Check for
Updates

ApkDiff: Matching Android App Versions
Based on Class Structure

Robbe De Ghein*
robbedeghein@gmail.com
Unaffiliated
Ghent, Belgium

Bjorn De Sutter
Bjorn.DeSutter@UGent.be
Ghent University
Ghent, Belgium

ABSTRACT

Reverse engineering an application requires attackers to invest time
and effort doing manual and automatic analyses. When a new ver-
sion of the application is released, this investment could be lost
completely, if all the analyses had to be re-done. The gained in-
sights into how an application functions might be transferred from
one version to the next, however, if the versions do not differ too
much. Diffing tools are thus valuable to reverse engineers attempt-
ing to transfer their knowledge across versions, as well as to de-
fenders trying to assess this attack vector, and whether or how
much a new version has to be diversified. While such diffing tools
exist and are in widespread use for binary applications, they are in
short supply for Android apps.

This paper presents ApkDiff, a tool for diffing Android apps
based on the semantic features of the class structure. To evalu-
ate our tool we selected 20 popular financial apps available in the
Google Play Store, and tracked their version updates over eight
months. We found that on average 79% of all classes had a unique
match across version updates. When we consider only classes for
which we detect explicit obfuscations being applied (by applying
heuristics on their identifiers), we still find that we can find a match
for 56% of the classes (ranging from 23% to 85%), suggesting that
these obfuscated apps are not resilient to our matching strategies.
Our results suggest that ApkDiff provides a valuable approach to
diffing Android apps.

CCS CONCEPTS

« Security and privacy — Software reverse engineering.

KEYWORDS

reverse engineering, matching program versions, bytecode, classes

*Work performed while at Ghent University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Checkmate "22, November 11, 2022, Los Angeles, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9881-7/22/11...$15.00

https://doi.org/10.1145/3560831.3564257

Bert Abrath
Bert.Abrath@UGent.be
Ghent University
Ghent, Belgium

Bart Coppens
Bart.Coppens@UGent.be
Ghent University
Ghent, Belgium

ACM Reference Format:

Robbe De Ghein, Bert Abrath, Bjorn De Sutter, and Bart Coppens. 2022.
ApkDiff: Matching Android App Versions Based on Class Structure. In Pro-
ceedings of the 2022 ACM Workshop on Research on offensive and defensive
techniques in the context of Man At The End (MATE) attacks (Checkmate
"22), November 11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3560831.3564257

1 INTRODUCTION

Reverse engineering an obfuscated application to acquire insights
can take a substantial amount of time and effort. While analysing
the application, new versions can be released, potentially making
obsolete the original reverse engineering results and insights. There
are many different ways in which the code can change across ver-
sions: not only can code change because features are added or bugs
are fixed; but obfuscations can also be applied, potentially in a non-
deterministic way. In the latter case, all the insights acquired by the
reverse engineer might be rendered useless because the equivalent
code cannot easily be found in the new version. From a defender’s
point of view, ideally the reverse engineer cannot transfer any in-
sights from the outdated version, forcing them to redo all their
work on the new version.

Nevertheless, techniques exist to aid reverse engineers in trans-
ferring knowledge across different versions [17, 32, 34]. Such tech-
niques try to match certain objects (functions, basic blocks, instruc-
tions, ...) from one program version to another program version,
after which annotations on these objects (such as potential func-
tion names, recovered semantics, ...) can be transferred through
these matches. However, these techniques are typically focused on
matching binary code, and often even unobfuscated binary code. A
related technique is clone detection, but such techniques focus on
identifying re-used larger code fragments.

Although diffing tools based on such techniques are valuable
to reverse engineers, they are valuable to defenders as well. When
protecting an application, a security expert might use such a tool to
assess diffing as an attack vector, to decide whether or how much
a new version has to be diversified. While diffing tools for binary
applications exist and are widely used, they are in short supply for
Android apps.

In this paper, we design and implement a technique we call Apk-
Diff, named so because it diffs APKs (Android Packages), that tries
to match bytecode versions of apps, even when these versions have

https://doi.org/10.1145/3560831.3564257
https://doi.org/10.1145/3560831.3564257
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3560831.3564257&domain=pdf&date_stamp=2022-11-07

Checkmate "22, November 11, 2022, Los Angeles, CA, USA

been obfuscated and/or diversified. This technique can be used to
evaluate how much—if any—information a reverse engineer can
transfer across app versions. Our technique tries to link classes be-
tween two versions. We will try to match classes based on their
class structures: the field signatures, the method signatures, inter-
faces, modifiers, etc. We evaluate the application on a sample set
of real Android apps: 20 financial apps in Belgium and the Nether-
lands. These apps were tracked for over 8 months and every update
was extracted, allowing us to evaluate the attack strategy discussed
above.
The contributions of this paper are as follows:

e We design and implement ApkDiff, a technique to match
classes in bytecode between different versions of an app;

e We evaluate the effectiveness of ApkDiff on 20 financial
apps for Android from the Google Play store;

o We release ApkDiff as an open source tool, available at https:
//github.com/csl-ugent/apkdiff

The rest of this paper is structured as follows. Section 2 provides
some background on the bytecode obfuscations our technique will
be able to circumvent. Next, Sections 3 and 4 describe the design
and implementation of our technique, respectively. This is followed
by the evaluation, where we first describe how we gathered the
application data in Section 5, and subsequently the evaluation itself
in Section 6. This is followed by a discussion of related work in
Section 7, after which Section 8 provides a conclusion.

2 BACKGROUND

We briefly discuss some basic anti-reverse engineering protections
that are commonly used in Android applications. These basic pro-
tections are obfuscations and consist of identifier renaming and
modifying the package hierarchy.

2.1 Identifier Renaming

Renaming symbolic identifiers is one of the most basic forms of
protection. The idea is the same as that behind stripped binaries:
remove metadata that is not necessary for execution, but that is
useful for other purposes such as debugging. The Android Run-

»

time (ART) does not care if a class is called “PrintWriter”, “a” or
“O!UéR¥4”. Semantically meaningful identifiers are only useful for
developers. There are a couple of ways to rename identifiers. The
most popular methods create shrunken names, random names, and
misleading names. Shrinking a name changes the identifier to a
short and meaningless name (such as “a”). Random names are usu-
ally a bit longer, but are still meaningless. They have no semantic
meaning and often contain unusual Unicode characters. Mislead-
ing names are normal-looking identifiers that replace the original
names, e.g. a class named Account is renamed to Biometric. This is
a hard case to deal with, both as a human analyst as well as when
using automated tools, as it is challenging to detect when this kind
of renaming has happened. The renamed identifiers can be package
names, class names, function names, etc.

Robbe De Ghein, Bert Abrath, Bjorn De Sutter, and Bart Coppens

2.2 Modifying Package Hierarchy

A second basic obfuscation is to modify the package hierarchy.
Like identifiers, the package hierarchy is insignificant to code ex-
ecution. Most information that the package hierarchy provides, is
the semantic grouping of different classes. A tree-like structure
makes it easier for a developer to work with a large number of
classes by grouping related classes together. This is mostly a fea-
ture for the developers. As such, it is possible to remove or change
this information to make it harder for an attacker to determine the
semantics of every class. There are two major methods to modify
a package hierarchy: hierarchy flattening and repackaging.

In hierarchy flattening, a part of the package tree is flattened
by removing all subpackages and recursively moving all classes
inside this part of the tree up to the closest parent package that is
not removed [37]. Note that no classes are removed, only packages.

Repackaging classes is similar to hierarchy flattening. While
repackaging classes, a part of the package tree is completely re-
moved and all classes inside this part are relocated to a new pack-
age, often a root level package. The biggest difference between
repackaging and hierarchy flattening is that repackaging does not
happen in-place, but creates a completely new package and actu-
ally removes a part of the hierarchy instead of flattening it.

Many Java/Android/bytecode obfuscators exist, ranging from
relatively simple ones that restrict themselves to shrinking names,
to complex ones which also modify the bytecode itself to make
it harder to reverse engineer. Examples include, ProGuard [12],
R8 [1], DexGuard [4], DashO [3], Securelt [13], JFuscator [10], Klass-
Master [11], Obfuscapk [14], GUJTO [8], ...

3 MATCHING ALGORITHM DESIGN

We designed and implemented a bytecode-based matching approach
which we call ApkDiff. In this section, we give an overview of Apk-
Diff’s design. Our goal is to match classes between two versions.
The data available in the bytecode can be classified into two cate-
gories: the metadata and the bytecode instructions. We will not try
to match instructions directly, and instead focus on features based
in part on the metadata of classes. The exact features our imple-
mentation of ApkDiff uses will be detailed in Section 4 on the im-
plementation of ApkDiff, but it includes information on field types
and the package hierarchy.

We optionally allow the use of identifiers (such as class names)
as a feature, but when these are included, we employ heuristics to
ignore obfuscated identifiers. The exact heuristics we employ are
described in the implementation section as well. Note that while
these specific rules could always be extended and fine-tuned, to in-
crease their accuracy, being able to detect at least identify the ob-
fuscations as applied by ProGuard will already be useful, as Wang
et al. [39] showed that about 88% of obfuscated apps chose Pro-
Guard as their only obfuscator in 2016, and 70% of the apps used
the default ProGuard configuration in 2016.

To match classes, ApkDiff will not compare all classes in a pair-
wise fashion to look for exact matches on all features. This would
not work, because more often than not, it is impossible to know
with certainty whether or not two classes are an exact match due
to obfuscations. Some classes have an identical class structure and

https://github.com/csl-ugent/apkdiff
https://github.com/csl-ugent/apkdiff

ApkDiff: Matching Android App Versions Based on Class Structure

thus cannot be distinguished on their class structures alone. In-
stead, ApkDiff works by a process of elimination: it finds differ-
ences, which are easier to find. For example, when two classes have
a different number of functions, the classes cannot be an exact
match. If ApkDiff cannot find any distinct differences, it will mark
the classes as a potential match.

Old Version New Version

Potential match

Unigue match

Figure 1: Example of a unique match between potential
matches.

When, after comparing all classes, there is a pair of two classes
which are potential matches with one another, and only each other,
but are distinct from all other classes, we call this potential match a
unique match. A visual representation of this is shown in Figure 1.
Thus, to find the unique matches, all classes from one version are
compared to all classes from the other version and the potential
matches are stored. When all potential matches are found, unique
matches are then those where a single class of the old version is a
potential match of a single class in the new version. This is similar
to how BinDiff operates on binaries [24]: BinDiff tries to find the
same pieces of code in two binaries by mapping functions to a 3-
tuple feature and then checking per tuple if exactly two functions
are mapped: one from each binary. If two functions are mapped,
they must refer to the same function and thus they are a match. To
increase the probability of finding unique matches, we use package
tree information to split up the classes into different sets.

A high-level overview of the algorithm is shown in Figure 2.
First, classes are partitioned in different sets based on the pack-
age tree information. Then, the algorithm consists of an iterative
approach. The core loop consists of finding unique matches, and
then propagating this information to extend the matches. This is
described in more detail in Sections 3.1 and 3.2, respectively. The
outer loop of the algorithm consists of iteratively reducing the
amount of sets the (remaining) classes are partitioned into. Finally,
as a last-ditch effort, all classes are put into a single remaining set,

Checkmate "22, November 11, 2022, Los Angeles, CA, USA

after which we perform a last iteration of our algorithm. This han-
dling of sets, and how package information is used, is described in
Section 3.3.

3.1 Potential and Unique Matches

A potential match is a link between two classes. These classes are
marked as potentially equal. For example, consider matching a
class which has only an int field to a class which has only a float
field. As these are two distinct primitive types, we know with cer-
tainty that these classes are different. However, when we compare
two classes that each contain a single object reference field, these
fields might possibly refer to the same class, but we are not certain.
Thus, this pair of classes is marked as potentially the same.

Note that we assume that the number of functions in a class
does not change across versions. This is of course not the case if
functionality was added/removed or if advanced obfuscation tech-
niques were used such as function merging or function inlining.
However, even if the number of functions does regularly change,
the algorithm can be altered to keep this into account, e.g., we
could match classes with added functionality by also matching
class structures that are completely encapsulated within other class
structures. We did not implement such extensions for this paper,
however.

3.2 Extending Matches

We can leverage knowledge of existing matches to find new matches.
This is similar how BinDiff can extend matches. In the case of Bin-
Diff, for two functions, it compares incoming and outgoing edges
of the call graph using the same scheme as before, but now only
the functions related to the edges of the graph are compared. By
using the call graph information, the set of functions that have to
be mapped is significantly reduced and the probability of a unique
mapping is increased. For ApkDiff, we take a similar approach to
extend matches. As our approach is class-based, rather than focus
only on the call graph, we extend matches across all features re-
lated to classes. For example, the field types are references to other
classes. We leverage these features to try and find new matches,
thus extending the match.

Consider the example in Figure 3. Here, ApkDiff finds five po-
tential matches, one of which is unique (classes A and D). This is
shown on the left of the figure. Classes B and E are superclasses
of classes A and D respectively. This gives more confidence in the
potential match between classes B and E as opposed to the poten-
tial match between classes B and F. Because class hierarchy mod-
ifications such as Class Hierarchy Flattening [25-27] are possible,
ApkDiff does not match the superclasses without also checking the
class structure: a potential match must still be found before Apk-
Diff considers these superclasses as a match. A match is extended
when both extended classes (these are the superclasses in this ex-
ample) are also a potential match. This new match is directly con-
sidered a unique match. Any other potential match does not have
this extra relationship. This is shown on the right of Figure 3.

Whenever a new match is found by extending a unique match,
this new match can possibly affect the remaining potential matches.

Checkmate "22, November 11, 2022, Los Angeles, CA, USA

Robbe De Ghein, Bert Abrath, Bjorn De Sutter, and Bart Coppens

)
no
v
Stplit p_acka?e Set left? yes > Remove set |—»| Findunique | Jf Extend Match(es) Did last
rees in sets ’ matches matches found? effort yet?
A
Remove classes
. from match(es) |
A and add all non- |
emtpy sets back Put all
remaining |
classes into
one set

Figure 2: A high level flowchart of the complete algorithm.

Version 2

Version 1

Came)

Version 1

E=D
(o s ame) [(o ame)

Version 2
Legend:
Potential match
Unigue match
Extended match
—> Superclass

Figure 3: Example of an extended match creating new unique matches. Here a unique match is found between classes A and D
while the other potential matches are not unique. However, from the extra information regarding the superclasses, the match
between classes B and E can be marked unique too. When we scan for unique matches again, the match between classes C and

F becomes unique.

We can see this our previous example in Figure 3. Here, the poten-
tial match between classes C and F becomes unique after the ex-
tended match between classes B and E is found. Extended matches
bypass the uniqueness requirement because of more valuable infor-
mation: the connection with an existing unique match. By bypass-
ing this requirement, this new unique match can influence the re-
maining pool of potential matches. Removing all potential matches
related to this new unique match could possibly create new unique
matches within the remaining potential matches. In our example
in Figure 3, we see that the new unique match between classes B
and E removes the potential matches between B and F and between
C and E, which makes the potential match between C and F unique
once we add the extended match between B and E.

Whenever a match extends to find a new unique match, ApkDiff
scans for new unique matches in the remaining potential matches.
When this results in new unique matches, these new unique matches
can be extended again. This leads to a fixed-process iteration pro-
cess which repeats itself until no more matches are found.

3.3 Package Information

One of the features we employ is the package hierarchy, which
provides a semantic grouping for the classes. When ApkDiff tries
to find a match for a certain class, it will start by looking at the
classes from the other version that are in the same package. An
example is shown in Figure 4. Here we can find a similar package
hierarchy for both versions. When trying to find a match for class
A in the package com.google from version 1, ApkDiff starts by
looking at the classes inside package com.google from version 2:
classes F and G. This strategy can be applied to all packages and
subpackages. By using the package information, we limit the pos-
sible classes that can match which increases the probability for a
unique match. The package in the other version is only a starting
point because the package hierarchy can be modified by standard
tools such as ProGuard [12]. Packages can be flattened in-place or
repackaged to another part of the hierarchy. The only feature for
a package is its identifier. Thus, package information can only be
used if identifiers are used in our matching algorithm. If identifiers
are not used, the package information is discarded.

ApkDiff: Matching Android App Versions Based on Class Structure

Version 1

google *

[com

Checkmate "22, November 11, 2022, Los Angeles, CA, USA

Version 2

google *

[com

Figure 4: An example of package information that serves as a starting point when looking for matches. Using the package
information, we see that a match for class A is likely to be found in the com.google package from version 2, as class A is also
part of this package in version 1. The same idea can be applied for packages com.biometrics and com.

3.3.1 Package Squeezing. Like any other identifier, the package
identifier can also be obfuscated and renamed to something else. If
identifiers are used, this can be problematic when the same pack-
age identifier has been renamed to different identifiers across ver-
sions. When this happens, ApkDiff will look for matches in the
wrong packages. To deal with these renamed identifiers, ApkDiff
depends on heuristics to determine if an identifier is obfuscated,
and if so, will not use the package identifier. The way ApkDiff deals
with renamed packages is by removing the package from the pack-
age hierarchy and moving all its classes up one level in the package
hierarchy. This is similar to ApkDiff itself applying hierarchy flat-
tening obfuscation. The difference is that here, the subpackages
are not removed but only the root package that is renamed/moved.
We do this to only discard the information that is obfuscated. If
the parent package is not obfuscated, this can still serve as a start-
ing point to look for matches. We will refer to this technique as
package squeezing.

Using the package information, we can split all the classes into
smaller sets. Each set contains two groups of classes with one group
per version. These sets of classes are semantically meaningful due
to their package information and thus we have a higher probability
of finding the correct match.

3.3.2 Last-Ditch Effort. When we have found all possible unique
matches in the sets created from the package information, we will
discard these sets and create one large set with all remaining classes
from each version. This is a last effort to find more unique matches.
We do this last effort because classes could have been repackaged
and moved to somewhere else in the package hierarchy. When
matching happens without using identifiers, the package informa-
tion cannot be used and this last effort is done immediately.

4 IMPLEMENTATION

We implemented ApkDiff using the Soot framework, and made it
publicly available at https://github.com/csl-ugent/apkdiff. In this
section, we discuss in more detail some of the more interesting
implementational aspects. First, in Section 4.1 we describe the fea-
tures ApkDiff uses for its matching steps. Next, in Section 4.2, we
describe the heuristics we employ to determine whether or not we

consider an identifier to be obfuscated. Finally, in Section 4.3 we
describe some steps we took to increase the performance of Apk-
Diff.

4.1 Available Features

The features we employ related to classes are based mostly on
metadata which is mainly used by the JVM. It includes the iden-
tifiers (which is needed for reflection), access modifiers (private,
public, etc.), the class package, etc. We also incorporate some fea-
tures that are not directly available in the bytecode, but which we
generate ourselves, based on the instructions. For example, Apk-
Diff constructs a call graph by examining the function calls across
the bytecode instructions. Figure 5 gives an overview of all features
that we use in ApkDiff. In blue ellipses we indicate the classes and
interfaces which we try to match. The high-level subdivisions of
features we can assign to them are indicated in purple rounded
rectangles, which themselves are connected to the actual features
we will try to match.

Some of these class features are also used to extend matches: the
superclass, the implemented interfaces, the field types, the func-
tion parameter types and the function return type.

4.2 Heuristics for Identifiers

Perhaps the most obvious and interesting of these available fea-
tures are the identifiers, and we will go into more detail on how
we try to match these. Identifiers are present for classes, functions,
fields, packages, etc. These identifiers are names and originate from
the source code. They can offer a lot of information as they are
semantically meaningful. However, identifiers should be handled
carefully, as altering identifiers is one of the most basic forms of ob-
fuscation in the Android ecosystem as we already discussed above.
Ideally, we want a way to distinguish renamed identifiers from
original ones. There is no perfect solution that captures all of these
cases, in particular the misleading names, and as such, we designed
two modes for matching classes: one where identifiers are used and
one where they are not.

https://github.com/csl-ugent/apkdiff

Checkmate "22, November 11, 2022, Los Angeles, CA, USA

Incoming
edges

Outgoing
edges

Robbe De Ghein, Bert Abrath, Bjorn De Sutter, and Bart Coppens

| Returntype
Parametertypes

Figure 5: Available features in the bytecode of a class that form the class structure.

To support the matching mode that does utilize the identifiers,
we propose a heuristic that tries to distinguish the renamed identi-
fiers from the original ones. As most code is written in English [15],
we assume that only ASCII symbols are used in the identifiers.
Other symbols are usually from Unicode characters used in renam-
ing identifiers or symbols that are not valid in source code but are
valid in bytecode. This is of course not always true, as code in a
foreign language does exist [2, 5, 9], but this is rather rare, and can
be manually detected by a reverse engineer if needed. The use of
ASCII symbols is also recommended by coding style guides such as
the Google Java Style Guide [6] which states “identifiers use only
ASCII letters and digits” or the Oracle coding convention [35] that
says: “the prefix of a unique package name is always written in
all-lowercase ASCII letters”.

Short names also usually indicate obfuscations, e.g. a, b, ..., aa,
ab, etc. as these are rarely semantically meaningful. However, we
need to have some exceptions as some short names are actually
common, like ID, IO or R, the latter being used in the context of An-
droid resources. In our implementation, we marked every identifier
consisting of only one or two symbols as obfuscated, except for
these exceptions. The English language also does not have words
with three or more repeating consonants [36], which means that
repeating letters also indicate obfuscation. Another indication of a
renamed identifier is reserved keywords, as these are not valid in
source code but can occur in bytecode. We also detect some custom
patterns, which we added to our heuristic after encountering them
in applications from our dataset. For example, some class names we
observed were of the form “CRC64+hash” where “hash” is an ac-
tual hash of some input (presumably the real name). Other hashes
were also found in the applications, such as MD5 or SHA2.

In summary, we mark an identifier as obfuscated if it is:

e not a hardcoded exception (e.g. ID, IO, R), regardless of cap-
italization

is a Java keyword

is a known hash pattern

is only one or two symbols

has three or more repeating consonants

has symbols that are not ASCII, the dollar sign (used in com-
piled inner class names) or an underscore

Everything else is marked as unobfuscated.

Note that being marked as unobfuscated by this heuristic does
not necessarily mean that classes that were marked as unobfus-
cated are not obfuscated. The obfuscations could also not be de-
tected by our heuristic.

4.3 Increasing Performance

The design as described earlier favours precision over speed. This

makes ApkDiff slower but more accurate than signature-based match-

ing schemes. ApkDiff performs a more fine-grained analysis by
comparing all features individually, instead of comparing a single
signature per class. Still, even though signatures are not used for
the matching itself, they can be used to speed up the matching pro-
cess. We do this by using signatures to exclude classes that would
not have matched in the fine-grained analysis anyway. For exam-
ple, with our approach, matches need to have the same number of
fields and methods. For every class, we can compute a signature
consisting of these two numbers and insert all classes into a hash
table based on their signatures. When we are looking for the poten-
tial matches of a class that has two fields and four functions, we can
index the hash table using its signature to find all other classes that
also have two fields and four functions, skipping the fine-grained
analysis for many of the classes. This saves a substantial amount
of time.

ApkDiff uses the following features in its hash: field types, the
parameter types and their modifiers for the signature (private, pro-
tected, public, static, final, etc.), the return type, the number of pa-
rameters, and the parameter types.

Note that this signature implementation is specific to what is
considered a match. If classes with a different number of functions
can match, the example above will throw away classes that could
still match. As such, the signature should adapt to the exact match-
ing specifications. To deal with uncertainties, it is possible to use a
placeholder. For example, when type information is used, we can
keep the primitive types while using a placeholder for Object types.
This way no classes are thrown away based on uncertainties. The
function parameter types are also sorted so that the signatures do
not rely on their exact order. The order of parameters is a change
that can be made to the class structure without changing the se-
mantics of that function.

Finally, it is worth noting that large parts of the algorithm can
occur in parallel. The largest portion of the time is spent looking
for potential matches doing a fine-grained analysis. Since no data is

ApkDiff: Matching Android App Versions Based on Class Structure

altered when looking for potential matches, we can and do analyse
multiple classes at once without synchronization issues.

5 DATA GATHERING AND DATA SET

Rather than evaluate ApkDiff on some self-created toy examples,
we wanted to evaluate it on real Android applications. In this sec-
tion, we describe how we gathered this data set.

There are a variety of ways to get access to an APK of an Android
application and this section will list the two main methods used:
using the Android Debugging Bridge (ADB), and using the Google
Play Store APL

Android Debugging Bridge. When developer mode is enabled on
an Android device, the end user can extract APKs using a tool
called Android Debugging Bridge (ADB). ADB is developed by An-
droid itself and is included in Android Studio. In this paper, ADB
was the main method of gathering APKs. Automatic updates were
disabled and APKs were extracted before and after every update.

Google Play Store APL. A more automated way to obtain APKs is
by using the Google Play Store API Even though there is no official
documentation for the Google Play Store API, there are some third-
party tools like GPlayCli [7] that can query the API The API also
has access to older versions that cannot be directly downloaded
from the Google Play Store. These types of third-party tools are
often deprecated or broken. Unfortunately, it turns out these were
somewhat unreliable for our purposes: some versions which we
extracted from a phone with ADB were unavailable through the
API afterwards. Furthermore, there is a limit on the number of API
interactions. Still, the Google Play Store API was used where pos-
sible to augment our dataset.

Data Set. For about 8 months starting from the summer of 2020,
we tracked 20 Android financial apps from Belgium and the Nether-
lands. Some of these apps released frequent updates, while others
almost had no updates during our observation period. In total, we
gathered a 229 different app versions for these 20 apps. As our
goal is to evaluate ApkDiff and to draw some more general ob-
servations, we do not refer to specific apps or vendors, but rather
pseudonymize all references to them.

Note that while we initially gathered the apps, some apps could
not be analysed by soot, the analysis framework on which Apk-
Diff relies. We observed both soot throwing an exception, or the
analysis of soot taking too long. We excluded those apps from our
analyses.

6 RESULTS

In this section, we present our results. We start off by describing
the relevant statistics of the dataset on which we will evaluate Apk-
Diff. Next, we describe how well ApkDiff works, to match classes
in this dataset. Finally, we will show how our algorithm can some-
times be used to deobfuscate classes. Note that all our measure-
ments were performed with ApkDiff’s conditional name matching

enabled.

6.1 Statistics of the Data Set

ApkDiff works on bytecode rather than native code. Thus it is in-
teresting to not only measure how large the code base for each app

Checkmate "22, November 11, 2022, Los Angeles, CA, USA

Table 1: Bytecode (.dex files) and Native code (lib folder)
sizes in MB per app (averaged over all available versions and
ABIs).

App Byte Native | App Byte Native
appA 281 88.1 | appK 19.3 0
appB 29.4 69.1 | appL 21.2 0
appC 227 0 | appM 3.5 9.2
appD 12.9 22.8 | appN 13.8 4.7
appE 45.0 0 [appO 275 0
appF 8.5 6.4 | appP 5.5 3.5
appG 147 42.8 | appQ 4.6 119.7
appH 7.5 26.6 | appR 8.8 5.3
appl 10.5 13.5 | appS 25.7 3.6
appJ 11.3 4.3 | appT 9.0 5.3

Table 2: Percentage of unobfuscated classes, based on apply-
ing our heuristic (averaged over all available versions).

App % |App % | App % |App %

appA 23.67 | appF 34.73 | appK 24.03 | appP 85.09
appB 52.66 | appG 57.95 | appL 37.12 | appQ 95.96
appC 9035 | appH 45.06 | appM 97.25 | appR 32.86
appD 91.39 | appl 65.74 | appN 89.08 | appS 57.91
appE 67.48 | app] 45.84 | appO 16.57 | appT 32.78

is, but also how this is split across bytecode and native code. We
use file sizes as a proxy for the size of the code base. These file sizes
allow us to deduce quite some information, for example whether
there is native code at all. As apps often have native code for multi-
ple ABIs, average over all of the available ABIs rather than report
absolute sizes. Table 1 shows the distribution of bytecode and na-
tive code for the apps in our dataset.

The distribution of bytecode and native code varies a lot be-
tween the applications. On the one hand, apps like appC, appE,
appK, and appL have no native code whatsoever. All functional-
ity is implemented in bytecode, including the potentially security-
critical functionality. On the other hand, apps like appH, appQ,
appG, and appA have more native code than bytecode. This would
suggest that most functionality is implemented in the native code,
which could range from core functionality, to the whole-sale in-
clusion of third-party libraries such as OpenCV and OpenSSL. As
some of our results also depend on whether or not classes are con-
sidered to have been obfuscated, according to our heuristic, Table 2
provides an overview per app of the percentage of unobfuscated
classes, based on our heuristic.

Finally, we need to consider how realistic our use case is: are
apps updated often enough, so that reverse engineers would be
working on a version while a new version is released? If apps re-
lease new updates sporadically, matching classes between versions
might not be as important. We can get a feeling by look at the
update frequencies of the applications in our dataset. We have an
average of 0.99 and a median of 0.86 updates per month. In other
words, the average app has an update frequency of (slightly above)
one month. There are some outliers in both directions, ranging
from 0.2 at the lowest end, to 2.5 updates per month (i.e., on av-
erage once every 12 days). These numbers suggest that a diffing
approach might be useful for reverse engineers.

Checkmate "22, November 11, 2022, Los Angeles, CA, USA

6.2 Self-Matches

Because unobfuscated versions of the apps in our dataset are not
available, it is difficult to evaluate the algorithm for accuracy. How-
ever, we can still create an upper bound on the accuracy of ApkDiff
by having matching an app version with itself, as the ground truth
is known in this case: it is the identity mapping, where every class
has to match with itself. This already allows us to evaluate differ-
ent aspects. First, we can consider false positives, i.e., when a class
is incorrectly matched to a different class. Furthermore, we can
consider the amount of true positives, i.e., how many classes are
correctly matched with itself.

To evaluate ApkDiff in this setting, we executed it on 229 differ-
ent versions across our data set of 20 different banking apps, for a
total of 3,466,656 classes. There were no false positives. This is not
unsurprising, as we only consider matches when, according to the
features ApkDiff uses, there is no possible ambiguity. As for the
true positive rate, ApkDiff correctly matched 92.3% of the classes
per application.

We do not achieve a true positive rate of 100% as ApkDiff uses
its heuristic to detect obfuscated identifiers. In that case, the obfus-
cated identifier is discarded and the entire matching process then
only depends on the class structure itself. We observe that the un-
matched classes did not find a unique match because there were
too many potential matches with the same class structures. For all
of these classes, there were other classes that had the same class
structure. An example is empty marker interfaces. Sometimes in-
terfaces are left empty and are used to mark a class to have a certain
feature, e.g. Serializable in Java. If there are multiple of these inter-
faces and their names are removed, they all look exactly the same.
There is no way to distinguish between them by looking at their
structures alone.

6.3 Matching Different App Versions

Of course, our goal is not to match a version with itself. As our
use case is a reverse engineer wanting to port information from
one version to another, it is more interesting to match different
versions and see how many classes can be matched. We start by
matching subsequent pairs of app versions, the results of which
are shown in Table 3. On the left are the results for each version
that matches with itself and on the right are the results for sub-
sequent pairs of versions. We see that here on average 73.7% of
the classes matched per application. Even though in this case we
have no ground truth, note that ApkDiff only considers a pair of
classes as a match when there is no ambiguity given the used fea-
tures, which would give a reverse engineer a reasonable degree of
confidence in the correctness of these matched classes.

While percentages are easier to compare between different ap-
plications, the absolute number of classes that matched gives a
more accurate view of the application. The absolute number of
classes, the self-matches, and the matches between the last and sec-
ond to last version are shown in Figure 6. Here we see that the abso-
lute number of matches differs significantly between apps and that
a higher percentage does not necessarily mean that more classes
were matched. For example, a higher matching percentage is ob-
served in appl but more work can be saved for a reverse engineer
in appK because more classes were matched.

Robbe De Ghein, Bert Abrath, Bjorn De Sutter, and Bart Coppens

Table 3: Percentage of classes that matched with itself and
between subsequent versions per app (averaged over all
available versions or pairs).

App Self Pair | App Self Pair
appA 87.5% 77.1% | appK 91.0% 88.2%
appB 93.0% 82.9% | appL 90.0% 87.8%
appC 97.6% 74.6% | appM 100.0% 97.6%
appD 98.0% 98.0% | appN 98.5% 62.6%
appE 94.0% 67.0% | appO 83.3% 58.4%
appF 88.8% 79.9% | appP 99.1% 79.0%
appG 92.0% 79.3% | appQ 99.4% 78.8%
appH 92.0% 91.4% | appR 84.0% 76.6%
appl 96.0% 93.3% | appS 96.0% 51.7%
app] 89.2% 78.3% | appT 84.0% 76.8%
Arithmetic Mean 92.7% 78.8%
Harmonic Mean 92.3% 73.7%

Table 4: Percentage of unobfuscated and obfuscated classes
that matched between subsequent versions per app (aver-
aged over all available pairs).

App Unobf Obf | App Unobf Obf
appA 90.6% 72.9% | appK 97.3% 85.6%
appB 98.0% 66.0% | appL 97.5% 82.2%
appC 77.0% 774% | appM 97.6% 97.5%
appD 99.0% 84.3% | appN 64.5% 62.5%
appE 72.2% 61.6% | appO 93.3% 51.4%
appF 95.4% 71.4% | appP 86.7% 68.5%
appG 85.3% 72.7% | appQ 79.5% 70.8%
appH 98.8% 85.3% | appR 79.8% 75.6%
appl 97.0% 86.5% | appS 71.7% 23.3%
appJ 92.5% 61.0% | appT 80.4% 75.6%
Arithmetic Mean 87.7% 71.6%
Harmonic Mean 83.8% 56.2%

However, when interpreting these results, two aspects are im-
portant to consider: the amount of native code, and whether or
not code has been obfuscated. As for the amount of native code,
Figure 7 shows the relation between the percentage of native code
in an app versus the amount of matched classes. This shows a
trend where apps with a higher matching percentage generally
have more native code compared to bytecode. As for the code ob-
fuscations, we used our heuristic as described in Section 3. We are
interested in the performance on obfuscated classes versus the ob-
fuscated classes, the idea being that the obfuscated classes might
tend to have more important functionality, and are harder to man-
ually match based on their names. We stress, however, that is im-
possible to know with certainty whether or not a class has been
obfuscated with these methods, but at least this leads to an esti-
mate. Table 4 splits the percentages of matched classes between
the classes that are marked as unobfuscated or obfuscated, based
on their identifier.

For some apps we can almost match 100% of the classes, while
other applications have a matching percentage as low as 23%. In
most applications however, we achieve a relatively high matching
percentage. On average, around 56.2% of the obfuscated classes
have a match, meaning that the majority of the classes can be
linked between versions, potentially saving a substantial amount

ApkDiff: Matching Android App Versions Based on Class Structure

Checkmate "22, November 11, 2022, Los Angeles, CA, USA

Number of classes, self matches and pair matches per application (latest two versions)

40,000

30,000

20,000

10,000

A B

(]
N
R

Ty R L 9 & & >
R) R
L L& & &L R

] Q\,
R

Classes
Matches (self)
Matches (pair)

£ & & & 0 & o & & &
L & L LR

Figure 6: Number of classes, self matches and pair matches per application (latest two versions).

of reverse-engineering work for an attacker. Note that the har-
monic mean of 56.2% is significantly lower than the arithmetic
mean because of the outliers with low percentages. Most apps achieve
a better matching percentage for the obfuscated classes.

Finally, it is possible that different versions of an app are com-
pletely different because of the obfuscations which have been ap-
plied to them. With ApkDiff, we can do a basic analysis to ver-
ify this. For every match that we found, we can check if the class
names are identical and thus did not change across versions. The
class name is either not changed or it is renamed to the same ob-
fuscated identifier. We calculated the number of matches that had
identical names and averaged this over all subsequent pairs of ver-
sions. The results are shown in Table 5. Here we see varying results:
apps such as appA or appR have a low percentage. Only around 40%
of the matches had the same class name. Conversely, we have apps
such appD and appH that reach 98% or more. In the latter case, we
have to assume that the obfuscations are applied in the same man-
ner for each new version. If this is the case, we can simply match
classes based on their class name alone and reach the same results.
This is not possible for all applications, as on average only 68% of
the matches have the same class names. Here we cannot simply
match on the class names as we would lose too many matches.

6.4 ApkDiff for Deobfuscation

ApkDiff is designed to match classes between different versions to
aid reverse engineers in porting information between potentially
obfuscated versions. Given that we also tracked a history of differ-
ent app versions, an interesting question is whether or not obfus-
cations are introduced throughout the lifetime of an app, and, if so,
whether or not ApkDiff can help a reverse engineer link the ‘orig-
inal” unobfuscated class to later obfuscated versions of that same

App Pairs Id.Name | App Pairs Id.Name
appA 7 38.1% appK 18 95.8%
appB 10 71.9% appL 4 91.4%
appC 9 71.0% appM 41 99.5%
appD 6 99.9% appN 12 54.7%
appE 5 50.7% appO 9 71.2%
appF 46 70.0% appP 6 91.6%
appG 3 73.3% appQ 4 97.7%
appH 9 98.9% appR 5 39.2%
appl 4 99.6% appS 3 83.8%
app]J 4 94.1% | appT 5 40.8%
Arithmetic Mean 76.7%
Harmonic Mean 68.0%

Table 5: Percentage of matches with an identical class name
per app (averaged over all pairs).

class. We can answer both questions affirmatively. By analysing
the results of ApkDiff on our dataset, we sometimes see an ob-
fuscated class match with an unobfuscated one, which is indica-
tive of the developers suddenly enabling obfuscations for this class.
We investigated two different such classes of appC, and manually
verified the correctness of our results by comparing the bytecode.
We observed both renaming and repackaging of the classes. Inter-
estingly, we observed that the identifier renaming scheme used
changed across versions. The initial versions used unobfuscated
class names and contained the full package hierarchy details and
class name. Suddenly the class was moved into a container pack-
age with a short identifier, and the class name itself was changed
into a clearly meaningless sequence of Unicode characters. The
next version, while still being located in the container package,
the class name was changed into a meaningful name with clear

Checkmate "22, November 11, 2022, Los Angeles, CA, USA

Robbe De Ghein, Bert Abrath, Bjorn De Sutter, and Bart Coppens

Relation between relative amount of native code versus matching percentage

100 appD appM
app! appH
appK
appB
appL appF G
| appl appT.2PPR app appQ
& appC PP appA
appR
_ appE pp
§ appN
§ 60 {2PPO
o apps
o}
°
2
S 40
©
=
204
° 2 P 60 % 100

Native code size (%)

Figure 7: Relation between relative amount of native code versus matching percentage.

human-interpretable semantics which were completely unrelated
to the original class name. Across subsequent versions, the name of
this class kept being changed into different human-interpretable-
but-unrelated names, until it eventually settled on a particular such
name that remained unchanged afterwards. This shows that Apk-
Diff can also allow reverse engineers to link functionality across
differently-obfuscated app versions to unobfuscated app versions.

7 RELATED WORKS

In this section, we will discuss the techniques and related works
that are relevant for ApkDiff.

7.1 Binary Diffing

The most closely-related topic is that of binary diffing, which tries
to solve a similar problem, but for native/binary code. In that case,
different representations associated with binary code are matched
with one another, ranging from whole functions, through basic
blocks (BBLs), to individual instructions. The best-known exam-
ple of such a tool is BinDiff'. BinDiff starts by matching functions
to one another, then matches BBLs in matched functions, and fi-
nally matches instructions in matched BBLs. BinDiff builds on the
work of Flake [24] and Dullien et al. [22]. Flake matches programs
based by partitioning functions according to a 3-tuple containing
the number of BBLs, the number of edges in their control flow
graphs, and the number of edges in the call graph originating from
that function. If a group contains exactly one function of each pro-
gram version, these functions are considered a match. The set of
matched functions is then used as a base for iteratively improv-
ing the matched function set. In subsequent iterations, functions

https://www.zynamics.com/bindiff html

10

are only considered when they have call edges originating from al-
ready matched functions. Dullien et al. extend and generalize the
work of Flake in two significant ways. Firstly, they apply the same
techniques to BBLs and instructions in these BBLs. Secondly, their
algorithm generalizes the partitioning of functions with 3-tuples
by considering generic selectors and properties for matching graphs.
A selector maps a single node from graph A to the unique most
similar node of graph B, if it exists. The 3-tuples from Flake are
an example of such a selector. Properties are functions that, when
given a graph, return a subset of that graph’s nodes. They can thus
be used to reduce the size of the graphs fed to the selectors as input.
For example, a property for call graphs could return only the func-
tions of the input call graph that contain a recursive function call.
The goal of reducing the graph is to reduce the number of identical
3-tuples for a selector, improving the chances of finding a unique
match. Other tools such as Diaphora® have implemented similar
techniques. ApkDiff’s approach is inspired by BinDiff and the work
on which BinDiff is based, but focuses on matching classes, which
allows us to take advantage of the much richer set of metadata as-
sociated with them when compared to binary code. Other binary
diffing approaches exist, such as techniques based on symbolic ex-
ecution and theorem proving [28], dynamic similarity testing [23],
system call slicing [33], locality-sensitive hashing [31, 34], etc.

7.2 Clone Detection

Android apps can be downloaded, extracted, modified and repack-
aged because they are accessible. This makes these apps suscep-
tible to malware distribution and clones. One way to find such
clones is by fingerprinting the Abstract Syntax Tree (AST) [20].
Another method of finding reused code is used by SUIDroid [30],

Zhttps://github.com/joxeankoret/diaphora

https://www.zynamics.com/bindiff.html
https://github.com/joxeankoret/diaphora

ApkDiff: Matching Android App Versions Based on Class Structure

who uses Ul-based birthmarks (or fingerprints) to detect similari-
ties between Android apps. Soh et al. [38] also opt for a Ul-based
approach to clone detection. Instead of fingerprinting the AST, it
is also possible to make fingerprints at the (approximated) source
code level.

The above methods do not actually use the extra metadata that
an Android application carries. Android apps follow a known struc-
ture. The entry points of the application are defined in the Android
manifest file. This is something that Byoungchul et al. address in
their clone detection tool RomaDroid [29]. RomaDroid follows the
entry points throughout the software and compares the paths us-
ing a longest common sequence approach.

7.3 Identifying Third-Party Libraries

A different use case that utilizes some similar techniques is identi-
fying third-party libraries in Android apps. Here we try to identify
which libraries an app uses. There has been quite a bit of research
in this domain. Most recently Zhang et al. proposed a tool named
LibID [40]. LibID starts by constructing the control flow graph
and splitting the code into BBLs. These BBLs form a class signa-
ture which is used to match classes from a library. The study also
introduces the candidate (or potential) match, where two classes
could possibly be matched later. The importance is also shown in
its results: LibID identified a vulnerable version of the OkHttp li-
brary, an HTTP client for Android, in nearly 10% of popular Google
Play apps. Another recent tool employing some similar ideas is Lib-
Scout [16, 21]. The main difference is the usage of a fixed-depth
merkle tree, together with a fuzzy hashing technique to account
for uncertainties.

7.4 Deobfuscation

Deobfuscation tries to undo some obfuscations so that attacker can
understand the semantics of an application faster. Comparing dif-
ferent application versions could becomes easier as well. However,
deobfuscation is no easy task: Many attempts have been made with
various techniques, but no single solution has been found. Obfus-
cation is a broad topic, so most research tries to focus more on
specific cases. For example, Baumann et al. [18] try to find known
pieces of code (e.g. from a library) inside an APK by comparing
method fingerprints in at the intermediate language level. Bichsel
et al. [19] use a similar technique. Method fingerprinting might be
a useful extension for ApkDiff.

8 CONCLUSION

We designed and implemented ApkDiff, an algorithm to match
classes in different Android application versions. For every class
in an application, our algorithm tries to find the equivalent class in
the new version. It does so based finding unique matches, an then
propagating information from these unique matches to extend the
set of matched classes.

To evaluate ApkDiff, we popular financial apps from Belgium
and the Netherlands for eight months to create a dataset, allowing
us to extensively evaluate the attack strategy.

On average, our algorithm could match 92.7% of the classes in
the latest version of all apps in the dataset when matching that
version with itself. This provides an upper limit for the matching

1

Checkmate "22, November 11, 2022, Los Angeles, CA, USA

performance per app. Across all successive pairs of all application
versions, on average 78.8% of the classes could be matched. If we
split the classes into obfuscated and unobfuscated classes, as deter-
mined by our heuristic, we find that on average 71.6% of the obfus-
cated classes and 87.7% of the unobfuscated classes were matched.
All of these statistics suggest that current popular financial appli-
cations are not resilient to this style of matching.

Besides matching classes between subsequent versions, we also
demonstrated other use cases for this algorithm, such as finding
the unobfuscated version of a class by matching a much older ver-
sion where this class had no obfuscations.

ACKNOWLEDGMENTS

This research was partly funded by the Cybersecurity Initiative
Flanders (CIF) from the Flemish Government and by the Fund for
Scientific Research - Flanders (FWO) [Project No. 3G0OE2318].

REFERENCES

1] Accessed: 2021-01-05. Android’s R8 documentation. https://developer.android.
com/studio/build/shrink-code.

[2] Accessed 2022-08-26. Chinese Python. http://chinesepython.org/.

[3] Accessed 2022-08-26. DashO. https://www.preemptive.com/products/dasho/
features.

[4] Accessed 2022-08-26. DexGuard. https://www.guardsquare.com/en/products/
dexguard.

[5] Accessed 2022-08-26. Farsinet, a .NET based farsi programming lan-
guage. https://web.archive.org/web/20220709205424/https://code.google.com/
archive/p/farsinet/.

[6] Accessed 2022-08-26. Google Java Style Guide.

styleguide/javaguide.html#s5.1-identifier-names.

Accessed 2022-08-26. GPlayCli GitHub. https://github.com/matlink/gplaycli.

Accessed: 2020-12-16.

Accessed: 2022-08-26. GUJTO — Ghent University Java Type Obfuscator. http:

//gujto.elis.ugent.be/.

Accessed 2022-08-26. Hindawi Indic Programming System. https://sourceforge.

net/projects/hindawi/.

Accessed 2022-08-26. JFuscator. https://secureteam.net/jfuscator-features. Ac-

cessed: 2020-12-16.

Accessed 2022-08-26. KlassMaster. https://www.zelix.com/klassmaster/features.

html. Accessed: 2020-12-16.

Accessed 2022-08-26. ProGuard. https://www.guardsquare.com/proguard.

Accessed 2022-08-26. Securelt. http://www.allatori.com/features.html.

cessed: 2020-12-16.

Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo.

2020. Obfuscapk: An open-source black-box obfuscation tool for Android apps.

SoftwareX 11 (2020), 100403.

Jeff Atwood. 2009. The Ugly American Programmer. https://blog.codinghorror.

com/the-ugly-american-programmer/.

Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Library

Detection in Android and Its Security Applications. In ACM CCS. 356-367.

barthen. 2009-03-19. [WoW] [3.0.9] Symbolic info. https://www.ownedcore.

com/forums/world-of-warcraft/world- of-warcraft-bots- programs/wow-
memory-editing/219320-wow-3-0-9-symbolic-info.html.

Richard Baumann, Mykolai Protsenko, and Tilo Miiller. 2017. Anti-ProGuard:

Towards Automated Deobfuscation of Android Apps. In Proceedings of the 4th

Workshop on Security in Highly Connected IT Systems (SHCIS °17). ACM, 7-12.

Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. 2016. Sta-

tistical deobfuscation of android applications. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security. ACM, 343-355.

Michel Chilowicz and Gilles Roussel. 2009. Syntax tree fingerprinting for source

code similarity detection. 243-247.

Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.

Keep me Updated: An Empirical Study of Third-Party Library Updatability on

Android. In ACM CCS.

Thomas Dullien and Rolf Rolles. 2005. Graph-Based Comparison of Executable

Objects. In Symposium sur la Sécurité des Technologies de 'Information et des

Communications. 1-3.

Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket

execution: Dynamic similarity testing for program binaries and components. In

USENIX Security. 303-317.

Halvar Flake. 2004. Structural Comparison of Executable Objects. In DIMVA.

—_

https://google.github.io/

T T
R R R ONCS)

Ac-

RN

=
&

=
!

=
&

[19

[20]

[21]

[22

[23

[24]

https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
http://chinesepython.org/
https://www.preemptive.com/products/dasho/features
https://www.preemptive.com/products/dasho/features
https://www.guardsquare.com/en/products/dexguard
https://www.guardsquare.com/en/products/dexguard
https://web.archive.org/web/20220709205424/https://code.google.com/archive/p/farsinet/
https://web.archive.org/web/20220709205424/https://code.google.com/archive/p/farsinet/
https://google.github.io/styleguide/javaguide.html#s5.1-identifier-names
https://google.github.io/styleguide/javaguide.html#s5.1-identifier-names
https://github.com/matlink/gplaycli
http://gujto.elis.ugent.be/
http://gujto.elis.ugent.be/
https://sourceforge.net/projects/hindawi/
https://sourceforge.net/projects/hindawi/
https://secureteam.net/jfuscator-features
https://www.zelix.com/klassmaster/features.html
https://www.zelix.com/klassmaster/features.html
https://www.guardsquare.com/proguard
http://www.allatori.com/features.html
https://blog.codinghorror.com/the-ugly-american-programmer/
https://blog.codinghorror.com/the-ugly-american-programmer/
https://www.ownedcore.com/forums/world-of-warcraft/world-of-warcraft-bots-programs/wow-memory-editing/219320-wow-3-0-9-symbolic-info.html
https://www.ownedcore.com/forums/world-of-warcraft/world-of-warcraft-bots-programs/wow-memory-editing/219320-wow-3-0-9-symbolic-info.html
https://www.ownedcore.com/forums/world-of-warcraft/world-of-warcraft-bots-programs/wow-memory-editing/219320-wow-3-0-9-symbolic-info.html

Checkmate "22, November 11, 2022, Los Angeles, CA, USA Robbe De Ghein, Bert Abrath, Bjorn De Sutter, and Bart Coppens

[25

Christophe Foket. 2015. Global obfuscation of bytecode applications. Ph.D. Dis- [33] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-
sertation. Ghent University. based Semantic Binary Diffing via System Call Sliced Segment Equivalence
[26] Christophe Foket, Bjorn De Sutter, and Koen De Bosschere. 2014. Pushing java Checking. In USENIX Security.
type obfuscation to the limit. IEEE Transactions on Dependable and Secure Com- [34] Rylan O’Connell and Ryan Speers. 2019-12-02. Hashashin: Using Binary Hash-
puting 11, 6 (2014), 553-567. ing to Port Annotations. https://www.riverloopsecurity.com/blog/2019/12/
[27] Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere. 2012. binary-hashing-hashashin/.
A novel obfuscation: class hierarchy flattening. In International Symposium on [35] Oracle. Accessed: 2021-3-11. Code Conventions for the Java TM Programming
Foundations and Practice of Security. Springer, 194-210. Language. https://www.oracle.com/java/technologies/javase/codeconventions-
[28] Debin Gao, Michael K Reiter, and Dawn Song. 2008. Binhunt: Automatically contents.html.
finding semantic differences in binary programs. In International Conference on [36] Oxford. Accessed 2021-2-27. Are There Any Words With The Same Letter Three
Information and Communications Security. Springer, 238-255. Times In A Row? https://www.lexico.com/explore/words-with- same-letter-
[29] B. Kim, K. Lim, S. Cho, and M. Park. 2019. RomaDroid: A Robust and Efficient three-times-in-a-row.
Technique for Detecting Android App Clones Using a Tree Structure and Com- [37] ProGuard. Accessed 2022-08-29. ProGuard manual. https://www.guardsquare.

ponents of Each App’s Manifest File. IEEE Access 7 (2019), 72182-72196.

F. Lyu, Y. Lin, J. Yang, and J. Zhou. 2016. SUIDroid: An Efficient Hardening-
Resilient Approach to Android App Clone Detection. In 2016 IEEE Trust-
com/BigDataSE/ISPA. 511-518.

Elie Mengin. 2019-09-09. Weisfeiler-Lehman Graph Kernel for Binary Func-
tion Analysis. https://blog.quarkslab.com/weisfeiler-lehman-graph-kernel-for-

com/manual/configuration/usage.

C. Soh, H. B. Kuan Tan, Y. L. Arnatovich, and L. Wang. 2015. Detecting Clones
in Android Applications through Analyzing User Interfaces. In 2015 IEEE 23rd
International Conference on Program Comprehension. 163-173.

Y. Wang and A. Rountev. 2017. Who Changed You? Obfuscator Identification
for Android. In MOBILESoft. 154-164.

binary-function-analysis.html. [40
[32] Charlie Miller, Dion Blazakis, Dino DaiZovi, Stefan Esser, Vincenzo lozzo, and
Ralf-Philip Weinmann. 2012. iOS Hacker’s Handbook. John Wiley & Sons.

Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. 2019. LibID: Reli-
able Identification of Obfuscated Third-Party Android Libraries. In ISSTA. ACM,
New York, NY, USA, 55-65.

12

https://blog.quarkslab.com/weisfeiler-lehman-graph-kernel-for-binary-function-analysis.html
https://blog.quarkslab.com/weisfeiler-lehman-graph-kernel-for-binary-function-analysis.html
https://www.riverloopsecurity.com/blog/2019/12/binary-hashing-hashashin/
https://www.riverloopsecurity.com/blog/2019/12/binary-hashing-hashashin/
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://www.lexico.com/explore/words-with-same-letter-three-times-in-a-row
https://www.lexico.com/explore/words-with-same-letter-three-times-in-a-row
https://www.guardsquare.com/manual/configuration/usage
https://www.guardsquare.com/manual/configuration/usage

	Abstract
	1 Introduction
	2 Background
	2.1 Identifier Renaming
	2.2 Modifying Package Hierarchy

	3 Matching Algorithm Design
	3.1 Potential and Unique Matches
	3.2 Extending Matches
	3.3 Package Information

	4 Implementation
	4.1 Available Features
	4.2 Heuristics for Identifiers
	4.3 Increasing Performance

	5 Data Gathering and Data Set
	6 Results
	6.1 Statistics of the Data Set
	6.2 Self-Matches
	6.3 Matching Different App Versions
	6.4 ApkDiff for Deobfuscation

	7 Related Works
	7.1 Binary Diffing
	7.2 Clone Detection
	7.3 Identifying Third-Party Libraries
	7.4 Deobfuscation

	8 Conclusion
	Acknowledgments
	References

