be transferred from non-loop code to loop code needs to
be transferred by means of DMA transfers. This can result in a large overhead,
e.g., when frequent switching between non-loop code and loops with few iterations
occurs and when the loops consume scalar values computed by non-loop code.
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Fig. 3 A TinyRISC main processor loosely coupled to a MorphoSys CGRA array. Note that the
main data memory (cache) is not shared and that no IS hardware or registers is are shared between
the main processor and the CGRA. Thus, both can run concurrent threads
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Fig. 4 A simplified picture of an ADRES architecture. In the main processor mode, the top row
of ISs operates like a VLIW on the data in the shared RF and in the data memories, fetching
instructions from an instruction cache. When the CGRA mode is initiated with a special instruction
in the main VLIW ISA, the whole array starts operating on data in the distributed RFs, in the shared
RF and in the data memories. The memory port in IS 0 is also shared between the two operating
modes. Because of the resource sharing, only one mode can be active at any point in time

By contrast, an ADRES CGRA is coupled tightly to its main CPU. A simplified
ADRES is depicted in Fig.4. Its main CPU is a VLIW consisting of the shared
RF and the top row of CGRA ISs. In the main CPU mode, this VLIW executes
instructions that are fetched from a VLIW instruction cache and that operate on
data in the shared RF. The idle parts of the CGRA are then disabled by clock-gating
to save energy. By executing a start CGRA instruction, the processor switches
to CGRA mode in which the whole array, including the shared RF and the top row
of ISs, executes a loop for which it gets its configuration bits from a configuration
memory. This memory is omitted from the figure for the sake of simplicity.
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The drawback of this tight coupling is that because the CGRA and the main
processor mode share resources, they cannot execute code concurrently. However,
this tight coupling also has advantages. Scalar values that have been computed
in non-loop code, can be passed from the main CPU to the CGRA without any
overhead because those values are already present in the shared RFs or in the shared
memory banks. Furthermore, using shared memories and an execution model of
exclusive execution in either main CPU or CGRA mode significantly eases the
automated co-generation of main CPU code and of CGRA code in a compiler,
and it avoids the run-time overhead of transferring data between memories. Finally,
on the ADRES CGRA, switching between the two modes takes only two cycles.
Thus, the run-time overhead is minimal. That overhead can still be considerable,
however, in the case of nested loops, as inner loops are then entered and exited
many times. Moreover, upon entry and exit of a software pipelined loop, resources
are wasted as the software pipeline fills and drains in the so-called prologue and
epilogue of the loop. This will be discussed in more detail in Sect.4.1.1. Two
design extensions have been proposed to reduce this overhead. First, instruction set
extensions have been proposed to reduce the overhead that flattening of imperfectly
nested loops introduces [57]. By flattening loop nests, less mode switches are
necessary. Secondly, the Remus CGRA design for streaming data applications
features an array in which the data flows in one direction, i.e., from one row to
another, top to bottom [66, 117, 118]. The rows of the CGRA then operate as if
they are a statically scheduled pipeline. During the epilogue of one loop, the rows
gradually become unused by that loop, and hence they become available for the
next loop to be executed. The next loop’s prologue can hence start executing as
soon as the current loop’s epilogue has started. In many applications, this can save
considerable execution time.

Silicon Hive CGRAs [14, 15] do not feature a clear separation between the
CGRA accelerator and the main processor. Instead there is just a single processor
that can be programmed at different levels of ILP, i.e., at different instruction word
widths. This allows for a very simple programming model, with all the programming
and performance advantages of the tight coupling of ADRES. Compared to ADRES,
however, the lack of two distinctive modes makes it more difficult to implement
coarse-grained clock-gating or power-gating, i.e., gating of whole sets of ISs
combined instead of separate gating of individual ISs.

Somewhere in between loose and tight coupling is the PACT XPP design [79],
in which the array consist of simpler ISs that can operate like a true CGRA, as well
as of more complex ISs that are in fact full-featured small RISC processors that can
run independent threads in parallel with the CGRA.

As a general rule, looser coupling potentially enables more Thread-Level
Parallelism (TLP) and it allows for a larger design freedom. Tighter coupling can
minimize the per-thread run-time overhead as well as the compile-time overhead.
This is in fact no different from other multi-core or accelerator-based platforms.
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3.2 CGRA Control

Many different mechanisms exist to control how code gets executed on CGRAs,
i.e., to control which operation is issued on which IS at which time and how data
values are transferred from producing operations to consuming ones. Two important
aspects of CGRAs that drive different methods for control are reconfigurability and
scheduling. Both can be static, dynamic, or a hybrid combination thereof.

3.2.1 Reconfigurability

Some CGRAs, like ADRES, Silicon Hive, and MorphoSys are fully dynamically
reconfigurable: Exactly one full reconfiguration takes place for every execution
cycle. Of course no reconfiguration takes places in cycles in which the whole
array is stalled. Such stalls can happen, e.g., because memory accesses take longer
than expected in the schedule as a result of a cache miss or a memory bank
access conflict. This cycle-by-cycle reconfiguration is similar to the fetching of
one VLIW instruction per cycle, but on these CGRAs the fetching is simpler as
it only iterates through a loop body existing of straight-line CGRA configurations
without control flow. Other CGRAs like the KressArray [37-39] are fully statically
reconfigurable, meaning that the CGRA is configured before a loop is entered, and
no reconfiguration takes place during the loop at all. Still other architectures feature
a hybrid reconfigurability. The RaPiD [22, 27] architecture features partial dynamic
reconfigurability, in which part of the bits are statically reconfigurable and another
part is dynamically reconfigurable and controlled by a small sequencer. Yet another
example is the PACT architecture, in which the CGRA itself can initiate events that
invoke (partial) reconfiguration. This reconfiguration consumes a significant amount
of time, however, so it is advised to avoid it if possible, and to use the CGRA as a
statically reconfigurable CGRA.

In statically reconfigured CGRAs, each resource performs a single task for the
whole duration of the loop. In that case, the mapping of software onto hardware
becomes purely spatial, as illustrated in Fig.5a. In other words, the mapping
problem becomes one of placement and routing, in which instructions and data
dependencies between instructions have to mapped on a 2D array of resources. For
these CGRAs, compiler techniques similar to hardware synthesis techniques can be
used, as those used in FPGA placement and routing [9].

By contrast, dynamic reconfigurability enables the programmer to use hardware
resources for multiple different tasks during the execution of a loop or even during
the execution of a single loop iteration. In that case, the software mapping problem
becomes a spatial and temporal mapping problem, in which the operations and data
transfers not only need to be placed and routed on and over the hardware resources,
but in which they also need to be scheduled. A contrived example of a temporal
mapping is depicted in Fig. 5b. Most compiler techniques [24, 26, 29, 73,75, 78, 81,
82, 107] for these architectures also originate from the FPGA placement and routing
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Fig. 5 Part (a) shows a spatial mapping of a sequence of four instructions on a statically
reconfigurable 2 x 2 CGRA. Edges denote dependencies, with the edge from instruction 3 to
instruction 0 denoting that instruction O from iteration i depends on instruction 3 from iteration
i — 1. So only one out of four ISs is utilized per cycle. Part (b) shows a temporal mapping of the
same code on a dynamically reconfigurable CGRA with only one IS. The utilization is higher here,
at 100%

world. For CGRAs, the array of resources is not treated as a 2D spatial array, but as
a 3D spatial-temporal array, in which the third dimension models time in the form
of execution cycles. Scheduling in this dimension is often based on techniques that
combine VLIW scheduling techniques such as modulo scheduling [43, 54, 93], with
FPGA synthesis-based techniques [9]. Still other compiler techniques exist that are
based on constraint solving [101], or on integer linear programming [2, 56, 127].

The most important advantage of static reconfigurability is the lack of reconfigu-
ration overhead, in particular in terms of power consumption. For that reason, large
arrays can be used that are still power-efficient. The disadvantage is that even in the
large arrays the amount of resources constrains which loops can be mapped.

Dynamically reconfigurable CGRAs can overcome this problem by spreading
the computations of a loop iteration over multiple configurations. Thus a small
dynamically reconfigurable array can execute larger loops. The loop size is then not
limited by the array size, but by the array size times the depth of the reconfiguration
memories. For reasons of power efficiency, this depth is also limited, typically to
tens or hundreds of configurations, which suffices for most if not all inner loops.

A potential disadvantage of dynamically reconfigurable CGRAs is the power
consumption of the configuration memories, even for small arrays, and of the
configuration fetching mechanism. The disadvantage can be tackled in different
ways. ADRES and MorphoSys tackle it by not allowing control flow in the loop
bodies, thus enabling the use of very simple, power-efficient configuration fetching
techniques similar to level-0 loop buffering [59]. Whenever control flow is found in
loop bodies, such as for conditional statements, this control flow then first needs to
be converted into data flow, for example by means of predication and hyperblock
formation [70]. While these techniques can introduce some initial overhead in the
code, this overhead typically will be more than compensated by the fact that a more
efficient CGRA design can be used.

The MorphoSys design takes this reduction of the reconfiguration fetching logic
even further by limiting the supported code to Single Instruction Multiple Data
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(SIMD) code. In the two supported SIMD modes, all ISs in a row or all ISs in a
column perform identical operations. As such only one IS configuration needs to
be fetched per row or column. As already mentioned, the RaPiD architecture limits
the number of configuration bits to be fetched by making only a small part of the
configuration dynamically reconfigurable. Kim et al. provide yet another solution
in which the configuration bits of one column in one cycle are reused for the next
column in the next cycle [52]. Furthermore, they also propose to reduce the power
consumption in the configuration memories by compressing the configurations [53].

Still, dynamically reconfigurable designs exist that put no restrictions on the code
to be executed, and that even allow control flow in the inner loops. The Silicon Hive
design is one such design.

A general rule is that a limited reconfigurability puts more constraints on the
types and sizes of loops that can be mapped. Which design provides the highest
performance or the highest energy efficiency depends, amongst others, on the
variation in loop complexity and loop size present in the applications to be mapped
onto the CGRA. With large statically reconfigurable CGRAs, it is only possible to
achieve high utilization for all loops in an application if all those loops have similar
complexity and size, or if they can be made so with loop transformations, and if the
iterations are not dependent on each other through long-latency dependency cycles
(as was the case in Fig.5). Dynamically reconfigurable CGRAs, by contrast, can
also achieve high average utilization over loops of varying sizes and complexities,
and with inter-iteration dependencies. That way dynamically reconfigurable CGRAs
can achieve higher energy efficiency in the data path, at the expense of higher energy
consumption in the control path. Which design option is the best depends also on the
process technology used, and in particular on the ability to perform clock or power
gating and on the ratio between active and passive power (a.k.a. leakage).

In that regard, it is interesting to note the recent research direction of so-called
dual-V;,; and multi-V;; CGRA designs [33, 115, 120] that goes beyond the binary
approach of gating. In these designs, the supply voltage fed to different parts of a
CGRA, which can be individual ISs or clusters thereof, can vary independently. This
resembles dynamic voltage scaling as found on many modern multi-core CPUs, but
in the case of CGRAs the supply voltages fed to a part of the CGRA is determined by
the length of the critical path in the circuit that is triggered by the specific operations
executing on that part of the array.

3.2.2 Scheduling and Issuing

Both with dynamic and with static reconfigurability, the execution of operations
and of data transfers needs to be controlled. This can be done statically in a
compiler, similar to the way in which operations from static code schedules are
scheduled and issued on VLIW processors [28, 43], or dynamically, similar to the
way in which out-of-order processors issue instructions when their operands become
available [99]. Many possible combinations of static and dynamic reconfiguration
and of static and dynamic scheduling exist.
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A first class consists of dynamically scheduled, dynamically reconfigurable
CGRAs like the TRIPS architecture [32, 95]. For this architecture, the compiler
determines on which IS each operation is to be executed and over which connections
data is to be transferred from one IS to another. So the compiler performs placement
and routing. All scheduling (including the reconfiguration) is dynamic, however, as
in regular out-of-order superscalar processors [99]. TRIPS mainly targets general-
purpose applications, in which unpredictable control flow makes the generation of
high-quality static schedules difficult if not impossible. Such applications most often
provide relatively limited ILP, for which large arrays of computational resources are
not efficient. So instead a small, dynamically reconfigurable array is used, for which
the run-time cost of dynamic reconfiguration and scheduling is acceptable.

A second class of dynamically reconfigurable architectures avoids the overhead
of dynamic scheduling by supporting VLIW-like static scheduling [28]. Instead of
doing the scheduling in hardware where the scheduling logic then burns power,
the scheduling for ADRES, MorphoSys and Silicon Hive architectures is done by
a compiler. Compilers can do this efficiently for loops with regular, predictable
behavior and high ILP, as found in many DSP applications. As is the case for VLIW
architectures, software pipelining [43, 54, 93] is very important to expose the ILP
in CGRA software kernels, so most compiler techniques [19, 24, 26, 29, 34, 35, 73,
75,78, 81, 82, 107, 128] for statically scheduled CGRAs implement some form of
software pipelining.

A third class of CGRAs are the statically reconfigurable, dynamically scheduled
architectures, such as KressArray or PACT (neglecting the time-consuming partial
reconfigurability of the PACT). The compiler performs placement and routing, and
the code execution progress is guided by tokens or event signals that are passed
along with data. Thus the control is dynamic, and it is distributed over the token
or event path, similar to the way in which transport-triggered architectures [21]
operate. These statically reconfigurable CGRAs do not require software pipelining
techniques because there is no temporal mapping. Instead the spatial mapping
and the control implemented in the tokens or event signals implement a hardware
pipeline.

Hybrid designs exist as well. Park et al. use tokens not to trigger the execution
of instructions, but to enable an opcode compression scheme without increasing
decoder complexity with the end goal of reducing the power consumption [84]. In
their statically scheduled CGRA, data-producing ISs send a token to the consuming
ISs over a token datapath that complements the existing datapath. Based on the
tokens that arrive, the consuming IS then already knows which type of operation it
will need to execute, so less opcode bits need to be retrieved and decoded to program
the IS. This way, they were able to obtain a 56% power reduction in the control path.

Another form of hybrid designs are the so-called triggered execution and dual-
issue designs [36, 125, 126]. These are scheduled statically, but feature extensions to
increase the resource utilization of loops bodies containing if-then-else structures.
With standard predication techniques, the instructions of both the then and else
branches occupy ISs. So in every iteration, the ISs used for the non-occupied branch
are wasted. With the trigger-based and dual-issue extensions, two operations (one
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from the then branch and one from the else branch) can be loaded together to
configure the same IS, and additional predicate logic decides dynamically which
of the operations is actually executed.

We can conclude by noting that, as in other architecture paradigms such as
VLIW processing or superscalar out-of-order execution, dynamically scheduled
CGRAs can deliver higher performance than statically scheduled ones for control-
intensive code with unpredictable behavior. On dynamically scheduled CGRAs the
code path that gets executed in an iteration determines the execution time of that
iteration, whereas on statically scheduled CGRAs, the combination of all possible
execution paths (including the slowest path which might be executed infrequently)
determines the execution time. Thus, dynamically scheduled CGRAs can provide
higher performance for some applications. However, the power-efficiency will
then typically also be poor because more power will be consumed in the control
path. Again, the application domain determines which design option is the most
appropriate.

3.2.3 Thread-Level and Data-Level Parallelism

Another important aspect of control is the possibility to support different forms
of parallelism. Obviously, loosely-coupled CGRAs can operate in parallel with the
main CPU, but one can also try to use the CGRA resources to implement SIMD or
to run multiple threads concurrently within the CGRA.

When dynamic scheduling is implemented via distributed event-based control, as
in KressArray or PACT, implementing TLP is relatively simple and cheap. For small
enough loops of which the combined resource use fits on the CGRA, it suffices to
map independent thread controllers on different parts of the distributed control.

For architectures with centralized control, the only option to run threads in
parallel is to provide additional controllers or to extend the central controller, for
example to support parallel execution modes. While such extensions will increase
the power consumption of the controller, the newly supported modes might suit
certain code fragments better, thus saving in data path energy and configuration
fetch energy.

The TRIPS controller supports four operation modes [95]. In the first mode, all
ISs cooperate for executing one thread. In the second mode, the four rows execute
four independent threads. In the third mode, fine-grained multi-threading [99] is
supported by time-multiplexing all ISs over multiple threads. Finally, in the fourth
mode each row executes the same operation on each of its ISs, thus implementing
SIMD in a similar, fetch-power-efficient manner as is done in the two modes of the
MorphoSys design. Thus, for each loop or combination of loops in an application,
the TRIPS compiler can exploit the most suited form of parallelism.

The Raw architecture [105] is a hybrid between a many-core architecture and
a CGRA architecture in the sense that it does not feature a 2D array of ISs, but
rather a 2D array of tiles that each consist of a simple RISC processor. The tiles
are connected to each other via a mesh interconnect, and transporting data over
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this interconnect to neighboring tiles does not consume more time than retrieving
data from the RF in the tile. Moreover, the control of the tiles is such that they can
operate independently or synchronized in a lock-step mode. Thus, multiple tiles can
cooperate to form a dynamically reconfigurable CGRA. A programmer can hence
partition the 2D array of tiles into several, potentially differently sized, CGRAs that
each run an independent thread. This provides very high flexibility to balance the
available ILP inside threads with the TLP of the combined threads.

The Polymorphic Pipeline Array (PPA) [83] and similar designs [110] integrate
multiple tightly-coupled ADRES-like CGRA cores into a larger array. Independent
threads with limited amounts of ILP can run on the individual cores, but the
resources of those individual cores can also be configured to form larger cores, on
which threads with more ILP can then be executed. The utilization of the combined
resources can be optimized dynamically by configuring the cores according to the
available TLP and ILP at any point during the execution of a program.

Other architectures do not support (hardware) multi-threading within one CGRA
core at all, like the Silicon Hive. The first solution to run multiple threads with these
designs is to incorporate multiple CGRA accelerator cores in a System-on-Chip
(SoC) [116]. The advantage is then that each accelerator can be customized for a
certain class of loop kernels.

Alternatively, TLP can be converted into ILP and DLP by combining, at compile-
time, kernels of multiple threads and by scheduling them together as one kernel, and
by selecting the appropriate combination of scheduled kernels at run time [96].

3.3 Interconnects and Register Files
3.3.1 Connections

A wide range of connections can connect the ISs of a CGRA with each other, with
the RFs, with other memories and with 1O ports. Buses, point-to-point connections,
and crossbars are all used in various combinations and in different topologies.

For example, some designs like MorphoSys and the most common ADRES and
Silicon Hive designs feature a densely connected mesh-network of point-to-point
interconnects in combination with sparser buses that connect ISs further apart.
Thus the number of long power-hungry connections is limited. Multiple studies
of point-to-point mesh-like interconnects as in Fig. 6 have been published in the
past[13, 51,55, 72]. Other designs like RaPiD feature a dense network of segmented
buses. Typically the use of crossbars is limited to very small instances because large
ones are too power-hungry. Fortunately, large crossbars are most often not needed,
because many application kernels can be implemented as systolic algorithms, which
map well onto mesh-like interconnects as found in systolic arrays [90].

Unlike crossbars and even busses, mesh-like networks of point-to-point connec-
tions scale better to large arrays without introducing too much delay or power
consumption. For statically reconfigurable CGRAs, this is beneficial. Buses and
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other long interconnects connect whole rows or columns to complement short-
distance mesh-like interconnects. The negative effects that such long interconnects
can have on power consumption or on obtainable clock frequency can be avoided
by segmentation or by pipelining. In the latter case, pipelining latches are added
along the connections or in between muxes and ISs. Our experience, as presented
in Sect.4.2.2 is that this pipelining will not necessarily lead to lower IPCs in
CGRAs. This is different from out-of-order or VLIW architectures, where deeper
pipelining increases the branch misprediction latency [99]. Instead at least some
CGRA compilers succeed in exploiting the pipelining latches as temporary storage,
rather than being hampered by them. This is the case in compiler techniques
like [24, 73, 107] that are based on FPGA synthesis methods in which RFs and
pipelining latches are treated as interconnection resources that span multiple cycles
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instead of as explicit storage resources. This treatment naturally fits the 3D array
modeling of resources along two spatial dimensions and one temporal dimension.
Consequently, those compiler techniques can use pipelining latches for temporary
storage as easily as they can exploit distributed RFs. This ability to use latches for
temporary storage has been extended even beyond pipeline latches, for example to
introduce retiming chains and shift registers in CGRA architectures [108].

As was already discussed in Sect. 3.1, the Remus architecture has an interconnect
that lets data flow from top to bottom through an array. This fits streaming
data applications, it simplifies the interconnect to potentially yield lower power
consumption and higher clock speeds, and it enables to overlapping execution of
one loop’s epilogue with the next loop’s prologue [125, 126].

3.3.2 Register Files

CGRA compilers place operations on ISs, thus also scheduling them, and route
the data flow over the connections between the ISs. Those connections may be
direct connections, or latched connections, or even connections that go through
RFs. Therefore most CGRA compilers treat RFs not as temporary storage, but as
interconnects that can span multiple cycles. Thus the RFs can be treated uniformly
with the connections during routing. A direct consequence of this compiler approach
is that the design space freedom of interconnects extends to the placement of RFs
in between ISs. During the Design Space Exploration (DSE) for a specific CGRA
instance in a CGRA design template such as the ADRES or Silicon Hive templates,
both the real connections and the RFs have to be explored, and that has to be
done together. Just like the number of real interconnect wires and their topology,
the size of RFs, their location and their number of ports then contribute to the
interconnectivity of the ISs. We refer to [13, 72] for DSEs that study both RFs and
interconnects.

Besides their size and ports, another important aspect is that RFs can be
rotating [94]. The power and delay overhead of rotation is very small in distributed
RFs, simply because these RFs are small themselves. Still they can provide an
important functionality. Consider a dynamically reconfigurable CGRA on which a
loop is executed that iterates over x configurations, i.e., each iteration takes x cycles.
That means that for a write port of an RF, every x cycles the same address bits get
fetched from the configuration memory to configure the address set at that port. In
other words, every x cycles a new value is being written into the register specified by
that same address. This implies that values can stay in the same register for at most
x cycles; then they are overwritten by a new value from the next iteration. In many
loops, however, some values have a life time that spans more than x cycles, because
it spans multiple loop iterations. To avoid having to insert additional data transfers
in the loop schedules, rotating registers can be used. At the end of every iteration of
the loop, all values in rotating registers rotate into another register to make sure that
old values are copied to where they are not overwritten by newer values.
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3.3.3 Predicates, Events and Tokens

To complete this overview on CGRA interconnects, we want to point out that it can
be very useful to have interconnects of different widths. The data path width can be
as small as 8 bits or as wide as 64 or 128 bits. The latter widths are typically used to
pass SIMD data. However, as not all data is SIMD data, not all paths need to have the
full width. Moreover, most CGRA designs and the code mapped onto them feature
signals that are only one or a few bits wide, such as predicates or events or tokens.
Using the full-width datapath for these narrow signals wastes resources. Hence it is
often useful to add a second, narrow datapath for control signals like tokens or events
and for predicates. How dense that narrow datapath has to be, depends on the type of
loops one wants to run on the CGRA. For example, multimedia coding and decoding
typically includes more conditional code than SDR baseband processing. Hence the
design of, e.g., different ADRES architectures for multimedia and for SDR resulted
in different predicate data paths being used, as illustrated in Sect. 4.2.1.

At this point, it should be noted that the use of predicates is fundamentally not
that different from the use of events or tokens. In KressArray or PACT, events and
tokens are used, amongst others, to determine at run time which data is selected to
be used later in the loop. For example, for a C expression like x + (asb) ? y
+ z : y - zonelS will first compute the addition y+z, one IS will compute
the subtraction y -z, and one IS will compute the greater-than condition a>b. The
result of the latter computation generates an event that will be fed to a multiplexor
to select which of the two other computer values y+z and y-z is transferred to
yet another IS on which the addition to x will be performed. Unlike the muxes in
Fig.2b that are controlled by bits fetched from the configuration memory, those
event-controlled multiplexors are controlled by the data path.

In the ADRES architecture, the predicates guard the operations in ISs, and
they serve as enable signals for RF write ports. Furthermore, they control special
select operations that pass one of two input operands to the output port of an IS.
Fundamentally, an event-controlled multiplexor performs exactly the same function
as the select operation. So the difference between events or tokens and predicates
is really only that the former term and implementation are used in dynamically
scheduled designs, while the latter term is used in static schedules. As was already
pointed out in Sect. 3.2.2, dual-issue and triggered instruction CGRAs combine the
two forms to obtain higher resource utilization in the case of if-then-else structures.

3.4 Computational Resources

Issue slots are the computational resources of CGRAs. Over the last decade,
numerous designs of such issue slots have been proposed, under different names,
that include PEs, FUs, ALUs, and flexible computation components. Figure 7
depicts some of them. For all of the possible designs, it is important to know the
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connect to shared or non-shared local RFs. Part (¢) depicts the IS structure proposed by Galanis et
al. [31], and (d) depicts a row of four RSPA ISs that share a multiplier [48]

context in which these ISs have to operate, such as the interconnects connecting
them, the control type of the CGRA, etc.

Figure 7a depicts the IS of a MorphoSys CGRA. All 64 ISs in this homogeneous
CGRA are identical and include their own local RF. This is no surprise, as the two
MorphoSys SIMD modes (see Sect. 3.2.1) require that all ISs of a row or of a column
execute the same instruction, which clearly implies homogeneous ISs.

In contrast, almost all features of an ADRES IS, as depicted in Fig. 7b, can be
chosen at design time, and can be different for each IS in a CGRA that then becomes
heterogeneous: the number of ports, whether or not there are latches between the
multiplexors and the combinatorial logic that implements the operations, the set
of operations supported by each IS, how the local registers file are connected to
ISs and possibly shared between ISs, etc. As long as the design instantiates the
ADRES template, the ADRES tool flow will be able to synthesize the architecture
and to generate code for it. A similar design philosophy is followed by the Silicon
Hive tools. Of course this requires more generic compiler techniques than those
that generate code for the predetermined homogeneous ISs of, e.g., the MorphoSys
CGRA. As we will discuss later in Sect.3.6.2, this typically implies much longer
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compilation times. Moreover, we need to note that while extensive specialization
will typically benefit performance, it can also have negative effects, in particular on
energy consumption [109].

Figure 7c depicts the IS proposed by Galanis et al. [31]. Again, all ISs are
identical. In contrast to the MorphoSys design, however, these ISs consist of several
ALUs and multipliers with direct connections between them and their local RFs.
These direct connections within each IS can take care of a lot of data transfers,
thus freeing time on the shared bus-based interconnect that connects all ISs. Thus,
the local interconnect within each IS compensates for the lack of a scaling global
interconnect. One advantage of this clustering approach is that the compiler can be
tuned specifically for this combination of local and global connections and for the
fact that it does not need to support heterogeneous ISs. Whether or not this type of
design is more power-efficient than that of CGRAs with more design freedom and
potentially more heterogeneity is unclear at this point in time. At least, we know
of no studies from which, e.g., utilization numbers can be derived that allow us to
compare the two approaches.

Some architectures combine the flexibility of heterogeneous ADRES ISs with
clustering. For example, the CGRA Express [86] and the expression-grained
reconfigurable array (EGRA) [3] feature heterogeneous clusters of relatively simple,
fast ALUs. Within the clusters, those ALUs are chained by means of a limited
number of latchless connections. Through careful design, the delay of those chains
is comparable to the delay of other, more complex ISs on the CGRA that bound
the clock frequency. So the chaining does not effect the clock frequency. It does
allow, however, to execute multiple dependent operations within one clock cycle.
It can therefore improve performance significantly. As the chains and clusters are
composed of existing components such as ISs, buses, multiplexers and connections,
these clustered designs do not really extend the design space of non-clustered
CGRAs like ADRES. Still it can be useful to treat clusters as a separate design
level in between the IS component level and the whole array architecture level, for
example because it allows code generation algorithms in compilers to be tuned for
there existence [86].

A specific type of clustering was proposed to handle floating-point arithmetic.
While most CGRAs are limited to integer and fixed-point arithmetic, Lee at al.
proposed to cluster two ISs to handle floating-point data [56]. In their design, both
ISs in the cluster can operate independently on integer or fixed-point data, but they
can also cooperate by means of a special direct interconnect between them. When
they cooperate, one IS in the cluster consumes and handles the mantissas, while
the other IS consumes and produces the exponents. As a single ISs can thus be
used for both floating-point and integer computations, Lee et al. are able to achieve
high utilization for integer applications, floating-point applications, as well as mixed
applications.

Yet another type of clustering was proposed by Suh et al. [103]. They build
a larger CGRA out of identical clusters, not to enable faster compilation or to
obtain better performance, but to limit the time needed to perform design space
explorations in order to reduce the time to market.
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With respect to utilization, it is clear that the designs of Fig. 7a, b will only be
utilized well if a lot of multiplications need to be performed. Otherwise, the area-
consuming multipliers remain unused. To work around this problem, the sharing
of large resources such as multipliers between ISs has been proposed in the RSPA
CGRA design [48]. Figure 7d depicts one row of ISs that do not contain multipliers
internally, but that are connected to a shared multiplier through switches and a
shared bus. The advantage of this design, compared to an ADRES design in which
each row features three pure ALU ISs and one ALU+MULT IS, is that this design
allows the compiler to schedule multiplications in all ISs (albeit only one per cycle),
whereas this scheduling freedom would be limited to one IS slot in the ADRES
design. To allow this schedule freedom, however, a significant amount of resources
in the form of switches and a special-purpose bus need to be added to the row. While
we lack experimental data to back up this claim, we firmly believe that a similar
increase in schedule freedom can be obtained in the aforementioned 3+1 ADRES
design by simply extending an existing ADRES interconnect with a similar amount
of additional resources. In the ADRES design, that extension would then also be
beneficial to operations other than multiplications.

The optimal number of ISs for a CGRA depends on the application domain, on
the reconfigurability, as well as on the IS functionality and on the DLP available
in the form of subword parallelism. As illustrated in Sect. 4.2.2, a typical ADRES
would consist of 4 x 4 ISs [12, 71]. TRIPS also features 4 x 4 ISs. MorphoSys
provides 8 x 8 ISs, but that is because the DLP is implemented as SIMD over
multiple ISs, rather than as subword parallelism within ISs.

In our experience, scaling dynamically reconfigurable CGRA architectures such
as ADRES to very large arrays (8 x 8 or larger) is rarely useful, even with scalable
interconnects like mesh or mesh-plus interconnects. Even in loops with high ILP,
utilization drops significantly on such large arrays [77]. It is not clear what causes
this lower utilization, and there might be several reasons. These include a lack of
memory bandwidth, the possibility that the compiler techniques [24, 73] simply do
not scale to such large arrays, or the fact that the relative connectivity in such large
arrays is lower. Simply stated, when a mesh interconnects all ISs to their neighbors,
each IS not on the side of the array is connected to 4 other ISs out of 16ina4 x 4
array, i.e., to 25% of all ISs, while it is connected to 4 out of 64 ISs on an § x 8
array, i.e., to 6.25% of all ISs.

Of course, large arrays can still be useful, e.g., if they can be partitioned in
smaller arrays to run multiple threads in parallel, as discussed in Sect. 3.2.3. Also in
CGRAs with limited connectivity, such as the Remus design introduced in Sect. 3.1,
larger cores have proven useful.

3.5 Memory Hierarchies

CGRAs have a large number of ISs that need to be fed with data from the memory.
Therefore the data memory sub-system is a crucial part of the CGRA design. Many
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reconfigurable architectures feature multiple independent memory banks or blocks
to achieve high data bandwidth.

The RAW architecture features an independent memory block in each tile for
which Barua developed a method called modulo unrolling to disambiguate and
assign data to different banks [5]. However, this technique can only handle array
references through affine index expression on loop induction variables.

MorphoSys has a 256-bit wide frame buffer between the main memory and a
reconfigurable array to feed data to the ISs operating in SIMD mode [60]. The
efficient use of such a wide memory depends by and large on manual data placement
and operation scheduling. Similar techniques for wide loads and stores have also
been proposed in regular VLIW architectures for reducing power [91]. Exploiting
that hardware requires manual data layout optimizations as well.

Both Silicon Hive and PACT feature distributed memory blocks without a
crossbar. A Silicon Hive programmer has to specify the allocation of data to
the memory for the compiler to bind the appropriate load/store operations to the
corresponding memories. Silicon Hive also supports the possibility of interfacing
the memory or system bus using FIFO interfaces. This is efficient for streaming
processing but is difficult to interface when the data needs to be buffered on in case
of data reuse.

The ADRES architecture template provides a parameterizable Data Memory
Queue (DMQ) interface to each of the different single-ported, interleaved level-1
scratch-pad memory banks [23]. The DMQ interface is responsible for resolving
bank access conflicts, i.e., when multiple load/store ISs would want to access the
same bank at the same time. Connecting all load/store ISs to all banks through a
conflict resolution mechanism allows maximal freedom for data access patterns and
also maximal freedom on the data layout in memory. The potential disadvantage of
such conflict resolution is that it increases the latency of load operations. In software
pipelined code, however, increasing the individual latency of instructions most often
does not have a negative effect on the schedule quality, because the compiler can
hide those latencies in the software pipeline. In the main processor VLIW mode of
an ADRES, the same memories are accessed in code that is not software-pipelined.
So in that mode, the conflict resolution is disabled to obtain shorter access latencies.

Alternatively, a data cache can be added to the memory hierarchy to complement
the scratch-pad memories. By letting the compiler partition the data over the scratch-
pad memories and the data cache in an appropriate manner, high throughput can be
obtained in the CGRA mode, as well as low latency in the VLIW mode [41, 45]. On
a SoC with multiple CGRAs, the caches can be shared, and cache partitioning can
be used to ensure that each CGRA obtains high throughput [116].

Furthermore, small local memories can be added exclusively to the CGRA to
store data temporarily to lower the pressure on register files [124]. This way,
memory hierarchies in CGRAs show many similarities to those found in modern
Graphics Processing Units (GPUs). This should not be surprising. Samsung has
already hinted that they plan to start using their Samsung Reconfigurable Processor
designs in their future generations of GPUs [61]. Next to those GPU-like features,
other features are adopted from high-level CPU designs. For example, data prefetch-

bjorn.desutter@ugent.be



448 B. De Sutter et al.

ing mechanisms have been proposed based on the history of the loop nests executed
in CGRA mode [119].

3.6 Compiler Support

Two lines of research have to be discussed with respect to compiler support. The
oldest one concerns the scheduler in the compiler back-end. This scheduler is
responsible for determining where and when the operations of a loop body will be
executed, and how data will flow through the interconnect from one IS to another.
In some cases, it is also responsible for register allocation.

The other, more recent line of research concerns intermediate code generation
and the optimization of intermediate code. This is the phase of the compiler that
transforms the intermediate code to obtain loop bodies that are better suited to be
mapped onto the targeted CGRAs, i.e., for which the scheduler can generate more
efficient code.

3.6.1 Intermediate Code Generation and Optimization

In order to enable the back-end’s scheduler to generate efficient code, i.e., code that
utilizes the available resources of a CGRA well, some conditions need to be met:
The loop bodies need to contain sufficient operations to utilize all the resources,
the data dependencies between the operations need to enable high ILP, the memory
access patterns should not create bottlenecks, as much as possible time has to be
spent in inner loops, etc.

To obtain such loop bodies, compiler middle-ends apply loop transformations,
such as flattening and unrolling [4]. For well-formed loop nests, such as affine ones,
algebraic models are available, so-called polyhedral models [42], to reason about
the degrees of freedom that a compiler has for reordering the operations in loop
nests and to decide on the best transformation strategy for each loop. Such models
have been used in parallelizing compilers of all kinds since about two decades [6].
The boundary conditions are somewhat different for CGRA compilers, however:
entering and exiting CGRA mode results in considerably more overhead than doing
so on general-purpose CPUs or VLIW processors and the number of available
resources to be exploited through ILP is much higher. In Sect. 4.1, we will discuss
these in more detail, when we discuss loop transformations for the ADRES CGRA
template as a use case.

In CGRA programming environments that lack automated CGRA-specific loop
optimization strategies, manual fine tuning of loops by rewriting their source code
is therefore necessary to obtain acceptable code quality. Over the last couple
of years, however, a range of automated loop optimization strategies has been
developed that specifically target CGRAs and that can hence result in much more
productive programming. Of those strategies, many rely on polyhedral models
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and integer-linear programming for optimally merging affine or other perfect
loop nests [64, 65, 68, 122, 123] and imperfectly nested loop nests [63, 121].
Others focus on determining the best loop unrolling parameters [98]. Whereas
the aforementioned techniques focus on optimizing performance, some polyhedral
techniques also consider battery conservation for mobile applications [88, 89].

3.6.2 CGRA Code Mapping and Scheduling Techniques

Apart from the specific algorithms used to schedule code, the major distinctions
between CGRA schedulers relate to whether or not they support static scheduling,
whether or not they support dynamic reconfiguration, whether or not they rely on
special programming languages, and whether or not they are limited to specific hard-
ware properties, or are instead flexible enough to support, e.g., very heterogeneous
instances within an architecture template. Because most compiler research has been
done to generate static schedules for CGRAs, we focus on those in this section.
As already indicated in Sects. 3.2.1 and 3.2.2, many algorithms are based on FPGA
placement and routing techniques [9] in combination with VLIW code generation
techniques like modulo scheduling [54, 93] and hyperblock formation [70].

Whether or not compiler techniques rely on specific hardware properties is
not always obvious in the literature, as not enough details are available in the
descriptions of the techniques, and few techniques have been tried on a wide range
of CGRA architectures. For that reason, it is very difficult to compare the efficiency
(compilation time), the effectiveness (quality of generated code) and the flexibility
(e.g., support for heterogeneity) of the different techniques.

The most widely applicable static scheduling techniques use different forms of
Modulo Resource Routing Graphs (MRRGs). RRGs are time-space graphs, in which
all resources (space dimension) are modeled with vertices. There is one such vertex
per resource per cycle (time dimension) in the schedule being generated. Directed
edges model the connections over which data values can flow from resource to
resource. The schedule, placement, and routing problem then becomes a problem
of mapping the Data Dependence Graph (DDG) of some loop body on the RRG.
Scheduling refers to finding the right cycle to perform an operation (i.e., a DDG
node) in the schedule, placement refers to finding the right IS (i.e., MRRG vertex) in
that cycle, and routing refers to finding connections to transfer data from producing
operations to consuming operations, i.e., to find a route in the MRRG for a DDG
edge. In the case of a modulo scheduler, the modulo constraint is enforced by
modeling all resource usage in the modulo time domain. This is done by modeling
the appropriate modulo reservation tables [93] on top of the RRG, hence the name
MRRG.

The granularity of its vertices depends on the precise compiler algorithm. One
modulo graph embedding algorithm [81] for ADRES-like CGRAs models whole
ISs or whole RFs with single vertices, whereas the simulated-annealing technique
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in the DRESC [24, 73, 75] compiler that also targets ADRES instances models
individual ports to ISs and RFs as separate vertices. Typically, fewer nodes that
model larger components lead to faster compilation because the graph mapping
problem operates on a smaller graph, but also to lower code quality because some
combinations of resource usage cannot be modeled precisely. Moreover, models
with fewer nodes also lack the flexibility to model a wide variation in resources, and
hence can typically not model heterogeneous designs.

Several types of modulo schedulers for CGRAs exist. In the aforementioned
DRESC, simulated annealing is used to explore different placement and routing
options until a valid placement and routing of all operations and data dependencies
is found. The cost function used during the simulated annealing is based on the total
routing cost, i.e., the combined resource consumption of all placed operations and
of all routed data dependencies. In this technique, a huge number of possible routes
is evaluated, as a result of which the technique is very slow: Scheduling individual
loops can take tens of minutes.

Later modulo scheduling techniques [29, 47, 78, 81, 82, 107] for ADRES-like
CGRAs operate much more like (modulo) list schedulers [28]. These list-based
CGRA schedulers still target MRRG representations of the hardware, and thus offer
a large amount of flexibility in the architectures they support. Like DRESC, they
rely heavily on routing costs. However, whereas DRESC first places DDG nodes
in an MRRG and then tries to find good routes for the DDG edges connecting
the nodes, these list schedulers work the opposite way. When one node of a DDG
edge has already been placed (e.g., its sink node), a good place for the other node
(the source node) is found by finding the cheapest possible path for the DDG
edge in the MRRG, starting from the place of the already placed node. So in this
case, the scheduler first identifies a good route for a DDG edge, and that route
determines where its DDG node is placed. These schedulers are therefore called
edge-centric schedulers. To find the best (i.e., cheapest) routes, they use a myriad of
cost functions. These functions assign costs to nodes in the MRRG such that nodes
that should not yet be occupied at a certain point during the iterative scheduling,
e.g., because they model scarce resources that need to remain available for placing
other DDG nodes later during the scheduling, are considered expensive and are
hence avoided during the searches for cheapest routes. After every placement of a
DDG node, the cost functions are updated in function of the next node to be placed,
the nodes already placed and their places, the available resources, and the amounts
and types of resources that will still be needed in the future. For some types of
cost functions, these updates are simple, but for others they are very complex and
computing them is time-consuming. The second [78] and third [107] generation
edge-centric schedulers outperform the others in terms of generated code quality
and compilation time because they offer a better balance between (1) cost function
complexity; (2) priority functions, i.e., the order in which nodes are chosen to be
placed onto the MRRG; and (3) their backtracing heuristics, i.e., the cases in which
they unplace DDG nodes to try alternative places after a placement was found to
block the generation of a valid, high quality schedule. The currently best scheduler
even offers several modes of operation, in which fast, inaccurate cost functions are
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tried first, and only if those fail, the slower, more accurate ones are used [107].
This delivers better code quality than DRESC can deliver, in particular for more
heterogeneous CGRA designs, while requiring about 2 orders of magnitude less
compilation time.

Several other graph-based modulo schedulers have been proposed that build on
heavily simplified resource graphs to model the CGRA [19, 34, 35, 128]. Using
different customized algorithms to find limited forms of sub-graph isomorphisms
between a loop’s DDG and the architecture resource graph, these schedulers can
generate schedules very quickly. However, the limitation to certain forms of sub-
graph isomorphisms can result in significantly lower code quality. Moreover, the
simplified resource graphs cannot express many kinds of heterogeneity and features,
such as varying places of latches in the CGRA. So these publications only consider
rather homogeneous designs, in which only the supported instruction classes vary
per IS. Some algorithms even seem to rely on the (in our view unrealistic)
assumption that all operations have the same latency [34, 35].

Kim et al. presented a scheduler in which the generic NP-hard problem of
modulo scheduling becomes tractable by imposing the constraint of following pre-
calculated patternized rules [46]. As expected, the compilation times are improved
by several orders of magnitude, at the cost of code quality (—30% compared to
the already badly performing, first-generation edge-centric technique of [82]).
Through its use of patternized rules, this scheduler is by construction limited to
mostly homogeneous CGRAs. Lee et al. present an integer linear programming
approach and a quantum-inspired evolutionary algorithm, both applied after an
initial list scheduling [56]. Their mapping algorithms adopt high-level synthesis
techniques combined with loop unrolling and software pipelining. They also target
homogeneous targets.

MRRG-based compiler techniques are easily retargetable to a wide range of
architectures, such as those of the ADRES template, and they can support many
programming languages. Different architectures can simply be modeled with differ-
ent MRRGs. It has even been demonstrated that by using the appropriate modulo
constraints during the mapping of a DDG on a MRRG, compilers can generate a
single code version that can be executed on CGRAs of different sizes [87]. This
is particularly interesting for the PPA architecture that can switch dynamically
between different array sizes [83] to support either a single big loop executing in a
single threads or multiple smaller loops executing in parallel threads as discussed in
Sect. 3.2.3. For CGRAs in which the hardware does not support parallel threads, the
compiler can still merge the DDGs of multiple loops, and schedule them together,
onto subpartitions of the CGRA [80]. That way, software-controlled multi-threading
can still be achieved.

The aforementioned algorithms have been extended to not only consider the costs
of utilized resources inside the CGRA during scheduling, but to also consider bank
conflicts that may occur because of multiple memory accesses being scheduled in
the same cycle [49, 50].

Many other CGRA compiler techniques have been proposed, most of which are
restricted to specific architectures. Static reconfigurable architectures like RaPiD

bjorn.desutter@ugent.be



452 B. De Sutter et al.

and PACT have been targeted by compiler algorithms [16, 26, 114] based on
placement and routing techniques that also map DDGs on RRGs. These techniques
support subsets of the C programming language (no pointers, no structs, ...) and
require the use of special C functions to program the IO in the loop bodies to be
mapped onto the CGRA. The latter requirement follows from the specific IO support
in the architectures and the modeling thereof in the RRGs.

For the MorphoSys architecture, with its emphasis on SIMD across ISs, compiler
techniques have been developed for the SA-C language [111]. In this language the
supported types of available parallelism are specified by means of loop language
constructs. These constructs are translated into control code for the CGRA, which
are mapped onto the ISs together with the DDGs of the loop bodies.

CGRA code generation techniques based on integer-linear programming have
been proposed for the several architectures, both for spatial [2] and for temporal
mapping [56, 127]. Basically, the ILP formulation consists of all the requirements
or constraints that must be met by a valid schedule. This formulation is built
from a DDG and a hardware description, and can hence be used to compile many
source languages. It is unclear, however, to what extent the ILP formulation and
its solution rely on specific architecture features, and hence to which extent it
would be possible to retarget the ILP-formulation to different CGRA designs. A
similar situation occurs for the constraint-based compilation method developed for
the Silicon Hive architecture template [101], of which no detailed information is
public. Furthermore, ILP-based compilation is known to be unreasonably slow. So
in practice it can only be used for small loop kernels.

Code generation techniques for CGRAs based on instruction-selection pattern
matching and list-scheduling techniques have also been proposed [30, 31]. It is
unclear to what extent these techniques rely on a specific architecture because we
know of no trial to use them for different CGRAs, but these techniques seem to
rely heavily on the existence of a single shared-bus that connects ISs as depicted
in Fig. 7c. Similarly, the static reconfiguration code generation technique by Lee et
al. relies on CGRA rows consisting of identical ISs [58]. Because of this assumption,
a two-step code generation approach can be used in which individual placements
within rows are neglected in the first step, and only taken care of in the second step.
The first step then instead focuses on optimizing the memory traffic.

Finally, compilation techniques have been developed that are really specialized
for the TRIPS array layout and for its out-of-order execution [20].

4 Case Study: ADRES

This section presents a case study on one specific CGRA design template. The
purpose of this study is to illustrate that it is non-trivial to compile and optimize
code for CGRA targets, and to illustrate that within a design template, there is a need
for hardware design exploration. This illustrates how both hardware and software
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designers targeting CGRAs need a deep understanding of the interaction between
the architecture features and the used compiler techniques.

ADRES [7, 11-13, 23, 24, 71, 73-75] is an architecture design template from
which dynamically reconfigurable, statically scheduled CGRAs can be instantiated.
In each instance, an ADRES CGRA is coupled tightly to a VLIW processor. This
processor shares data and predicate RFs with the CGRA, as well as memory ports
to a multi-banked scratch-pad memory as described in Sect.3.1. The compiler-
supported ISA of the design template provides instructions that are typically found
in a load/store VLIW or RISC architecture, including arithmetic operations, logic
operations, load/store operations, and predicate computing instructions. Additional
domain-specific instructions, such as SIMD operations, are supported in the pro-
gramming tools by means of intrinsics [102]. Local rotating and non-rotating, shared
and private local RFs can be added to the CGRA as described in the previous
sections, and connected through an interconnect consisting of muxes, buses and
point-to-point connections that are specified completely by the designer. Thus, the
ADRES architecture template is very flexible: it offers a high degree of design
freedom, and it can be used to accelerate a wide range of loops.

4.1 Mapping Loops on ADRES CGRAs

The first part of this case study concerns the mapping of loops onto ADRES CGRAs,
which are one of the most flexible CGRAs supporting a wide range of loops. This
study illustrates that many loop transformations need to be applied carefully before
mapping code onto ADRES CGRAs. We discuss the most important compiler
transformations and, lacking a full-fledged loop-optimizing compiler, manual loop
transformations that need to be applied to source code in order to obtain high
performance and high efficiency. For other, less flexible CGRAs, the need for such
transformations will even be higher because there will be more constraints on the
loops to be mapped in the first place. Hence many of the discussed issues not only
apply to ADRES CGRAs, but also to other CGRA architectures. We will conclude
from this study that programming CGRAs with the existing compiler technology is
not compatible with high programmer productivity.

4.1.1 Modulo Scheduling Algorithms for CGRAs

To exploit ILP in inner loops on VLIW architectures, compilers typically apply
software pipelining by means of modulo scheduling [54, 93]. This is no different for
ADRES CGRAs. In this section, we will not discuss the inner working of modulo
scheduling algorithms. What we do discuss, are the consequences of using that
technique for programming ADRES CGRAs.

After a loop has been modulo-scheduled, it consists of three phases: the prologue,
the kernel and the epilogue. During the prologue, stages of the software-pipelined
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loop gradually become active. Then the loop executes the kernel in a steady-state
mode in which all software pipeline stages are active, and afterwards the stages are
gradually disabled during the epilogue. In the steady-state mode, a new iteration is
started after every /1 cycles, which stands for Initiation Interval. Fundamentally,
every software pipeline stage is /1 cycles long. The total cycle count of a loop with
iter iterations that is scheduled over ps software pipeline stages is then given by

Cyczesprulogue + 11 - (iter —(ps — 1))+ CyClesepilogue- ()

In this formula, we neglect processor stalls because of, e.g., memory access conflicts
or cache misses.

For loops with a high number of iterations, the term I/ - iter dominates this
cycle count, and that is why modulo scheduling algorithms try to minimize /1, thus
increasing the IPC terms in Eq. (1).

The minimal /7 that modulo scheduling algorithms can reach is bound by
minll = max(RecMII, ResMII). The first term, called resource-minimal
Il (ResMII) is determined by the resources required by a loop and by the
resources provided by the architecture. For example, if a loop body contains nine
multiplications, and there are only two ISs that can execute multiplications, then
at least [9/2] = 5 cycles will be needed per iteration. The second term, called
recurrence-minimal /I (RecM IT) depends on recurrent data dependencies in a loop
and on instruction latencies. Fundamentally, if an iteration of a loop depends on the
previous iteration through a dependency chain with accumulated latency RecM 11,
it is impossible to start that iteration before at least Rec M I I cycles of the previous
iteration have been executed.

The next section uses this knowledge to apply transformations that optimize
performance according to Eq.(1). To do so successfully, it is important to know
that ADRES CGRAs support only one thread, for which the processor has to switch
from a non-CGRA operating mode to CGRA mode and back for each inner loop.
So besides minimizing the cycle count of Eq. (2) to obtain higher IPCs in Eq. (1), it
is also important to consider the terms 7, ,+1 in Eq. (1).

4.1.2 Loop Transformations
Loop Unrolling

Loop unrolling and the induction variable optimizations that it enables can be used
to minimize the number of iterations of a loop. When a loop body is unrolled x
times, iter decreases with a factor x, and ResM 11 typically grows with a factor
slightly less than x because of the induction variable optimizations and because
of the ceiling operation in the computation of ResMII. By contrast, RecM 11
typically remains unchanged or increases only a little bit as a result of the induction
variable optimizations that are enabled after loop unrolling.
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In resource-bound loops, ResM 11 > RecMII. Unrolling will then typically
have little impact on the dominating term /] -iter in Eq. (2). However, the prologue
and the epilogue will typically become longer because of loop unrolling. Moreover,
an unrolled loop will consume more space in the instruction memory, which might
also have a negative impact on the total execution time of the whole application. So
in general, unrolling resource-bound loops is unlikely to be very effective.

In recurrence-bound loops, RecM 11 - iter > ResMII - iter. The right hand
side of this inequality will not increase by unrolling, while the left hand side will
be divided by the unrolling factor x. As this improvement typically compensates
for the longer prologue and epilogue, we can conclude that unrolling can be an
effective optimization technique for recurrence-bound loops if the recurrences can
be optimized with induction variable optimizations. This is no different for CGRAs
than it is for VLIWs. However, for CGRAs with their larger number of ISs, it is
more important because more loops are recurrence-bound.

Loop Fusion, Loop Interchange, Loop Combination and Data Context
Switching

Fusing adjacent loops with the same number of iterations into one loop can also be
useful, because fusing multiple recurrence-bound loops can result in one resource-
bound loop, which will result in a lower overall execution time. Furthermore, less
switching between operating modes takes place with fused loops, and hence the
terms ¢, p+1 are minimized. Furthermore, less prologues and epilogues need to be
executed, which might also improve performance. This improvement will usually
be limited, however, because the fused prologues and epilogues will rarely be much
shorter than the sum of the original ones. Moreover, loop fusion does result in a
loop that is bigger than any of the original loops, so it can only be applied if the
configuration memory is big enough to fit the fused loop. If this is the case, less
loop configurations need to be stored and possibly reloaded into the memory.

Interchanging an inner and outer loop serves largely the same purpose as loop
fusion. As loop interchange does not necessarily result in larger prologues and
epilogues, it can be even more useful, as can be the combining of nested loops
into a single loop. Data-context switching [10] is a very similar technique that
serves the same purpose. That technique has been used by Lee et al. for statically
reconfigurable CGRAs as well [58], and in fact most of the loop transformations
mentioned in this section can be used to target such CGRAs, as well as any other
type of CGRA.

Live-In Variables
In our experience, there is only one caveat with the above transformations. The

reason to be careful when applying them is that they can increase the number of
live-in variables. A live-in variable is a variable that gets assigned a value before the
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loop, which is consequently used in the loop. Live-in variables can be manifest in the
original source code, but they can also result from compiler optimizations that are
enabled by the above loop transformations, such as induction variable optimizations
and loop-invariant code motion. When the number of live-in variables increases,
more data needs to be passed from the non-loop code to the loop code, which might
have a negative effect on 7, ;1. The existence and the scale of this effect will
usually depend on the hardware mechanism that couples the CGRA accelerator
to the main core. Possible such mechanisms are discussed in Sect. 3.1. In tightly-
coupled designs like that of ADRES or Silicon Hive, passing a limited amount of
values from the main CPU mode to the CGRA mode does not involve any overhead:
the values are already present in the shared RF. However, if their number grows too
big, there will not be enough room in the shared RF, which will result in much less
efficient passing of data through memory. We have experienced this several times
with loops in multimedia and SDR applications that were mapped onto our ADRES
designs. So, even for tightly-coupled CGRA designs, the above loop transformations
and the enabled optimizations need to be applied with great care.

Predication

The “basic” modulo scheduling techniques for CGRAs [24, 26,29, 73,75,78, 81, 82,
107] only schedule loops that are free of control flow transfers. Hence any loop body
that contains conditional statements first needs to be if-converted into hyperblocks
by means of predication [70]. For this reason, many CGRAs, including ADRES
CGRAs, support predication.

Hyperblock formation can result in very inefficient code if a loop body contains
code paths that are executed rarely. All those paths contribute to ResM 11 and
potentially to RecMII. Hence even paths that get executed very infrequently
can slow down a whole modulo-scheduled loop. Such loops can be detected with
profiling, and if the data dependencies allow this, it can be useful to split these loops
into multiple loops. For example, a first loop can contain the code of the frequently
executed paths only, with a lower /1 than the original loop. If it turns out during the
execution of this loop that in some iteration the infrequently executed code needs to
be executed, the first loop is exited, and for the remaining iterations a second loop is
entered that includes both the frequently and the infrequently executed code paths.

Alternatively, for some loops it is beneficial to have a so-called inspector loop
with very small /7 to perform only the checks for all iterations. If none of the
checks are positive, a second so-called executor loop is executed that includes all
the computations except the checks and the infrequently executed paths. If some
checks were positive, the original loop is executed.

One caveat with this loop splitting is that it causes code size expansion in the
CGRA instruction memories. For power consumption reasons, these memories are
kept as small as possible. This means that the local improvements obtained with the
loop splitting need to be balanced with the total code size of all loops that need to
share these memories.
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Fig. 8 On the left a traditional modulo-scheduled loop, on the right a kernel-only one. Each
numbered box denotes one of four software pipeline stages, and each row denotes the concurrent
execution of different stages of different iterations. Grayed boxes denote stages that actually get
executed. On the left, the dark grayed boxes get executed on the CGRA accelerator, in which
exactly the same code is executed every /] cycles. The light grayed boxes are pipeline stages that
get executed outside of the loop, in separate code that runs on the main processor. On the right,
kernel-only code is shown. Again, the dark grey boxes are executed on the CGRA accelerator.
So are the white boxes, but these get deactivated during the prologue and epilogue by means of
predication

Kernel-Only Loops

Predication can also be used to generate so-called kernel-only loop code. This is
loop code that does not have separate prologue and epilogue code fragments. Instead
the prologues and epilogues are included in the kernel itself, where predication
is now used to guard whole software pipeline stages and to ensure that only the
appropriate software pipeline stages are activated at each point in time. A traditional
loop with a separate prologue and epilogue is compared to a kernel-only loop in
Fig. 8. Three observations need to be made here.

The first observation is that kernel-only code is usually faster because the pipeline
stages of the prologue and epilogue now get executed on the CGRA accelerator,
which typically can do so at much higher IPCs than the main core. This is a major
difference between (ADRES) CGRAs and VLIWSs. On the latter, kernel-only loops
are much less useful because all code runs on the same number of ISs anyway.

Secondly, while kernel-only code will be faster on CGRAs, more time is spent
in the CGRA mode, as can be seen in Fig. 8. During the epilogue and prologue, the
whole CGRA is active and thus consuming energy, but many ISs are not performing
useful computations because they execute operations from inactive pipeline stages.
Thus, kernel-only is not necessarily optimal in terms of energy consumption.

The third observation is that for loops where predication is used heavily to create
hyperblocks, the use of predicates to support kernel-only code might over-stress
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Table 1 Main differences between two studied ADRES CGRAs

multimedia CGRA SDR CGRA
# issue slots (FUs) 4x4 4x4
# load/store units 4 4
1d/st/mul latency 6/6/2 cycles 71713 cycles
# local data RFs 12 (8 single-ported) of size 8 12 (8 single-ported) of size 4
data width 32 64
config. word width 896 bits 736 bits
ISA extensions 2-way SIMD, clipping, min/max| 4-way SIMD, saturating arithm.
interconnect Nearest Neighbor (NN) NN + next-hop
+ 8 predicate buses + 8 data buses
I R N/
[ 5] \m/ - -
[mo\ \_Fv_/ Loe\ N Fu_/
pipelining ]
power, clock, and area| 91 mW at 300 MHz for 4mm?® |310mW at 400 MHz for 5.79mm?

Power, clock and area include the CGRA and its configuration memory, the VLIW processor for
non-loop code, including its 32K L1 I-cache, and the 32K 4-bank L1 data memory. These numbers
are gate-level estimates

the predication support of the CGRA. In domains such as SDR, where the loops
typically have no or very little conditional statements, this poses no problems.
For applications that feature more complex loops, such as in many multimedia
applications, this might create a bottleneck even when predicate speculation [97]
is used. This is where the ADRES template proves to be very useful, as it allowed
us to instantiate specialized CGRAs with varying predicate data paths, as can be
seen in Table 1.

4.1.3 Data Flow Manipulations

The need for fine-tuning source code is well known in the embedded world. In
practice, each compiler can handle some loop forms better than other forms. So
when one is using a specific compiler for some specific VLIW architecture, it can
be very beneficial to bring loops in the appropriate shape or form. This is no different
when one is programming for CGRAs, including ADRES CGRAs.

Apart from the above transformations that relate to the modulo scheduling of
loops, there are important transformations that can increase the “data flow” character
of a loop, and thus contribute to the efficiency of a loop. Three C implementations
of a Finite Impulse Response (FIR) filter in Fig. 9 provide an excellent example.

Figure 9a depicts a FIR implementation that is efficient for architectures with
few registers. For architectures with more registers, the implementation depicted
in Fig.9b will usually be more efficient, as many memory accesses have been
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a
const short c[15] = {-32, ..., 1216};
for (i = 0; i < nr; i++) {

for(value = 0, j = 0; j < 15; j++)
value += x[i+]j]xc[]];

r[i] = value;
}
b
const short c00 = -32, ..., cld4d = 1216;
for (i = 0; 1 < nr; i++)
r{i] = x[i4+0]%c00 + x[1+1]%cO0l + ... + x[1i+14]*cl4;
(o]
int i, wvalue, dO, ..., dl4;
const short c00 = -32, ..., cld4d = 1216;
for (i = 0; 1 < nr+l15; i++) {
do = d1; dl = d2; ; d13 = dl4; di14 = x[i];
value = c00 » d0 + 01 » dl + ... + cld4d = dl4;
if (i >= 14) r[i - 14 ] = value;

}

Fig. 9 Three C versions of a FIR filter. (a) Original 15-tap FIR filter, (b) filter after loop unrolling,
with hard-coded constants, (c) after redundant memory accesses are eliminated

Table 2 Number of execution cycles and memory accesses (obtained through simulation) for the
FIR-filter versions compiled for the multimedia CGRA, and for the TI C64+ DSP

Cycle count Memory accesses
Program CGRA TI C64+ CGRA TI Co4+
FIR (a) 11,828 1054 6221 1618
FIR (b) 1247 1638 3203 2799
FIR (¢) 664 10,062 422 416

eliminated. Finally, the equivalent code in Fig. 9c contains only one load per outer
loop iteration. To remove the redundant memory accesses, a lot of temporary
variables had to be inserted, together with a lot of copy operations that implement
a delay line. On regular VLIW architectures, this version would result in high
register pressure and many copy operations to implement the data flow of those copy
operations. Table 2 presents the compilation results for a 16-issue CGRA and for an
8-issue clustered TI C64+ VLIW. From the results, it is clear that the TI compiler
could not handle the latter code version: its software-pipelining fails completely due
to the high register pressure. When comparing the minimal cycle times obtained for
the TI C64+ with those obtained for the CGRA, please note that the TI compiler
applied SIMDization as much as it could, which is fairly orthogonal to scheduling
and register allocation, but which the experimental CGRA compiler used for this
experiment did not yet perform. By contrast, the CGRA compiler could optimize the
code of Fig. 9c by routing the data of the copy operations over direct connections
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between the CGRA ISs. As a result, the CGRA implementation becomes both fast
and power-efficient at the same time.

This is a clear illustration of the fact that, lacking fully automated compiler
optimizations, heavy performance-tuning of the source code can be necessary.
The fact that writing efficient source code requires a deep understanding of the
compiler internals and of the underlying architecture, and the fact that it frequently
includes experimentation with various loop shapes, severely limits the programming
productivity. This has to be considered a severe drawback of CGRAs architectures.

Moreover, as the FIR filter shows, the optimal source code for a CGRA target can
be radically different than that for, e.g., a VLIW target. Consequently, the cost of
porting code from other targets to CGRAs or vice versa, or of maintaining code ver-
sions for different targets (such as the main processor and the CGRA accelerator),
can be high. This puts an additional limitation on programmer productivity.

4.2 ADRES Design Space Exploration

In this part of our case study, we discuss the importance and the opportunities
for DSE within the ADRES template. First, we discuss some concrete ADRES
instances that have been used for extensive experimentation, including the fabri-
cation of working silicon samples. These examples demonstrate that very power-
efficient CGRAS can be designed for specific application domains.

Afterwards, we will show some examples of DSE results with respect to some of
the specific design options that were discussed in Sect. 3.

4.2.1 Example ADRES Instances

During the development of the ADRES tool chain and design, two main ADRES
instances have been worked out. One was designed for multimedia applications
[7, 71] and one for SDR baseband processing [11, 12]. Their main differences are
presented in Table 1. Both architectures have a 64-entry data RF (half rotating,
half non-rotating) that is shared with a unified three-issue VLIW processor that
executes non-loop code. Thus this shared RF has six read ports and three write
ports. Both CGRAs feature 16 FUs, of which four can access the memory (that
consists of four single-ported banks) through a queue mechanism that can resolve
bank conflicts. Most operations have latency one, with the exception of loads, stores,
and multiplications. One important difference between the two CGRAs relates to
their pipeline schemes, as depicted for a single IS (local RF and FU) in Table 1.
As the local RFs are only buffered at their input, pipelining registers need to be
inserted in the paths to and from the FUs in order to obtain the desired frequency
targets as indicated in the table. The pipeline latches shown in Table 1 hence directly
contribute in the maximization of the factor f}, in Eq. (1). Because the instruction
sets and the target frequencies are different in both application domains, the SDR
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CGRA has one more pipeline register than the multimedia CGRA, and they are
located at different places in the design.

Traditionally, in VLIWs or in out-of-order superscalar processors, deeper
pipelining results in higher frequencies but also in lower IPCs because of
larger branch misprediction penalties. Following Eq. (1), this can result in lower
performance. In CGRAs, however, this is not necessarily the case, as explained in
Sect. 3.3.1. To illustrate this, Table 3 includes IPCs obtained when generating code
for both CGRAs with and without the pipelining latches.

The benchmarks mapped onto the multimedia ADRES CGRA are a H.264AVC
video decoder, a wavelet-based video decoder, an MPEG4 video coder, a black-and-
white TIFF image filter, and a SHA-2 encryption algorithm. For each application
at most the 10 hottest inner loops are included in the table. For the SDR ADRES
CGRA, we selected two baseband modem benchmarks: one WLAN MIMO Channel
Estimation and one that implements the remainder of a WLAN SISO receiver. All
applications are implemented in standard ANSI C using all language features such
as pointers, structures, different loop constructs (while, for, do-while), but not using
dynamic memory management functions like malloc or free.

The general conclusions to be taken from the mapping results in Table 3 are as
follows. (1) Very high IPCs are obtained at low power consumption levels of 91 and
310 mW and at relatively high frequencies of 300 and 400 MHz, given the standard
cell 90 nm design. (2) Pipelining seems to be bad for performance only where the
initiation interval is bound by RecM 11, which changes with pipelining. (3) In some
cases pipelining even improves the IPC.

Synthesizable VHDL is generated for both processors by a VHDL generator
that generates VHDL code starting from the same XML architecture specification
used to retarget the ANSI C compiler to different CGRA instances. A TSMC
90 nm standard cell GP CMOS (i.e. the General-Purpose technology version that is
optimized for performance and active power, not for leakage power) technology was
used to obtain the gate-level post-layout estimates for frequency, power and area in
Table 1. More detailed results of these experiments are available in the literature for
this SDR ADRES instance [11, 12], as well as for the multimedia instance [7, 71].
The SDR ADRES instance has also been produced in silicon in samples of a full
SoC SDR chip [25]. The two ADRES cores on this SoC proved to be fully functional
at 400 MHz, and the power consumption estimates have been validated.

One of the most interesting results is depicted in Fig. 10, which displays the
average power consumption distribution over the ADRES SDR CGRA when the
CGRA mode is active in the above SDR applications. Compared to VLIW processor
designs, a much larger fraction of the power is consumed in the interconnects
and in the FUs, while the configuration memory (which corresponds to an L1
VLIW instruction cache), the RFs and the data memory consume relatively little
energy. This is particularly the case for the local RFs. This clearly illustrates that by
focusing on regular loops and their specific properties, CGRAs can achieve higher
performance and a higher power-efficiency than VLIWs. On the CGRA, most of the
power is spent in the FUs and in the interconnects, i.e., on the actual computations
and on the transfers of values from computation to computation. The latter two
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Table 3 Results for the benchmark loops
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Pipelined Non-pipelined
Benchmark| CGRA Loop #ops | ResMII | RecMII | I |IPC |RecMII | II | IPC
AVC Multimedia | MBFilterl 70 5 2 6 11.7 |1 6|11.7
decoder MBFilter2 89 | 6 7 91 9916 8| 11.1
MBFilter3 40 | 3 3 41100 |2 31133
MBFilter4 105 | 7 2 9117 |1 9| 11.7
MotionComp | 109 | 7 3 10 109 |2 10 10.9
FindFrameEnd | 27 | 4 7 71 3916 6| 4.5
IDCT1 60 | 4 2 51120 |1 5/12.0
MBFilter5 87 | 6 3 71124 |2 7124
Memset 10 | 2 2 21 5001 21 50
IDCT2 38| 3 2 31127 |1 31127
Average 10.0 10.5
Wavelet Multimedia | Forward1 67 | 5 5 6112 |5 5134
Forward2 77 |5 5 6 128 |5 6]12.8
Reversel 73|15 2 6122 |1 6122
Reverse2 37 1 3 2 31123 |1 31123
Average 12.1 12.7
MPEG-4 | Multimedia | MotionEst1 7515 2 6125 |1 6125
encoder MotionEst2 72 |5 3 61120 |2 6/12.0
TextureCod1 73|15 7 71104 |6 6122
CalcMBSAD 60 | 4 2 51120 |1 5/12.0
TextureCod2 911 2 21 4511 2145
TextureCod3 91 | 6 2 7113.0 |1 7/13.0
TextureCod4 91 | 6 2 7113.0 |1 7/13.0
TextureCod5 82 | 6 2 6137 |1 6|13.7
TextureCod6 91 | 6 2 71130 |1 7/13.0
MotionEst3 52 | 4 3 4113.0 |2 51104
Average 11.7 11.6
Tiff2BW | Multimedia | Main loop 351 3 2 3117 |1 31117
SHA-2 Multimedia | Main loop 111 | 7 8 91123 |8 91123
MIMO SDR Channel2 166 | 11 3 14119 |1 14{10.4
Channell 83 | 6 3 81104 |1 81 10.7
SNR 755 4 61252 6|12.5
Average 11.6 11.2
WLAN SDR DemapQAM64| 55 | 4 3 6 921 6]9.2
64-point FFT | 123 | 8 4 10 123 |2 12/ 10.3
Radix8 FFT 122 | 8 3 10122 |1 12110.2
Compensate 54 | 4 4 51108 |2 5/10.8
DataShuffle 153 | 14 3 14 1109 |1 16| 9.6
Average 11.1 10.0

First, the target-version-independent number of operations (#ops) and the ResMII. Then for each
target version the RecMII, the actually achieved II and IPC (counting SIMD operations as only one
operation), and the compile time
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Fig. 10 Average power configuration memory
consumption distribution of 14%

the ADRES SDR CGRA in FUs . o
CGRA mode 29% shared s

6%

data memory
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2%

interconnect
38%

aspects are really the fundamental parts of the computation to be performed, unlike
the fetching of data or the fetching of code, which are merely side-effects of the fact
that processors consist of control paths, data paths, and memories.

4.2.2 Design Space Exploration Example

Many DSEs have been performed within the ADRES template [7, 13, 18, 55,71, 77].
We present one experimental result [55] here, not to present absolute numbers but to
demonstrate the large impact on performance and on energy consumption that some
design choices can have. In this experiment, a number of different interconnects
have been explored for four microbenchmarks (each consisting of several inner
loops): a MIMO SDR channel estimation, a Viterbi decoder, an Advanced Video
Codec (AVC) motion estimation, and an AVC half-pixel interpolation filter. All of
them have been compiled with the DRESC compiler for different architectures of
which the interconnects are combinations of the four basic interconnects of Fig. 6,
in which distributed RFs have been omitted for the sake of clarity.

Figure 11 depicts the relative performance and (estimated) energy consumption
for different combinations of these basic interconnects. The names of the different
architectures indicate which basic interconnects are included in its interconnect. For
example, the architecture b nn_ex includes the buses, nearest neighbor intercon-
nects and extra connections to the shared RF. The lines connecting architectures
in the charts of Fig. 11 connect the architectures on the Pareto fronts: these are
the architectures that have an optimal combination of cycle count and energy
consumption. Depending on the trade-off made by a designer between performance
and energy consumption, he will select one architecture on that Pareto front.

The lesson to learn from these Pareto fronts is that relatively small architectural
changes, in this case involving only the interconnect but not the ISs or the distributed
RFs, can span a wide range of architectures in terms of performance and energy-
efficiency. When designing a new CGRA or choosing for an existing one, it is hence
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Fig. 11 DSE results for four microbenchmarks on 4 x 4 CGRAs with fixed ISs and fixed RFs,
but with varying interconnects. (a) MIMO, (b) AVC interpolation, (¢) Viterbi, (d) AVC motion
estimation

absolutely necessary to perform a good DSE that covers ISA, ISs, interconnect and
RFs. Because of the large design space, this is far from trivial.

5 Conclusions

This chapter on CGRA architectures presented a discussion of the CGRA processor
design space as an accelerator for inner loops of DSP-like applications such as
software-defined radios and multimedia processing. A range of options for many
design features and design parameters has been related to power consumption,
performance, and flexibility. In a use case, the need for design space exploration
and for advanced compiler support and manual high-level code tuning have been
demonstrated. The above discussions and demonstration support the following
main conclusions. Firstly, CGRAs can provide an excellent alternative for VLIWs,
providing better performance and better energy efficiency. Secondly, design space
exploration is needed to achieve those goals. Finally, existing compiler support
needs to be improved, and until that happens, programmers need to have a deep
understanding of the targeted CGRA architectures and their compilers in order
to manually tune their source code. This can significantly limit programmer
productivity.
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6 Further Reading

For further reading, the historic development of the ADRES architecture is interest-
ing, from the first academic conception of the architecture and its initial compiler
support [73-75], over the first fabricated prototypes [12, 25], to their commercial
derivatives [44]. The historic development of appropriate compiler models [24] and
scheduling techniques [78, 81, 82, 107] to achieve both high code quality and fast
compilation is interesting as well.

Some of the more interesting recent research directions include power optimiza-
tion by means of adaptive and multiple Vg4’s [33, 115, 120], architectural and
compiler support for nested loops [57, 121-123], more dynamic control [126], and
support for thread-level parallelism [80, 83, 110].

For pointers for further reading on other specific design aspects of CGRAs,
we refer to the corresponding sections in this chapter, which include plenty of
references.
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