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Abstract

Multi-Variant Execution Environments (MVEEs) are a pow-
erful tool for protecting legacy software against memory
corruption attacks. MVEEs employ software diversity to run
multiple variants of the same program in lockstep, whilst
providing them with the same inputs and comparing their
behavior. Well-constructed variants will behave equivalently
under normal operating conditions but diverge when under
attack. The MVEE detects these divergences and takes action
before compromised variants can damage the host system.

Prior research has shown that multi-variant execution
only works if the variants receive identical inputs. Existing
MVEEs replicate inputs at the system call boundary, and
therefore do not support programs that use shared-memory
IPC with other processes, since shared memory pages can
be read from and written to directly without system calls.

We analyzed modern applications, ranging from web
servers, over media players, to browsers, and observe that
they rely heavily on shared memory, in some cases for their
basic functioning and in other cases for enabling more ad-
vanced functionality. It follows that modern applications
cannot enjoy the security provided by MVEEs unless those
MVEEs support shared-memory IPC.

This paper first identifies the requirements for supporting
shared-memory IPC in an MVEE. We propose a design that
involves techniques to identify and instrument accesses to
shared memory pages, as well as techniques to replicate I/O
through shared-memory IPC. We implemented these tech-
niques in a prototype MVEE and report our findings through
an evaluation of a range of benchmark programs. Our con-
tributions enable the use of MVEEs on a far wider range of
programs than previously supported. By overcoming one of
the major remaining limitations of MVEESs, our contributions
can help to bolster their real-world adoption.

1 Introduction

C and C++ have long been the languages of choice for sys-
tems programming thanks to their unique feature sets and
performance characteristics. Over the years, developers all
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around the world have built up huge code bases without
fully realizing that C/C++’s loose language specifications and
lack of safety checks make even the most carefully writ-
ten programs rife with undefined behavior and memory
errors [33]. Hackers routinely exploit these memory errors
to infiltrate systems or to force them to leak confidential
information [9, 10, 22, 23, 44-47].

Software diversity is one proposed solution against mem-
ory exploits [11, 16, 29]. By randomizing code features such
as the register allocation, instruction selection, data represen-
tation, or run-time memory layout, we can generate many
different variants of a program that differ in syntax but are se-
mantically equivalent. Memory exploits that can successfully
compromise one variant often fail at compromising most,
if not all, of the other variants. Software diversity is not
without its flaws, however, as it does not provide any hard
security guarantees and even its probabilistic protection can
be undermined through information leakage attacks [40].

Multi-Variant Execution Environments (MVEEs) alleviate
these shortcomings by running multiple program variants
in lockstep at the granularity of system calls while feeding
them with identical inputs [5, 7, 14, 20, 21, 25, 27, 28, 31, 32,
41, 49, 51, 52, 54, 55, 57, 58]. The idea is to generate struc-
turally asymmetrical variants that have a high probability
(of up to 100%) of reacting differently to the same exploit
payloads. A monitor detects divergences in the run-time be-
havior, assumes that they are the result of an ongoing attack,
and takes the appropriate actions. On systems with sufficient
resources, MVEEs incur negligible slowdowns.

Despite their potential, few people deploy MVEEs in prac-
tice due, in part, to the non-trivial requirements they impose
on protected programs. In some constrained software de-
velopment life cycles (SDLCs), e.g., for safety-critical appli-
cations, programmers already need to constrain their code
to meet stringent certification and fault-tolerance require-
ments [34]. The cost to meet additional requirements such
as those imposed by MVEE:s is relatively low in such cases.
In non-constrained SDLCs, the MVEE-related requirements
seem too high a burden at the moment. This includes soft
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requirements such as ease-of-use and managable compati-
bility issues that can be handled by recompiling code with
additional compiler passes or by local code patches.

Prior research has shown that program variants only be-
have equivalently if they receive identical inputs [14, 41].
However, since multi-variant monitors operate at the system
call boundary, they can only distribute identical inputs they
receive through system calls (e.g., reads from files, pipes, or
sockets). If variants receive inputs through other channels,
they can run into “benign divergences”, where they start
performing system calls the monitor does not deem equiva-
lent [52]. Some such benign divergences can be handled with
existing techniques and hence pose soft requirements [50].

One of the channels in question is shared-memory inter-
process communication (SHM IPC). After setting up a SHM
IPC channel, variants can send and receive data directly
without issuing system calls. This can introduce benign di-
vergences because external processes can modify the SHM
pages while the variants are reading them, thus causing the
variants to read different inputs. It could also allow compro-
mised variants to stealthily attack and compromise other
variants or external processes, fully bypassing the monitor’s
equivalence checks. Few existing MVEEs offer any support
for programs that use SHM IPC. We found that, in most cases,
the MVEE just denies the program access to SHM IPC chan-
nels, often leading the program to simply shut down because
it cannot function without it [52]. In cases where SHM IPC
is supported, the program quickly slows down to a point
where it is no longer usable. Yet, our analysis of widely used
programs and libraries revealed that without efficient sup-
port for SHM IPC, MVEEs cannot protect important classes
of applications. In other words, SHM IPC support is a hard
requirement that was until now not met by MVEEs.

This paper reports our research to meet the requirement.
By developing techniques to support SHM in MVEEs, we
enable them to protect a much wider range of applications,
thus overcoming one of the last remaining fundamental hard
obstacles to deploying MVEEs in practice. We make the fol-
lowing three contributions: First, we present an analysis
of SHM usage in modern applications, which yields
concrete requirements for SHM support in MVEEs. We
observe that if MVEEs cannot meet these requirements, large
and important classes of applications developed today simply
cannot be protected by MVEEs.

Secondly, we present a two-layered mechanism for
supporting SHM IPC in MVEEs. The first layer leverages
the MMU to trap all accesses to SHM pages. We collect infor-
mation on every trapped access and forward it to the MVEE’s
monitor so that it can perform the attempted operation on
behalf of the variants and return the results. We then aug-
ment this mechanism with a second, far more efficient, layer
that relies on dynamic analysis and an in-process agent to
identify and instrument instructions that access SHM ahead
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of time, and to vet and replicate these accesses directly in
user space, bypassing the monitor’s replication facilities.

Thirdly, we evaluate a prototype implementation on
microbenchmarks, server benchmarks, as well as a media
application to show that our solution supports SHM IPC with
acceptable run-time overhead. We are the first to offer
full support for SHM IPC in a state-of-the-art MVEE.

With these contributions, we do not aim at improving the
security provided by MVEEs. Instead, these contributions
overcome a fundamental limitation of existing MVEEs, thus
enabling the delivery of their existing security provisions to
modern applications.

2 Background

Software Diversity. The security guarantees of an MVEE
depend entirely on how they generate variants. Typically,
MVEEs use structurally asymmetrical variants that have a
high probability of responding differently to the same exploit
payload. Cox et al., for example, proposed to use compile-
time transformations to generate variant binaries with non-
overlapping address spaces [14]. This setup thwarts any
code-reuse or data-oriented attacks that rely on payloads con-
taining absolute memory addresses. Several other MVEEs
achieve the same results by relying on run-time transfor-
mations to generate asymmetrical variants of a single bi-
nary [31, 51]. More examples of effective variant generation
techniques are found in literature [27, 31, 41, 51, 53-55, 58].

Rendezvous Points. One of the key tasks of the MVEE
monitor is to observe variants and detect divergences in their
execution behavior. Security-oriented MVEEs do this by sus-
pending variants when they reach predefined rendezvous
points (RVPs). Once all variants arrive at such an RVP, the
monitor checks their states for equivalence and takes a cor-
rective action when the states do not match. If the states
match, the monitor resumes the variants. The vast majority
of existing MVEE systems use system call entry and return
points as the RVPs. They check for state equivalence by com-
paring system call numbers and arguments. The underlying
idea is that, since processes running on modern operating
systems are confined to their own private virtual address
spaces, any actions that may harm other processes must use
system calls, which can be observed by the monitor [14, 41].
RVPs also play a crucial role in I/O replication. When the
communicating entity (typically the leader variant) reaches
the return RVP of an input operation such as a sys_read, the
monitor records the result of that operation and replicates
those results to the follower variants.

Suspending variants at every system call entry and re-
turn point can be detrimental to their run-time performance.
Some MVEEs hence use a second type of RVP, so-called re-
laxed RVPs, to exempt certain system calls from the strict
lockstepping requirement [21, 27, 51]. When the leader vari-
ant reaches a relaxed RVP, the monitor records its state and,
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potentially, system call results, but allows it to continue its
execution immediately. When the follower variants reach
the same relaxed RVP, the monitor uses the recorded data to
perform state checking and/or I/O replication. If a follower
reaches a relaxed RVP before the leader does, it will wait for
the leader to reach the RVP and record the necessary data.

In security-oriented MVEEs, all potentially dangerous sys-
tem calls need to be surrounded by regular RVPs. That way,
the MVEE can guarantee that no harmful actions can be
performed unless all variants get compromised simultane-
ously. MVEEs built for other purposes, such as software
testing [21] and safe updates [36], can use relaxed RVPs
everywhere. This allows them to tolerate expected diver-
gences [37], while maintaining the capability of detecting
unexpected divergences, though not until after the divergent
actions have completed.

Security-Performance Trade-offs. Prior research ex-
plored many designs for MVEE monitor with different
security-performance trade-offs. Broadly speaking, we see
that there are four conflicting goals MVEEs try to meet:

e RVP Enforcement Variants should not be able to get
past RVPs without having the monitor perform the
necessary state equivalency checks, lockstep synchro-
nization with other variants, and replication of system
call results (if applicable);

o Monitor Isolation The variants should not be able to
tamper with the monitor by corrupting its memory;

e TCB Footprint The monitor should have minimal
impact on the size of the TCB;

e Monitor Invocation Overhead Invoking the monitor
at an RVP should incur minimal overhead.

The original MVEE design, presented by Cox et al., exe-
cuted its monitor in kernel space [14]. In-kernel monitors
provide strict RVP enforcement, strong monitor isolation,
and low invocation overhead, but have a substantial TCB
footprint. Several later designs run the monitor as a stan-
dalone process in user space and rely on the ptrace API to
intercept system calls [8, 41, 49]. These designs also provide
strict RVP enforcement and strong memory isolation. Un-
like in-kernel monitors, however, they have a minimal TCB
footprint and they incur high run-time overhead since they
require context switching for every RVP [21, 51]. VARAN
uses selective binary rewriting to intercept system calls in
user space and relies on an in-process monitor to avoid costly
context switches [21]. This design provides the lowest mon-
itor overhead, but does not isolate the monitor at all, and
it allows compromised variants to bypass RVPs [51]. MvAr-
mor [27] and MonGuard [56] enforce isolation of the in-
process monitor component using hardware virtualization
or isolation extensions [13]. MvArmor incurs low system
call interception overhead but requires substantial additions
to the TCB. MonGuard similarly incurs low overhead but
relies on hardware that is not available in most commodity
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CPUs. ReMon is a hybrid design that combines a ptrace-
based, cross-process monitor (CP-MON) with an efficient
in-process monitor (IP-MON) [51]. ReMon’s CP-MON pro-
vides strict RVP enforcement for regular RVPs, while its
IP-MON implements equivalence checks and replication for
relaxed RVPs. The IP-MON relies on information hiding to
isolate itself, as well as the replication buffer (RB) it uses for
replication, from potentially compromised variants. ReMon
does, however, require minor modifications to the kernel.

Benign Divergences. A big challenge in the design and
implementation of an MVEE is ensuring that the variants
behave equivalently if they receive inputs from other sources
than the system call interface. Prior research identified sev-
eral such sources, including the CPU’s time stamp counter
and random number generator [41], the virtual system call
interface [21], asynchronous signal delivery [42], and SHM
IPC [7]. Researchers also pointed out that the behavior of
many programs depends on run-time execution properties
such as their address-space layout [52] or the order in which
threads observe modifications other threads make to shared
state [50]. These execution properties could be viewed as
implicit program inputs. Reading input from any of these
sources can cause so-called benign divergences, where the
variants appear to behave differently despite not being at-
tacked. Thus, to support the widest range of programs, an
MVEE must guarantee that variants read identical input from
all of these resources. For several of these problems, includ-
ing SHM IPC, no practical solutions have been proposed.

Special-Purpose Multi-Execution Frameworks. Cer-
tain frameworks share commonalities with MVEEs, but do
not meet our definition of an MVEE. Detile, for example,
runs two diversified browsers in parallel and synchronizes
their JavaScript engines by executing JavaScript bytecodes in
lockstep [17]. The idea is to cross-check the values produced
by JavaScript bytecodes. If a bytecode exploits a vulnerability
to leak a variant-specific value such as a memory address,
the framework will detect the information leak because the
cross-check of the bytecode that leaked the value will fail.

Secure multi-execution frameworks, such as the one pre-
sented by Devriese and Piessens [15], can also run multiple
browser instances in parallel. The idea here is to assign ev-
ery instance to a different security level. This security level
determines which outputs an instance is allowed to produce,
and whether it receives default inputs or regular inputs. The
goal of secure multi-execution is to detect flows between
high-security inputs and low-security outputs.

Typically, these special-purpose frameworks replicate I/O
at the level of library calls rather than at the system call
interface. They also synchronize the variants far more loosely
than a regular MVEE does. Only a subset of the browsers’
internal library interfaces will be subject to cross-checking
and replication. Thus, whether the browsers do I/O over
SHM IPC or not is irrelevant to their correct functionality. In
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a regular MVEE, however, I/O handling for regular system
calls is fundamentally different than I/O handling for SHM
IPC. The latter requires dedicated and efficient I/O replication
infrastructure that is not available in any existing security-
oriented MVEE, but that we propose in this paper.

3 Threat Model

For the rest of this paper, we assume that an adversary tries to
attack the protected application by exploiting a vulnerability
in the application. We assume that this adversary either
operates from a remote machine, or from a local user account
that does not have sufficient privileges to tamper with the
MVEE directly. We further assume that the MVEE employs
a variant generation strategy that would cause the variants
to diverge when processing the exploit payload [14, 41].
We also assume that standard defenses such as Data Exe-
cution Prevention and Address Space Layout Randomization
are in place, though we do not depend on them. We con-
sider the hardware and the OS part of the trusted comput-
ing base (TCB). Thus, attacks that target them, e.g., micro-
architectural attacks [19, 26, 30, 43, 48], are considered out of
scope. Finally, we assume that we can instrument the code or
the binaries of the protected application using compile-time
instrumentation or binary rewriting. Our assumptions are
consistent with previous work in the area [21, 27, 51].

4 Shared Memory Support

SHM can be mapped and accessed from multiple processes si-
multaneously. It is either file-backed, where other processes
map or access the same file or device (e.g., a video card);
or anonymous, where other processes map the same mem-
ory segment using a system-wide unique identifier. Both
versions can be used for IPC. File-backed SHM can also be
used as an efficient way to access files or devices without the
overhead of system calls. MVEEs need to handle SHM with
care because it allows an application to perform I/O with-
out invoking any system calls, thus bypassing the existing
MVEE’s monitoring and replication of system call I/O.

4.1 Internal and External Shared Memory

We consider two types of SHM. Internal SHM (ISHM) can
only be accessed by a single (possibly multi-process) vari-
ant and is inaccessible to unmonitored processes. An exam-
ple is an anonymous memory region mapped via sys_mmap
and then shared with a child process (using sys_clone and
CLONE_VM). External SHM (ESHM) can be accessed by multi-
ple variants and, possibly, unmonitored processes. MVEEs
can safely allow variants to use ISHM without monitoring
individual memory accesses, as long as all communicating
threads/processes synchronize in an equivalent order in all
variants [21, 31, 50]. Existing MVEEs can impose an equiva-
lent synchronization order in all variants using deterministic
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Use Case Required For | External | Lines of Code
fontconfig always required Yes 36k
pulseaudio specific mode Yes 149k

X specific mode Yes 400k
wayland specific mode Yes 113k
nginx specific features No 137k
apache always required Yes 308k
firefox, chrome | always required Yes 16M, 30M

Table 1. Shared memory in examined use cases

multithreading [35] or record/replay techniques [50]. Sup-
porting ESHM is far more challenging, however, as a single
compromised variant could attempt to attack an external un-
monitored process, which, if compromised, could give that
variant unfettered access to the host system. Such an attack
is not possible with ISHM because any attack launched by a
compromised variant would be confined to that variant.

4.2 Real-World Applications

We examined some widely used libraries and applications
that use SHM on the Linux platform, and looked at exactly
how they use it. We observed that many applications use
SHM to complement other forms of IPC such as pipes and
sockets. SHM IPC is used mainly for large data exchanges
(e.g., video data), while system-call based IPC is preferred
for security-critical data (e.g., control messages) and for syn-
chronous transfer of small amounts of data.

Furthermore, it is worth noting how applications use and
pass around pointers referencing SHM. First, we observed
that a pointer to SHM might be produced in one component
of a process, such as the main executable, but can ultimately
be consumed by a completely different component, such as
a third-party library. Second, SHM is accessed with exactly
the same types of instructions that access private memory,
including all ordinary load and store instructions as well
as locked versions thereof. Third, many instructions that
consume pointers to SHM also consume pointers to private
memory, even within the same execution of a program. These
observations imply that we cannot statically determine the
set of instructions accessing SHM precisely.

A final observation concerns the approaches used to man-
age SHM. Typically, such management approaches partition
SHM into ranges known as chunks. Ownership over indi-
vidual chunks can then be assigned to any of the processes
sharing the memory, and their ownership can be transferred
from one process to another. In some implementations of
such SHM management that we observed, the process that
owns a chunk writes pointers referencing the chunk itself
to the SHM as meta-data. The value of such pointers is only
valid in the address space of the owning process: Even though
other processes can read such pointers, the SHM might be
mapped at a different address in their address space. This
behavior complicates replication and checking in MVEEs, as
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it implies that pointers written to SHM can differ between
variants when they layouts of their address spaces differ.

Table 1 summarizes our findings. All studied use cases
employ SHM for IPC, except for fontconfig that uses it only
for efficient file access. We studied what specific types of
SHM the use case requested and whether the SHM is required
or optional for specific features or modes. We also studied
whether there was ESHM and whether pointers are written
to SHM. We discuss this below in detail. The first three use
cases are libraries used in (among others) the mplayer media
player, while the rest are stand-alone applications.

To render text in a specific font, fontconfig locates and
selects the required font [3]. In doing so, it uses file-backed
SHM to efficiently read from its cache files. These cache files
are opened and mapped into memory as read-only, but are
writable by other processes.

The pulseaudio sound server supports several protocols
for client-server communication. The “native” protocol pro-
vides zero-copy mode that uses SHM [18]. In this mode,
client-server messages use a shared ring buffer, and audio
data is exchanged using a SHM pool. To manage the buffer
and pool, pointers to the SHM are stored in the SHM itself.

In the X and wayland display protocols, clients that do not
directly render on the hardware can send image data to the
server through SHM [12, 24]. Other client-server commu-
nication still relies on system calls, e.g., using a socket to
notify the display server that the new image data is present
in the SHM. X also provides the option to send image data
over sockets, wayland does not.

mplayer uses SHM heavily to send video frames to the
display server. First, the decompressed frames are copied to
the frame buffer in SHM using either the standard library
version of memcpy or mplayer’s own internal implementa-
tion. Then the on-screen display (OSD) component overlays
the copied frame with, e.g., subtitles. This OSD rendering is
done in inline assembly routines that overwrite individual
pixels in the frame rather than performing bulk copying.

The nginx web server uses SHM to share state between
worker processes [1]. This enables features such as rate lim-
iting. The SHM is managed through a slab pool, which stores
pointers to SHM in SHM. If supported by the system, nginx
prefers using anonymous SHM, only accessible to its own
processes. This is hence a form of ISHM.

The apache web server keeps track of server activity
through its scoreboard feature. This scoreboard is shared
among the worker processes and threads through SHM. Ad-
ditionally the HTML files for responses get mapped as file-
backed SHM. However, these mappings are never directly
accessed; they are only passed as buffers to system calls
sending responses back to clients.

Modern web browsers such as firefox and chrome use a
multi-process architecture to enhance security 2, 4]. Their
required IPC mostly happens over pipes, but for reasons of
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performance large amounts of data (such as video) are ex-
changed via SHM. These browsers assume SHM is available
and will not work without it, as using only pipes would lead
to unacceptable overhead and poor user experience.

We conclude that ESHM is widely used, and thus holds
back the adoption of MVEEs. Even when SHM is not an inte-
gral part of an application, it might be used by the libraries
the application depends on. In addition, pointers to SHM can
be written to and read from SHM. This might also be the
case for pointers to private memory, but we did not observe
such behavior. We therefore do not need to provide efficient
support for this behavior to allow for wider adoption.

4.3 Design Requirements

Based on the requirements of MVEE:s to provide security and
on the use of SHM in real-world programs as discussed, we
identified a set of design requirements for MVEEs to support
SHM. We split these requirements between those necessary
to provide any support at all, and those to do so securely.
Additionally, we describe the requirements for an optional
extension allowing applications to write and read pointers
to and from SHM.

To support accesses to ESHM, the MVEE has to intercept
every such access and handle it as an RVP. We will refer
to these RVPs as SHM-RVPs. Regardless of the number of
variants, every SHM-RVP needs to lead to a single, unique
SHM access to the ESHM. The results of this unique access
then have to be replicated across variants, making sure that
all variants get the same inputs and undergo the same impact.

For security, all writes to ESHM have to be synchronized
and checked for equivalence across variants, i.e., all variants
have to reach the same SHM-RVP and their attempted ac-
cesses have to be compared before the unique SHM access
happens. Although reads have to be checked for equivalence
as well, they do not require synchronization, because any
later communication to the outside world will be synchro-
nized, e.g., at a system call or a write to SHM. By the time all
variants reach such RVPs, all reads will have been checked.

MVEE support for SHM should not be limited to specific
types of data being stored in SHM, and hence not be limited
to data that is identical in all variants. In particular, when ev-
ery variant has its own diversified address space, equivalent
pointers (i.e., to the same data) are variant-specific. If the
variants attempt to write pointers to SHM, differing values
hence have to be allowed as long as they are equivalent. Con-
versely, if the variants attempt to read back a pointer from
SHM, replication has to result in variant-specific pointers.

A plethora of applications do not write any pointers to
SHM, however. Furthermore, support of pointers in SHM
decreases performance as we will discuss in Section 5.4. Con-
sequently, support for pointers in SHM is best provided as a
configurable option.
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4.4 Shared Memory Support in Existing MVEEs

Existing MVEE designs do not meet these requirements.
GHUMVEE denied the variants access to read-write ESHM
by intervening in system calls used to allocate SHM [52]. This
forced programs to fall back to alternative IPC mechanisms
such as sockets or pipes. At the time of its publication in 2012,
GHUMVEE’s solution worked for complex programs, includ-
ing browsers. Today, this is no longer the case, as we argued
in this section. GHUMVEE and its derivatives [49-51] hence
do not support important classes of popular applications.
Bruschi et al. [7] proposed a possible solution somewhat
similar to the catch-all part of the design we propose in the
next section. Their idea was to make SHM accesses fault, and
to then catch the resulting page faults. Bruschi et al. did not
present an implementation, however, as they were, as they
stated, still investigating the viability of their solution. To the
best of our knowledge, they did not publish a follow-up pa-
per with positive results. In our investigation, we discovered
that a solution based only on page faults can be effective (i.e.,
secure and complete), but not efficient enough to be practical.
Besides these two solutions [7, 52], we know of no MVEE
publications addressing the issue of SHM.

5 Design

As stated above, an MVEE should intervene in all accesses
to ESHM. However, it is not possible to locate such accesses
precisely using static techniques. We therefore propose a two-
layered solution. The first layer consists of a SHM handler
implemented in the monitor of an MVEE. At run time, this
handler ensures that all accesses to ESHM become RVPs,
thus enabling the necessary interventions by the MVEE. One
assumption we rely on is that the monitor supports signals
such as page faults, i.e., that the monitor can intervene when
such signals are raised and delivered. Another fundamental
assumption of our design is that the MVEE monitor in which
the SHM handler is implemented is of the cross-process type.
Most existing security-oriented MVEEs are of this type [5,
7, 14, 20, 27, 31, 32, 41, 49, 51, 52, 54, 55, 57, 58], because of
the strong isolation that the OS kernel can provide between
processes. From now on, we will refer to the handler in the
cross-process monitor as the cross-process handler.

Our cross-process SHM handler can correctly handle all
(legacy) code dynamically. It introduces significant overhead,
however, due in part to the required context switches be-
tween processes. Our solution’s second layer mitigates this
overhead to the extent possible by rewriting the application
code, i.e., by injecting invocations of an in-process SHM agent
at all program points of which we have indications that they
might access SHM. We call those points known accesses. Just
like the cross-process handler, this in-process agent imple-
ments the necessary replication and monitoring, but it does
so without context switches.
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Still, this agent has significant run-time overhead, even
when the rewritten code happens to access private memory
at some point in the program’s execution. It is hence impor-
tant to determine the set of known accesses as precisely as
possible, as both false negatives and false positives can have
a detrimental effect on performance. As static analysis is not
sufficiently precise, we rely to a large degree on dynamic
analysis instead. Concretely, we rely on the cross-process
SHM handler. On a vanilla program or library executed on
a range of training inputs under control of the MVEE, the
cross-process SHM handler will handle all SHM accesses,
so it can also produce a log, thus functioning as a dynamic
analysis tool. This log is then used to determine the list of
known accesses that need to be instrumented with the in-
process SHM handler, after which the code can be rewritten.
This rewriting can be done effectively and efficiently in a
compiler when source code is available and effectively but
somewhat less efficiently in a binary rewriter when source
code of third-party or legacy software is not available.

False negative results of the dynamic analysis pose no
correctness and security problem, because the cross-process
SHM handler of the first layer serves as a fall-back mecha-
nism for the in-process handler of the second layer. Indeed,
the cross-process SHM handler will handle all SHM accesses
that were not previously known and did not get wrapped.
As such, the layers and the code rewriting can also be used
iteratively to let the set of known accesses to SHM grow
gradually, or to adapt to variations in the inputs over time.

5.1 Catch-All Cross-Process SHM Handler

The first component, the cross-process SHM handler, be-
comes part of the MVEE’s monitor, which interacts with the
variant processes and the kernel. Figure 1 visualizes how this
handler handles SHM accesses that the leader variant (left)
and the follower variant (right) want to perform.! Those
accesses are indicated with the code idiom ... *p ... and
the markings {ir} and {ir}.

Before the variants can actually perform such accesses,
they need to have obtained SHM pages from the OS, e.g.,
via the mmap() system call. The MVEE monitor intercepts
all system calls in all variants, and instead of returning a
pointer to a requested SHM page, it returns a variant-specific
non-dereferenceable pointer to each variant. In addition, the
monitor maps the ESHM in its own address space to trans-
parently replicate the externally visible SHM accesses. The
variants then propagate the pointers within their program
state, and causes a segmentation fault whenever they try
to dereference a (derived) non-dereferencable pointer ({i.}
and {i}). This ensures that all attempted SHM accesses in the

The figures shows one process per variant for the sake of simplicity. For
multi-threaded and multi-process applications, we assume one monitor per
thread per process, as in prior work [50]. All those monitors then operate as
described in this paper. Other multi-threaded support designs are possible.
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Figure 1. Cross-process catch-all fall-back design

variants become SHM-RVPs, as the monitor is then notified
of the segmentation faults by the kernel (@ and @)

After suspending the process that caused the segmentation
fault, the kernel notifies the monitor of the fault. The monitor
then checks whether the fault involved a non-dereferencable
pointer. If not, the segmentation fault is handled by the MVEE
like any other signal [51]. If it does concern a SHM access,
the SHM handler performs the necessary replication and
monitoring by means of a leader/follower model.

In this model, a follower variant reaching a SHM access
is suspended until the leader variant also reaches it. When
both variants have done so and the monitor has been no-
tified about that through signals @ and (1), the monitor
and its SHM handler first performs the necessary equiva-
lence checks. Specifically, two variants’ accesses to ESHM
are considered equivalent when both attempt to execute the
same instruction on equivalent source operands, which can
include non-dereferencable pointers. The handler checks
the non-dereferencable pointers for equivalence by mapping
them to an equivalent pointer into the ESHM mapping in its
own address space, and by requiring this remapped pointer
to be identical across all suspended variants. When a diver-
gence is detected the monitor will shut the variants down to
safeguard the system from an exploited vulnerability. This
implies that SHM accesses occurring in different orders in
the variants will be flagged as divergences.? Otherwise, i.e.,
if the equivalence check succeeds, the handler will take the
source operand values from the leader variant and perform
the intended unique access on the ESHM by executing an
equivalent operation ({2}) to the one that was attempted
in the variants. The results from this operation are then
pointers, this replication includes mapping a pointer from
the leader’s address space to the equivalent pointer in the
follower’s address space. Each variant’s instruction pointer
is then be adjusted such that they resume execution with the
next instruction () and Gp).

%Similarly to how system calls are handled in existing work on multi-
threaded programs [50], the orderings of SHM accesses in leader threads
are only checked against accesses in corresponding follower threads.
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When a leader variant reaches a SHM access first, the
handling differs for reads and writes. For a write, the leader
is suspended until the followers also reach a SHM access,
at which point they are handled as above. Write operations
are therefore handled in lockstep: the variant reaching the
SHM-RVP first needs to wait for the others. In the case of
a read operation, however, the leader does not need to wait
for the followers, and can instead be allowed to run ahead
as discussed in Section 4.3. The handler in the monitor then
performs the intended access ({2}), propagates the results
to the leader (2Ln) buffers the result and the information

N

needed for equivalence checking internally, and resumes the
leader (@) before the followers have reached the SHM-RVP.
When a follower then reaches the SHM-RVP, the equiva-
lence checking and replication are performed on it using the
buffered information. To prevent the leader from running
out of control, a configurable limit is imposed on how far
the leader is allowed to run ahead.

With the described mechanism, no SHM accesses can es-
cape the monitor’s control. However, the fault-based design
handling accesses cross-process causes significant overhead.
Were a program not running under an MVEE, the ESHM
would be accessed by executing a single instruction. Cross-
process fault-based handling requires the variant to cause a
segmentation fault, execution context to be switched to the
monitor that needs to read from and write to the variant’s
execution context, and finally for the execution context to
be switched back to the variant.

5.2 In-Process SHM Handler

If we know upfront that some access will target ESHM, the
overhead of the cross-process mechanism discussed above
can be avoided by handling the SHM-RVP in-process. Fig-
ure 2 visualizes how this works, using pseudo-code instead
of native machine code for the sake of clarity. Please note
that this in-process handling is active together with the cross-
process SHM handler discussed above; known accesses are
handled efficiently by our in-process agent, while the cross-
process SHM handler works as a catch-all fall-back mecha-
nism for unknown accesses.

First of all, when the MVEE intervenes in the allocation of
SHM as discussed above, it also ensures that the requested
SHM is mapped into the leader variant’s address space, albeit
it at alocation unknown to the application code of the variant.
The implications of this design choice will be discussed exten-
sively later in the security analysis. Furthermore, the monitor
initializes in-process handlers (named SHM_RVP_type[XYZ]
in Figure 2) in the variants and allocates a replication buffer
that is mapped into all variants, also at a location unknown to
the application code in the variants. There is one in-process
handler per type of instruction.

In each variant, each known access is wrapped in a redi-

rection check, such as [1i.] and [ig]. If the check determines that
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Figure 2. Known access wrapping and in-process agent design

the pointer to be dereferenced is referencable, meaning no
access to SHM will take place with it, nothing special needs
to be done, the application code can then perform the pri-

of the in-process agent. The invoked handlers in the two
variants then together perform the rendezvous, performing
the necessary checks and replication in a similar fashion as
the cross-process SHM handler. For doing so, the variants’
handlers communicate via the replication buffer (i

Furthermore, the leader variant’s handler also performs the
unique access (4} to the ESHM. The order in which the

checking and replication activities are performed depends
on whether read and/or write operations to SHM take place.

5.3 Injecting Redirection Checks

As already discussed in Section 4.2, it is not possible to de-
termine the precise set of instructions that might ever ac-
cess SHM in a program. Conservatively inserting redirection
checks before every single memory access for which one can-
not prove that it will never access SHM would introduce an
unnecessarily large and possibly unacceptable performance
overhead. Being that conservative is not required, however,
because the catch-all fall-back mechanism guarantees proper
handling of all SHM accesses that are not handled by a redi-
rection check and an in-process handler. We therefore only
add redirection checks to code that is known to access ESHM,
i.e., code in which we have observed actual run-time accesses
to SHM in prior runs. To observe those actual run-time ac-
cesses to SHM, we do not need a separate tracing tool. Instead
it suffices to let the fall-back mechanism log any instructions
for which it has to intervene in a SHM access profile. Based
on the collected profile information, individual instructions
can then be wrapped in redirection checks. We investigated
two methods for wrapping individual SHM accesses.

In the first method, a profile-guided compiler pass injects
redirection checks and handler invocations during a recom-
pilation of the code. This injection is done into the compiler’s

IR. To map the information on individual machine code in-
structions in the collected profiles to operations in the IR,
we rely on debug information. Because the injection is per-
formed before the code is lowered to machine code in the
compiler back end, the result in the final binary is injected
code that is seamlessly integrated in the surrounding code,
which leads to minimal performance overhead. This recompi-
lation is only feasible when source code is available, however,
which excludes inline assembly in source code, legacy code,
and third-party components such as binary-only libraries.

Our second method for wrapping individual SHM accesses
relies on binary rewriting for the necessary injection into
inline assembly and legacy and third-party binaries. Binary
rewriting typically introduces somewhat more overhead,
however, because the resulting code is less optimized.

We reiterate from the intro of Section 5 that security is not
affected if SHM accessing instructions are missed during the
profiling: those false negatives of this dynamic analysis are
still handled securely by the catch-all fall-back mechanism
of the cross-process handler, albeit slower.

In addition to the two methods for wrapping individual ac-
cesses to SHM, we also wrap burst accesses. In Section 4.2, we
already noted that many applications use SHM for large data
exchanges. They typically do so using standard library APIs
such as memcpy () and memmove (). For those C library func-
tions, we provide alternative, optimized implementations
that replicate and check bursts of SHM accesses. Redirecting
entire functions allows us to combine long series of SHM-
RVPs into a single SHM-RVP with only one redirection check
per pointer parameter in the functions’ signatures, which
has proven crucial to obtain acceptable performance.

5.4 Supporting Pointers in Shared Memory

When structurally asymmetrical variants feature different
address space layouts, as is common for security-oriented
MVEEs, and when pointers are written to SHM, which is not
uncommon as discussed in Section 4.2, replication and equiv-
alence checking become more complex. The data accessed in
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SHM can then comprise variant-specific pointers, so check-
ing for byte equivalence will result in benign program be-
havior being handled as a malicious divergence. Additional
pointer equivalence checks are hence needed.

In our design, when variant-specific pointers are written
to SHM by all variants, and they pass the pointer equivalence
check, the value from the leader variant will be written in the
unique access to the ESHM. In our observations of real-world
applications, external processes never altered such variant-
specific pointers. However, the pointers are read back from
SHM by the application code in all variants, at which point
correct replication and checking is again needed.

The MVEE monitor thereto allocates a per-variant shadow
copy of the ESHM (not shown in the figures). The cross-
process and in-process handlers ensure that each variant
stores its variant-specific pointers as well as any other data
written to SHM pages in its shadow copy. Whenever data
is later read back from ESHM, the leader’s cross-process or
in-process handler compare the content read from the ESHM
to the value in the leaders shadow copy. When the data is
equivalent, meaning that the data to be read was written
by the application itself (i.e., not altered by an external pro-
cess), the handlers for the follower variants simply read the
corresponding data from their own shadow copy instead of
reading it from the replication buffer. This way, the follow-
ers operate on their own variant-specific pointers. As the
shadow copies need to be accessible to both in-process and
cross-process handlers, each of them is mapped as shared
between the MVEE monitor and one variant.

6 Proof-of-Concept Implementation

We implemented a cross-process SHM handler in ReMon’s
CP-MON, a state-of-the-art MVEE [51]. The SHM handler
is designed to be extensible. We implemented instruction
handlers for all x86 instructions we encountered during the
development of this work and have built up infrastructure,
under the form of macros, for further extension along the
way. Currently, 107 instructions can be emulated, decoded
from 43 opcodes. Simple instructions such as mov ré64, mé64
or movzx ré64, m8 have fairly straightforward handlers.
They analyze the modrm to determine the register operand
and to decode the memory operand to a monitor equiva-
lent operand, and reserve a spot in the monitor’s replication
buffer before performing the operation for the leader or repli-
cating its result in the followers. Instructions affecting flags,
such as add/cmp r64, m64, additionally require replicating
the results in the flags register.. Supporting these kinds of
instructions can be done in as little as 10-30 LOC using the
predefined macros. Instructions specifically used for synchro-
nization, like cmpxchg m64, r64, require some more care
and custom code to correctly perform replication while still
appearing to be executed atomically to outside processes.
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We integrated the in-process agent into glibc 2.31. The
standard C library glibc is a convenient location for func-
tionality that has to be available to any loaded binary; it
also contains other components such as the synchronization
replication agent [50]. In addition, we inserted wrappers for
7 glibc functions that cause bursts of SHM accesses: memcpy,
memmove, memset, memchr, memcmp, strcmp, and strlen. The
entire in-process agent has 1021 LOC.

To differentiate between pointers to private and SHM, the
in-process agent checks whether the pointer is dereferen-
cable or not. To replicate synchronization on ISHM (e.g.,
anonymous SHM), our system therefore treats it like ESHM,
and makes pointers to it non-dereferencable.

We implemented the compiler pass discussed in Section 5.3
to insert redirection checks in LLVM 10. The in-process agent
provides a handler for every type of LLVM instruction, except
for 6 atomicrmw operations we did not encounter. Memory
accesses wider than 8 bytes are not supported yet, and in-
structions attempting those are thus not wrapped. This is not
a fundamental limitation of our approach but just a matter
of additional engineering effort. The LLVM pass measures 222
LOC. The complementary binary rewriting tool was devel-
oped with Dyninst [38]. This tool is sufficiently advanced to
support rewriting the MMX and SSE based inline assembly
in mplayer into invocations of the in-process agent. Adja-
cent instructions that access adjacent memory locations are
merged into a single invocation.?

7 Evaluation

We evaluated both the performance and the security of our
prototype implementation.

7.1 Performance Evaluation

We ran all experiments on a machine with a 6-core AMD
Ryzen 5 5600x 3.7GHz CPU and 16 GB of RAM. We disabled
turbo-boost and hyper-threading. The machine runs Ubuntu
18.04 LTS with Linux kernel 5.3.18. We applied an existing
kernel patch to enable the MVEE’s in-process system call
monitoring, for which we configured the MVEE with its
most performant policy [51]. Finally, our MVEE is always
configured to run two variants, unless stated otherwise. The
variants are diversified by means of disjoint code layouts
(DCL) [49], so only one static version of each binary or library
is needed, because the MVEE enforces the DCL dynamically.

Benchmarks were compiled with LLVM 10.0 with and
without our instruction wrapping pass, using standard re-
lease build configurations, except that we ensured debug
information was generated to support our profile-guided
compiler pass. For that pass, we profiled the applications
with sufficient inputs to identify all SHM accesses that also
occur in the inputs used for our measurements.

3When the paper is accepted for publication, all implementations of all
mentioned tools will be open-sourced and published on GitHub.
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Figure 3. memcpy microbenchmark results

We measured benchmark execution times for (i) the na-
tive binaries running outside the MVEE; (ii) native binaries
running under the MVEE, which then relies entirely on the
catch-all fall-back mechanism to handle SHM accesses; and
(iii) recompiled, wrapped binaries running under the MVEE,
in which case the in-process handling of SHM accesses is
performed by wrapped instructions.

7.1.1 Microbenchmarks. SHM is the go-to choice to
transfer large amounts of data to other processes. The wrap-
per functions we provide for popular glibc functions can
improve the performance of these transfers. We assess the
impact of the replication and checking in the cross-process
SHM handler and in-process agent by measuring the execu-
tion time of a microbenchmark that uses memcpy to copy a
buffer into SHM 100000 times in a tight loop. We perform
measurements for a range of buffer sizes starting at 1 byte
and going up to 4 MiB, taking the average run time of 5 runs
for each size.

We compare our two mechanisms, fall-back and wrapped,
and show the results in Figure 3. The overhead is relative to
the native execution of memcpy and the standard deviation
never exceeds 1.6% for any buffer size. The figure clearly
shows that the in-process agent provides a significant per-
formance improvement for smaller buffer sizes. The relative
overhead of the cross-process handler is two orders of mag-
nitude higher than the in-process agent for small buffer sizes,
but gradually decreases with buffers larger than 2 KiB. At
this point memcpy performs its operation by executing a sin-
gle instruction, thus requiring only a single trap into the
cross-process handler. As buffer sizes increase even further,
the results for our two mechanisms converge because the
memory subsystem itself becomes the bottleneck.

7.1.2 MPlayer Benchmarks. We used mplayer 1.4 as a
stress test to evaluate the performance impact on software
that makes heavy use of SHM to pass large amounts of data.
As described in Section 4.2, the decoded frames are copied to
SHM and then overlaid with an OSD that includes subtitles.
We ran two different experiments. In the first one, we provide
as input video files with different encodings and resolutions,
and mplayer runs in its benchmarking mode with sound dis-
abled. This configuration renders and displays every frame
as fast as possible, thus providing an upper bound on the
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maximum frame rate that can be achieved for each given
encoding and resolution. The second experiment plays the
video with sound, a realistic usage scenario, and focuses on
the dropped frames. Here we opted to use mp4 video files,
as one of the most widespread formats, at 1080p. We mea-
sured the dropped frames of 10 seconds length, 1080p videos
running in 30, 60, 90 and 120 frames, respectively. To eval-
uate the overhead of the OSD, we measured with subtitles
disabled and enabled. In the latter case, we made sure that
subtitles are overlaid on every frame, which puts an extreme
load on the OSD.

By default, mplayer uses its own (inline assembly) imple-
mentation of memcpy for copying the decoded frames. Indi-
vidually wrapping every SHM access in that implementation
makes it unusably slow. Alternatively, mplayer can be config-
ured to use libc’s memcpy using the --disable-fastmemcpy
flag. In our tests we observed that building mplayer this
way caused no noticeable difference in performance when
executed without an MVEE. However, when running the
software under the MVEE, this change allows for the en-
tire memcpy burst of accesses to get redirected through our
in-process agent in a single function call.

For the fontconfig and pulseaudio libraries on which
mplayer depends, we compiled versions 2.13.1 and 14.2, re-
spectively. We employed our LLVM compiler pass and the
Dyninst-based rewriter to wrap the individual accesses, in-
cluding the inline assembly ones in the OSD rendering.

First, we observed that relying entirely on the cross-
process fall-back mechanism does not yield acceptable per-
formance with mplayer, as the video decoding rate drops
below 10% below the rate required for real-time playback.
We do not report precise numbers for that version, not to
blur the more interesting results obtained with the other
versions.

Figure 4(a) shows the maximum frame rate for 1080p and
1440p mp4 and webm videos, for 60 fps inputs. When not
displaying any subtitles, we reported frame rates of 125 fps
for our worst test-case and 265 fps for our best test-case. We
can see that the drop of the maximum frame rate that can be
achieved when running under the MVEE compared to native
execution is in the range of 25%. While enabling subtitles
this increases to approximately 64%, we can still achieve a
maximum frame rate of 64 fps for our worst test case and
111 fps for our best test case.

Figure 4(b) summarizes frame drop rates for 1080p mp4
video, computed as (# input frames - # dropped frames) / #
input frames. The results on the left show that mplayer runs
in the MVEE with close to native execution performance
when not displaying subtitles. Between 2.2-3.05% of frames
are dropped, but all of those are dropped in the first second
of the video. This is entirely due to the slow initialization of
fontconfig. It hence does not impact the user experience.
By contrast, the results on the right show that even with SHM
access wrapping and in-process handling of SHM accesses,
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Figure 4. Results for mplayer

the OSD can slow down rendering significantly. As explained
in Section 4.2 the implementation of the OSD writes pixel
data directly to SHM, all needing replication and checking,.
Up to 90 fps, a user does not observe any difference between
mplayer running natively and under the MVEE, as it can
handle all operations in real time. However, between 90 and
120 fps this threshold is crossed and we can observe 19.4%
of the frames being dropped.

We conclude that running mplayer under the MVEE has a
large performance impact, in line with the impact observed
in literature for non-trivial applications. For the commonly
used video formats, sizes, and frame rates that we evaluated,
however, there is no observable user experience impact.

7.1.3 'Web Server Benchmarks. We evaluated our solu-
tion on two web servers, nginx 1.18.0 and apache 2.4.46.
apache uses SHM for its scoreboard, a data structure worker
processes use to report their status to the main server pro-
cess. nginx uses SHM for rate limiting (which we set to a
value far greater than the ones we observed in our experi-
ments). For apache we compiled the Apache Portable Run-
time (APR) and APR-util libraries—versions 1.7.0 and 1.6.1,
respectively—with our custom compiler, as we encountered
five instructions in APR that access SHM.

No source code changes were needed that relate to the
use of SHM. However, to make these multi-threaded/multi-
process applications MVEE-compatible, i.e., to avoid benign
divergences related to synchronization, we ran the atomicize
compiler pass we developed in prior work and we annotated
the types of several variables in the source code to provide
information to the pass [50]. Additionally, we manually fixed
some data races. For nginx we changed 4 lines, marking 4
variables as not being used in synchronization operations.
For apache, we added variable annotations to 45 lines, and
altered 3 lines to make process-wide caches thread-local,
thereby fixing data races.
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Figure 5. Web server benchmark results

We ran the wrk benchmarking client on a separate ma-
chine connected to our server through a gigabit Ethernet
link. Our client continuously requests a 4 KB web page for 10
seconds over 10 concurrent connections. We ran this bench-
mark 5 times and report the average overhead.

First, we report the throughput of the fall-back and
wrapped versions of the web servers running under the
MUVEE, relative to their native versions not running under
the MVEE. We do so for one and two worker threads. Fig-
ure 5 clearly illustrates the benefit of using the in-process
agent over the fall-back solution. With only the fall-back
solution, only ~5% and ~11% of the native throughputs are
achieved for nginx. With the in-process handling, however,
nginx’s relative throughput rises to ~70% for one, and ~98%
for two working threads. Additionally we ran experiments
with nginx configured without the options that make it use
SHM. These results show that the extra checks we add using
our compiler pass are not the source of overhead for our
solution.

We observe a similar trend for apache. However, even
with the in-process handler, only ~50% of the native through-
put is achieved. This performance loss is not due to SHM han-
dling, but due to the fact that apache uses the mmap system
call far more frequently than nginx. This security-sensitive
system call is always handled by the slow, ptrace-based cross-
process monitor. To verify this causal relation, we ran a single
unwrapped variant of apache under the MVEE and disabled
both the checking and replication of SHM I/O. This led to
only a ~7% increase in throughput compared to running two
diversified wrapped variants under the MVEE, meaning that
the majority of performance degradation indeed stems from
the slow handling of system calls.
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We also observe a discrepancy between the throughputs of
the web servers when run under the MVEE. Whereas nginx
achieves much better relative throughput with two workers,
apache’s relative throughput barely changes when we add
an additional worker. This happens because nginx, when
run natively, can saturate the network connection even with
one worker thread. Adding an additional worker therefore
does not improve native throughput, but it does improve
throughput under the MVEE. apache, by contrast, cannot
saturate the network connection even when run with two
native workers. This explains why the relative throughput
under the MVEE is roughly the same for one or two workers.

7.1.4 Computational Benchmarks. In the past, MVEE
developers used synthetic benchmark suites like SPEC to
evaluate the performance overhead of their MVEEs. However,
since no SPEC benchmarks use SHM, our solution has a
negligible impact on their performance. Our solution adds no
more than one additional parameter check to every executed
memory mapping system call. The resulting overhead is
nothing but noise in the measured execution times. We hence
refer to the literature because our MVEE achieves exactly
the same performance on those benchmarks [51].

7.2 Browsers

As shown in Table 1, browsers are much more complex than
the benchmarks we evaluated. They also rely heavily on
advanced OS (e.g., namespaces and ioctls) and hardware
features (e.g., GPU acceleration). These features are unsup-
ported by ReMon, the base MVEE on top of which we im-
plemented our prototype. Importantly, these unsupported
features are unrelated to how browsers use SHM, and do not
pose any fundamental problems to our approach. Adding
support to ReMon, or any other MVEE, for these features
requires non-trivial engineering. This is the reason that no
security-oriented MVEE to the best of our knowledge sup-
ports modern browsers. For example, for namespaces we
would need to overhaul the bookkeeping facilities that keep
track of variants’ open files, sockets, memory mappings, etc.
We do support commonly-used ioctls such as those for tty
terminals, but browsers use plenty of other—often poorly
documented—ioctls. As such, we cannot collect measure-
ments on browsers. However, we did study their use of SHM
in detail, as described in Section 4.2, and are confident our
approach is compatible with their use of SHM.

7.3 Security Evaluation

To assess the effectiveness of our approach against SHM-
based exploits, we constructed four vulnerable programs
that can be expoited through SHM. While these programs
are small examples, their vulnerabilities and correspond-
ing exploits are representative for real-world vulnerabilities
in programs that communicate with adverserial programs
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through SHM. All examples consist of two programs: one at-
tacking program that runs natively and that produces data in
SHM, and one vulnerable program that consumes that data
and that we will protect with the MVEE. As with the perfor-
mance benchmarks, we compiled all examples with LLVM
10.0 and tested with and without our instruction wrapping
pass to verify both parts of our solution.

Listing 1 lists the first example’s vulnerable code fragment.
It is based on a proftpd privilege escalation vulnerability
(CVE-2006-6563). Through the data in SHM, the attacking
program can cause a buffer overflow on line 6, thus set-
ting the user_id variable that is consumed on line 8 and
passed as a parameter to setuid. Notice that the encrypt
and decrypt calls on lines 2 and 8 implement Data Space
Randomization (DSR) [6] to protect user_id. DSR is a prob-
abilistic protection that encrypts values stored in memory
with a random secret key. However, DSR can be bypassed if
secret keys can be guess through memory disclosure vulner-
abilities or known plaintext attacks [39]. We mounted such
an attack on this program by simply including the ciphertext
version of the intended user id in the data that the attacker
process writes to SHM to overflow the message buffer.

When combined with an MVEE, however, the attack is
blocked completely. To that extent, we adopted DSR as a
diversification technique in the MVEE. The DSR-enabled
MVEE then ensures that different encryption keys are used
in the variants of the vulnerable program. The MVEE does
not stop the buffer overflow: in both variants user_id can
still be overwritten by an attacker. However, our SHM ap-
proach ensures that it is overwritten with the same cipher-
text value. When that same ciphertext value gets decrypted
with different keys in the different variants, different plain-
text values are obtained and fed to setuid. As expected, our
MVEE then detects the system call argument divergence and
terminates the program.
void example(struct shm_t* shm_ptr) {

uint64_t user_id = encrypt(determine_user_id());
char message[MESSAGE_SIZE];

for (size_t i = @; i < shm_ptr->size;
message[i] = shm_ptr->message[i];

i++)

setuid((uid_t)decrypt(user_id));
}

Listing 1. Example vulnerability 1

The second example, shown in Listing 2, is similar, but
instead of using the user id for a system call, the vulnerable
program will copy one of two buffers to SHM based on the
value of the user id. Again, the MVEE does not prevent the
stack buffer overflow into the user id. However, following the
injection of the buffer overflow data by the attacker program,
when one variant then tries to write the secret data to SHM
while the other tries to write the public data, the MVEE
detects this divergence and terminates the variants before
any data is written to SHM, i.e., before any damage is done.
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void example(struct shm_t*x shm_ptr) {
uint64_t user_id = encrypt(determine_user_id());
char message[MESSAGE_SIZE];

for (size_t i = @; i < shm_ptr->size;
message[i] = shm_ptr->messagel[il];

i++)

if (!decrypt_id(user_id))
for (int i = @; i < secret.size; i++)
shm_ptr->message[i] = secret.buffer[il];
else
for (int i =
shm_ptr->message[i] =

0; i < public.size; i++)
public.buffer[i];

Listing 2. Example vulnerability 2

An interesting variation on this example can be con-
structed by omitting the else block. In that case, our MVEE
and the monitored programs can hang or terminate, depend-
ing on what happens next in the program. The reason is
that our implementations of the injected agents, upon be-
ing executed in one variant, wait until the corresponding
agent is executed in the other variant. So in our example, the
variant that tries to write the secret message to SHM will be
waiting for a SHM write to happen in the other variant. If
the other variant tries to perform such a SHM write in some
other function before reaching any other RVP, the diverg-
ing writes are detected as expected and the programs are
terminated by the MVEE. If, on the other hand, the other
variant first tries to execute another RVP, such as executing
a system call, that RVP’s agent in that variant (or the MVEE
monitoring that RVP) will start waiting for the first variant
to reach a similar RVP. The result is a deadlock. While this is
not the most user-friendly solution, it is at least a secure one,
as no secret data gets written to the external SHM. Develop-
ing a more user-friendly solution is simple engineering. It
suffices to add an MVEE component that periodically checks
that variants are not stuck in agents for different forms of
RVPs. Such checks, e.g, once per second, will not yield a prob-
lematic performance degradation. Alternatively, the injected
agents themselves could be extended to detect when RVPs
of different types are reached. Complicating frequently exe-
cuted agents in this way might introduce noticable overhead,
however.
void public_resp () { /* respond something public %/ }

void private_resp () { /* respond something private x/ }

void example(struct shm_t* shm_ptr) {
shm_ptr->ptr = &public_resp;

// some time passes

shm_ptr->ptr();
3

Listing 3. Example vulnerability 3

The third example, shown in Listing 3, is based on behav-
ior we observed in nginx. The vulnerable program writes
a function pointer to SHM and then later calls a function

1
3
1
5
6

3

EuroSys ’22, April 05-08, 2022, Rennes, France

through it. Without MVEE protection, an attacker program
can attach to the same SHM segment and alter the pointer
to target a function that leaks some private data.

We tested that our MVEE correctly blocks such attacks.
First of all, the MVEE ensures that only the leader’s function
pointer is actually visible to programs that attach to the
same SHM segment. When the pointer is not overwritten
by an attacking process, the variants use the copy of the
pointer in their shadow memory, which allows the program
to execute as intended. However, if the pointer is altered by
the attacker process, the leader variant detects this (because
the value it reads differs from the last written value). The
overwritten value is then handled as program input, and it
is replicated to all variants. This later causes the follower
variant to attempt to jump to a leader code address, which
leads to a segmentation fault because of the DCL. The MVEE
detects this fault and terminates the program.

The final example, shown in Listing 4, is a simple ROP
attack. The vulnerable program copies a buffer out of SHM
into a stack buffer which overflows, overwriting the return
address and setting up a ROP chain. We assume an attacker
can leak enough data from the vulnerable program to con-
struct a ROP attack and inject it via the buffer in SHM if no
MVEE protection is used. With MVEE protection and our
SHM approach, however, all variants either read the same
replicated data values or they read data they wrote them-
selves. This is enforced at every instruction accessing SHM.
Since in this attack the data is altered by another process,
all variants are fed the same ROP payload, which contains
code pointers that are only valid in one of the variants. Like
before, this triggers a segmentation fault that is detected by
the MVEE, which terminates the program.

void example(struct shm_t* shm_ptr){
char buffer[BUFFER_SIZE];

for (int i = @; i < shm_ptr->chain_size;
buffer[i] = shm_ptr->chain[i];

i++)

return;

3
Listing 4. Example vulnerability 4

These examples shows that our solution handles SHM
RVPs in a way that is analogous to system call RVPs. Ensur-
ing all variants receive the same input, except for known safe
cases, fully utilizes available diversifications such as DSR and
DCL to enforce and then detect divergences. This, combined
with checking all writes to SHM, equips the MVEE with
everything necessary to detect malicious usage of SHM.

8 Security Analysis

As discussed in Section 2, an MVEE’s security depends on
a number of properties: monitor isolation, the diversity of
the variants, and RVP enforcement. These properties hold
for system-call-based IPC in security-oriented MVEEs. The
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monitor is isolated and cannot be manipulated by system
calls executed by potentially compromised variants; the vari-
ants are diversified; and the monitor checks I/O system calls
for equivalence and replicates their results. ESHM, however,
increases the attack surface: a compromised variant could
exfiltrate sensitive data or attack an external (unmonitored)
program without using system calls. Once compromised, the
external program can perform harmful actions on behalf of
the compromised variant, without running the risk of being
detected by the monitor. The opposite is also possible. An
unmonitored program could attack a variant by sending it
an exploit payload through SHM. Such an attack could also
lead to a variant getting compromised, though it requires an
attacker to already be present on the host system. We com-
pare the security properties of our design for SHM support
to regular system call handling in a security-oriented MVEE,
focusing on RVP enforcement and monitor isolation.

Similar to system call RVPs, SHM-RVPs are enforced by
both the cross-process and the in-process SHM handlers.
These read data from SHM exactly once and replicate it to
the variants. Even if this data is maliciously crafted by an
attacker, all variants receive the same inputs and unintended
behavior causes a divergence. Any data written to SHM
is checked for equivalence, and only allowed to proceed
if this check succeeds. In addition, the non-dereferencable
pointers to the SHM differ between variants, as described in
Section 5.1. This makes it impossible for an attacker to even
inject a non-dereferencable pointer that is valid in every
variant. As long as the SHM handlers are used, RVPs are
enforced the same way as in MVEEs that only support I/O
through system calls.

Strong monitor isolation is provided for the cross-process
SHM handlers; if only these handlers are enabled no RVPs
can be bypassed. In-process handling is less isolated, how-
ever, and provides several targets to an attacker that gained
control over one (or all) of the variants: The in-process agent
and its replication buffer are present in every variant, and
the leader variant even has direct access to the ESHM. An
attacker can tamper with the replication buffer to provide
different inputs to different variants, while direct access to
the SHM allows for unchecked writes.

The degree of isolation and the attack surface of the in-
process SHM handlers is similar to that of the in-process sys-
tem call monitor used in ReMon [51]. We therefore compare
these two. Our in-process SHM handler and in-process sys-
tem call monitor can both be protected against control-flow
hijacking attacks by applying software diversity techniques
to them. The level of protection we offer against these at-
tacks is hence the same as ReMon. Both components also
have their own replication buffers, which could be targeted
by data-only attacks. However, in this case too, we offer the
same level of protection: both types of replication buffers
are mapped at different, non-overlapping addresses in all
variants. In order to allow in-process handling of system
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calls, ReMon’s variants need to be able to make unchecked
system calls, and this capability is gated through a token
which is kept secret. In contrast, our in-process SHM han-
dling requires no secrets. The addresses of SHM pages are
not known to an attacker, and these pages are only present
in the leader variant. Even if the attacker somehow would
be able to determine the address of the ESHM in the leader
variant, mounting a successful attack would still be hard. The
most straightforward approach would be to have all variants
write to this address, in which case the leader would have
to perform the required writes to SHM before the follow-
ers perform that same access, which for the variants will
result in a crash, at which point the monitor will detect an
attack. To create a reliable attack, an attacker would need
to distinguish between running code in the leader and fol-
lower variants, so as to either perform writes to different
addresses; or to execute different code paths. However, such
variant self-awareness and the ability to have asymmetric ef-
fects in the variants is an extremely powerful attacker ability,
which would also allow an attacker to bypass other security
guarantees in any MVEE.

In conclusion, our design provides the same security prop-
erties as other MVEEs. In particular, we enforce the same
security properties as ReMon [51]. Although bypassing the
in-process SHM handling is possible in theory, it requires
attacker capabilities that would allow bypassing other MVEE
security guarantees as well.

9 Conclusion

Existing MVEEs do not adequately support programs that
use SHM for IPC or efficient file I/O. This blocks the use
of MVEEs in many real-world use cases, and is one of the
obstacles that stands in the way of their wider adoption.
The presented solution enables full MVEE support for
applications that use shared memory, thus removing this
obstacle. Our solution consists of a two-tier system to iden-
tify, intercept, and replicate accesses to shared memory, as
well as different techniques to instrument applications using
either compiler passes or binary rewriting. We evaluated the
run-time performance of our solution using realistic bench-
marks and we carefully discussed its security properties to
show that our solution is practical and that it upholds the
security guarantees of the MVEE it is integrated into.
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A Artifact Appendix
A.1 Abstract

This artifact consists of an extension to enable shared mem-
ory support in the ReMon MVEE, and the set of benchmarks
used to evaluate this extension. The extension itself has been
integrated into the source of ReMon.

A.2 Description & Requirements

A.2.1 How to access. Our artifact has been integrated in
the open source ReMon repository, available at https://github.
com/ReMon-MVEE/ReMon. The artifact can be found in the
eurosys2022-artifact/ directory.

A.2.2 Hardware dependencies. The full evaluation re-
quires two separate systems: One to run the MVEE-protected
benchmarks and one to serve as a benchmarking client for
the server benchmarks. This second system is not strictly
necessary, but running the benchmarking client on the same
host as the web server will result in lower relative throughput
for protected web servers. We connected these two systems
through a private 1 gigabit ethernet link in our experiments.

As a general rule of thumb we advise having one core
available for the MVEE monitor and N additional cores for
each process the MVEE-protected program would start, with
N being the configured number of variants. Thus, to bench-
mark a simple one-process application, we would advise at
least a 4-core CPU. Since our server benchmarks will run
with multiple processes, we advise at least a 6-core CPU to
comfortably run all benchmarks.

To bootstrap, our system needs at least 8GiB RAM and
10GiB disk space.

A.2.3 Software dependencies. We require the system to
either run Ubuntu 18.04 LTS, or to use Docker to run the
benchmarks in our provided container.

We used the ReMon patched Linux kernel to enable in-
process monitoring to increase ReMon’s performance. This
kernel patch is not required for any of the functionality, but
does impact the performance.

A.2.4 Benchmarks. To benchmark the server applica-
tions, we used the wrk HTTP benchmarking tool. To bench-
mark mplayer, we use 1080p mp4 video files. Our original
benchmarks used a copyright-protected video which we un-
fortunately cannot redistribute. However, we provide an al-
ternative set of mp4 and webm files with the same character-
istics (resolution and fps), based on video from pixabay.com*
and music from www.bensound.com®. The subtitle file we
used for our experiments were already created by ourselves
and are available in the same directory as our video files.

“https://pixabay.com/videos/aerial-drone-lake-waterfall-rocks-85373/
Shttps://www.bensound.com/royalty-free-music/track/adventure
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A.3 Set-up

We automated most of the initial setup in a single
bootstrap.sh script in eurosys2022-artifact/; follow
README .md to perform this setup. As per those instructions,
you can choose to execute the bootstrap script natively (if
you run Ubuntu 18.04 LTS); otherwise follow the instruc-
tions to set up the docker container we provide. It should
complete after about 40 minutes.

Next, build all benchmarks with benchmarks/scripts/
build_all.sh in eurosys2022-artifact/. This takes
about 15 minutes.

We disabled hyper-threading and turbo-boost for our
benchmarks for better reproducibility.

If you are running Ubuntu 18.04 LTS or 20.04 LTS, you
can unlock ReMon’s full potential by applying a small kernel
patch to enable IP-MON (the in-process monitor component
of ReMon), as described in README . md.

A.4 Evaluation workflow
A.4.1 Major Claims.

e (C1): Our solution provides shared memory support
at an acceptable overhead, shown by evaluation on
microbenchmarks, server benchmarks, as well as a
media application. This is proven by experiments E1,
E2, E3, and E4. The result of experiment E1 (on mi-
crobenchmarks) is illustrated in Figure 3, the result of
experiments E2 and E3 (on mplayer) are illustrated in
Figure 4, and the result of experiment E4 (on servers)
is illustrated in Figure 5.

o (C2): When using our solution to protect the mplayer
video player, there is no observable impact on user
experience when playing video files up to 90fps at
1080p. This is shown by experiments E2 and E3, which
are are illustrated in Figure 4.

e (C3): In the paper revision plan that we submitted to
the paper’s shepherd, we pointed out that we plan
to extend the security evaluation with 4 security mi-
crobenchmarks to discuss the efficacy of our solution.
In the revision, we will hence also extend the current
artifact appendix to include a description of how to
run those microbenchmarks.

A.4.2 Experiments. For convenience of evalua-
tion, a results_interpreter.ods file is provided in
eurosys2022-artifact/benchmarks/ to more easily
interpret the results. Only the green cells contain measure-
ment data, the others are computed from them. The different
sheets are named according to the experiments. Additionally,
our boostrapping should take care of most of the preparation.
To further avoid mistakes in setting up, we suggest using the
eurosys2022-artifact/benchmarks/scripts/run.sh

script, as this provides several options to perform
what little required setup remains. This script is used as


https://github.com/ReMon-MVEE/ReMon
https://github.com/ReMon-MVEE/ReMon
pixabay.com
www.bensound.com
https://pixabay.com/videos/aerial-drone-lake-waterfall-rocks-85373/
https://www.bensound.com/royalty-free-music/track/adventure
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follows: . /run.sh <options> — <benchmark> <version>.

Experiment (E1): Microbenchmark; takes about 5 human-
minutes and 25 compute-minutes. Run three configurations
of the memcpy microbenchmark: the native baseline; under
Remon without wrapping burst accesses in libc; and under
ReMon while wrapping burst accesses in libc.

To run natively, pass —native as options to run. sh. Pass-
ing —unwrapped-bursts and -wrapped-bursts will set up
the libc version ReMon will load to have unwrapped burst
accesses and wrapped burst accesses, respectively.

To run the microbenchmark, pass microbenchmark as the
benchmark parameter, you can omit version. To reproduce
our original experiment, perform the benchmark 5 times for
each configuration.

The microbenchmark will output a list with the time it
took, in nanoseconds, to copy a given amount of data, in
bytes, into shared memory. The times for the five runs of
each size and configuration can be averaged and inserted in
the relevant cells in results_interpreter.ods.

Experiment (E2): Mplayer max fps; takes about 10 min-
utes, human-minutes and compute-minutes combined. Run
two configurations of mplayer, one natively and one under
ReMon. Do so on four different input files: 1080p webm,
1080p mp4, 1440p webm, and 1440p mp4. All 60 fps. Perform
this twice, once without a subtitle file loaded, and once with.

While the build script automatically compiles mplayer and
wrapped versions of its dependencies, we did the evaluation
on a version of mplayer that has been rewritten using dyninst,
based on an initial profiling run of mplayer. Because it is
based on a profiling run, this step is not part of the initial
setup. Run mplayer_build. sh with option —dyninst. This
will require some dynamic analysis first. The script will open
an mplayer instance that will play a video slowly. Let at least
a few frames with subtitles render before closing the window.
The correct version will then be built automatically.

For both mplayer-based experiments (E2 and E3), we
compare a native execution of mplayer with the dyninst-
rewritten version. These can be run with run_mplayer. sh.
For the native version, pass —native as options. Where for
run.sh you would pass the benchmark and version, now
instead pass, in order, the version (default or dyninst), the
path to the video to be played, and optionally the path to the
subtitles.

Finally, to perform the measurements for experiment E2,
add —-maxfps as one of the options to enable the measurement
of the max fps.

When the video has finished playing, take the total time
it took to play the video (look for BENCHMARKS in the output
and take the total time at the end of the line) and average
that over five runs. The amount of frames in the video (fram-
erate * video length in seconds) divided by the average total
time calculated is the maximum framerate that could be
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achieved. You can simply fill in the average total time in the
results_interpreter.ods.

Experiment (E3): Mplayer frame drops; takes about 10
minutes, human-minutes and compute-minutes combined. Run
two configurations of mplayer, one natively and one under
ReMon, while varying the frame rate of the input mp4/webm
file. For a direct comparison with the paper, use the webm
files. Perform this twice, once without a subtitle file loaded
and once with, using the procedure described for experiment
E2, but replacing the -maxfps argument with —framedrop.

This configuration will print an additional BENCHMARKn
line. The value of disp on this line represents the amount of
displayed frames. Average this over five runs and insert it in
the relevant cells in results_interpreter.ods.

Experiment (E4): Web servers; takes about 15 minutes,
human-minutes and compute-minutes combined. Run three
configurations of our web servers: natively; under ReMon
without shared memory instructions wrapped; and under
ReMon with shared memory instructions wrapped. Perform
this twice, once with one and once with two worker threads
configured on the servers. Do this for nginx and apache.

To switch between one and two workers, you
will have to alter the config files. For nginx
you will need to change worker_processes in
nginx/conf/nginx.conf and for apache change
ServerLimit in apache/docs/conf/httpd.conf, both in
eurosys2022-artifact/benchmarks.

To run the servers using the run. sh script, pass nginx
or apache as benchmark. The aforementioned configura-
tions are represented by the version base, default, and
wrapped, respectively. Provide the option —native for base
and —ipmon otherwise. We suggest using wrk configured
with one thread, 10 connections, and requesting continu-
ously for 10 seconds. Other benchmarking clients might
yield different results.

Take the average latency and requests/second reported by
wrk, additionally averaging these results over five runs for
each configuration, and fill them in in the relevant cells in
result_interpreter.ods.
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