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Abstract

To counter man-at-the-end attacks such as reverse engineering and tampering, software is often protected with

techniques that require support modules to be linked into the application. It is well-known, however, that

attackers can exploit the modular nature of applications and their protections to speed up the identification and

comprehension process of the relevant code, the assets, and the applied protections. To counter that exploitation

of modularity at different levels of granularity, the boundaries between the modules in the program need to

be obfuscated. We propose to do so by combining three cross-boundary protection techniques that thwart the

disassembly process and in particular the reconstruction of functions: code layout randomization, interprocedu-

rally coupled opaque predicates, and code factoring with intraprocedural control flow idioms. By means of an

experimental evaluation on realistic use cases and state-of-the-art tools, we demonstrate our technique’s potency

and resilience to advanced attacks. All relevant code is publicly available online.
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Abstract To counter man-at-the-end attacks such as

reverse engineering and tampering, software is often

protected with techniques that require support mod-

ules to be linked into the application. It is well-known,

however, that attackers can exploit the modular nature

of applications and their protections to speed up the

identification and comprehension process of the relevant

code, the assets, and the applied protections. To counter

that exploitation of modularity at different levels of

granularity, the boundaries between the modules in the

program need to be obfuscated. We propose to do so by

combining three cross-boundary protection techniques

that thwart the disassembly process and in particular

the reconstruction of functions: code layout randomiza-

tion, interprocedurally coupled opaque predicates, and

code factoring with intraprocedural control flow idioms.
By means of an experimental evaluation on realistic

use cases and state-of-the-art tools, we demonstrate our

technique’s potency and resilience to advanced attacks.

All relevant code is publicly available online.
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potency

1 Introduction

Software protection techniques such as code obfuscation

and remote attestation aim to mitigate man-at-the-end

(MATE) attacks that target software assets that come

with confidentiality and integrity requirements.

J. Van den Broeck, B. Coppens, B. De Sutter
Technologiepark-Zwijnaarde 126, 9052 Zwijnaarde, Belgium
Tel.: +32-92-649857
E-mail:
{jens.vandenbroeck,bart.coppens,bjorn.desutter}@ugent.be

The protections typically do not aim to prevent at-

tacks completely. Because MATE attackers have white-

box access to the software in their labs, the protections

aim to raise the costs of (i) identifying successful at-

tack vectors in the attacker’s lab, and (ii) scaling up

the attacks to exploit them outside the lab. The protec-

tions are in many cases best-effort rather than providing

well-defined security, and part of their protection comes

from security through obscurity. In practice, their effec-

tiveness decreases when attackers gain more knowledge

about their inner workings.

To be effective, protections should provide resistance

against many of the possible methods with which they

can be overcome, worked around, bypassed, and un-

done [11]. Multiple protections defending against dif-

ferent attack methods hence need to be layered upon

each other, ideally to the point where attackers con-

sider the attack path of least resistance not profitable

enough to attack the software.

Advanced protections, such as code mobility [9], ba-

rrier-slicing with server-side execution [10], remote at-

testation [46], anti-debugging by self-debugging [3], and

instruction set randomization [26], are deployed by means

of two forms of adaptions to that software. First, com-

ponents implementing functionality of the protections

are linked into the software. Secondly, the original code

is transformed.

To delay an attacker in overcoming protections, it

is useful to embed the linked-in protection components

stealthily, meaning hard to identify. For that reason,

protections components are always linked statically into

native software to be protected, whether that software

is itself a main binary or a dynamically linked library.

Static linking does not offer very strong protection,

however. In experiments with both professional pene-

tration testers and amateur hackers [11], we have ob-
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served that once attackers identify a small part of a

statically linked-in protection, they can all too easily

expand their reverse-engineering to the most vulnera-

ble program points. Beyond static linking, a number of

design obfuscations (such as function merging, inlining,

and outlining) are available to obfuscate the design of

the interfaces between the application and the protec-

tion components, but those can only be deployed when

all source code is available. In practice, this is not the

case: vendors of protection tools do not make the source

code of their protections available to their customers,

because of the practical security-by-obscurity reasons.

There hence exist few practical techniques to obfuscate

how protection components are integrated into the soft-

ware they help to protect. While some security vendors

have post-processing tools to secure their components

after they are integrated into their customers’ software,

both the inner workings of those tools and their effec-

tiveness are tightly protected secrets.

In this paper, we present novel techniques and com-

bine them with adaptations of existing techniques to

hide the location and boundaries of software components

that are linked together, including linked-in protection

components, with the goal of hampering MATE attacks.

All our techniques are based on post link-time bi-

nary rewriting. It hence does not suffer from module

boundaries and separate compilation the way compile-

time or source code techniques do. It offers an addi-

tional advantage over source-to-source code rewriting,

as our techniques are not limited to the expressiveness

of the used source language(s).

Our combined techniques are (1) whole-program code

layout randomization, (2) insertion of fake direct con-

trol flow transfers between procedures, and (3) factor-

ization of code fragments common to multiple compo-

nents without embedding them in separate functions.

Together, they make it much harder to for attackers

and their tools to identify and structure the relevant

code and the control flow in the program. Moreover,

as our evaluation will demonstrate, the combination of

techniques is resilient against a number of commonly

used and academic state-of-the-art manual and auto-

mated deobfuscation techniques.

This paper offers the following main contributions:

– We present new forms of code factoring to serve as

module boundary obfuscations.

– We discuss how to combine them with code layout

randomization and (existing) opaque predicates to

resist automated and manual attacks.

– We present an extended open-source tool chain that

implements the presented techniques.

– We analyse and evaluate the presented techniques

on use cases of real-world complexity, using popular

tools in attacker tool boxes.

This paper is structured as follows. Section 2 dis-

cusses our attack model. Sections 4–6 discuss the three

forms of obfuscations we combine. Section 7 presents a

quantitative experimental evaluation, after which Sec-

tion 8 discusses related work and Section 9 draws con-

clusions and looks forward.

2 Attack Model

We protect native software from man-at-the-end (MATE)

attacks. MATE attackers have full access to, and full

control over, the software under attack and over the

end systems on which the software runs. They can use

static analysis tools, emulators, debuggers, and all kinds

of other hacking tools. The attacks are looking to break

integrity and confidentiality requirements of assets em-

bedded in the software, e.g., to steal keys or IP, or to

break license checks and anti-copy protections. They

do so mainly by means of reverse engineering and by

tampering with the code and its execution.

MATE protections mostly aim at economically driven

attackers [38]. They are considered effective when the

provider’s cost of deploying the protections is compen-

sated by a resulting reduction in the loss of income due

to successful attacks. This reduction can result simply

from delaying attacks. The protection is maximally ef-

fective if it stops attackers before they reach their goal,

or even before they start an attack, e.g., because the

(supposed or observed) presence of protection lowers

the attackers’ perceived return-on-investment to the ex-

tent that they give up.

MATE attackers execute an attack strategy in which

they execute a series of attack steps. The strategy is

adapted on the fly, based on the results obtained with

previous attack steps. These include the testing of hy-

potheses regarding assets and protections. We refer to

literature for more information on and models of MATE

attack processes on protected software [11].

To be effective, protections deployed on software

and assets should cover as many as possible relevant

attack paths, i.e., paths that might be paths-of-least-

resistance for certain attackers. It is commonly accepted

that this can only be achieved by combining many pro-

tections in a layered fashion. The deployed protections

then become assets themselves, that protect each other

just like they protect the original assets.

In this section, we focus on the attack processes and

attack activities that are impacted by the protections
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presented in this paper. These are the essential pro-

cesses of:

– identifying and structuring the code components and

their functionality at different levels of granularity

and abstraction;

– identifying relevant relations between components;

– determining their features based on the relations;

– browsing through those elements to locate and iden-

tify the relevant fragments on which to execute ad-

ditional attack steps.

Attackers use tools, techniques, and heuristics to

build structured program representations such as con-

trol flow graphs (CFGs), call graphs, execution traces,

data dependency graphs, etc. of disassembled binary

code. For static attack activities, i.e., activities that do

no involve executing the code, most attackers rely on

disassemblers such as IDA Pro, Binary Ninja, GHIDRA,

Radare2, and DynInst to start their attacks. The disas-

semblers lift the representation of the binary program

from the concrete level of bits to a more abstract level

of assembler code structured in functions, CFGs, and

call graphs.

They then build mental models of the software in

which they assign meaning (i.e., some higher-level se-

mantics) to the different components (typically the func-

tions) and derive relevant features thereof. They do so

in terms of all the concepts they know as relevant from

past experience [11].

This assignment process and the derivation of fea-

tures is typically an iterative process that starts from

easily identified elements such as API calls and sys-

tem calls, XOR-operations, references to strings, known

patterns or fingerprints of certain algorithms, etc. That

leads the attacker towards the specific components of

interest, such as the data or code he wants to lift from

the software, or those parts of protections he wants to

tamper with to overcome the protections. Table 1 lists

some of the relations between components that attack-

ers exploit.

3 Protection Strategy Rationale

It is clear that if we can prevent tools from correctly

identifying the relevant relations and structures, we can

make the attacks harder to execute. From conversations

with professional reverse engineers at Dagstuhl Seminar

17281 in July 2017, we also learned that if tools present

incorrect relations and structure, this hampers attack-

ers even more because they then waste additional time

performing activities based on incorrect assumptions

and data.

In this paper, we target the disassemblers that at-

tackers rely on as discussed in the attack model. From

the field of software engineering, we know that code

comprehension benefits from well-structuredness of the

code [48,50] and a separation of concerns, with each

fragment having a single responsibility. It then follows

that attackers have a harder time comprehending code

that does not adhere to structures and concepts they

are familiar with, or that is structured incorrectly. In

this paper, we build on the hypothesis that attackers

have a harder time handling code fragments that each

individually implement multiple parts of multiple, un-

related high-level functions in a program, in particular

when those code fragments are not structured corre-

spondingly.

3.1 Rationale for Code Factoring

Concretely, consider the procedures in a program. At-

tackers recognize procedures by their prologues and epi-

logues, and by the fact that they are invoked through

function calls. It is a natural assumption that proce-

dures can be invoked from within different contexts. As

long as the semantics of the function in the multiple

contexts are somewhat related, i.e., it performs roughly

the same functionality in those contexts, the process of

assigning a meaning to the function can require little

effort.

It becomes much harder, however, to comprehend

code if a function implements multiple completely un-

related functionalities, depending on the context from

which they are called. This is exploited by obfuscation

techniques called function merging and fusion [38]. The

fused function is then invoked from completely unre-

lated contexts, to perform completely unrelated com-

putations, i.e., to implement very different semantics.

Comprehending the code becomes even harder if the

code fragment that implements those different function-

alities in different contexts is not even recognizable as

such, i.e., if it does not look like a procedure in the first

place. In software obfuscation, it is also a well known

technique to hide calls, returns, epilogues and prologues

by replacing their standard assembler idioms by alter-

native instruction sequences with the same semantics

but with different looks [30]. This thwarts disassem-

blers that do not recognize the replacements, and it

slows down human reverse engineers.

The obfuscations proposed in this work explicitly

build on this observation about the challenges that hu-

man attackers face when they try to attack and reverse

engineer software. The obfuscations do so by factoring

out code (outlining code) from unrelated contexts with-

out putting the factored code in separate procedures,
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Relation exploited by attackers Examples of exploitation in concrete attack

Control flow transfers Disassemblers such as IDA Pro deploy recursive descent
algorithms to identify code bytes to be disassembled and
to be partitioned into functions.

Data flow dependencies If an attacker has observed that values are XOR’ed be-
fore they are output, he often assumes they are being en-
crypted. The code that produces the mask used in the
XOR then draws the attention of the attacker if he is after
the embedded encryption key.

Spatial proximity of code fragments in code sections If an attacker has identified a code guard function, e.g.,
because it reads from the code sections as it hashes the
code bytes, he looks in the proximity of that function for
other functionality related to tamper detection, such as the
functions that check the final hash value. This is based on
the assumption that related functionality is linked into the
program together.

Temporal proximity of code fragments in an execution trace When an attacker tampers with the code of a program, and
as a reaction the program halts almost immediately, the
attacker will focus on the code executed right before the
halting to find the code fragment that checks the integrity
of the code.

Spatial proximity of data stored in memory When attackers know that structs on the heap hold values
with known patterns as well as unknown values they want
to steal, they search for the known patterns to find the
locations of the values to steal.

Table 1: Relations between structured software components and uses thereof by attackers.

instead using control flow idioms typically used for in-

traprocedural transfers.

Not only humans are challenged when facing such

factored out code fragments. Automated attack steps,

such as de-obfuscating transformations and data flow

analysis on which attackers rely, are also hampered.

First, it is well known that many data flow anal-

yses return more precise results when their sensitiv-

ity is improved. Higher sensitivity, e.g., in the form of
flow sensitivity, path sensitivity, or context sensitivity

comes at the cost of rapidly increasing running times

and resource consumption, however, so attackers need

to compromise between more precision and faster anal-

yses. While context sensitivity has been shown to be

both useful and practical in the context of multiple

whole-program binary analyses such as liveness analy-

sis and constant propagation [45,24,36] we know of no

path sensitive variants that are practical. As context-

sensitive analyses do not consider separate contexts for

factored code fragments that do not look like proce-

dures, they are of little help to attackers that aim to re-

cover the same information they would on unprotected

code.

Secondly, powerful, automated de-obfuscation ap-

proaches are available that build on the detection of

quasi-invariant behavior in obfuscated code. In essence,

those techniques iteratively filter out and simplify in-

structions that are observed to behave quasi-invariantly

(i.e., instructions that produce the same result every

time they are executed on some selected program in-

puts), as well as code that does not contribute to the

software semantics (i.e., to the input-output relation

the software displays for the selected inputs). This de-

obfuscation approach has been shown to succeed in

undoing obfuscations ranging from opaque predicates

(with corresponding conditional branches that are ei-

ther always or never taken) to the use of packers (be-

cause the unpacking of program code does not depend

on program inputs). Based on our experience with hu-

man attackers, this form of de-obfuscation is also per-

formed mentally by attackers that analyze code manu-

ally, i.e., when attackers derive properties from program

behavior observed, e.g., with debuggers. Although such

derivations are often unsound, MATE attackers only

care about the result, not about soundness.

By factoring out code fragments from multiple, un-

related contexts, we aim to prevent that the fragments

and the surrounding control flow behave invariantly,

and hence that they fall victim to the generic deob-

fuscation approach.

3.2 Rationale for Injecting Fake Edges

In addition to factoring, our strategy involves the in-

jection of fake control flow transfers into the binaries,

i.e., transfers that disassemblers will consider as possi-

bly taken during a program’s execution while they will

never be taken in practice.
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The reason to do so is that all disassemblers we know

deploy recursive descent algorithms to group disassem-

bled code fragments into functions. In short, whenever a

direct control flow transfer (or an indirect one of which

the targets can be resolved) implemented with an id-

iom for intra-procedural control flow is observed, the

disassembler considers the source and the target of the

transfer to belong to the same function.

By injecting fake edges with intra-procedural con-

trol flow idioms between code from different protection

components, we want to make the disassembler group

code fragments into functions incorrectly. The effect on

the produced CFGs of functions will depend on the in-

ternal operation and code representation of the disas-

sembler. We observed two major cases.

The first case consists of tools such as IDA Pro and

GHIDRA that are engineered from the ground up on

the assumption that each code fragment can only be-

long to one function. These tools hence partition the

identified basic blocks into function CFGs that start at

the identified function entry points. Basic blocks are it-

eratively assigned to functions if they are connected via

intra-procedural looking CFG edges to basic blocks al-

ready assigned to a function. This iterative assignment

is by default greedy: once a block is assigned to a func-

tion, the disassemblers will never move it to another

function (unless being instructed to do so by, e.g., by a

attacker plug-in, as we will discuss later).

Basic blocks connected by fake edges can as a re-

sult be put into the same function incorrectly. Precisely

where this will happen depends on the order in which

the greedy algorithm iterates over the basic blocks. In

other words, it depends on internal tool implementation
details. In any case, the reconstructed functions can

then mistakenly contain blocks from unrelated func-

tions (i.e., unrelated except for the fake relation through

the fake edges). As each block is only put in one func-

tion, a block being put into the wrong function implies

that another reconstructed function misses that block.

So in IDA Pro, GHIDRA, and alikes, the reconstructed

functions can be at the same time over-approximations

and under-approximations of the original functions.

The same effect will, by the way, also be a side-

effect of factoring, as the disassemblers will then put

each factored block in only one function. They can then

put the immediate successors of the factored blocks into

that function as well, some of which will be put in there

incorrectly.

The second case is Binary Ninja, which does not

make any assumption about the number of functions

to which a code fragment can belong. Instead, when it

identifies a function entry point, it adds all basic blocks

to the corresponding function for which it finds a possi-

ble (true or fake) path through intra-procedural looking

control flow transfers that it can resolve. This includes

all direct transfers, but also indirect transfers of which

it can resolve the potential targets. In Binary Ninja, the

injection of direct, fake, intra-procedural looking edges

can then only lead to reconstructed functions becom-

ing more over-approximations of the original functions.

(Obviously, because of unresolved indirect transfers, the

reconstructed functions can still be under-approximations

at the same time, but that is orthogonal to our work.)

Also for Binary Ninja, factoring will have a similar

effect on functions being over-approximated, because

all successors of all factored block dispatchers of which

Binary Ninja can resolve the potential targets will be

put in all functions to which the factored blocks are

added.

In conclusion, both classes of disassemblers can be

thwarted to some extent by injecting fake edges and by

code factoring. They can then produce incorrect CFGs

that mix parts of the original protection components,

thus hiding their boundaries from attackers, and thus

making their deployment more stealthy.

3.3 Rationale for Code Layout Randomization

As discussed above, our strategy involves confusing at-

tackers and the tools by factoring out originally unre-

lated fragments and by injecting fake edges such that

code fragments originally belong to different protection

combines get mixed up, and such that code fragments

play multiple roles to further add to the confusion.

Injecting edges by itself will not be enough, however.

Manipulating CFGs by adding edges only mixes up the

logical structure of the software, not the spatial struc-

ture. To avoid that attackers can undo the mix-up by

relying on spatial structure, we will combine fake edges

and factoring with a spatial transformation consisting

of code layout randomization. So at the the top level,

our approach consists of three transformations, which

we discuss in more detail in the next three sections.

Finally, we concede that both the attack model dis-

cussed in the previous section and our strategy to hin-

der attacks, are fuzzy rather than well-defined. To the

best of our knowledge, in the domain of practical soft-

ware protection against MATE attacks, there is no al-

ternative, however.

4 Code Layout Randomization

Attack heuristics include spatial proximity. Each source

code file typically contains code fragments that are closely



6 Jens Van den Broeck et al.

related. Software libraries to link programs against are

also structured along related functionality.

Compilers and linkers typically do not mix the bi-

nary code generated for different functions in a source

code file. Whole function bodies are typically placed one

after another in the text sections of object files, and text

sections of object files are placed one after the other in

linked applications or libraries, in which they are largely

grouped by the archive from which they were linked in.

Unless countermeasures are taken, related code frag-

ments are hence more likely located close to each other

in binaries. Attackers hence sometimes use proximity as

a guide during their hunt for code to attack. In other

words, they sometimes browse the code linearly.

Taking countermeasures in a link-time rewriter like

Diablo [45] is trivial, as already demonstrated in the

context of software diversification [15]. Mixing unre-

lated code can be done at any level of granularity, be-

cause all code is represented in one big CFG [45], from

which binary code in virtually any (randomized) order

can be generated.

The level of granularity at which the code layout is

randomized has to be considered carefully. At the coars-

est level, we can simply leave function bodies intact, but

randomize their order throughout a whole program or

library, as previously proposed to prevent memory ex-

ploits [28]. This already breaks proximity assumptions

regarding the archive and compilation unit levels. By

mixing protection and application functionality, we can

already improve the stealthiness of protection compo-

nents. For example, identifying one function as one code

guard computation then no longer automatically leads

the attacker to the related functionality in related func-
tions.

We can also randomize the order of instructions and

basic blocks, and mix instructions from all function

bodies. However, because of the used recursive descent

disassembler heuristics, such fine-grained code layout

randomization by itself does not hamper the partition-

ing or grouping of code into functions by disassem-

blers as discussed before. Moreover, the extra branches

and possibly worse instruction cache behavior follow-

ing from fine-grained layout randomization can severely

impact performance. When applied in isolation, fine-

grained randomization below the function level is there-

fore costly but hardly useful.

When the randomization is combined with obfusca-

tions that break the recursive descent strategy of the

disassembler, more fine-grained randomization can still

be useful, however. In that case, splitting up function

bodies and placing the parts in a randomized order pre-

vents the tools from deploying linear sweep strategies

to make up for the then defunct recursive descent strat-

egy. How to do so is precisely the aim of the fake edge

injection obfuscations discussed next.

5 Interprocedural Opaque Predicates

5.1 Disassembler Function Reconstruction Thwarting

To thwart the strategy of partitioning or grouping of

disassembled instruction sequences into functions based

on direct control flow transfers, we have two options.

First, we can replace direct transfers with indirect ones,

such as branch functions [30], to prevent that the dis-

assembler infers that two code fragments relate and be-

long in the same function. Note that this goal of thwart-

ing the disassembler’s function CFG reconstruction af-

ter bytes have already been disassembled into instruc-

tions is complementary to the original goal of branch

functions, which was to thwart the disassemblers’ abil-

ity to identify the locations of instruction bytes in the

executables, which is known to be a difficult task [34].

Secondly, we can add “fake” direct transfers that

trigger incorrect assignments of basic blocks to func-

tions. Such transfers can be added easily by means of

opaque predicates and corresponding conditional branches.

If we choose the predicate of the conditional branch to

opaquely evaluate to false, implying that the branch

will never be taken, we can simply choose any point in

the program as the target of the conditional branch,

thus injecting branch-taken CFG edges between com-

pletely unrelated code fragments. If we choose the pred-

icate to opaquely evaluate to true, we can inject fall-

trough CFG edges between code fragments from com-

pletely unrelated functions. This is trivial with the al-

ready existing support for code layout randomization.

Importantly, whereas choosing the targets of the

fake edges is to be done at link-time when all linked-in

code is available, the actual injection of opaque pred-

icates does not necessarily need to occur at link time.

Source-level obfuscators or obfuscating compilers can

be used for the latter as well. They can typically inject

more complex opaque predicates, which are then inte-

grated in the original code more stealthily as they are

compiled together with the original source code as long

as they can inform the link-time rewriter about the lo-

cation of the opaque predicates in the code. Obfuscating

compilers can do so by adding comments and mapping

symbols to the generated assembly code or object code,

source-level obfuscators can do so by describing the lo-

cations of inserted opaque predicate code in terms of

source line numbers. By means of debug information

in the object files, a link-time rewriter can then trans-

late the source line numbers to object code addresses,
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thus identifying the locations where fake edges can be

redirected to unrelated fragments at link time.

Fake CFG edges confuse the disassembler tools’ CFG

construction algorithms because their recursive descent

strategies are implemented greedily: starting from func-

tion entry points (identified through symbol informa-

tion or pattern matching), they traverse the code and

greedily assign traversed fragments to functions. Dur-

ing the traversal, they treat idioms for intraprocedu-

ral control flow, such as conditional branches, as pre-

cisely that: intraprocedural control flow. For unobfus-

cated compiled code, this works fine, because few if

any source languages feature interprocedural gotos, and

standard compilers don’t insert interprocedural branches

(with the rare exception of tail call optimization).

But without more complex data flow analysis or

other mechanisms to distinguish real from fake direct

edges out of conditional branches, the greedy strategies

fail. Depending on whether a basic block is first reached

through a fake or a true edge, it will be assigned to the

correct or incorrect function body. This implies that

we can try to steer the tools towards incorrect func-

tion partitioning and CFG reconstruction by inserting

fake edges in a controlled manner, but it also implies

that in the case of disassemblers that put a block in at

most one function, like IDA Pro, the result of the par-

titioning will depend on the order in which basic blocks

are traversed by the tools. In that regard, we observed

that tools like IDA Pro tend to give fall-through paths

precedence over branch-taken paths.

It is important to note that tools like IDA Pro offer

different views on the CFGs to human attackers on the

one hand, and to analysis tools on the other. In CFGs
stored in a database in support of plugins and exter-

nal analysis tools, IDA Pro stores all direct CFG edges

it has discovered during the disassembly process. This

includes all edges from direct transfers such as both

paths out of conditional branches. This database hence

includes the mentioned fake edges, which can be consid-

ered false positives (FPs). The IDA Pro GUI, which is

typically used by humans to study code, however, does

not display all such edges. Instead, it omits such edges if

they are interprocedural according to IDA Pro, mean-

ing that they connect basic blocks IDA Pro has put

in different functions. So attackers manually browsing

through CFGs in the tool’s GUI don’t get to see them.

When fake edges are (accidentally) omitted that way,

we can consider them as semi-true negatives (STNs).

They are FPs in the database view, but true negatives

(TNs) in the GUI view. When true edges are omitted

as a result in the GUI, they correspond to semi-false

negatives (SFNs). They are TPs in the database, but

false negatives (FNs) in the GUI view.

SFN and STN CFG edges hamper manual code com-

prehension and code browsing activities on the GUI, as

they result in code from different components, such as

protections and original application code, being pre-

sented as if it is part of the same functions, and code

originating from the same functions not being displayed

as such. By inserting such edges, we can contribute to

a much more stealthy integration of protection compo-

nents.

5.2 Resilience against Counterattacks

So far, we only discussed the potency of code layout ran-

domization and interprocedural opaque predicates to

confuse attackers and tools. Another important aspect

is resilience to attacks, because attackers can of course

still deploy all kinds of automated attacks to make up

for the deficiencies of the existing, basic CFG parti-

tioning and grouping strategies. They include static

attacks such as pattern matching [39], abstract inter-

pretation [17], and symbolic execution [52] to detect

opaque predicates, and dynamic attacks such as generic

deobfuscation [53], synthetic code generation [7], and

fuzzing [32]. The dynamic ones are not sound, but that

typically does not hamper attackers.

A first, critical point to make is that none of the

mentioned academic static techniques have been sci-

entifically validated as successfully breaking complex

forms of opaque predicates (such as the graph-based

ones from Collberg et al. [14]) on software of real-world

complexity. Symbolic execution, for example, was only

tested on programs of at most two functions [52]. Ab-

stract interpretation was only evaluated on opaque pred-

icates of which the program slice (i.e., the code comput-

ing the predicate) consisted of a tiny fragment immedi-

ately preceding the conditional branch [17].

A second point is that some academic trace-semantics-

based techniques such as synthetic code generation [7]

aim for recovering the original semantics of short ob-

fuscated code fragments in traces, but not for finding

fake edges. Those edges correspond to the more generic

concept of infeasible execution paths, which by defini-

tion do not occur in traces. Detecting the infeasibil-

ity as a form of invariant requires comparing multiple

occurrences of a fragment in a trace. That is not in

the scope of the existing synthetic code generation ap-

proach [7], but it is precisely what the so-called generic

de-obfuscation technique does [53]. We come back to

the latter later in the paper.

In practice, we have observed that both pattern

matching and local symbolic execution are effective at-

tack techniques [11] that might be usable to counter our

proposed transformations. In both cases, small slices of
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the predicates used in conditional branches are then

analyzed to determine whether or not they (likely or

definitely) correspond to opaque predicates. Depend-

ing on the size of the software under attack and the

immediate availability of a working attack tool box, at-

tackers perform this analysis manually or by means of

tool plug-ins that automate the analysis. Less skilled

attackers reuse existing plug-ins as is, expert attackers

can also customize plug-ins. On small software, attack-

ers prefer manual analysis when they assess that the

cost of setting up and customizing the tools will not

be worthwhile. As completely manual analysis does not

scale to larger software with many predicate instances

to analyze, automation is typically preferred for attacks

on larger software. That automation also often requires

manual effort, however, if only because the customiza-

tion of plug-ins requires the attacker to first determine

which forms of opaque predicates are useful to search

for, i.e., which code patterns to try to support.

At first sight, the attacker’s ability to perform these

attacks seems not hampered by the interprocedural na-

ture of the opaque predicates we propose to inject. Af-

ter all, the interprocedural aspect only directly impacts

the control flow from the conditional branch on, not the

code computing the predicate leading up to the condi-

tional branch.

However, by carefully choosing the targets of the

fake edges, we can directly impact the code slices of the

opaque predicates, or at least the perception thereof

by the attacker. We can in fact do so trivially by in-

terrupting a slice of one opaque predicate by means of

a fake edge coming in from another one. In the best

case, this results in the assembler mistakenly assigning
the instructions computing the predicate to multiple

functions. In that case, the GUI will not show all rel-

evant instructions in one function CFG. This will cer-

tainly hamper all manual activities of the attacker as

discussed above. But even if the whole slice is assigned

to the same function and hence shown on screen with

the correct control flow between the relevant instruc-

tions, the attacker will still to some extent be confused

when the fake edge is drawn as well.

To overcome this confusion, how small or big it may

be in practice, the attacker has to consider multiple

instances of opaque predicates together. Consider the

example in Figure 1 with predicates of contrived sim-

plicity. Fake edges are drawn dotted, but at first, the

attacker does not know they are fake. To learn that

they are truly fake, the attacker needs to consider both

fragments. In practice, we are not limited to coupling

pairs of opaque predicates mutually, we can easily cou-

ple more in larger cycles. A local code comprehension

task for the attacker then becomes a global one; the

effort needed to undo the protection grows.

A similar reasoning holds for fully automated analy-

ses. Had the opaque predicates not been mutually cou-

pled in the example of Figure 1, a simple constant prop-

agation, applied locally and iteratively with unreach-

able code elimination, would have sufficed to detect

them. In the coupled case, simple constant propagation

no longer suffices. Instead, a more complex conditional

constant propagation (CCP) [49] is now required. For

the example of Figure 1, a CCP starting only at the

top blue block would never mark any of the blocks in

red as reachable. Binary Ninja performs a similar con-

ditional value set analysis (VSA) on each function to

which its recursive descent disassembler has first added

all directly reachable blocks. On the example, if the top

block is a function entry point, Binary Ninja’s recursive

descent pass first adds all blocks except the top red

one to the corresponding function, and then performs

a conditional VSA starting at the entry block. On this

simple example, the results of the VSA would indicate

that the red blocks are not reachable from that function

entry point. An existing Binary Ninja plug-in can then

remove all red edges and blocks, and all dotted edges

from the function, eventually returning a function with

only the blue blocks and blue solid edges. Together with

dead code elimination, this plug-in would hence be able

to undo the opaque predicate insertion completely on

this simple example.

In general, the (mutual) coupling of opaque predi-

cates by letting fake edges interrupt slices implies that

path-sensitive versions of analyses are needed. If those

are applied locally, i.e., one slice at a time, they can suf-

fice to identify likely opaque predicates, i.e., predicates

that evaluate to constants on some execution paths. In

that case, the necessary increase in complexity of the

attack step is rather limited. If the attacker wants to

deploy a sound(ish) analysis, however, to get a degree

of certainty about the opaque predicates, the analysis

has to be performed on all mutually coupled fragments

together. This implies a considerable increase in com-

plexity. In the evaluation section, we will observe and

discuss how Binary Ninja’s conditional VSA and other

analyses fail to scale to realistically sized programs pro-

tected with coupled opaque predicates.

In summary, we can conclude that the resilience of

code layout randomization and interprocedural opaque

predicates, i.e., the effort needed to minimize their po-

tency, with respect to attacks of which we know they

are used in practice, is improved by coupling them in

the proposed way.

Admittedly, this security analysis is fuzzy rather

than well-defined. We consider a formal analysis out
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a = a + 1

a = 0

if (a == 0)

b = b + 1

b = 0

if (b == 0)

Fig. 1: Example of coupled opaque predicates

of reach at this point in time, not only for the protec-

tions against MATE attacks presented in this paper,

but for most if not all MATE protections. In Section 7,

we will perform a quantitative evaluation of a proto-

type implementation in which we mimick some real-life

attacks.

Finally, we acknowledge that because it only in-

jects invariant behavior into the software, the proposed

protection via mutually coupled opaque predicates and

code layout randomization does not protect in any way

against dynamic attacks such as the tracing-based ge-

neric deobfuscation. While we deem this acceptable, as

other protections can be used to shield of dynamic at-

tacks, such as anti-debugging, anti-emulation, and anti-

taint protections, we will still build on the protections

presented so far in the next section to also make some

dynamic attacks less effective.

6 Code factoring

To prevent that some of the stronger attacks can recon-

struct the CFGs of a program’s functions completely by

identifying fake edges that can never be executed, we

need to insert control flow transfers with more than one

true outgoing edge. In line with what we discussed in

Section 2, those true outgoing edges should look like

intraprocedural edges. In other words, intraprocedural

control flow transfer idioms should be used in general.

In order to thwart the partitioning or grouping of code

into functions, however, the edges should be interpro-

cedural, connecting code from different functions.

We can meet these requirements by deploying con-

trol flow flattening [47] and branch functions [30] across

multiple functions. Both control flow obfuscations can

be implemented with many forms of intraprocedural

looking control flow transfers such as conditional branches,

switch tables, and computed jumps. Some simple ex-

amples are depicted in Figure 2 and Figure 3. However,

in that case the transfers can still be observed to be

Context 1+2

Context 2Context 1Context 2Context 1

B

A

C

Dispatcher
(next)

B

Next = B

A

C

E

D

G

E

Next = E

D

F

F

G Next = F

Fig. 2: Control flow flattening

Context 1+2

Context 2Context 1Context 2Context 1

A

B

Dispatcher
f-1(param)

Param = f(B)

A

B

C

D

C

D

Param = f(D)

Fig. 3: Branch function

semantically irrelevant: in a program trace, their exe-

cutions will never depend on actual input values, only

on constants such as those assigned to next in Fig-

ure 2 and param in Figure 3. Furthermore, apart from

steering control to the appropriate continuation points

depending on how they are reached, the injected code

fragments then do not contribute to the output of the

program. For both reasons, these fragments will get de-

obfuscated by the approach of Yadegari et al. [53].

To counter this, we propose to combine the men-

tioned obfuscations with code factoring, as illustrated

in Figure 4. Blocks B and E are identical in the origi-

nal code. If both of them can actually be executed in

the original program, both edges coming out of the fac-

tored block BE will be executable in the transformed

program. So the transfer at the end of block BE will

show variable behavior. Moreover, the code in BE will

be executed on data from two different contexts, and

hence also display variable behavior. Moreover, as the

original fragments B and E mattered for the original

program, we can assume the factored block BE to be

semantically relevant in the transformed program. The

generic de-obfuscation approach of Yadegari et al. will

therefore fail.

Code factoring is not new. Several forms have been

proposed in the past to compact programs [24]. Our de-

ployment of factoring serves the purpose of obfuscation,
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Context 1+2

Context 2Context 1Context 2Context 1

B

A

C

BE

B2

B1

A

C

E

D

F E2

E1

D

F

dispatcher

Fig. 4: Code factoring for obfuscation

however, so it differs in two significant ways from previ-

ous deployments. First, we do not factor code into new

functions that get called and end with return instruc-

tions. Instead, we use idioms of intraprocedural control

flow, such as conditional branches, switch tables, and

computed jumps. Secondly, we do not strive for more

compact code. This implies that we can transform non-

identical code fragments to make them identical, even

when that involves prepending or appending extra in-

structions to the original fragments that move values

between registers.

With these different requirements, we developed a

significantly different code factoring technique. The most

relevant aspects are a fast preliminary identification of

potential fragments to be factored, the identification of

actual factoring candidates, the order in which those

are selected for transformation, the preparation of the

selected ones, and the actual factoring transformations

themselves.

6.1 Potential Factoring Candidates

To factor code, identical code fragments need to be

identified or created. Existing factoring techniques [22,

19,45] pre-partition code fragments using fingerprints.

The fingerprinting functions are simple and strike a bal-

ance between recall and precision. They are defined

such that code fragments that are “similar enough”

to be likely candidates for factoring are mapped onto

the same fingerprint. Much more complex and time-

consuming precise checks of factoring pre-conditions,

which also analyse the fragments’ surroudings, are only

performed on sets of fragments within the same parti-

tion, i.e., with the same fingerprint.

In existing code factoring techniques focussing on

compaction, “similar enough” is defined as “nearly iden-

tical”, i.e., having identical instruction schedules, and

(almost) identical register allocations. The underlying

assumption is that less similar fragments might well be

factorable, but likely glue code will have to be injected

around them before they can be factored, which will

likely undo the compaction gains. Furthermore, to fur-

ther limit the search space by focusing on worthwhile

cases, existing techniques typically consider fragments

consisting of one or more basic blocks, such as whole

single basic blocks, single-entry CFG subgraphs of mul-

tiple blocks, and whole functions/methods [2,24,20,29,

40]. An underlying assumption is that it is much less

likely to find nearly identical, worthwhile fragments in-

side single basic blocks if the containing blocks are not

nearly identical as a whole.

For our obfuscation purpose, the size of the glue

code is only a secondary concern. We hence have to

strike a balance differently. We opted to do so by not

factoring fragments consisting of one or more whole ba-

sic blocks. Instead we focus on slices (as defined by Hor-

witz [43]) and instruction sequences that are limited to,

i.e., originate from within, single basic blocks. We only

consider slices and sequences that exclude control flow

transfer instructions.

The slices we consider as candidates for factoring

are directed acyclic graphs (DAGs) with a single sink

node. The DAGs’ nodes are instructions and their edges

are data dependencies. Instructions can define multiple

slices, ranging from the single-instruction slice consist-

ing of only the instruction itself, to the largest possi-

ble incoming data-dependency DAG within the instruc-

tion’s basic block. Besides in the slices they define them-

selves, instructions can also show up in the slices defined

on instructions further down in their basic blocks. The

sequences we consider are sequences of instructions in

the order in which they occur in the basic blocks. All

subsequences of the instruction sequence constituting

the block are considered. In the remainder of this pa-

per, we use the term fragments to denote both slice

and sequences. They are treated mostly identically in

our factoring approach.

The only point where their treatment differs is in

the computation of fingerprints. For sequences, we iter-

ate over the instructions in their order in the original

program. For slices, we iterate over the instructions in

a canonical order that abstracts from the precise order

in which the instructions occur in the program. This

canonicalization is useful because nodes in a DAG are

only partially ordered, and compilers generate different

instruction orders for the same DAGs depending on the

other instructions mixed in between them.
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The fingerprints consist of the concatenation of at

most four instructions’ opcode (e.g., ADD, MOV, ...),

their operand types (e.g., two registers, one register and

an immediate, ...) and some of their flags (e.g., pre-

or post indexed). We found that including only four

instructions in the fingerprint strikes a good balance

between precision, recall, and memory consumption.

It can also be useful to consider the hotness of code

fragments, i.e., their contribution to the total execu-

tion time of a program as determined with profiling.

Excluding the hottest fragments helps to reduce the

performance overhead.

6.2 Actual Factoring Candidates

Being nearly identical does not suffice for actual factor-

ing. For sets of nearly identical fragments, we also need

(i) to extract the fragments from their basic blocks; (ii)

to make fragments truly identical by reallocating regis-

ters and by replacing non-identical immediate operands

by constants stored in registers; (iii) to add a dispatcher

to “return” from the factored fragment and to feed that

dispatcher with the necessary inputs at each “call site”.

The latter two result in increased register pressure. Our

binary rewriter does not convert the higher-level exe-

cutable code to a higher level IR. Hence we need to

transform the code and handle the register pressure

locally. Concretely, this means we have to inject glue

code in the form of register transfer instructions such

as move, copy, swap, and spills to memory around the

fragments. Foremost, we need to check whether we can

actually perform the required rewriting within the ca-

pabilities (available transformations and analysis preci-

sion) of the link-time rewriter. As different dispatchers

come with slightly different requirements, we also need

to check which dispatchers can be used for which sets.

Figures 5, 6, and 7 illustrate the required transfor-

mations with 32-bit ARMv8 code. The selected slices

are marked in bold in Figure 5. They have been resched-

uled into separate blocks in Figure 6. To enable the

factoring already applied in Figure 7, the differences in

immediate operands and register allocations have been

overcome by inserting a number of move and swap oper-

ations in blocks 1b, 2a, and 2b. The dispatcher in block

3b is a simple conditional branch. In the first instruc-

tion of block 2a, the controlling register r9 is set to zero,

to control and enable the execution path 2a-3a-3b-2b.

For controlling and enabling the path 1a-1b-3a-3b-1c,

register r9 does not need to be set to a specific value.

Instead, the fact that r9 is used as a base address in

the store preceding slice 1 is relied upon: as user ap-

plications have no data mapped onto the lowest page

in virtual memory, we can assume that r9 will be non-

zero in the code following the store. This assumption

is optional and can easily omitted in scenarios where it

would not hold, such as kernel code.

To test whether sufficient glue code can be gener-

ated to make a fragment set actually factorable, we

use a bi-directional, context-sensitive interprocedural

liveness analysis [21]. To identify already available con-

stants as input to dispatchers, we perform a flow-sensitive,

context-sensitive (k-depth with k=1) constant propaga-

tion analysis [25]. On top, we developed a simple flow-

sensitive, context-sensitive (k-depth with k=1), bidi-

rectional, interprocedural non-zero analysis that tracks

which registers hold values that are definitely non-zero.

As these data flow analyses operate at the level of exe-

cutable code, where useful alias information is sparse [23],

they only analyze data in registers.

The constant analysis and the non-zero analysis al-

low us to reuse values that already have semantic rele-

vance in the original program to control the dispatcher.

If, for some factored fragment, this is the case for more

than one of the contexts from which the factored frag-

ment was extracted, the dispatcher is then controlled by

semantically relevant data originating from more than

one execution context. The invariants that held in those

original contexts in isolation likely do not hold in the

merged context after factoring. We conjecture that this

makes code comprehension harder. It also ensures that

de-obfuscation techniques based on (quasi-)invariants

will not work on the factored code.

In the example, slice 2’s registers were renamed to

those of slice 1. In many cases, candidate sets consist of

more than 2 slices. Trying out all possible register re-

namings to select the best one would increase the code

analysis time significantly, so instead we use a simple

heuristic to select one of the slices as reference slice

to which the others are renamed. This simple heuristic

in practice also favors more likely successful renamings

over less likely successful ones. In slice 1 of the example,

the value loaded into r5 by the second load is live-out.

In slice 2, the value loaded into r8 by the correspond-

ing load is overwritten by the add. So an allocation like

that of slice 2 cannot replace that of slice 1. In our

simple heuristic, we count the number of different reg-

isters occurring in the original fragments, and we pick

the one with the highest number as reference fragment.

In case the heuristic does not favor one fragment over

the others, and when (optional) profiling information is

available, we pick the fragment with the highest exe-

cution count as reference fragment.While these simple

heuristics are clearly not optimal, they provide a good

balance between analysis time, performance and size

overhead, and success ratio of the transformations.
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STR r4, [r9, #0x4]
LDR r4, [r13, #0x48]
ADD r7, r7, #0x8
LDR r5, [r13, #0x28]
CMP r7, r4
ADD r12, r5, #0x8
STR r12, [r13, #0x28]
MOV r7, r5
BNE (…)

LDR r7, [r13, #0x88]
LDR r8, [r13, #0x70]
CMP r12, r7
ADD r8, r8, #0x1
STR r8, [r13, #0x70]
BGE (…)

1

2

Fig. 5: Factoring candidate slices in bold in their re-

spective basic blocks

ADD r7, r7, #0x8
CMP r7, r4
MOV r7, r5
BNE (…)

CMP r12, r7
BGE (…)

LDR r4, [r13, #0x48]
LDR r5, [r13, #0x28]
ADD r12, r5, #0x8
STR r12, [r13, #0x28]

LDR r7, [r13, #0x88]
LDR r8, [r13, #0x70]
ADD r8, r8, #0x1
STR r8, [r13, #0x70]

1a 2a

1b 2b

STR r4, [r9, #0x4]

Fig. 6: Split factoring candidate slices

ADD r7, r7, #0x8
CMP r7, r4
MOV r7, r5
BNE (…)

CMP r12, r7
BGE (…)

CMP r9, #0x0
BEQ (2b)

MOV r9, #0x0
MOV r14, #0x70
MOV r11, #0x1
MOV r10, #0x88
MOV r7, r12
B (…)

SWAP r7, r4
SWAP r8, r12
SWAP r12, r4

LDR r4, [r13, r10]
LDR r5, [r13, r14]
ADD r12, r5, r11
STR r12, [r13, r14]

MOV r14, #0x28
MOV r11, #0x8
MOV r10, #0x48
B (…)

1c

2c

1b

2a

2b

3a

STR r4, [r9, #0x4]1a

3b

Fig. 7: Factored slices

6.3 Selection Order

Instructions can be present in multiple factoring can-

didate sets, but each instruction can only be factored

once. Furthermore, factoring a set of fragments changes

the data flow properties in the surrounding code, e.g.,

by making previously dead registers containing non-

zero or constant data live, so one factoring can impact

the potential of another candidate one. The order in

which we select and apply actual factorings is therefore

important.

The selection order also needs to strike a balance

between the level of protection and obfuscation speed.

The former requires a global optimization and decision

process that considers all potential candidate sets. How-

ever, that would require too much computation time.

The potential candidate sets can be very large, up to

hundreds of fragments, especially for small fragments of

one or two instructions. The larger subsets thereof are

typically not actual factoring candidates because our lo-

cal register renaming technique is not powerful enough

to overcome the differences in data flow properties of

all the fragments surroundings. For smaller candidate

subsets, the renaming is much more likely to succeed.

Our approach hence starts from small candidate sets,

that we expand as much as possible, i.e., as long as the

estimated protection value increases.

6.3.1 Priority Function

To order and compare candidate sets in terms of pro-

tection value, we need to consider measurable features

(i.e., metrics) that contribute to the potency, resilience,

and stealth of factoring them. We propose the following

ones:

1. the fragment size as their number of instructions;

2. the numbers of archives, object files, and functions

from which the fragments come;

3. the numbers of archives, object files, and functions

in which fragments were observed to be executed

for at least one input, as determined by (optionally)

profiling or fuzzing;

4. the possible dispatchers, and, if applicable, the al-

ready available constants or non-zero values.

The first metric prioritizes larger code fragments

over smaller ones. We conjecture this is useful because

factoring larger fragments results in more semantics be-

ing merged from different contexts, thus increasing the

potency of a factoring transformation. It can also be

useful for stealth, as it allows for better mixing of the

injected dispatcher code with the factored code. Finally,

it can contribute to the resilience against certain at-

tacks. For example, undoing a factoring transformation

by statically rewriting the code is more difficult when

more instructions need to be re-inserted in the contexts

from which they were factored.

The second metric, which actually consists of three

metrics, contributes to potency. Assigning higher value

to factorings of unrelated fragments originating from
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multiple object archives, object files, or functions, al-

lows us to prioritize candidate sets that break proximity-

based attack heuristics and that obfuscate component

boundaries.

The third metric, again a set of three metrics, relates

to resilience against dynamic attacks that build on ob-

servations of executions of the software under attack.

These metrics allow us to prioritize candidate sets of

which the effect of factoring them on the reconstructed

CFGs cannot be undone by omitting edges and nodes

that the attacker cannot trigger during dynamic at-

tacks and by then simplifying the remaining code, as

is done in the generic de-obfuscation attack by Yade-

gari et al. [53].

The fourth metric allows to consider the potency, re-

silience, and stealth of the different types of dispatchers:

some are harder to analyze but not very stealthy (e.g.,

dynamic switch dispatchers), others are stealthy in the

sense that they ressemble already occuring fragments in

the original programs (e.g., conditional jumps). Some

are more resilient to automatic de-obfuscation, others

are less so. The different dispatchers are discussed in

Section 6.4.

The metrics can be combined in a priority function

in various ways: in weighted sums, in decision trees, etc.

They can also be combined with profile information to

give lower priority to fragments on frequently executed

code paths to minimize the performance impact of the

factorings. The definition of the best priority function

is out of the scope of this paper. Importantly, a user

of our protection tool chain can customize it depending

on his use case at hand, taking into account the secu-

rity requirements of the software assets at hand (confi-

dentiallity, integrity, ...), a risk assessment of different

attack scenarios, and the performance budget.

6.3.2 Selection and Actual Factoring

Our factoring algorithm consists of two phases.

At the start of the selection phase, we perform the

already mentioned data flow analyses. Then a list of ini-

tial factoring candidates is assembled, ordered by their

protection value. This list includes sets of fragments

that are actual factoring candidates in the untrans-

formed program. In other words, the data flow prop-

erties of the original program meet the necessary pre-

conditions to apply the factoring transformations. No

factorings are applied yet, however.

To decide on the initial candidate sets to add to the

list in the selection phase, we implemented an itera-

tive algorithm that is applied to each of the potential

candidate sets. For each such set, the algorithm starts

by marking pairs of fragments that can be factored,

i.e., pairs for which register renaming can be performed

and at least one dispatcher can be generated. Using the

priority function to sort all possible pairs in terms of

protection value, we select the best starting pair as the

seed set. Next, we iteratively try to expand the seed

set. In each iteration, we add the one fragment from

the potential candidate set that results in the biggest

increase in protection value. This continues as long as

the protection value increases. The final expanded set

is then added to the list of actual factoring candidates,

in which we also keep track of the possible dispatch-

ers, available constants or non-zero values, and other

useful information to steer the dispatcher. The frag-

ments in the expanded set are removed from the po-

tential candidate set, and the whole process is repeated

with other seeds until no sufficiently valuable seed sets

can be found anymore.

In the factoring phase, we iterate over the ordered

list of actual factoring candidate sets in decreaseing pri-

ority. We factor each set if the necessary pre-conditions

have not been invalidated by a previously applied fac-

toring. Our prototype implementation can be config-

ured on how to choose specific dispatchers from the

available ones for each factoring, such as randomly or

giving priority to specific forms. After each factoring,

we update data flow information by means of incremen-

tal versions of the mentioned analyses to propagate the

impact of the performed factoring on available regis-

ters, constants, and non-zero values to the necessary

program locations.

6.4 Dispatchers

Many different dispatchers can be designed. We devel-

oped support for four types.

6.4.1 Conditional jump dispatcher

For sets of two fragments, a simple conditional branch

can serve as dispatcher, as in Figure 7. A branch con-

dition like equal-to-zero can be steered with a zero and

an unknown non-zero value that already has a semantic

role in the original program. If no constants or non-zero

values are available at the program locations of the orig-

inal fragments, glue code is injected to produce them,

possibly in an obfuscated manner and hoisted in the

code such that a local static analysis does not suffice

to detect it. We will come back to this in Section 6.5.

Moreover, there is no need to keep it in a register, it

can also be stored in memory. All kinds of schemes can

be imagined that opaquely produce or load specific con-

stant values or other values, always negative or always

positive values, etc.
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These dispatchers offer the major advantage that

disassemblers like IDA Pro and Binary Ninja will rec-

ognize them as intraprocedural control flow, and thus

we can rely on them to steer the disassemblers towards

incorrect partitioning and grouping of code into func-

tions.

In terms of preconditions, it is important to note

that this type of dispatcher sets the processor’s status

flags. If those were live-out in the original fragments, it

means the status bits have to be saved somehow, either

in registers or by spilling them to memory. Saving and

spilling status flags is rarely done in compiler-generated

code, however, so when it occurs, it makes the code im-

mediately suspicious in the eyes of attackers. For that

reason, we opted not to use this type of dispatcher when

the status flags are live-out in any of the involved frag-

ments. Whether or not this is the best choice under all

circumstances admittedly is open for debate.

For sets of more fragments, trees of multiple condi-

tional branches can be used, but our prototype imple-

mentation is currently limited to single branches that

are fed data (zeroes and non-zero values) directly through

registers.

6.4.2 Indirect branch dispatcher

For larger fragment sets, we can use branch-to-register

dispatchers, similar to the branch functions of Linn et

al [30]. In the simplest implementation, the exact ad-

dresses of the destination blocks are produced in the

glue code preceding the extracted fragments, but less

manifest schemes can easily be constructed.

Very simple schemes in which addresses are pro-

duced directly and locally, i.e., in glue code immediately

preceding the transfer to the factored fragment, are not

resilient to even relatively simple static analysis. For ex-

ample, IDA Pro out-of-the-box identifies directly pro-

duced addresses during its recursive disassembly pro-

cess and continues disassembling at those addresses. If

the bytes at those addresses correspond to valid instruc-

tion encodings, IDA Pro adds the code at those ad-

dresses to CFGs, albeit in separate functions to which

it does not create edges from the dispatcher. Complex

schemes in which addresses are computed right before

the branch-to-register instruction can be made com-

pletely resilient against static analysis and even the

generic de-obfuscation of Debray et al., but they come

with the disadvantage that they are not at all stealthy.

For example, it happens pretty rarely that values are

XOR-ed before serving as a branch target, so schemes

based on XOR-ing can be targeted with pattern match-

ers.

Unlike conditional jump dispatchers, IDA Pro does

not add outgoing edges to this type of dispatcher. So

while it can be used to prevent the tool from construct-

ing complete function CFGs out of the box, it cannot,

by itself, steer IDA Pro towards incorrect CFGs that

incorporate basic blocks from multiple, unrelated func-

tions. As we will discuss in Section 6.5, we can com-

bine this type of dispatcher with other obfuscation con-

structs to reach exactly that.

In our prototype obfuscator, we only implemented

support for schemes with direct address production in

a dead register in the glue code preceding the factored

fragments.

6.4.3 Static switch table dispatcher

Whereas computed jumps occur rarely in compiled C

and C++ code, indirect jumps via table look-ups oc-

cur regularly, because switch statements are typically

compiled into such look-ups. Two variations exist: ad-

dress tables and branch tables. In the former the ad-

dress of the case to be executed is loaded from a table

and jumped to, in the latter a computed jump is per-

formed into a table of branches, which then forwards

control to the case to be executed. Before the look-up,

a bounds check is often performed. If it fails, control is

transferred to the default case.

Table-based dispatchers mimicking switch dispatch-

ers are therefore more stealthy than branch-function-

like dispatchers. With this type of dispatcher, the glue

code before factored fragments passes indexes to the

dispatcher. These can again be produced directly or in

some obfuscated way, and either locally or hoisted. In-

dexes can also be derived from known constants already

in registers in the original code upon entry to the fac-

tored fragment.

The tables can be inflated with fake target addresses

or jumps to fake targets. Tools like IDA Pro and Binary

Ninja handle many patterns of switch table implemen-

tations and implicitly assume that the dispatchers im-

plement intraprocedural transfers, so by implementing

this dispatcher in a suitable pattern, they can be steered

towards creating many fake edges that result in incor-

rect CFG partitioning and grouping. Disassemblers will

typically also use the bounds check to determine the size

of the table, so by inserting a fake bounds check, they

can be fooled also in that regard.

In our prototype tool, we implemented support for

both forms of tables. The tool inserts (fake) bounds

checks if the condition registers are available. If not,

there simply is no bounds check inserted. In that case,

tools like IDA Pro typically do not analyze the switch
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statement and the table, and simply do not add outgo-

ing edges at all.

Finally, we need to note that whereas look-up based

indirect control flow transfers are more stealthy than

computation-based indirect transfers, their use for fac-

toring can still lack stealthyness, in particular for large

fragment sets. This is of course the case because in

non-obfuscated and hence well-structured code, switch

statements typically have a low fan-in. Our factored

fragments, however, have a fan-in equal to their (true)

fan-out. High fan-ins are suspicious in the eyes of at-

tackers.

The strength of this form of factoring therefore has

to come from its improved potency and resilience. The

potency can be improved by combining this factoring

with other obfuscations, as we will discuss in Section 6.5.

6.4.4 Dynamic switch table dispatcher

To improve both the potency of look-up-based dispatch-

ers and their resilience against static analyses, we pro-

pose to make the look-up tables dynamic rather than

static.

In compiled code, there is a static one-to-one map-

ping of dispatchers to tables. We are not bound by this

restriction, however, and can let dispatchers dynami-

cally switch between multiple tables. To that extent,

we designed and implemented what we call dynamic

switch tables. Given a set of global data tables, one such

dispatcher may address any of these tables during the

execution of the program. The key idea is to separate

data table selection from its usage, both spatially and

temporally. We do this by introducing so-called table

selection points in the CFG: locations where we insert

a small instruction sequence to select one of the global

data tables. We store the base address of the selected

data table in a global variable used by the dispatcher.

By separating the selection and use of the tables, a sin-

gle dynamic switch table dispatcher may address differ-

ent global data tables at different times during a single

run.

Figure 8 shows the example factoring of two frag-

ments B and E. The end result is shown on the right:

three table selection points, the factored block BE, a

dynamic switch table dispatcher, its global variable (x),

and data tables T1, T2 and T3. The glue code with the

transfers to the factored block only contains instruc-

tions to produce the switch indices for each control flow

path (m for fragment A and n for fragment B). The lo-

cation where x gets assigned a new value does not re-

ally matter; the distance between the dispatcher and

the table selection points can be arbitrarily large. Us-

ing a reachability analysis, the obfuscator determines

CODE

B

A

C

BE

index=m

A

C

E

D

F

index=n

D

F

Dispatcher
x[index]

xT1 xT2
xT3

... ...

DATA

m:
...
F

T3:

...

n:
...
C

T2:

D

n:
...
C
...

T1:
x:

...
m:

Fig. 8: Transformation with dynamic switch tables

which table selections reach which assigments of switch

indices. In the example, selections of T1 and T2 reach

the point where the index is set to m. This leads to

the constraint that T1[m]=T2[m]=C. The tables need to

be filled in respecting all such constraints. Similar to

static switch tables, we can also add false entries (e.g.,

at index m in table T2) to confuse the attacker and his

tools.

Compared to static switch table dispatchers, dy-

namic table dispatchers increase the complexity by in-

troducing an extra layer of indirection, which known

static analysis cannot resolve, in particular when mul-

tiple obfuscations get combined, as will be discussed

in Section 6.5. We also observed that these dispatchers

mislead IDA Pro into constructing incomplete CFGs,

because it is incapable of analysing them properly. Con-

sequently, the recursive-descent disassembler does not

always disassemble all the instructions in the binary

and associations between (sometimes large) portions of

code are lost. The potency and resilience of this dis-

patcher are thus high. By contrast, this dispatcher is

not stealthy: an attacker may find it strange that a dis-

patcher exists with no detected outgoing control flow.

Given the high potency and resilience, we believe this

lack of stealthiness does not completely void its useful-

ness.

The preconditions for this dispatcher are identical to

the ones for traditional switch-based dispatchers, with

the additional requirement that one extra register needs

to be available to store a temporary value in.

6.5 Integration with other protections

A potential weak point of the factoring is that the com-

putation of the values controlling the dispatchers (such

as the index into a table, or a zero constant) is done

in a linear control flow path leading up to the transfers
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to the factored code. We can fall back to all kinds of

existing obfuscations to obfuscate this calculation, but

the level of obfuscation is limited by the performance

budget.

Complementary, e.g., to light-weight obfuscation, we

can increase the potency and resilience of the proposed

techniques by coupling the factorings. We can couple

them with each other as well as with the opaque pred-

icates. In Section 5.2, we already discussed how multi-

ple opaque predicates can be coupled by directing fake

edge to points in the middle of (other) opaque predi-

cate computations. Likewise, we can also redirect fake

opaque predicate edges to the middle of instruction se-

quences that compute dispatcher control values. And

we can choose the targets of fake entries in the tables

of switch-based dispatchers in exactly the same way to

obfuscate opaque predicate computations as well as dis-

patcher controller computations. That way, we turn the

static analysis and deobfuscation of opaque predicates

and factoring into one global hurdle for attackers.

7 Experimental Evaluation

With our experimental evaluation, we aim at providing

(partial) answers to the following research questions.

1. Are the proposed transformations easy to apply? In

other words, are there enough relevant fragments to

be found in real programs to which we can apply

the transformations.

2. To what extent do the proposed transformations

hamper an attacker that wants to reverse engineer

protected programs? In other words, what is the po-

tency of the proposed transformations?

3. How easy is it undo or circumvent the protection

achieved by the transformations? In other words,

what is their resilience against a number of feasible

counterattacks.

4. What is the cost of applying the transformations in

terms of overhead?

5. To what extent are the results dependent on the

precise configuration of our tools.

In the following sections, we try to answer these

questions to some extent by reporting on experiments

we conducted. We do so by analysing the effect that a

prototype implementation has on a number of popular

tools in attacker tool boxes when that prototype is de-

ployed on benchmarks that are representative enough

of real-world programs. At the end, we also draw some

lessons from our experimentation.

7.1 Prototype Implementation

We implemented the proposed techniques in the AS-

PIRE Compiler Tool Chain (ACTC) [6], which can com-

pose multiple protections through source-to-source and

binary code rewriting. All proposed techniques are im-

plemented in Diablo [45], the ACTC’s link-time binary

code rewriter. The code is available as open source at

https://github.com/csl-ugent/diablo/tree/oisp.

Our prototype has limitations. The binary rewriter

does not support trees of conditional branch dispatch-

ers, and lacks global register allocation and the option

to spill and free status registers. Furthermore, the cur-

rently supported opaque predicates are limited to al-

gebraic ones. More complex ones can be supported by

combining the ACTC’s source-to-source rewriting to in-

ject complex predicates (e.g., graph-based ones [38] or

predicates resilient to symbolic execution [5]) with bi-

nary rewriting to let fake edges cross component bound-

aries. Finally, the rewriter lacks support for C++ ex-

ception handling.

7.2 Benchmarks

We have validated correctness on all C and C++ pro-

grams from the SPEC CPU2006 benchmark suite [16]

(excluding 453.povray and 471.omnetpp that depend

on exception handling) and on two industrial use cases

from the ASPIRE research project [1]. Whereas the

SPEC programs are stand-alone Linux binaries, the in-

dustrial use cases are dynamically linked Android li-

braries that are loaded into third-party applications.

Nagravision contributed the first use case, a Digital

Rights Management (DRM) plug-in that is loaded into

the Android DRM and mediaserver daemon processes.

SafeNet contributed the second use case, a software li-

cense manager (SLM) that is loaded into the Android

Dalvik engine. Those daemons and engines are complex

third-party multi-threaded processes that load and un-

load the libraries frequently. They hence stress-test our

prototype.

The ASPIRE project deployed and validated the

many ACTC-supported protections on those two use

cases to mitigate attacks on the assets embedded in

them, in line with the assets’ security requirements as

formulated by the security experts of the companies

that contributed them [18]. As part of these protections,

numerous archives are linked into the libraries. The pro-

tected use cases thus form perfect candidates to evalu-

ate the proposed methods for stealthy, obfuscated inte-

gration of components proposed in this paper. Table 2

lists the deployed protections, and the number of com-

ponents linked into the libraries thereto. In addition,

https://github.com/csl-ugent/diablo/tree/oisp
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we consider the SLM use case to consist of three com-

ponents itself (the manager and linked-in open-source

crypto and math libraries) and the DRM case of two

components (the manager and some linked-in libgcc.a

functionality). From the overall instruction count num-

bers in Table 2, it is clear that our use cases are not

micro-benchmarks, but applications and libraries of real-

world complexity.

By contrast, the ACTC does not deploy additional

protection on the SPEC benchmarks, as those embed

no security-sensitive assets. Still, three of those bench-

marks have their source code split over multiple direc-

tories: 436.cactusADM, 445.gobmk, and 454.calculix.

By treating each directory as a separate archive, we can

still evaluate our techniques on them. Figure 9 plots the

relative sizes of the benchmarks’ components on the

x-axis; the y-axis is the code coverage in the different

components obtained when we profiled the benchmarks

on our training inputs. These data enable the interpre-

tation of measurement results below.

7.3 Applicability

First, we analyse the applicability of the different trans-

formations. Code layout randomization is applicable ev-

erywhere trivially. Opaque predicates and related con-

ditional branches can also be inserted almost every-

where easily. In our prototype obfuscator, the user can

specify the probability with which an opaque predi-

cate is injected into each basic block. A pseudo-random

process then chooses blocks and opaque predicate con-

structs accordingly.

By contrast, the proposed factoring techniques are

not applicable trivially: factorable fragments need to

be available, preferably over component boundaries. So

first, we measured the applicability of factoring. Fig-

ure 10 shows the fraction of the original instructions

that get factored in five cases: when all four types of

dispatchers (indirect branches, switches, switches with

dynamic tables, and conditional jumps) are mixed with

some randomization, and when each of those four is de-

ployed in isolation. In each bar, the colored segments in

the stack mark the number of different archives from

which the slices/sequences factored together originate.

The lowest segment corresponds to instructions that are

factored from within only one archive. The second to

instructions that are factored from within two archives

etc. It is clear that a considerable fraction of all instruc-

tions gets factored. It is also clear that the amounts

of instructions factored from within multiple archives

clearly correlates with the number of available archives

and with the uniformity with which the application is

partitioned into archives. Figure 11 similarly shows that

many instructions are factored from within multiple ob-

ject files, at least for dispatchers that support slice sets

with more than two slices. Also at that level of granular-

ity, and hence also at the still lower levels of individual

functions and code contexts, the factoring approach is

hence capable of obfuscating component boundaries.

In the context of dynamic attacks such as generic

deobfuscation that focus on covered instructions with

quasi-invariant behavior, it is also useful to know how

many of the factored instructions were originally cov-

ered (i.e., executed) in one or more contexts. To that

extent, Figure 12 shows the distributions of the fac-

tored instructions in terms of the number of the covered

slices/sequences from which they were factored. Each

segment marks the fraction of all instructions that got

factored in a set of slices/sequences, where the number

of slices/sequences covered in the original program is in-

dicated by the color of the segment. This means that the

lowest segment corresponds to the instructions that got

factored in a set of which no slice/sequence is covered in

the original program. The next segment to instructions

that got factored in a set in which one slice/sequence is

covered, etc. The observed distributions are in line with

the data in Figure 9: when few instructions are covered

in the first place, even fewer get factored from within

one or more covered contexts.

Figure 13 shows similar data, but rather than con-

sidering all instructions, it only considers the covered

instructions in the protected program, i.e., the instruc-

tions targeted by dynamic attacks. From the overall

height of the bars, it is obvious that significant parts

of the covered instructions are factored. Moreover, the

vast majority of the factored covered instructions are

factored from multiple covered contexts. This implies

that in the protected program, most of the factored

fragments are executed on data from two contexts. This

implies that the injected dispatchers for the vast ma-

jority of the covered and factored slices do not display

quasi-invariant behavior.

Figure 14 presents a further dissection of the factor-

ing applicability, for the SLM benchmark. The heatmap

displays the relations between the number of factored

fragments in the protected program (color), the sizes

of the factored fragments (first x-axis), the number of

archives from which they are factored (second x-axis),

and the number of archives in which the factored frag-

ments were covered (y-axis).

As to be expected, the number of factored shorter

fragments is significantly larger than that for longer

ones. Second, the longer factored fragments all come

from within a single archive. From further examina-

tion, we actually observed that the exceptionally long

fragments originate from loop-unrolled code.
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Table 2: Number of components in the benchmarks

SLM DRM 436 445 454

Number of archives constituting benchmark (• in Figure 9) 3 2 17 7 5

ACTC protection archives linked into benchmark (◦ in Figure 9)

Call stack checks no support components linked-in 0 0

N/A

Code mobility libwebsockets, libcurl, libssl, libcrypto, implementation 5 5

Anti-debugging minidebugger 1 1

Code guards implementation and guards 1 1

Custom bytecode interpreter application-specific VM implementation 1 N/A

Overall component (=archive) count 11 9 17 7 5

Overall instruction count without our obfuscations 276k 255k 99k 152k 366k
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Fig. 9: Relative archive sizes and their individual coverage in the benchmarks, plus overall coverage per benchmark

It is also clear that the most interesting factoriza-

tions, i.e., those from multiple contexts executed in

multiple archives, are relatively rare, and involve only

rather short sequences. This clearly indicates that there

are practical limitations to the level of protection that

our techniques can provide. Still, the colored cells in

the upper right corner shows that even if attackers

completely neglect all uncovered control flow edges and

code fragments, some dispatchers that are executed in

more than one direction will keep hampering their re-

construction of the original program. In future work, we

will investigate techniques to generate more and larger

factorizable fragments by transforming code fragments

rather than simply selecting existing ones like we do

now.

7.4 Potency

To estimate the potency of the presented obfuscations,

i.e., the extent to which they confuse human attackers,

we performed three measurements on binaries protected

with our Diablo-based tool. For these experiments, we

configured the tool as follows. For factoring, we enable

all dispatchers (with switch tables filled with 30% fake

entries) and only factor fragments of at least 2 instruc-

tions but with no other restrictions, e.g., regarding hot-

ness. We insert opaque predicates and corresponding

conditional branches into 20% of randomly selected ba-

sic blocks, making the fall-through edge the fake edge

whenever possible. After code layout randomization, we

redirect fake edges throughout the binary to create cy-
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Fig. 10: Fraction of all instructions that get factored from within the indicated number of archives
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Fig. 11: Fraction of all instructions that get factored from within the indicated number of object files
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Fig. 12: Fraction of all instructions that get factored from within the indicated number of covered slices/sequences

(irrespective of additional uncovered slices/sequences)

cles of four coupled obfuscations as discussed in Sec-

tion 5.2.

7.4.1 Theoretical Interconnectedness

First, we measure the extent to which the code of dif-

ferent components has become interconnected by in-

traprocedural-looking edges. For each instruction, we

count from how many function entry points those in-

structions are reachable through intraprocedural con-

trol flow idioms only (i.e., through direct branches, fall

throughs, switches, and from call sites to their corre-

sponding return addresses). We then count from how

many archives, objects, and functions those entry points

originate. This metric thus measures the number of dif-

ferent components to which an attacker or his tools can

potentially assign each instruction, and from which he

has to make a choice to reconstruct the CFGs correctly.

For the SLM benchmark, Figure 15 shows the results.

For other benchmarks, the results are similar. Before

factoring, most code is reachable from a single function

entry point, as one expects for code written in C. The

few exceptions mainly originate from manually writ-

ten and optimized assembly functions in the linked-in

crypto library. After factoring, the vast majority of the

code is reachable from within a vast number of func-

tion entry points, that originate from a large number

of different object files, and from all archives. The rea-

son is that a large part of the code ends up in one big

intraprocedurally-strongly-connected component in the
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Fig. 14: Heatmap dissecting the applicability of factoring on the SLM benchmark, showing the number of fragments
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combined CFGs of the program. So at least in theory,

our transformations succeed in obfuscating the bound-

aries between components at the three levels of granu-

larity.

7.4.2 IDA Pro

Secondly, we measure a practically oriented metric in

the form of the amount of incorrect information that

the popular reverse engineering tool IDA Pro (version

6.8.150428, 32-bit) presents to the user due to the ob-

fuscations. Concretely, we measure the fraction of fake

CFG edges that IDA Pro stores in its database and/or

shows in its GUI, as well as the fraction of true CFG

edges that IDA Pro does not store and/or show. The

former are FP rates, the latter are FN rates.

It should be noted that IDA Pro is not designed

for reverse engineering obfuscated binaries. In particu-

lar, it is not designed to handle basic blocks that are

reachable via intraprocedural control flow idioms from

multiple function entry points. It simply assigns basic

blocks to functions based on the order in which the

recursive descent assembler visits them, not based on

heuristics that take into account the effects of our trans-

formations. IDA Pro can easily be augmented by an at-

tacker, however, as it exports the constructed CFGs in a

database that attacker scripts can manipulate. In other

words, a skilled attacker can easily override and extend

the disassembler and function reconstruction heuristics

of IDA Pro.

To mimic skilled attackers, we experimented with

various algorithms to maximize the amount of code in

a binary that IDA Pro actually disassembles, as well as

with various heuristics that repartition the disassem-

bled code fragments (i.e., basic blocks) into functions

such that the reconstructed functions better ressemble

the actual functions. We observed that many similar

algorithms yielded very similar results, so the exact im-

plementation details do not matter, as long as they in-

corporate three main ideas. First, one should try to put

all identified code in functions, even if that code was not

identified as being reachable by the original IDA Pro.

This is the case, e.g., for code fragments that are only
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Fig. 15: Instructions reachable from function entry points in different numbers of archives/object files/functions,

before (left bars) and after (right bars) factoring (SLM).

reachable through switch tables that IDA Pro cannot

analyse precisely. Secondly, for such code fragments as

well as for code fragments that the original IDA Pro

already did put into functions, one should determine

the function to which the fragment is most connected

through incoming and outgoing intraprocedurally look-

ing CFG edges in the IDA Pro database, and then put

the fragment in that function. Finally, for determining

the function to which a fragment is most connected and

in which it hence belongs, one should assign different

weights to different types of edges. Most importantly,

edges originating from indirect control flow transfers

such as those used to implement switches should have

lower weights that other direct control flow edges. In

addition, if the attacker knows somehow that the fake

edges in opaque predicates are mostly fall-through edges

or mostly taken edges, he can assign different weights

to those types of conditional branch edges as well. Our

code implementing these heuristics is available online

at https://github.com/csl-ugent/oisp.

Tables 4 to 6 present the results for the SLM bench-

mark. Similar results for the other bechmarks are avail-

able in a technical report [8]. The top part of each table

shows the aforementioned FP and FN rates of correctly

or incorrectly handled CFG edges. The bottom parts

additionally present the total amounts of edges and in-

structions in the binaries to ease the interpretation of

the false rates, where we also mention how many edges

are drawn in the GUI. The overall counts and corre-

sponding false rates are further refined into 6 partially

overlapping categories xy, with x being either I (Inter)

or i (intra), and y being A (archive), O (object file),

or F (function). The category IA, for example, is that

of edges from a block originating from one archive to

a fragment originating from another archive, i.e., inter-

archive, while category iO is that of edges between two

blocks originating from the same object file. Further-

more, we present separate numbers for the edges that

IDA Pro stores in its database because it has detected

them in the code, and the ones it shows in the GUI be-

cause it considers them to be intraprocedural edges,

meaning that it has correctly or incorrectly put the

source and sink nodes of the edges in the same func-

tions.

Table 4 shows that for the unprotected program,

IDA Pro does a pretty good job in detecting the true

edges. There are no fake edges of course, and most code

is put into functions. Exceptions are rare, and mostly

related to manually written and optimized assembly

functions in the linked-in crypto library that feature

interprocedural jumps.

Table 5 shows that IDA Pro out-of-the-box performs

poorly on a protected program. In the GUI, it draws

about 74% of the fake edges (75–76% for other bench-

marks), of which more than half connect blocks from

different archives. Furthermore, the GUI does not draw

56% of the true edges (53–56% for other benchmarks).

As a result of the obfuscation, IDA Pro also gave up on

about 28% of the identified instructions (23–31% for the

other benchmarks), and simply did not put that code

in any function. Obviously this also contributes to the

FN rates.

https://github.com/csl-ugent/oisp
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Notice how these total numbers are comparable for

different benchmarks, despite their different constitu-

tion. This is of course due to the fact that the totals

do not depend on the number of archives or object files

making up the programs. For the intra- and interar-

chive FPs, the rates vary more from one benchmark to

another, but they are still comparable. For example,

the GUI IA FPR with IDA Pro out-of-the-box ranges

from 39% to 55%. All numbers are available in the

technical report [8]. This relatively small variation im-

plies that the obtained potency ports rather well from

one benchmark to another, which is of course beneficial

for users of tools that implement the obfuscations, as it

will limit the need to retune the tool configuration for

each benchmark.

At first sight, it might seem strange that there are

also intra-function GUI FPs, since we never purposely

inject fake intra-function edges. Those FPs are a side-

effect, however, as they correspond to the never exe-

cuted fall-through paths of injected switch dispatchers,

which are intra-function in our prototype.

Table 6 shows that an attacker-improved IDA Pro

puts almost all code into functions. The FP rates go up

as a result, and the FN rates drop significantly. Differ-

ent versions of the repartitioning algorithm never got

significantly better results than the ones reported here.

Without more advanced data flow analysis or other at-

tacks to identify fake edges, those edges simply confused

the disassembler’s code partitioning strategies. The pro-

posed protections thus display a significant amount of

practically relevant potency.

The above results and in particular the FNs are to

some extent inherent to IDA Pro, which can put each

basic block in only one function. For the example of

Figure 7, at least one of the incoming edges of block

3a and one of the outgoing edges of block 3b inherently

become FNs. So additionally, we measure how many

(source, sink) pairs of code fragments that were split

apart by factorization (e.g., pairs (1a,1b) and (2a,2b) in

Figure 6) are correctly put in the same function by IDA

Pro. The results are presented in the bottom left parts

of the tables. Most importantly, the results in Table 6

indicate that even with the repartitioning heuristics,

the vast majority (85%, 85–88% for the other bench-

marks) of related block pairs are not put in the same

function. There are two reasons. First, when the fac-

toring is applied as frequently as we applied it, many

non-factored fragments end up in between two factored

fragments, and thus are no longer connected directly to

any non-factored fragment. Secondly, even if we drop

the frequency of factoring to a low number (such as

1% of all factorizable cases), the number only drops to

about 82%. It remains that high because of the negative

impact of the opaque predicate insertion on IDA Pro’s

performance. When no opaque predicates are inserted

at all, and very little factoring is performed, the num-

ber still does not drop below 49% (51–59% for the other

benchmarks). The reason is that at about half of the

points where factorization can be applied, the points

before and after the factorized fragments are only con-

nected via one direct control flow path, which then gets

interrupted because of the factoring. More detailed re-

sults are available in our technical report [8].

We can conclude that unless IDA Pro gets the ca-

pability of putting blocks in more than one function,

which by the design of its APIs seems like a rather fun-

damental and hence hard to change underlying princi-

ple of its implementation, the proposed factoring obfus-

cation has a strong potency.

7.4.3 Binary Ninja

Finally we measured how well Binary Ninja (version

1.2.1954-dev, build ID af67f758) performs on our ob-

fuscated binaries. This experiment is particularly in-

teresting because Binary Ninja differs from IDA Pro

precisely in the above aspect of putting blocks in multi-

ple functions. More precisely, it adds all identified code

fragments that are reachable from an identified function

entry point through direct control flow transfers to the

corresponding function’s CFG. The theoretical results

discussed in Section 7.4.1 hint that this will result in

an explosion of the CFGs, and that is indeed what we

observe in practice: in obfuscated binaries, most basic

blocks that Binary Ninja identifies are part of the sin-
gle strongly-connected component that makes up the

vast majority of the code and that is reachable from

almost all function entry points. So Binary Ninja puts

duplicates of those basic blocks in all the correspond-

ing function CFGs. Those functions hence become too

big for the more advanced data flow analyses in Binary

Ninja. At the same time, a large fraction of the code is

not identified as actual code, because it is only reach-

able through switch-based dispatchers of which Binary

Ninja can resolve few if any targets. How many targets

(and hence code that becomes reachable through those

targets) it can detect depends on the type of dispatcher

and the complexity of the analyses that are enabled and

are able to execute in Binary Ninja, i.e., that scale up

to the size of the exploded functions. As its most com-

plex analyses only succeed on really small obfuscated

benchmarks, we added the tiny benchmark program of

bzip2 to our benchmark set, simply to confirm that Bi-

nary Ninja can handle at least such small benchmarks.
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CF B BA FU CF B BA FU CF B

analysis time (s) 0.03 0.03 0.30 1.06 10 380 1511 1497 9.86 379.89
memory consumption (bytes) 85M 86M 129M 204M 135M 1.5G 11G 11G 135M 1.5G
% of instructions in CFGs 51% 0% 100% 102% 686% 667% 3902% 3964% 686% 667%
% of individual instructions identified 32% 0% 100% 100% 36% 34% 70% 70% 36% 34%

analysis time (s) 0.05 0.09 4.17 20.11 224 220 4802
memory consumption (bytes) 87M 97M 277M 737M 2.5G 2.5G 2.5G
% of instructions in CFGs 3% 3% 118% 109% 3172% 3171% 3171%
% of individual instructions identified 2% 2% 100% 100% 25% 25% 25%

analysis time (s) 0.33 0.66 10.56 65.43 1758 1954 26999
memory consumption (bytes) 109M 150M 450M 1G 13G 13G 14G
% of instructions in CFGs 6% 5% 103% 100% 6541% 6488% 6540%
% of individual instructions identified 6% 5% 100% 100% 21% 21% 21%

failed failed failed

SLM (282411 ins original, 905217 ins obfuscated)

original binary,
default config

protected binary, 
default config

protected, 
large config

bzip2 (10671 ins original, 28448 ins obfuscated)

436.cactusADM (98549 ins original, 313375 ins obfuscated)

failed failed failed

Table 3: Binary Ninja results for three benchmarks. For each benchmark, the static number of instructions in the

original benchmark and the number in the protected one are presented next to the benchmark name.

We experimented with the four available global anal-

ysis modes (CF: control flow, B: basic, BA: basic anal-

ysis, FU: full analysis, in order of increasing complex-

ity), and initially used the default configuration param-

eter for analyzable function size, which prevents that

badly scaling analyses are not run on overly large func-

tions to avoid out-of-memory crashes and other issues.

We also experiment with higher parameter values, in

particular values large enough to cover the large func-

tion CFGs resulting from including all blocks in the

strongly-connected component created by our obfusca-

tions. Table 3 presents the most interesting results.

On bzip2, all Binary Ninja analyses can run to com-

pletion with the default parameter. Even though the

obfuscated version is “only” about three times as big

as the original program, Binary Ninja requires three

orders of magnitude more time for analyzing the obfus-

cated version, and the more complex analyses require 2

orders of magnitude more memory. This is a first clear

indication that our obfuscations stress Binary Ninja’s

scalability. The third line with results for bzip2 (and for

the other benchmarks) shows how many instructions

Binary Ninja included in all of its function CFGs com-

bined (i.e., including duplicates when instructions are

added to more than one function), relative to the num-

ber of instructions that really belong in the CFGs ac-

cording to the ground truth. It can be seen that Binary

Ninja’s representation of the functions in the program

are indeed blown up heavily, by a factor of 7 when only

simple analyses and disassembler heuristisc are used,

and by a factor 39 when the more complex ones are

used. This blow-up occurs despite the fact that Binary

Ninja identified only about 35% and 70% respectively

of the static instructions in the binary as code (as the

result of unresolved dispatchers). We conclude that in

its simplest modes, Binary Ninja is only able to identify

2/3 of the code as such, and already inflates its CFGs

of the code fragments by an order of magnitude. With

its more complex modes, it can identify an additional
1/3 of the code as such, but results in another order of

magnitude more CFG inflation. So whatever combina-

tion of analyses is enabled in Binary Ninja, a reverse

engineer is significantly hampered by our obfuscation.

Quantifying this effect by counting false rates as we did

for IDA Pro is meaningless here, as each true and fake

edge can (and typically) does now occur multiple times

in Binary Ninja’s internal database representation, as

apparent from the already presented CFG inflation re-

sults.

On 436.cactusADM, our smallest true benchmark,

all but the simplest Binary Ninja analyses fail to scale

to the inflated function CFGs. When the more complex

analyses are run, the tool crashes as it goes out of mem-

ory (on a machine with 64GB of RAM) or as it tries

to write out the huge database representing its IR of

the program. The simpler modes fail to produce useful

results as well, as they only identify about 1/4 of the

code as such, but already inflate the CFGs with close to
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a factor 32. Deploying the simpler modes with a larger

analysable function configuration did not help, it only

results in longer running times. Even if we only tried

to run the more complex analyses on single inflated

functions, the memory usage slowly increases while the

analysis outruns our 24 hour time limit. Similar results

are observed for the larger benchmark SLM, only with

worse results and much longer running times.

As for the simpler analyses CF and B modes in Bi-

nary Ninja, the fractions of the code identified as code

in the three original binaries actually already indicate

that those modes are next to useless because an attacker

cannot rely on them to identify the relevant code.

In summary, none of the analysis modes in Binary

Ninja succeeds in producing truly useful results for a

reverse engineer of our protected binaries. In particular

for non-trivial benchmarks, Binary Ninja seems to be

completely defeated by our protections.

7.4.4 GHIDRA

While we lack the time and resources to conduct as ex-

tensive experiments with the recently released GHIDRA

(version 9.1, build DEV 2019-Dec-02) reverse engineer-

ing tool suite as we did with IDA Pro and Binary Ninja,

we did perform some preliminary experiments with it.

GHIDRA behaves to a large degree similar to IDA Pro,

in the sense that it puts each instruction in at most

one function. Like in IDA Pro, this leads to false pos-

itive edges and false negative edges in the GUI show-

ing the functions. Studying some microbenchmarks, we

observed that GHIDRA’s ability to resolve dispatcher

targets differs somewhat, and also that is less aggres-

sive in combining connected basic blocks to functions:

compared to IDA Pro, GHIDRA puts many more basic

blocks from the protected binaries in separate functions.

GHIDRA’s analyses are terribly slow. On non-trivial

benchmarks, including bzip2 and the real benchmarks

used in this program, we observed that the default anal-

yses consume too much time to be practically useful.

Even on the protected bzip2, the default analyses do

not yield results for the first 24 hours. Without those

analyses, GHIDRA only produces a sequential listing

of disassembled instructions similar to what can be ob-

tained with the basic GNU binutils tool objdump.

Our overall first impression is therefore that attack-

ers using GHIDRA are therefore at least as hampered

by our proposed protections as attackers using IDA Pro.

In future work, we plan to analyse which particular

analyses fail to scale, and why.

7.5 Resilience

To evaluate the resilience of the presented obfuscation,

we analyze to what extent some attack techniques ob-

served in empirical research [11] and described in litera-

ture [53] can bypass or undo the protections. Obviously,

we cannot claim that the protections provide complete

protection against attackers with unlimited resources

and time. But we can demonstrate that at least some

common attack strategies do not overcome the protec-

tion trivially.

7.5.1 Pattern Matching attack in IDA Pro

First, we consider an attacker that can resolve opaque

predicate computations when he observes their com-

plete pattern in the code, either because he is good at

recognizing them manually, or because he has a pat-

tern matcher. We consider the attacker strong enough

to identify opaque predicate computations even if they

are mixed with other instructions, including (direct)

control flow transfers. He is hence knowledgable, but he

is also prudent: if he only observes part of an opaque

predicate computation or observes that only part of the

computation is guaranteed to be executed leading up to

the conditional branch, he does not guess that it will

be an opaque predicate with a certain outcome. In the

empirical experiments reported by Ceccato et al. [11],

attackers described how they manually eliminated the

identified fake edges and how they could implement

simple pattern matchers to automate that attack task.

To assess how far such an attacker might get in the

worst case, we implemented a script that iteratively re-
moves all fake edges of opaque predicates that such an

attacker can resolve. The script does not need to detect

the patterns of the opaque predicate computations it-

self, instead it gets the necessary information from the

ground-truth logs produced by our obfuscator.

We developed two versions of the script. A first one

mimicks an automated attack that considers the infor-

mation in IDA Pro’s database. So it observes all edges

and all code identified by IDA Pro. We refer to this

attack as the “soundish” attack, because it considers

all available code and control flow. As IDA Pro might

have missed some code and edges, it is not completely

sound, but it is the closest to sound an automated tool

based on IDA Pro disassembler results can get.

The second version of the script mimicks a man-

ual, human attack that considers only the information

displayed in the IDA Pro GUI. This attack is on the

one hand weaker because it does not resolve opaque

predicates of which IDA Pro put parts of the computa-

tions in two or more different functions, as those parts
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Table 4: Potency metrics for SLM without the protections proposed in this paper.

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

# FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FPR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

# FN 1.8k 24 618 753 1.8k 1.2k 1.1k 916 0 45 48 916 871 868

FNR 3% 0% 1% 1% 3% 2% 2% 1% 0% 0% 0% 1% 1% 1%

Pairs of fragments split by factorization

Total Wrong Correct

0 0 (0%) 0 (0%)

CFG edges

Total True Fake Drawn in GUI

67.2k 67.2k (100%) 0 (0%) 65.3k (97%)

Instructions

Total Functionless

281.8k 4.0k (1%)

Table 5: Potency metrics for a fully protected SLM with IDA Pro out-of-the-box.

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

# FP 16.5k 9.6k 12.5k 12.6k 6.9k 4.0k 3.9k 20.0k 11.8k 16.0k 16.0k 8.2k 4.0k 3.9k

FPR 74% 43% 57% 57% 31% 18% 18% 90% 53% 72% 72% 37% 18% 18%

# FN 101.4k 24 622 760 101.3k 100.7k 100.6k 63.2k 9 131 165 63.2k 63.1k 63.0k

FNR 56% 0% 0% 0% 56% 55% 55% 35% 0% 0% 0% 35% 35% 35%

Pairs of fragments split by factorization

Total Wrong Correct

28.4k 26.6k (94%) 1.7k (6%)

CFG edges

Total True Fake Drawn in GUI

204.4k 182.2k (89%) 22.2k (11%) 97.4k (48%)

Instructions

Total Functionless

772.3k 213.6k (28%)

Table 6: Potency metrics for a fully protected SLM with attacker-improved IDA Pro.

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

# FP 17.1k 10.0k 13.0k 13.0k 7.1k 4.1k 4.0k 21.2k 12.6k 17.0k 17.1k 8.6k 4.2k 4.1k

FPR 77% 45% 59% 59% 32% 18% 18% 96% 57% 77% 77% 39% 19% 18%

# FN 74.5k 16 492 588 74.5k 74.0k 73.9k 27.5k 0 17 20 27.5k 27.5k 27.5k

FNR 41% 0% 0% 0% 41% 41% 41% 15% 0% 0% 0% 15% 15% 15%

Pairs of fragments split by factorization

Total Wrong Correct

28.4k 24.1k (85%) 4.3k (15%)

CFG edges

Total True Fake Drawn in GUI

204.5k 182.3k (89%) 22.2k (11%) 124.9k (61%)

Instructions

Total Functionless

772.4k 122 (0%)

are then not shown to the attacker together. On the

other hand, this attack is stronger in cases in which

IDA Pro has put all the predicate computations in the

same function, but in which it does not draw a fake

edge that arrives into the middle of the computations,

i.e., in which such a fake edge is a GUI TN. So this

attacker will miss some opportunities, but he will also

remove fake edges because other (fake) edges remain in-

visible to him. We refer to this attack as the “unsound”

attack, because the attacker chooses to neglect informa-

tion readily available in the IDA Pro database that an

attacker trying to be sound would not have neglected.

As each deleted fake edge can result in opportunities

to improve the partitioning of the code into functions,

the scripts also execute the repartitioning algorithm dis-

cussed in the previous paragraph to potentially improve

IDA Pro’s performance after every deletion of a fake

edge.

The results for the soundish attack are shown in

Table 7, those for the unsound attack are shown in Ta-

ble 8. To indicate to which extent the modeled attacker

was able to resolve the opaque predicates, we report the

number of inserted and resolved opaque predicates in

the bottom right parts of the tables.

With the soundish attack, almost no (0–1% for the

other benchmarks) opaque predicates can be resolved.

This demonstrates the effectiveness of the strategy to

couple opaque predicates.

With the unsound attack, about 22% (20–22% for

the other benchmarks) of the opaque predicates can

be resolved. In this scenario, a relatively large drop of

about 10% (9–11% for the other benchmarks) for the

number of drawn fake edges in the GUI is observed.

Still, about 67% of the fake edges remain. This is due

to the coupling of opaque predicates in cycles, as dis-

cussed in Section 5.2 and because of the addition of fake

entries in the switch tables of the dispatchers. Here, too,

the number of true edges that do not get drawn remains

high. While the attack has therefore weakened the con-

fusion created by our obfuscations in the eyes of the

attacker, he has not been able to remove it completely.
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Fig. 16: Variability of dispatcher execution paths

7.5.2 Generic Deobfuscation

Regarding the resilience against the automated, generic

deobfuscation technique of Yadegari et al. [53], we al-

ready noted in Section 7.3 that the majority of covered

dispatchers does not display quasi-invariant behavior.

Figure 16 shows the fractions of the dispatchers that

are not covered (i.e., not executed for our training in-

puts), feature quasi-invariant behavior (i.e., “return”

to only one “return site”), and show variable behav-

ior (i.e., “return” to multiple “return sites”). Note the

correlation with the overall coverage numbers in Fig-

ure 9. Obviously, if only a small percentage of the code

is covered, and factoring is done on both covered and

uncovered slices, only a small percentage of the dis-

patchers will be covered, let alone display variable be-

havior. Of those covered, between 39% (DRM) and 83%

(445.gobmk) have variable behavior, and will hence not

be simplified by the quasi-invariance based generic de-

obfuscation.

7.5.3 Binary Ninja’s Conditional Value Set Analysis

Finally, we studied the theoretical capabilities of Binary

Ninja’s conditional VSA as already introduced in Sec-

tion 5.2 to reduce the size of the huge function CFGs

it constructs. As discussed in Section 7.4.3, the current

implementation of this analysis does not scale to real-

istically sized protected binaries, so we instead studied

this capability on microbenchmarks such that we can

assess the potential of the analysis in case it would be

reimplemented to improve its scalability over its current

quadratic complexity. This is the complexity of almost

all dataflow analyses currently implemented in Binary

Ninja, as their developers told us at the time of this

writing.

When we ran Binary Ninja on microbenchmarks,

we initially discovered that its VSA is pretty powerful.

In fact, the analysis could resolve many of the opaque

predicates that our initial prototype inserted, thus omit-

ting many fake edges. It was also able to resolve many

factored code fragments, in the sense that when a copy

of the factored fragment is inserted into a function’s

CFG, the VSA would correctly detect which targets

of the dispatcher belong in that function and which

don’t. For the opaque predicates, the reasons was their

simple nature, as the ones implemented in our proto-

type initially included only simple algebraic predicates

(such as x2 − x mod 2 = 0) that were computed en-

tirely in processor registers, starting from live register

values from the original program. If the VSA was able

to determine that those input registers (accidentally)

held values from a limited set, it was also able to de-

termine that opaque predicate could only evaluate to

one value. Our obfuscator relied on much less advanced

data flow analyses than Binary Ninja’s VSA to pick the

input registers for the inserted opaque predicate oper-

ations, so that accidental scenario occurred relatively

frequently. Similarly, within each function the VSA was

often able to determine the precise set of controller val-

ues that were were being fed to the dispatcher of a

factored block. This was again the result of our imple-

mentation being overly simplistic, as illustrated in the

sample in Figure 7. In the context of the red function

fragment, the VSA identifies that controller register r9

can only hold the value 0, while in many contexts simi-

lar to that of the blue function fragment, the VSA was

able to determine that r9 could only hold a limited set

of pointer values, and is hence always non-zero.

In short, our initial prototype implementation was

somewhat vulnerable to Binary Ninja, in particular when

deployed on really small programs where the lack of

scalability of Binary Ninja’s analyses is not a problem

for an attacker. This would also imply that our protec-

tions would be vulnerable if they are only deployed on

a small part of a program, e.g., in case only a small part

contains sensitive assets to be protected.

Fortunately, our initial vulnerability was easy enough

to fix. In general, it suffices to make the inserted com-

putations more complex than what the analyses can

handle. As data flow analyses are always limited in

precision to remain useable (i.e., have acceptable run-

ning times), injecting enough complexity in the code

to thwart the analyses is always possible in theory. Of

course, in practice the amount of required complexity

can come with a significant price in terms of additional

overhead that needs to be injected, but with Binary

Ninja, that was not necessary. From the Binary Ninja

authors, we learned that its data flow analyses do not

propagate any information through writable global data

memory. So by simply adding a minimal number of

memory indirections to the opaque predicate computa-

tions and to the code that sets controller values of dis-

patchers, we were able to completely mitigate the VSA

of Binary Ninja. For example, to mitigate the analy-
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Table 7: Metrics for a fully protected SLM, after detection and removal of observable opaque predicates (soundish

DB attack).

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

# FP 16.4k 9.5k 12.3k 12.3k 6.9k 4.1k 4.0k 21.1k 12.6k 17.0k 17.0k 8.5k 4.2k 4.1k

FPR 74% 43% 55% 56% 31% 18% 18% 95% 57% 77% 77% 39% 19% 18%

# FN 73.4k 13 459 544 73.4k 73.0k 72.9k 27.5k 0 17 20 27.5k 27.5k 27.5k

FNR 40% 0% 0% 0% 40% 40% 40% 15% 0% 0% 0% 15% 15% 15%

Pairs of fragments split by factorization

Total Wrong Correct

28.4k 24.0k (85%) 4.3k (15%)

CFG edges

Total True Fake Drawn in GUI

204.5k 182.3k (89%) 22.2k (11%) 125.2k (61%)

Instructions

Total Functionless

772.4k 122 (0%)

Opaque predicates

Total Resolved

13.3k 29 (0%)

Table 8: Metrics for a fully protected SLM, after detection and removal of observable opaque predicates (unsound

GUI attack).

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

# FP 14.9k 8.3k 10.9k 11.0k 6.6k 4.0k 4.0k 18.2k 10.3k 14.1k 14.2k 7.9k 4.1k 4.0k

FPR 67% 38% 49% 49% 30% 18% 18% 82% 46% 64% 64% 36% 18% 18%

# FN 73.0k 13 448 526 73.0k 72.6k 72.5k 27.5k 0 17 20 27.5k 27.5k 27.5k

FNR 40% 0% 0% 0% 40% 40% 40% 15% 0% 0% 0% 15% 15% 15%

Pairs of fragments split by factorization

Total Wrong Correct

28.4k 24.0k (85%) 4.4k (15%)

CFG edges

Total True Fake Drawn in GUI

204.5k 182.3k (89%) 22.2k (11%) 124.2k (61%)

Instructions

Total Functionless

772.4k 122 (0%)

Opaque predicates

Total Resolved

13.3k 3.0k (22%)

sis of the example in Figure 7, it sufficed to replace

the first move in the red glue code by a load operation

that loaded the value 0 into r9 from an array stored

in the mutable statically allocated data section. In the

blue fragment, it sufficed to insert the same load of that

value 0 from the same array, and to insert an addition

that adds that 0 to the existing non-zero value in r9. As

the VSA does not know that a zero is loaded in both

cases, its analyses completely fail. Now while this may

look like an overly simplistic remediation from our side,

the general principle is that any scalable data flow anal-

ysis will have weaknesses, and that it suffices to exploit

those in the remediation.

In the end, our simple fix sufficed to make the more

complex analyses in Binary Ninja fail completely, both

in terms of making it not produce good results, and in

terms of requiring all to long running times on all but

the tiniest programs.

7.6 Overhead

Obfuscating transformations always come with perfor-

mance and code size overhead. The performance penalty

can be limited by using profile information to stay clear

from the hottest code. As we only proposed a new way

to redirect fake edges of opaque predicates, rather than

introduce new ones which require new code sequences to

be injected, we do not evaluate the performance penalty

of opaque predicate insertion. Instead we focus on the

proposed factoring technique, which can involve the in-

sertion of considerable glue code, and which is hence ex-

pected to have a major impact on performance and code

size. Those impacts are summarized in Figure 17. Solid

lines represent run time overhead, dashed lines code

size overhead. More detailed results and descriptions of

the experiments are available in a technical report [8].

The measured run times are averages of 5 runs. For

the SPEC benchmarks, we used slightly altered refer-

ence inputs to reduce run times on the (relatively slow)

developer boards; for the SLM benchmark we used a

custom input; for the DRM benchmark we have no run

time measurement as this is an interactive application.

Each pair of dashed/solid lines on the chart corresponds

to one benchmark. The different points denote different

amounts of factoring, guided by profile information. To

collect profile information, (standard) training inputs

were used that in each case differ from the measurement

inputs. The measured versions range from no covered
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Fig. 17: Overhead versus factored code fragments

code being factored (lower left points) to all code be-

ing factored (upper right points). In between, gradually

more, hotter code (i.e., more frequently executed code)

gets factored. It is clear that the overheads can become

very large if the transformation is deployed blindly, but

also that the overheads, in particularly the performance

overhead can be easily reduced by excluding the hottest

fragments from the factorization. To what extent a cer-

tain reduction limits the practical effectiveness of the

protection of course depends on the software at hand.

In any case, excluding all covered code cannot result

in factored code dispatchers with variable behavior. So

clearly one should be willing to accept some perfor-

mance overhead. We do not consider this a big prob-

lem: all MATE protections inherently come with some

overhead. Note that for the code size, the smallest over-

heads are still rather large because we only excluded the

executed code. If program size is more important than

performance, a better strategy would be to exclude non-

executed fragments. Then much smaller size overheads

can still be obtained.

7.7 Sensitivity analysis

The opaque predicate insertion and factoring can be

configured in many ways: the mixture of fake fall-through

and fake branch-taken edges, amounts of fake edges

in switch tables, use of different dispatchers, frequency

of deployment, execution frequency threshold, priority

function, cycle size of coupled protections and dispatch-

ers, etc. A quantitative sensitivity analysis can be found

in our technical report [8]. Some major qualitative re-

sults are that:

– the false rates rise with more fake fall-through edges;

– the FN rates increase with increasing cycle size until

cycles of size 4. After that, the false negative rates

stabilize;

– the FP rates decrease with increasing cycle size.

7.8 Lessons Learned

Throughout our experiments, we learned quite some

useful lessons. The first is that it is really hard to come

up with meaningful metrics to approximate the impact

of protections on an attacker. Moreover, all metrics that

we could come up with to reflect the impact of the pro-

tections depend heavily on the considered attacker tools

and on how those tools model and handle the code of a

program. Such metrics therefore have an ad-hoc nature

that makes it difficult to compare the strengths of the

protection against different tools, or to come up with

a unified methodology to evaluate the defensive and

offensive strengths of protections and attacker tools re-

spectively. Finally, the proprietary nature of the disas-

semblers with which we performed the most extensive

experiments, and which to the best of our knowledge are

the most popular in practice, makes it hard to under-

stand why certain implementations of protections work

better than others, or to predict the outcomes of po-

tential changes to those protections. That proprietary,

closed nature also makes it hard to evaluate custom at-

tacks on newly proposed protection schemes, like ours,

because it limits the ways in which existing analysis
and heuristics (that have been tuned for unprotected

binaries) can be tweaked to perform better on the ob-

fuscated versions.

8 Related Work

8.1 Code factoring

Existing work on code factoring focused mainly on com-

paction, i.e., the removal of duplicate code to make bi-

naries smaller. Production tool chains already include

optimisation passes to factor identical procedures: Mi-

crosofts Visual C++ compiler [2], GNU GCC [31][35],

Gold [42] and LLVM [44]. In academic research, Debray

et al. [24], De Sutter et al. [20] and Von Koch et al. [29]

have developed code factoring techniques to factor al-

most identical code on the basic block level (the former

two) and the procedural level (the latter two). Compu-

tation time is reduced by defining a fingerprint for each
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basic block and/or procedure and small differences be-

tween procedures are compensated for by parameteriz-

ing the factored code. Debray et al. and De Sutter et al.

mitigated differences between basic blocks by using an

ad-hoc register renaming algorithm and by canonicalis-

ing the instruction schedule. This was not an issue for

Von Koch et al. because LLVM IR was used. Recently,

Rocha et al. [40] used a DNA sequence alignment algo-

rithm from bioinformatics to identify factoring candi-

dates and to compensate for differences between them.

Similar to the work by Von Koch et al., they only sup-

port factoring on the procedural level but, as they im-

plemented their technique on LLVM IR, they are not

bound by register allocation schemes.

Inspired by the existing implementations, we fac-

tor (sub)blocks for obfuscation rather than compaction.

Thus, we can give up on code size overhead to factor

more code. Our technique is orthogonal and comple-

mentary to whole function merging, which by defini-

tion does not obfuscate function boundaries. Impor-

tantly, we rely only on intraprocedural control flow id-

ioms rather than calls and returns.

8.2 Obfuscations

Many obfuscation transformations exist, each with its

own strengths and weaknesses, as surveyed by Schrit-

twieser et al. [41]. Collberg et al. [13] categorized obfus-

cation techniques into layout (e.g., code layout random-

ization), control flow and data transformations. One

example of control flow obfuscations are opaque predi-

cates. These can range from simple [37] to complex [33].

While easy to implement, the simple ones are not re-

silient against modern attacks such as symbolic or con-

colic execution [52]. Recently, some alternatives were

proposed to counter these advanced attacks. The range

dividers of Banescu et al. [5] introduce additional feasi-

ble code paths, exploding the analysis complexity. The

bi-opaque predicates of Xu et al. [51] exploit the NP-

hard problem of resolving symbolic memory. Zobernig

et al. researched a technique to make opaque predi-

cates indistinguishable from the program’s predicates

by hashing the calculation of each (opaque) predicate [54,

55]. Attackers need to invert the hash function to prove

the opaqueness of a predicate, a process that is known

to be impossible but for brute-forcing. Our use of opaque

predicates in this paper is orthogonal to mentioned work,

as our work focuses on choosing the target of the fake

edge, which needs to be done whatever the kind of com-

putation is used to implement the opaque predicate

that steers the conditional branch.

Another example of control flow obfuscations are

branch functions [30], which replace direct with indirect

branches to thwart code identification heuristics. Con-

trol flow flattening [47] is another obfuscation, which

replaces direct with dispatcher-based control flow. Our

factoring dispatchers resemble these obfuscations, but

focus on thwarting function repartitioning heuristics, as

we aim for attackers to identify fake inter-component

control flow paths to confuse them even more and to

hide the boundaries of components, rather than to ob-

fuscate the components’ internals themselves. Asghar et

al. propose another way to obfuscate the control flow of

a program by removing conditional branches [4]. Con-

trary to other techniques, they avoid the insertion of ad-

ditional calculations but instead build on the increased

complexity of the linearized calculations.

Obfuscations can be inserted at source level [12], by

compilers [27] or by binary code rewriters [45]. As we

want to hide the boundaries of linked-in components,

we obviously opted for a post link-time rewriter.

9 Conclusions and Future Work

We presented a novel technique to apply code factor-

ing across component boundaries with intraprocedural

control flow idioms. We combined our technique with

existing opaque predicates with which we also inject

fake direct control flow accros component boundaries,

and with fine-grained code layout randomization. In our

extensive evaluation with IDA Pro, a commonly used,

state-of-the-art reverse engineering tool, we demonstrated

that our techniques thwart IDA Pro’s disassembler and

CFG reconstruction heuristics and that a program pro-

tected with our technique is more resilient to some

known attacks. For GHIDRA, another reverse engineer-

ing tool, preliminary experiments yielded similar re-

sults. For a third disassembler, Binary Ninja, which

is built on very different principles, another extensive

evaluation demonstrated that the tool becomes mostly

useless on our obfuscated programs. We can conclude

that our technique increases the potency and resilience

of protected applications against modern reverse engi-

neering attacks.

In future research, approaches to generate more sim-

ilar, and thus factorable code fragments can be inves-

tigated, rather that only identifying existing ones. An-

other research path can be the use of machine learn-

ing techniques to steer the insertion of fake control

flow, so that attack tools are more purposively thwarted

rather than stochastically. Furthermore, more experi-

mentation with the open-source tool GHIDRA can be

useful to assess the potential of custom attacks and dis-

assembler heuristics specifically tuned to the features of

our protected programs.
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