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Abstract

Research in medical imaging is hampered by a lack of programming languages that support productive, flexible
programming as well as high performance. In search for higher quality imaging, researchers can ideally experi-
ment with novel algorithms using rapid-prototyping languages such as Python. However, to speed up image
reconstruction, computational resources such as those of GPUs need to be used efficiently. Doing so requires
re-programming the algorithms in lower-level programming languages such as CUDA C/C++ or rephrasing
them in terms of existing implementations of established algorithms in libraries. The former has a detrimen-
tal impact on research productivity and requires system-level programming expertise, the latter puts severe
constraints on the flexibility to research novel algorithms. Here, we investigate the use of the Julia scientific
programming language in the domain of PET image reconstruction as a means to obtain both high performance
(portability) on GPUs and high programmer productivity and flexibility, all at once, without requiring expert
GPU programming knowledge.

Using rapid-prototyping features of Julia, we developed basic and performance-optimized GPU imple-
mentations of baseline MLEM PET image reconstruction algorithms, as well as multiple existing algorithmic
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extensions. Thus we mimic the effort that researchers would have to invest to evaluate the quality and perfor-
mance potential of algorithms. We evaluate the obtained performance and compare it to state-of-the-art existing
implementations. We also analyze and compare the required programming effort.

With the Julia implementations, performance in line with existing GPU implementations written in the
low-level, unproductive programming language CUDA C is achieved, while requiring much less programming
effort, even less than what is needed for much less performant CPU implementations in C++.

Switching to Julia as the programming language of choice can therefore boost the productivity of research
into medical imaging and deliver excellent performance at a low cost in terms of programming effort.

Keywords
GPU, Julia, high-level programming, performance, flexibility, productivity, PET image reconstruction

1. Introduction

Medical image reconstruction techniques are compute- and data-intensive. Traditionally, image reconstruction
algorithms are executed on high-end Central Processing Units (CPUs), but Cui et al. (2011), Pratx et al. (2009),
Xu and Mueller (2005) and Zhou and Qi (2011) have shown that a Graphics Processing Unit (GPU) can offer two
orders of magnitude speedup compared to single-threaded CPU algorithms. The downside of GPUs is that they
historically could only be, and today still mostly are, programmed in specific low-level programming languages
such as CUDA C/C++ from NVIDIA (2020b) and OpenCL from Khronos Group (2020) that require expert
programming skills. This makes it inconvenient for medical imaging researchers to explore new reconstruction
algorithms, for which both image reconstruction times and quality are important optimization criteria. The
use of external (hand-tuned) libraries is no satisfactory alternative, because those contain only established
algorithms and rephrasing new algorithms around those often introduces needless overhead.

Medical imaging researchers hence commonly explore new reconstruction techniques in high-level lan-
guages such as Matlab or Python, where they focus on reconstruction quality at the cost of lower performance.
This allows them to be productive, as they can work in their domain of expertise and their comfort zone at the
algorithmic level. Before the code can be used in production, or before its practical potential as a fast enough
reconstruction technique can be assessed, the algorithms are then reprogrammed using one of the mentioned
lower-level language to achieve acceptable resource utilization on GPUs. This either requires the involvement
of programming and computer architecture experts, or that the medical imaging researchers acquire sufficient
such expertise themselves and invest into the reprogramming and performance tuning. The sketched work flow
is clearly not optimal. Bezanson et al. (2014) called the resulting drop in overall productivity the ”two-language
problem”. This problem is aggravated by the fact that implementations in the lower-level languages offer little
performance portability: whenever a new generation of GPU surfaces, the code needs to be re-tuned.

The high-level Julia programming language provides a potential solution: Besard et al. (2019) added support
for GPU programming with higher-level abstractions to the Julia ecosystem, and for at least some scientific
computations, excellent GPU resource utilization has been demonstrated. It is still unclear, however, if Julia
is sufficiently mature to enable high-performance execution of rapid-prototyping implementations of image
reconstruction algorithms on GPUs. Additionally, it is uncertain to what extent image reconstruction algorithms
can make use of higher-level abstractions in the language. The use of these abstractions is important: without it,
there is only a small improvement in the developer’s productivity compared to using low-level languages.

To assess the potential of Julia in this domain, we experimented with several Julia GPU implementations
of Positron Emission Tomography (PET) image reconstruction algorithms. We programmed a basic and a
performance-optimized implementation of a baseline Maximum Likelihood Expectation Maximization (MLEM)
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reconstruction algorithm, as well as several algorithmic extensions from the state-of-the-art, thus covering the
types of programming efforts that typically occur in medical imaging research and that can be performed by
people with and without GPU programming expertise. We evaluated aspects of programmer productivity, such
as the ease with which the extensions can be implemented and the required GPU expertise. We also evaluated
performance portability over variations of algorithms and variations of hardware to assess the extent to which
researchers in this domain can truly benefit from Julia to avoid the two-language problem.

This paper reports our experience in implementing the versions of the MLEM reconstruction algorithms,
and our evaluation in terms of programmer productivity, achieved performance, and performance portability.

2. Background and Related Work

2.1. Baseline PET MLEM

As positrons are emited following a Poisson distribution, PET image reconstruction is often implemented
by means of the statistical iterative reconstruction algorithm of MLEM as proposed by Lange and Carson
(1984). Alternative approaches exist, such as algebraic reconstruction techniques. We refer the interested reader
to Bailey et al. (2005b) for an overview and for more mathematical background on the MLEM method. In this
work, we use the algorithm by Barrett et al. (1997) and Parra and Barrett (1998) for list-mode PET data, the
mode proposed by Watabe et al. (2002). The MLEM algorithm is initialised with an arbitrary image estimate.
Every iteration then updates that estimate based on the measured data until a point of convergence is reached.

Assume the tracer distribution in a brain is a continuous function f(r) in the scanned 3D space. The scanner
outputs a list of J coincidence events A = {A1, ..., AJ}. The jth coincidence in the list is described by Aj =

(R1,j , R2,j ,∆tj), R1,j and R2,j are the 3D locations of points of interaction with the scanner, which form a
so-called Line Of Response (LOR) and ∆tj is the Time-of-Flight (TOF) difference.

For the reconstruction, the 3D space is divided into N voxels rn for n = 1, ..., N . The MLEM algorithm
computes f = {f1, ..., fN}, a discrete approximation to f(r) in the voxel space. The likelihood of the realisation
f given the measurements A is defined as:

L(f ;A) =

J∏
j=1

p(Aj |f) (1)

The conditional probability p(Aj |f) is the probability of measuring coincidence event Aj given a discrete tracer
distribution f . Assuming Aj and Aj′ are statistically independent as proposed by Parra and Barrett (1998), the
conditional probability from Equation (1) equals:

p(Aj |f) =
N∑

n=1

p(Aj |rn)︸ ︷︷ ︸
(1)

P (rn |f)︸ ︷︷ ︸
(2)

(2)

in which (1) is the probability of Aj given that a pair of photons is emitted from voxel rn, and (2) is the
probability of the emission of a photon pair in voxel rn given a discrete tracer distribution f . With Sn being
the sensitivity, i.e., the probability that two photons emitted from voxel rn are collected by the detectors, the
conditional probability is computed as:

P (rn |f) =
Snfn

N∑
n′=1

Sn′fn′

(3)

Berg et al. (2018) discussed that the sensitivity is a scanner-specific matrix and can be computed exactly from
the system geometry or it can be measured.
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Each iteration k of the MLEM algorithm first computes the expectation of the log-likelihood function from
Equation (1) given the current image estimate f (k) and the measured data A. Subsequently, the algorithm
maximises the expectation of the log-likelihood. The full derivation of the update equation by Shepp and Vardi
(1982) can be found in the literature. It is as follows:

f (k+1)
n = f (k)

n · c(k)n = f (k)
n ·


1

T

J∑
j=1

p(Aj |rn)
N∑

n′=1

p(Aj |rn′) Sn′ f
(k)
n′

 (4)

The update Equation (4) can be split in four steps.

1. Forward project measurements into the data space with current image estimate. This is the computation of
the sum in the denominator in eq. 4.

2. Compare estimations with measurements and compute an “error” in the data space. This is the fraction in
eq. 4.

3. Back project the error from the data space into the image space. This is the summation over j in eq. 4.
4. Update the current image estimate with the normalised error in the image space. This is the remaining

computation of eq. 4, i.e., the element-wise multiplication of the old image voxel values f
(k)
n with the

correction values c(k)n .

2.2. Ray tracing

As for Equation (4), it has been proven that p(Aj | rn) ∝ l(Aj ; rn), i.e., the probability of Aj given the fact
that a pair of photons is emitted from voxel rn is proportional to the intersection length of the LOR of the jth

coincidence event inside voxel rn. One can further derive that p(Aj | rn) = c · l(Aj ; rn) where c is a constant,
unknown factor. When substituting this into the MLEM update equation 4, the factor c is cancelled out and the
update equation becomes:

f (k+1)
n = f (k)

n · c(k)n = f (k)
n ·


1

T

J∑
j=1

l(Aj ; rn)
N∑

n′=1

l(Aj ; rn′)Sn′f
(k)
n′

 (5)

For most values of j and n, l(Aj ; rn) = 0 because the LOR of event j does not pass through voxel n. The
denominator in eq. 5 is hence in practice not computed by iterating over all voxels of the image, but by visiting
only the voxels through which LOR j passes. The MLEM algorithm that iteratively updates the image estimate
then becomes as shown in the pseudo-code in Algorithm 1. Lines 6–7 correspond to the forward projection
of each event, lines 8–9 to the comparison and back projection, and line 10 performs the actual update of all
elements of the estimated image.

Calculating the intersection length l of a LOR (a.k.a. ray) with every single voxel is known as ray tracing. It
is done on-the-fly while visiting the voxels on a LOR, because too much storage would be required to store all
non-zero pre-computed intersection lengths. The algorithm by Siddon (1985) is a frequently used ray tracing
technique in list-mode MLEM image reconstruction. It iterates sequentially over the voxels on a LOR, and
hence implicitly skips all voxels that contribute zero to eq. 5. Several improvements to the original algorithm
are proposed in more recent works by Christiaens et al. (1999), De Sutter et al. (1998), Schretter (2007), Zhao
and Reader (2002). However, because Siddon’s algorithm and the improvements thereof are hard to parallelize



Van Gendt et al. 5

Algorithm 1 Baseline MLEM algorithm

1: Initialize(image)
2: for iterations 1 to K do
3: zero-initialise corr (same dimensions as image)
4: for all events j from 1 to J do
5: forward projection = 0
6: for all voxels n on LOR of j do
7: forward projection += l(j,n) · image(n) · sensitivity(n)
8: for all voxels n on LOR of j do
9: corr[n] += l(j,n) / forward projection

10: image = image ⊙ corr /* element-wise product in eq. 5 */

Rapid prototyping of PET image reconstruction on GPUs: Printed October 21, 2020 page 5

Figure 1: The ray tracing problem divided into slices along its main direction
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Figure 1. The ray tracing problem divided into slices along its main direction

over multiple threads as required to exploit the resources of GPUs, we build on another class of ray tracing
techniques known as slice-based ray tracing. This class was proposed by Gao (2012) and Pratx et al. (2009),
and has been shown to be much better suited for GPUs by Cui et al. (2011). In particular, it enables massive
parallelization of the nested for loops of lines 4–9 of Algorithm 1 by handling multiple events in parallel and by
handling multiple segments (called slices) of each event’s ray in parallel.

Consider the 2D pixel space in Figure 1, where the example ray’s main direction is along the x-axis. The pixel
space is then divided into columns. In each column, the ray intersects with at most two pixels, called a slice. It
is relatively straightforward to compute the intersection indices and lengths, as shown by Gao (2012), meaning
that the slices and voxels that can contribute non-zero values in eq. 5 are identified on the fly, and only those are
visited and accessed during the computation, as in Siddon’s algorithm, thus implicitly exploiting the sparsity
in l(Aj ; rn). Similarly, if the main direction of the ray is along the y-axis, the pixel space can be divided into
rows. For each row, the ray intersects with at most two pixels and the intersection indices and lengths can be
computed. With analogue reasoning, the same principles can be applied to a 3D voxel space. The main direction
of the ray is determined and the voxel space is divided into either x-planes, y-planes or z-planes. For every
plane, the ray intersects with at most three different voxels as shown by Gao (2012).

The computational complexity per ray, i.e., the number of slices to be visited, is O(N ), where N denotes
the number of voxels in the main direction. Additionally, the computational complexity of each sub-problem,
i.e., each slice, is O(1). These sub-problems are independent, meaning it is possible to compute the intersection
lengths for each slice in parallel, thus exploiting the massively parallel computing resources of a GPU.
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2.3. MLEM Extensions

We considered four improvements, extensions, and adaptations to the above baseline MLEM algorithm.

Ordered Subset Expectation Maximization The Ordered Subset Expectation Maximization (OSEM) algorithm,
originally proposed by Hudson and Larkin (1994), makes a simple adjustment to the MLEM algorithm. The
coincidence events are divided into S disjunct subsets {J1, ..., JS} and the update equation is applied to each
subset in a certain order. This comes down to replacing the J in eq. 4 by Jk modS . Hudson and Larkin (1994)
demonstrated that this improves the convergence speed by a factor ≃ S.

Correction for image degrading effects Due to the interaction of photons with matter, there is a certain probability
that emitted photons do not reach the detectors. To correct for this effect called attenuation, every LOR must be
weighted proportionally during the reconstruction process: LORs that were highly attenuated should have a
higher contribution to the reconstructed image. The attenuation factor of a LOR can be computed as:

αj = exp

(
−

N∑
n=1

l(Aj ; rn) µn′

)
(6)

where µn′ is the attenuation coefficient of the attenuation map in voxel rn and l(Aj ; rn) is the intersection length
of the LOR inside voxel rn according to Bailey et al. (2005a). The attenuation factor αj can be incorporated in
Equation (4), resulting in the attenuation-weighted MLEM algorithm by Hebert and Leahy (1990):

f (k+1)
n = f (k)

n


1

T

J∑
j=1

p(Aj |rn)

αj

N∑
n′=1

p(Aj |rn′) Sn′ f
(k)
n′

 (7)

Time-of-Flight image reconstruction In the versions described thus far, the MLEM algorithm does not make use
of the TOF information of the LOR. The TOF difference ∆tj is related to the distance dj between the point of
annihilation and the centre of the LOR according to:

dj = c
∆tj
2

(8)

TOF measurements, however, are not exact and limitations in PET detectors and electronics limit the timing
resolution. The uncertainty can be modelled as a Gaussian distribution, whose variance is a scanner-specific
value. The probabilities p(Aj |rn) in Equation (4) must be re-weighted according to the Gaussian distribution
that gives a higher weight to voxels that lie closer to the estimated point of annihilation. Mullani et al. (1980)
and Efthimiou et al. (2019) present the full incorporation of the TOF principle in the MLEM update equation.

Filtering techniques The image estimate resulting from the MLEM can contain much statistical noise, especially
at a large iteration number. Several filtering techniques that suppress the noise, increase the signal-to-noise ratio,
and try to preserve the spatial resolution and contrast are used in practice. A good fraction of the state-of-the-art
commercial methods use regularization as described by Ahn et al. (2015), but we consider two simple filtering
techniques, which can be applied post-reconstruction or inter-iteration. A Gaussian filter is capable of lowering
the noise in the reconstructed images as shown by Kim et al. (2014) and Arabi and Zaidi (2018). It does, however,
add blurriness. As a result, the edges between different tissue are softened. Compared to a gaussian filter, a
median filter results in less edge softening, while still lowering the amount of noise during image reconstruction
as shown by Gui and He (2012). We hence used the latter in our research.
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2.4. GPU Acceleration

Cui et al. (2011), Pratx et al. (2009), Xu and Mueller (2005) and Zhou and Qi (2011) have shown that the use of
GPUs in the domain of medical image reconstruction can lead to up to two orders of acceleration over single-
threaded CPU implementations. They obtained parallelization on GPUs by splitting the problem into smaller
subtasks (i.e., by splitting the ray and/or image space into smaller parts) and calculating multiple forward
and back projection operations in parallel. These works, however, all use a low-level programming language
such as CUDA C/C++ or OpenCL. This is problematic for several reasons. CUDA C/C++ and OpenCL code
is quite verbose and requires a significant amount of boilerplate code around the code that specifies the actual
computations to be performed. This requires additional expertise from the researchers outside of the domain of
image reconstruction, and lowers their productivity by distracting them from their research at the algorithmic
level. Unlike in rapid-prototyping languages like Python, CUDA C/C++ and OpenCL code is typed statically,
which hinders code re-use. Furthermore, that code does not offer performance portability: code tuned for
performance on one specific GPU device needs to be re-tuned, i.e., (partially) rewritten, for achieving good
performance on other devices.

While the use of third-party libraries can free application programmers from some of that burden, such
as when scientific computing applications re-use cuBLAS libraries from NVIDIA (2020a), such libraries are
not useful for researchers studying alternative algorithms. By construction, third-party libraries only contain
optimized implementations of established, widely-used algorithm components. Rephrasing novel algorithms
in terms of those components often introduces additional overhead, typically because extra kernel launches are
then needed, with a detrimental impact on memory traffic and data locality.

2.5. The Julia programming language

This work is the first in studying the use of a high-level programming language for researching MLEM algo-
rithms on the GPU, which allow programmers to become much more productive. However, whereas using
high-level languages such as Matlab, R, or Python typically do not offer acceptable utilization of a GPUs re-
sources once the researcher explores algorithms beyond the established ones in libraries, we will show that
with the Julia language, both productive programming and good GPU utilization can be achieved together.

The Julia programming language is designed for scientific and technical computing. It aims to be a rapid
prototyping language according to Bezanson et al. (2012). Hence Julia is a high-level and dynamically-typed
language. Code written in Julia is compiled to machine code via a Just-In-Time (JIT) compiler based on the LLVM
compiler initially developed by Lattner and Adve (2004). Despite Julia being dynamically-typed, extensive type
inference is done prior to the JIT compilation. This allows the JIT compiler to generate highly optimized code
that omits the overhead of dynamic typing. Consequently, Julia’s performance on standard CPUs is comparable
to that of statically compiled language such as C and Fortran.

Besard et al. (2019) have previously extended the Julia ecosystem with support for NVIDIA GPUs. All CUDA
programming functionality (i.e., all functionality need to program GPUs from NVIDIA that are normally pro-
grammed in CUDA C) is bundled into one package: CUDA.jl1. Besard et al. (2019) have also demonstrated that
the performance of Julia on GPUs is similar to the performance of CUDA C/C++ for at least some benchmarks.
Whether Julia’s GPU support, being relatively young and far from complete, already suffices for use in specific
domains such as medical image reconstruction, was an open question before this research. Ray tracing, for

1 https://github.com/JuliaGPU/CUDA.jl

https://github.com/JuliaGPU/CUDA.jl
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example, is not a type of computation that easily maps onto already supported operations such as algebraic
computations on vectors and matrices. In this paper, we try to answer this question.

In parallel with our research, but unknown to us until after the initial submission of this work, Knopp and
Grosser developed and presented MRIReco.jl, an MRI reconstruction framework Knopp and Grosser (2021).
Whereas we focus our work described below focuses on combining high programmer productivity with efficient
use of the massively parallel GPU resources, Knopp and Grosser focused on CPUs, only briefly mentioning
preliminary GPU support. Their MRI image reconstructions operators build on FFT and NFFT, while we focus
on ray tracing, a very different computation. Their and our work is hence complementary.

2.6. QETIR

We use the existing image reconstruction software package QETIR as a basis for comparison and to validate the
correctness of our implementations in Julia. QETIR has been used in research before, notably by Thoen et al.
(2013) and by Kolstein and Chmeissani (2016). It contains implementations of the baseline MLEM algorithm,
using an improved version of Siddon’s algorithm, plus several of the extensions we experiment with. Being
written in C++, QETIR only runs on modern x86-64 CPUs. It does not support GPU acceleration.

3. Basic Implementation

First, we implemented the baseline MLEM algorithm in Julia in combination with the slice-based ray tracing
technique. This basic implementation excludes sensitivity correction, which is instead studied as a possible
extension, and stays close to the mathematical descriptions, featuring no GPU-specific optimizations. This
implementation can be seen as an implementation done by someone who knows very little about GPUs apart
from the fact that they need to be programmed with kernels. The source code, as well as that of all other MLEM
versions evaluated in this paper, can be found at https://github.com/michielvangendt/PET-Julia.

To evaluate the performance of this basic implementation, we ran it on a simulated scan of a phantom image
containing three radioactive line sources. The simulation was performed with GATE, the simulation toolkit
developed by Jan et al. (2004). As the number of iterations through the four steps of the MLEM reconstruction
algorithm is identical for our Julia implementations and for the QETIR implementation independent of the
image content, one such image at different dimensions suffices for analyzing and comparing the performance
of the implementations.

The performance of the basic GPU implementation was evaluated and compared to a basic version of the
CPU-only single-threaded QETIR C++ code2. The latter was benchmarked on a machine with two Intel Xeon
E5-2637 v2 @3.50GHz CPUs. The Julia GPU code is benchmarked on an NVIDIA Tesla V100 16GB and on an
NVIDIA RTX 2080 Ti. The specs of the GPUs can be found in Table 1.

Figure 2 shows a somewhat simplified code of the main GPU computation kernel of the basic implemen-
tation of the baseline MLEM algorithm. This kernel is executed in parallel for all slices on all events, thus
implementing the computations of lines 4–9 of Algorithm 1 (without the sensitivity correction). No complex
constructs or GPU specific code such as those on lines 11 and 12 have been omitted or simplified, which by the
way are the only GPU-specific code lines. Only the computations on lines 16–36 have been reduced from three
planes (x,y,z) into one case to avoid redundant complication of the code.

2 This basic QETIR version was obtained by omitting extensions from the MLEM implementation in QETIR.

https://github.com/michielvangendt/PET-Julia
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Tesla V100 RTX 2080 Ti
GPU architecture NVIDIA Volta NVIDIA Turing
CUDA cores 5,120 4,352
Double-precision performance 7 TFLOPS 0.4 TFLOPS
Single-precision performance 14 TFLOPS 14 TFLOPS
GPU memory 16GB HBM2 11GB GDDR6
Memory bandwidth 900GB/sec 616GB/sec

Table 1. Specification of the NVIDIA GPUsRapid prototyping of PET image reconstruction on GPUs: Printed October 17, 2021 page 11

1 using CUDA: threadIdx, blockIdx, sync_threads, reduce_block, @cuStaticSharedMem, @atomic

2

3 """

4 @cuda threads=... blocks=... gpu_kernel!(events, image, corr, tmp_forward_projections, dimx, dimy, dimz)

5

6 Perform forward projection, compare, and back projection steps.

7 Output is written to `corr`, which is expected to be zero-initialised.

8 `tmp_forward_projections` is used for temporary storage and is also expected to be zero-initialized.

9 """

10 function gpu_kernel!(events, image, corr, tmp_forward_projections, dimx, dimy, dimz)

11 s_i = threadIdx().x # The index of the current slice

12 e_i = blockIdx().x # The index of the current event

13

14 event = events[e_i]

15

16 # Ray tracing

17 Ym, Yp, Zm, Zp, l1, l2, l3, l4 = ray_tracing(event, s_i, dimx, dimy, dimz)

18

19 value = 0.0

20 # Forward project

21 value += image[s_i, Ym+1, Zm+1] * l1

22 value += image[s_i, Ym+1, Zp+1] * l2

23 value += image[s_i, Yp+1, Zm+1] * l3

24 value += image[s_i, Yp+1, Zp+1] * l4

25

26 # Sum forward projection values for all slices

27 @atomic tmp_forward_projections[e_i] += Float32(value)

28 # Wait for all slices to be processed

29 sync_threads()

30 forward_projection = tmp_forward_projections[e_i]

31

32 # Compare and back project

33 corr[s_i, Ym+1, Zm+1] += l1 / forward_projection

34 corr[s_i, Ym+1, Zp+1] += l2 / forward_projection

35 corr[s_i, Yp+1, Zm+1] += l3 / forward_projection

36 corr[s_i, Yp+1, Zp+1] += l4 / forward_projection

37

38 return nothing

39 end

Listing 1: The kernel function that performs the forward projection, compare, and back
projection steps (simplified for readability)

(a) Column-major order (b) Tile-major order

Figure 2: Visualization of the requested memory for the two array storage methods

kernel now only requires six memory operations in this example, and only space for 24 values311

need occupy space in the cache.312

Last edited Date : II.H. Performance Optimizations

Figure 2. (Simplified) source code of the kernel function that performs a forward projection, compare, and back projection.

4. Performance Optimizations

The basic implementation discussed above suffers from a memory bottleneck that results from the layout of the
data in memory not matching the data access pattern of the algorithm. With the slice-based ray tracing approach,
each thread computes the intersection indices and lengths of a single row or column, depending on the LOR’s
main direction. In the simplified 2D example in Figure 3a, ten threads are computing the intersection indices
and lengths of the ten columns in parallel. During this computation, and according to the MLEM forward
projection formula, each thread fetches the current image values of the intersecting pixels. Assuming the array
is stored in column-major order and four array values can be fetched by a single memory operation, a total of
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1 shared = @cuStaticSharedMem(Event, 1)

2 if s_i == 1

3 shared[1] = events[e_i]

4 end

5 sync_threads()

6 event = shared[1]

Listing 2: Using shared memory to fetch the event data

1 # Forward project

2 total_value = reduce_block(+, convert(Float32, value), 0.0f0)

3

4 # Share total length across all threads in the block

5 shared_total_value = @cuStaticSharedMem(Float32, 1)

6 if thread_i == 1

7 shared_total_value[1] = total_value

8 end

9 sync_threads()

10 total_value = shared_total_value[1]

Listing 3: Using block reduction to compute the forward projection value

In line 5 of Listing 1, all threads in a block fetch the same coincidence event from the318
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Figure 4. Using shared memory to fetch the event data

11 memory operations are needed that each load a group of four coloured pixels, consuming the space for 44
values in the cache. Had row-major order been used, a similar number of memory accesses would have been
needed, and a similar amount of cache space would have been devoted

Instead of storing the array values in a row- or column-major order, we switched to a novel storage method.
As shown in Figure 3b, the array is now stored in tiles, hence the name tile-major order. Thanks to the memory
coalescing principle in CUDA, the same kernel now only requires six memory operations in this example, and
only space for 24 values need occupy space in the cache.

Other options to reduce the pressure on memory and to increase the resource utilization include the use
of the shared memories, texture memories, and constant memories of GPUs, as previously demonstrated by
Cui et al. (2011), Zhou and Qi (2011) and Xu and Mueller (2005). We only explored optimizations using shared
memory, the small and fast memories (one per Streaming Multiprocessor (SM)) that can be used to store
frequently used data in a block of threads.

In line 14 of Figure 2, all threads in a block fetch the same coincidence event from the global memory. Placing
the event in shared memory by replacing line 14 with the code in Figure 4 results in fewer global memory
accesses. Notice how the optimized code Figure 4 only consists of high-level operations such as allocating an
array, fetching data, and synchronization. Importantly, this template for using shared memory does not require
expert low-level GPU knowledge at all.

Lines 27-30 of Figure 2 constitute the straightforward GPU-kernel-style expression of the reduc-
tion operation corresponding to the summation of the forward projection. The accumulated values
(tmp forward projections) are stored in global memory throughout the computation, the slowest GPU
memory. The existing support for CUDA devices in Julia provides a reduce block function that can be used
to perform the same computation, while storing the intermediate results in the much faster shared GPU mem-
ory. The replacement code of lines 27-30 is listed in Figure 5. Notice that this code uses the same template as in
Figure 4, as it also involves shared memory. Again, no low-level GPU expertise is needed.

In addition to those memory optimizations, the occupancy of the kernel can be optimised, i.e., its utilization
of the many cores on the GPU device. The occupancy is the ratio of active warps per SM to the maximum
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1 shared = @cuStaticSharedMem(Event, 1)

2 if s_i == 1

3 shared[1] = events[e_i]

4 end

5 sync_threads()

6 event = shared[1]

Listing 2: Using shared memory to fetch the event data

1 # Forward project

2 forward_projection = reduce_block(+, convert(Float32, value), 0.0f0)

3

4 # Share total length across all threads in the block

5 shared_forward_projection = @cuStaticSharedMem(Float32, 1)

6 if thread_i == 1

7 shared_forward_projection[1] = forward_projection

8 end

9 sync_threads()

10 forward_projection = shared_forward_projection[1]

Listing 3: Using block reduction to compute the forward projection value
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Figure 5. Using block reduction to compute the forward projection value

number of possible active warps per SM. Volkov (2010) showed that increasing the occupancy can have a
positive effect on the kernel execution time by hiding the latencies of slow accesses to global memory. We first
adapted the basic implementation to support a number of threads that differs from the numbers of voxels in
the x-direction. Then we manually evaluated multiple so-called launch configurations that specify how many
concurrent threads should be created and how they should scheduled onto the GPUs computing resources, and
we selected the best one. This optimization does require some expert GPU knowledge , but encoding the result
in the code is relatively simple.

Finally, we relied on existing Julia macros @inline to ensure that code is inlined maximally, and
@inbounds to let the compiler omit bounds checking on the accessed arrays.

5. Algorithmic Extensions

To assess the true potential of Julia for overcoming the two-language problem, we assessed to what extent the
optimized Julia MLEM and ray tracing implementations for GPUs can serve as flexible research vehicles. We
do so by evaluating how easy it is to introduce extensions into the optimized implementation without needing
to re-tune or re-optimize the code.

For this research, we chose the existing extensions discussed in Section 2.3 By re-implementing these existing
extensions, we mimicked the programming effort that the original inventors of those extensions would have
had to invest if they would already have had Julia at their disposal. We also evaluated whether those changes
impact the good GPU performance that was obtained with the optimizations discussed in the previous section.
Obviously, if relatively minor algorithmic updates would require major changes in the deployed performance
optimizations, medical image researchers would still not be able to focus on their domain knowledge, instead
having to invest in code tuning again and again.

Our experiments with the algorithmic extensions were performed on a simulated, life-like phantom from
previous work by Thyssen et al. (2018) involving a 133x86x580 image reconstructed with 4 MLEM iterations. We
do not report on the quality of the reconstructed images as our goal is not to improve reconstruction algorithms
beyond the existing state of the art. However, to validate the correctness of our implementations, we did verify
that the quality of the images reconstructed with QETIR and with our Julia implementations were similar. They
were not completely identical because the GPU and CPU versions feature different floating-point precision,
accuracy, and rounding modes, as well as different orders for iterating over all coincidence events. For all
versions of the baseline and extended algorithms reported in this paper, we observed that the root mean square
error was in fact smaller (by 1-2%) for the images reconstructed with the Julia implementations than those
reconstructed with QETIR. We hence consider our Julia GPU implementations correct and not suffering from a
degradation in reconstruction quality.
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Sensitivity Correction First, we added sensitivity correction, which we had originally excluded from our basic
implementation. This correction can be implemented by adding only two lines of code to the MLEM algorithm.
One line c sensmap = CuArray(sensmap) initializes the sensitivity map on the GPU. Secondly, the MLEM
update step is extended with the line image = image .* correction ./ c sensmap. The multiplication
and division operators with the dot syntax denote element-wise operations. Despite being two different op-
erations, the element-wise multiplication and the element-wise division are merged into a single broadcast
kernel by the CUDA.jl package, i.e., the updates to all voxels are parallelized automatically over all available
computational resources on the GPU. By contrast, in CUDA C/C++ the programmer would have to write a
new kernel that performs these array operations manifestly.

Ordered Subset Expectation Maximization Replacing MLEM by OSEM requires only trivial changes to the code.

Correction for image degrading effects To add support for attenuation correction with minimal code changes,
we relied on Julia’s dynamic typing and multiple-dispatch. First, we added a new custom type Att event

on top of the already used type Event. The new type stores the event and its attenuation correction factor.
Then in between the forward and back projections of the kernel, we inserted an inlinable method call to a
method with two instantiations: one that multiplies with the computed result with the embedded attenuation
factor when invoked on arguments of type Att Event, and one that does nothing when invoked on arguments
of the original type Event. Of course we also added a kernel to pre-compute the attenuation coëfficients.
This uses only similar constructs as the MLEM kernel itself. All other code for the MLEM algorithm and the
raytracing embedded it in remains unchanged. In CUDA C, this would not at all be the case, as that code
is typed statically. Combining CUDA with C++ templating could reduce the burden to some extent, but it is
precisely the cumbersomeness of that programming style that makes dynamically typed languages such as
Julia shine for rapid-prototyping. In the domain of image reconstruction, our support for attenuation correction
is yet another demonstration of this.

Time-of-Flight image reconstruction Similar to the previous extension, we defined a new type of event that
includes the TOF information and updated the kernel function to invoke a function performing the necessary
re-weighting. So in terms of programming ease, this was as easy as the attenuation correction.

TOF correction requires an array that contains the weights of the Gaussian distribution. These weights do
not change throughout the execution of the algorithm and, depending on the TOF parameters, only contain
∼100 elements or so. This type of data is hence well-suited to be stored in the so-called constant memory space
of the GPU, which is a low-latency memory, and could result in a speedup of the TOF algorithm. The Julia GPU
stack, however, does not yet support the allocation of constant memory.

Filtering techniques Median filtering, the technique we have chosen for reasons explain in Section 2.3 is such
commonly used that support and abstractions for it exists in packages in many high-level programming lan-
guages. In Julia, the ImageFiltering.jl package offers linear and non-linear filtering operations. Unfortunately,
these operations are not (yet) implemented for the CuArray types used in Julia GPU stack.

One alternative would have been to reprogram such functionality ourselves on top of —and actually in—
the Julia GPU stack. That would have required much more system-level Julia and GPU expertise than we can
and should assume the average medical image processing researcher to have. As an alternative, we decided
therefore that the best approach was to re-use (and slightly adapt) an existing median filtering algorithm in
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CUDA C/C++3. The ccall foreign function interface of Julia makes this very easy, as it allows passing the
CUArray GPU-pointer to a C code wrapper that invokes the CUDA kernel on that pointer. It is hence not
necessary to copy the data back and forth between GPU and CPU memory in between our own Julia kernels
and the re-used C CUDA kernels.

All extensions combined Finally, we combined all extensions. To do so, we created a new event structure that
contains both the attenuation and TOF information. Beyond that change, it sufficed to change the event input
type of the existing function definitions to the new type.

6. Evaluation

6.1. Performance and Performance Portability

For the baseline MLEM algorithm, Table 2 shows the execution times of the basic CPU QETIR version and of the
basic and optimized Julia implementations on the two used GPUs. For the GPU versions of the baseline algo-
rithm, we noticed that switching between 32-bit and 64-bit floats did not alter the performance in a practically
significant manner. Here we report the times measured with the 64-bit floating point precision.

Depending on the GPU and the dimensions, the basic Julia implementation is between 19 and 43 times
faster. Larger speedups are obtained for larger dimensions (because the overhead of invoking the GPU becomes
relatively smaller), and for the more performant Tesla V100, as expected. These speedups are below the two
orders of magnitude speedup that Cui et al. (2011) and Zhou and Qi (2011) have reported Cui et al. (2011), Zhou
and Qi (2011), but then again, they are obtained mostly for free as we will discuss in the next section.

Part of the reason for achieving lower performance gains than reported in other literature is that the resource
utilization of our main MLEM kernel is sub-optimal in this basic implementation. For example, the Tesla V100’s
SM utilization, i.e., the utilization of its computational resources, is only 3%.4 The main culprit is the bad
utilization of the memory hierarchy. Bad data access locality in the basic implementation resulted in extremely
low L1 and L2 cache hit rates and in a relatively high amount of off-chip memory transfer (1531 GB). Off-chip
memory operations take several hundreds of cycles to complete. As a result, it takes an average of 258 cycles
to complete a single instruction on the GPU. In GPU-specific terms, the consequence is that there are only
0.04 eligible warps5 per scheduler on average, which leaves the hardware resources heavily underutilised.
For the RTX 2080 Ti, similar observations were made. We can conclude that although a basic, straightforward
implementation of the algorithm in Julia suffices to gain a huge speedup on a GPU over equivalent code running
on a CPU, that basic implementation is too basic to utilize the resources of the GPU satisfactorily.

With the optimized Julia implementation, the resource utilization improves drastically. For example, the SM
and memory utilization on the Tesla V100 increased from 3% and 34% to 23% and 58% respectively, resulting
in an additional speedup by a factor 2.85 over the basic GPU implementation for the largest dimensions. On
the RTX 2080 Ti, an additional speedup by a factor 2.16 was reached, because of similar increases in utilization.
The achieved memory utilization of the optimised algorithm is not perfect at around 60%, but that level is
considered acceptable in practice according to Bavoil (2019).

3 https://github.com/detel/Median-Filtering-GPU/
4 We used NVIDIA Nsight Compute and NVIDIA Nsight Systems from the NVIDIA GPU programmer’s standard toolbox to measure and

study all GPU performance characteristics discussed in this paper.
5 An eligible warp can be seen as the threads that are ready to be scheduled whenever another thread gets halted because it is waiting

for data to arrive from memory. For a more precise definition, we refer to the CUDA programming model description by Sanders and
Kandrot (2010).

https://github.com/detel/Median-Filtering-GPU/
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32x32x32 128x128x128 512x512x512
QETIR C++ on CPU (32-bit floats) 21.52s 109.68s 2455.42s
Basic Julia on Tesla V100 GPU (64-bit floats) 0.72s 3.05s 57.17s
Basic Julia on RTX 2080 Ti GPU (64-bit floats) 1.13s 4.88s 71.15s
Optimised Julia on Tesla V100 GPU (64-bit floats) 1.45s 4.48s 20.03s
Optimised Julia on RTX 2080 Ti GPU (64-bit floats) 1.74s 7.14s 33.02s

Table 2. End-to-end reconstruction time for different dimensions and 20 iterations of the baseline MLEM algorithm.

For smaller dimensions, the optimized implementation is, perhaps surprisingly at first sight, slower than
the basic implementation. This slowdown results from the extra transformation code that is needed for the
tile-major array indexing. This indexing method has no added value for such small dimensions because the
arrays fit entirely in the cache and accessing them is fast anyway, hence the transformation only adds overhead
to the complexity of the computations.

Most of the achieved speedup over the basic implementation is due to the novel tile-based access to the
image arrays. On the Tesla V100, e.g., the SM utilization improved from 3% to 14%. This increase in performance
is thanks to the fact that the L1 and L2 hit rates increased from 18% and 64% to 44% and 84% respectively. As a
result, the threads spend much less time waiting for memory transactions to complete and can better utilise the
compute resources of the GPU.

The extremely simple edit to inline functions resulted in 10% faster execution on the Tesla V100. Placing
events in shared memory resulted in 47% fewer global memory accesses, but unfortunately this yielded less than
1% reduction in execution time. The use of the reduce block function and shared memory for intermediate
results decreased the execution time with another 15% and the simple addition of the @inbounds macro to
line 1 in Figure 2 reduced the run time with another 22%. Finally, optimizing the occupancy of the kernel by
selecting a good launch configuration results in a speedup with another 9% on the Tesla V100. For the RTX 2080
Ti, similar speedups were obtained with the different optimizations.

With the performance optimization, execution on our Tesla V100 is 122 times faster than on our CPU, and
on the RTX 2080 Ti, it is 74 times faster. As such, we achieve speedups with Julia in the same ball park as the
two order of magnitude speedups already reported for lower-level programming languages by Cui et al. (2011)
and Zhou and Qi (2011). As we will discuss in the next section, we achieve that speedup with considerably less
programming effort, however, which was our main objective.

Furthermore, for both GPUs we used exactly the same code, without manual device-specific re-tuning. The
performance results on the two GPUs indicate that Julia offers a decent amount of performance portability.

To study performance portability over algorithmic variations, Table 3 lists the reconstruction times for the
life-like phantom and a 133x86x580 image reconstructed in 4 MLEM iterations for the different extensions
for which we implemented support building on the optimized implementation of the baseline MLEM. The
following observations can be made on these results.

First, small additions like sensitivity correction result in similar overheads for the CPU versions and the GPU
versions. Secondly, switching to MLEM from OSEM results in a (slightly) larger speedup on the CPU than on
the GPUs. This is not due to Julia or our implementations, however. Instead it is a fundamental scalability issue
of GPUs. Being accelerators with separate memories, GPUs can only shine when the overhead of transferring
data between CPU memory and GPU memory and of launching kernels on the GPU is compensated by the
parallelization of the computations. When fewer computations need to be performed, but the same amounts of
data need to be transferred, as is the case when moving from MLEM to OSEM, the memory transfer and kernel
launch overhead becomes more dominant in the overall execution times. Hence the speedup that GPU versions
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can achieve over CPU versions inherently becomes smaller. This effect plays out exactly the same in CUDA
C/C++ implementations.

Thirdly, the addition of attenuation correction has a larger negative impact on the GPU execution times than
on the CPU times. This larger increase in execution time is caused by the overhead of an extra kernel launch
to compute the attenuation correction factors and by the extra overhead to copy the attenuation map to the
GPU device memory. These forms of overhead are fundamental in GPU computing, they are not a side-effect
of using Julia instead of lower-level languages like CUDA C/C++. For TOF correction, similar overheads have
to be paid on the GPU.6 It is because of these extra computations and data transfers that using 32-bit floating
point precision on the GPU becomes beneficial over using 64-bit precision. As stated before, the quality of the
32-bit reconstructed images was still as good (or even slightly better) on the GPU as with QETIR on the CPU.

Fourthly, for the last considered extension of median filtering, the extended QETIR algorithm suffers a 38%
slowdown, while the GPU slowdowns are only 7% and 4%. The reason for this much smaller slowdown is that
the median filtering on the GPU benefits from the tile-based array indexing method. The implementation of the
median filtering algorithm in QETIR is fairly straightforward and data locality is not taken into account, which
causes the larger slowdown.

Finally, we consider the combination of all extensions. Interestingly, the reconstruction times of the imple-
mentation on the Tesla V100 almost doubled compared to the baseline OSEM algorithm without any extensions
(0.60 → 1.17). This 95% increase is larger than the sum of all increases (2%+35%+31%+7%=75%) observed for
individual extensions on the baseline MLEM versions. The reason for this somewhat unexpected performance
scaling is entirely architectural. Each extension increases the register pressure in the GPU code (i.e., the amount
of GPU registers used in the code) a little bit because more computations need to be performed. For individual
extensions, these increases are small enough not to have an effect on the utilization of computational resources
while kernels are executing: each SM core can still handle 4 active blocks of concurrently running threads.
When all extensions are combined, however, the register pressure increase above the threshold for running
4 active blocks of threads concurrently on the Tesla V100, instead dropping to 3 active blocks. In short, the
observed performance hit originates from a resource limitation in the GPU architecture, not from an issue with
the compiler or used programming language. On the RTX 2080 Ti, we similarly observe that the 68% increase in
execution time for all extensions combined (0.77 → 1.29) is also larger than the sum of their individual increases
(1%+25%+10%+4%=41%). This follows from exactly the same cause.

In summary, except for reasons fundamental to GPU computing, we observed that adding extensions to the
optimized Julia implementation of the baseline algorithm did not undo any of the optimizations and did not

6 We have no execution times for the CPU version of MLEM and OSEM with TOF correction, due to a bug in the TOF correction part of
QETIR, of which the fixing was out of scope of our work.

Algorithm QETIR Julia Julia CPU vs. CPU vs.
Processor CPU Tesla V100 RTX 2080 Ti Tesla V100 RTX 2080 Ti
Baseline MLEM without extensions 87.46s 0.97s 1.43s x90 x61
MLEM with sensitivity correction 89.65s 0.99s 1.44s x91 x62
OSEM without extensions 43.16s 0.60s 0.77s x72 x56
MLEM with attenuation correction 93.60s 1.31s 1.79s x71 x52
MLEM with TOF correction N/A 1.27s 1.58s N/A N/A
MLEM with median filtering 120.89s 1.04s 1.49s x116 x81
OSEM with all extensions N/A 1.17s 1.29s N/A N/A

Table 3. Comparison of QETIR CPU and optimized Julia GPU reconstruction times. All versions use 32-bit floating point
precision.
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result in larger performance penalties than the ones in C++ CPU versions. We can hence conclude that our Julia
implementations feature great performance portability over algorithmic variations.

Overall, we can conclude that the optimised GPU algorithms in Julia are well suited for image reconstruction
of large dimensions, which is favourable for, e.g., total-body PET systems.

6.2. Programmer Productivity

Quantitative Evaluation. Table 4 presents the lines of code needed for four implementations of baseline MLEM
algorithms: the QETIR C++ CPU implementation, our basic and optimized Julia GPU implementations, and the
CUDA C implementation of the original slice-based ray tracing paper by Gao (2012). The latter only includes the
ray-tracing kernels, however, as that was the focus of that paper. We note that lines of code is only a rough metric,
which is biased by programming style. Furthermore, it only measures the final result of the developer’s effort,
not the amount of effort that was needed to get there. Still, we consider it useful as a first-order quantitative
approximation of programmer effort.

The basic Julia implementation needs much fewer lines than QETIR. This is primarily caused by the ray
tracing algorithm in C++: it contains many if-statements and temporary variables, resulting in 258 lines of code.
The slice-based ray tracing algorithm in Julia is more compact and only has 95 lines of code. When comparing
the MLEM algorithm of both implementations, they are about the same length. The profit of using Julia in terms
of lines of code is cancelled out by the extra code that is needed for GPU-specific instructions. Still, as stated
before, this implies that with Julia we get GPU support and optimized performance at virtually no cost in code
complexity over C++.

The pre-existing slice-based CUDA C implementation from Gao (2012) has large, almost identical code
blocks and contains 619 lines of code. Besides deduplication, their code is amendable to some space-saving
refactorings, which would, by our estimates, bring the size down to approximately 120 lines. With 95 lines, our
basic implementation in Julia is considerably simpler. Moreover, invoking kernels in CUDA C/C++ requires
lots of boilerplate code outside the kernels to allocate memory on the GPU and to transfer data from CPU
memory to GPU memory. In Julia, much less such GPU-specific code is necessary, as is clear from the work by
Besard et al. (2019) and Besard et al. (2019), as well as from the already discussed comparison of Julia GPU code
with QETIR C++ code for the part of the code implementing the MLEM algorithm. In summary, the basic Julia
implementation is much smaller than the CUDA C implementation.

Compared to the basic Julia implementation, only 50 lines of additional code were needed for all the
performance optimizations. The ray tracing function remained the same but 15 extra lines of code were added to
the MLEM algorithm. These extra lines of code are needed to interact with shared memory and to call tile-based
array re-indexing functions. The re-indexing functions themselves cause 24 extra lines of utility code. Finally,
an extra structure definition was needed to store temporary results of slices.

We can conclude that even performance-optimized Julia GPU code is on par with C++ CPU-only code in
terms of needed lines of code, as well as with CUDA C code, if not better. This, together with the fact that a
single Julia code version could be used for different generations of GPUs, without manual re-tuning, provides
strong evidence of the programming productivity boost that Julia can bring for the programming medical image
reconstruction algorithms on GPUs over the use of lower-level languages.

For the algorithmic extensions, the Julia implementations required no tuning for specific GPUs either. As
shown in Table 5, the extended Julia implementation still contains significantly fewer lines of code than the
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Lines of code
QETIR C++ for CPU (total) 394

↰

MLEM 60↰

Ray tracing 258↰

Utility functions 36↰

Definition of classes 40

Basic Julia for GPU (total) 228

↰

MLEM 63↰

Ray tracing 95↰

Utility functions 50↰

Definition of structures 20

Optimized Julia for GPU (total) 278

↰

MLEM 78↰

Ray tracing 95↰

Utility functions 74↰

Definition of structures 31

CUDA C for GPU (total) N/A

↰

MLEM N/A↰

Ray tracing 619↰

Ray tracing with code compaction refactorings and deduplication ∼ 120

Table 4. Lines of code of the C++, CUDA, and Julia implementations of the baseline MLEM algorithm

equivalent QETIR C++ implementation.7 Our overall conclusion is that Julia enables GPU performance porta-
bility and good resource utilization for PET MLEM-based image reconstruction while at the same time offering
much more productive programming than plain C++ and a fortiori than CUDA C/C++, in particular when
domain researchers want to explore algorithmic variations.

All in all, the Julia language proved to be mature enough to implement the most basic version of the baseline
MLEM algorithm and run it on a GPU. We were able to use some of the high-level features offered by the
CUDA.jl package. Compared to CUDA C, the CuArrays data type freed us from manually managing device
memory and the element-wise multiplication on the GPU is completely abstracted away.

Nevertheless, the Julia GPU ecosystem does not fully relieve the programmer from the task of performance
optimization. The forward projection, compare, and back projection steps require the collaboration and the
communication between multiple threads. As the GPU abstractions offered by CUDA.jl build on a set of high-
level array operations as proposed in Besard et al. (2019) and Besard et al. (2019), and as ray-tracing does not
map directly onto those array operations, we needed to program GPUs at a slightly lower level of abstraction,
i.e., at that of kernels. To do so, some knowledge of GPUs and their programming model was still needed, such
as the memory hierarchy and how the CUDA execution model maps onto the GPU hardware. This is much less
and still more abstract than what needs to be known for programming in CUDA C, and therefore much easier
to grasp for non-GPU experts.

Ease of Programming. Fortunately, the Julia programming environment also helps the programmer with the
writing and optimization of code, i.e., on the path from scratch to the final optimized code that we analyzed so

7 The QETIR line count is an estimate. The QETIR code base includes more algorithmic extensions than we evaluated in our research. We
excluded the lines needed for those additional algorithmic extensions, but it might very well be that the code would have looked different,
possibly with somewhat fewer lines of code, when the developers would not have included those additional extensions at all. The exact
number of lines is of no importance with respect to our overall conclusions.
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Without extensions With extensions
QETIR C++ on CPU (total) 394 ∼ 636
Julia on GPU (total) 228 416

Table 5. Lines of code of the MLEM algorithm without and with extensions

far. Firstly, the REPL (read-eval-print loop), Julia’s interactive command-line interface, provides an easy way
to write and debug code. The REPL is comparable to the Python Interpreter. For example, the REPL provides a
much faster way to make changes to a kernel and test the result of the change compared to CUDA C. In CUDA
C, code must be re-compiled and the entire application must be re-executed. In Julia, the programmer only
needs to re-run the affected function. Through its seamless interaction with existing profiling tools, such as
NVIDIA Nsight, the REPL also enables iteractive tuning, where adjusted kernels can be profiled immediately
to analyse the impact of the adjustments. This is definitely beneficial in a research domain in which execution
times and output quality are both important optimization objectives.

Secondly, the visualization of a 3D image is much more programmer-friendly in Julia: thanks to the Images.jl
package, only one line of code is needed after installing and importing the package. The PyPlot.jl package offers
an interface to the well-known Matplotlib library in Python. This allows people familiar with Matplotlib to get
started quickly without learning to work with a new visualization tool.

Thirdly, Julia also comes with a fully featured built-in package manager, a feature that is missing in most
low-level languages. In most low-level languages, every package has its own installation procedure. The pro-
grammer has to keep track which version of each library is installed. Recreating the same environment on a
different computer is a daunting task.

These benefits of the Julia ecosystem enabled the first author of this work to perform the reported research
and to obtain the presented result within the course of a 24-credit master thesis, even though the student was
unfamiliar with Julia, CUDA, PET, and MLEM before starting his thesis project in September 2019.

The results of this section and the previous section hence clearly show that Julia can solve the two-language
problem in this domain: an expert in the field of image reconstruction can first write an existing or new algorithm
in Julia without having to take performance into account. Afterwards, a somewhat more GPU savvy developer
can tune the new algorithm without having to re-write it into a low-level language, instead staying in the Julia
language. To implement the extension on the baseline MLEM algorithm, the multiple-dispatch mechanism in
Julia proved to be useful and enabled efficient code re-use. Because most code could be re-used, the resource
utilization remained fairly insensitive to the extensions. It must, however, be taken into account that register
usage can change, which has an influence on the optimal launch configuration.

Unfortunately, support for constant memory, which could improve the execution time of the TOF kernel,
was missing in Julia when we conducted our research. Since then, development of constant memory support
has started (in our research group), but is as of yet immature.

Finally, we come back to the re-use of an existing median filtering implementation written in CUDA C
in our Julia code base. With this reuse, we showed that research groups that have an existing medical image
reconstruction codebase in CUDA C/C++ do not need to rewrite all their kernels in Julia to make the switch.
With the Julia GPU ecosystem, existing CUDA C/C++ kernels can be called and used in Julia. In this way, their
existing work is not lost, while they can already benefit from the advantages that Julia offers during the further
development of their application.
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Higher-Level Programming Outlook. As discussed above, we implemented MLEM PET image reconstruction by
writing code at the level of GPU kernels. With this form of implementation, researchers that want to explore
algorithmic extensions or alternatives still need to implement those at the same, relatively low level of abstrac-
tion, which does require GPU knowledge, and which requires knowledge of how equation 4 is implemented
by means of on-the-fly ray tracing to enable massive parallelism and to avoid storage of large sparse matrices.

By supporting the overloading (i.e., redefinition) of array index functions, by means of its multiple dispatch
support, and by means of its meta-progamming capabilities, Julia also enables lazy array operations and matrix-
free methods for iterative solvers. Existing packages such as LazyArrays.jl, LinearMaps.jl, LinearMapsAA.jl,
and LinearOperators.jl provide higher-level interfaces and data types that allow Julia programmers to express
their computations at the mathematical level of abstraction, i.e., in terms of (system) matrices and matrix
operators, and to have those operators and compositions thereof implemented by means of various optimized
algorithms that avoid storing large (intermediate) matrices.

Several examples exist of such high-level programming in the Julia ecosystem. Knopp and Grosser (2021)
developed such interfaces, data types, and operator implementations for CPU-based MRI image reconstruction.
Besard et al. (2019) demonstrated that one can enable programmers to write high-level code in terms of arrays,
matrices, and operators such as Kronecker products, while still having that code automatically compiled into
efficient GPU code. Faingnaert et al. (2020) provides an example where general matrix multiplications (GEMM)
computed on GPUs automatically get optimized when they are invoked on, e.g., diagonal matrices.

It remains future work to design and implement comparable high-level interfaces to the algorithms and
their implementations presented in this paper, which would allow researchers to express their PET image
reconstruction algorithms at the mathematical level of abstraction we used throughout Section 2 and using
high-level notation similar to the one we mention in the paragraph on sensitivity correction in Section 5. Given
the successes in the aforementioned computational application domains, we have no doubt that such a design
and implementation is feasible. The design requires a more extensive study of existing variations of (MLEM)
PET image reconstruction algorithms to ensure that all interesting algorithmic explorations are covered. That
study is out-of-scope of this paper. Once a high-level interface design would be chosen, however, we envision
that implementing the functionality beneath the interfaces will involve only relatively straightforward software
engineering and that the GPU kernels developed in this paper will help to implement this functionality for use
on GPUs.

7. Discussion and Conclusion

In the Julia programming language, we first developed a basic GPU-enabled implementation of the baseline
MLEM algorithm for PET image reconstruction. We then optimized that code for performance, after which we
also extended it with five existing algorithmic improvements.

We thus showed that the Julia programming language is mature enough to implement image reconstruction
algorithms and to execute them on a GPU with good resource utilization. The Julia GPU ecosystem offers
enough high-level functionality to optimise the performance to a more than acceptable level without requiring
expert knowledge about GPU architectures and their programming models. Performance portability across
GPU generations and algorithmic variations was achieved. Support for some GPU features that could increase
the performance even further is still missing, but the impact is probably minor.

The two-language problem in the domain of medical image reconstruction can therefore mostly be avoided
by using the Julia programming language. Different high-level abstractions and language features enable fast-
prototyping. The two-language problem is not completely solved within Julia, however. For media filtering, the
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available alternatives were reuse of non-Julia code or system-level programming in Julia that required expertise
in GPU programming models and Julia’s underlying GPU support, neither of which are optimal.

Reusing existing CUDA C median filtering implementations, we demonstrated that switching to Julia
as the programming language of choice does not prevent re-use of existing functionality written in other
languages. This is particularly relevant as long as Julia is an upcoming language that lacks the maturity of more
established languages, and in which domain-specific libraries, although expanding rapidly, are often not as
feature-complete as those for other languages, and or not yet developed to be compatible with GPU support
libraries.

In our approach so far, there was still a need for the manual implementation of kernels, rather than express-
ing the algorithms at more abstract, mathematical levels, but this could be done more efficiently in Julia than in
CUDA C/C++ because less boilerplate code is needed.

During our investigation in the usability of Julia for medical image reconstruction on GPUs, we added a
new array storage and indexing technique that improved performance significantly. We also showed that our
implementation with current state-of-the-art hardware scales well for large image dimensions. This is beneficial
in the context of total-body pet systems.

Overall, our conclusion is that switching to Julia will likely boost the productivity of researchers in the
domain of PET image reconstruction, and hence quite possibly also in other domains of medical imaging.

In the future, when high-level interfaces are developed on top of our current implementations, an additional
boost in productivity can likely be achieved.
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