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Abstract

The last years have seen an increase in Man-at-the-End (MATE) attacks against software applica-
tions, both in number and severity. However, software protection, which aims at mitigating MATE
attacks, is dominated by fuzzy concepts and security-through-obscurity. This paper presents a
rationale for adopting and standardizing the protection of software as a risk management process
according to the NIST SP800-39 approach. We examine the relevant constructs, models, and
methods needed for formalizing and automating the activities in this process in the context of
MATE software protection. We highlight the open issues that the research community still has
to address. We discuss the benefits that such an approach can bring to all stakeholders. In
addition, we present a Proof of Concept (PoC) decision support system that instantiates many of
the discussed construct, models, and methods and automates many activities in the risk analysis
methodology for the protection of software. Despite being a prototype, the PoC’s validation
with industry experts indicated that several aspects of the proposed risk management process
can already be formalized and automated with our existing toolbox and that it can actually assist
decision making in industrially relevant settings.
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1. Introduction

In the Man-At-The-End (MATE) attack model, attackers have white-box access to the software.
This means they have full control over the systems on which they identify successful attack
vectors in their lab, for which they use all kinds of attacker tools such as simulators, debuggers,
disassemblers, decompilers, etc. Their goal is to reverse engineer the software (e.g., to steal
valuable secret algorithms or embedded cryptographic keys or to find vulnerabilities in the code),
to tamper with the software (e.g., to bypass license checks or to cheat in games), or to execute
it in unauthorized ways (e.g., run multiple copies in parallel). In general, MATE attacks target
software to violate the security requirements of assets present in that software.
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MATE Software Protection (SP) then refers to protections deployed within that software to
mitigate MATE attacks.” SP is hence much narrower than the broad umbrella of software security.
The latter also includes scenarios in which software is exploited to violate security requirements
of other system components, e.g., infiltrating networks or escalating privileges. In such scenarios,
attackers start with limited capabilities, such as having only unprivileged, remote access to a
computer via a web server interface.

Because MATE attackers have full control over the systems in their labs, SP needs to defend
assets in the software without relying on external services and capability restrictions that are
provided by the platform on which the software normally runs. For example, whereas iOS and
Android restrict the end user’s debugging and app monitoring capabilities, MATE attackers have
root privileges on their lab’s workstations that can run customized Linux versions, custom debug-
gers, and other reverse engineering tools. MATE defenders can hence only rely on protections
deployed within the protected software itself and possibly on remote servers under control of the
defenders. Advances in cryptography have yielded techniques that can provide strong security
guarantees from within an application itself, but they also introduce orders of magnitude perfor-
mance overhead [57]. They are hence rarely practical today. Then again, practical SP is still
dominated by fuzzy concepts and techniques [83]. SPs such as remote attestation, obfuscation,
and anti-debugging do not aim to mitigate MATE attacks completely. Instead, they only aim to
delay attacks and to put off potential attackers by increasing the expected cost of attacks and by
decreasing the attackers’ expected Return In Investment (ROI).

As observed during a recent Dagstuhl seminar on SP Decision Support and Evaluation
Methodologies [44], the SP field is facing severe challenges: Security-through-Obscurity (StO)
is omnipresent in the industry, SP tools and consultancy are expensive and opaque, there is no
generally accepted method for evaluating SPs and SP tools. Moreover, SP tools are not deployed
sufficiently [21, 26, 48, 70], and expertise is largely missing in software vendors to deploy
(third-party) SP tools [52, 58, 79]. Moreover, we lack standardization. The National Institute
of Standards and Technology (NIST) SP800-39 IT systems risk management standard [63] or
the ISO27k framework for information risk management [59], which are deployed consistently
in practice to secure corporate computer networks, have no counterpart or instance in the field
of SP. Neither do we have concrete technical guidelines to implement General Data Protection
Regulation (GDPR) compliance in applications.We can summarize the status of the SP domain as
an industry with information system business needs involving so-called wicked problems [54].
The foundations and methodologies currently available in the SP knowledge base have not met
those needs.

To plug gaps in this knowledge base, most existing SP research focuses on piece-wise,
bottom-up extensions to its foundations and methodologies by presenting ever more novel SP
artifacts and attack artifacts in an SP arms race. In that regard, existing offensive and defensive
research fits into the information systems Design-Science Research (DSR) paradigm. Hevner et al.
define this paradigm as research seeking to “extend the boundaries of human and organizational
capabilities by creating new and innovative artifacts,” and “create innovations that define the ideas,
practices, technical capabilities, and products through which the analysis, design, implementation,
management, and use of information systems can be effectively and efficiently accomplished” [54].

However, to overcome the aforementioned shortcomings and to pave the road towards a
standardized risk management approach and automated decision support for SP, we are of the

2For the sake of brevity, we will omit the MATE and simply use SP to mean MATE SP in the remainder of this paper.
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opinion that such bottom-up DSR does not suffice. Instead it needs to be complemented with
holistic, top-down DSR in which we study what an end-to-end SP risk management approach has
to cover and what parts can and should ideally be automated. Our own research hence includes
both the bottom-up and the top-down approach in the search for answers to the following research
questions (RQs):

* RQ1: To what extent can automated decision support tools be useful for experts and/or
non-experts by assisting them with the deployment of SPs and the use of SP tools?

* RQ2: To adopt a standardized risk management approach in the domain of SP, which
constructs, models, and methods does the adopted approach need to entail, and which ones
thereof should ideally be automated?

* RQ3: Which parts of such an approach can already be automated using decision support
tools that instantiate the identified constructs, models, and methods?

RQI is formulated rather broadly, as being useful covers many different aspects such as
usability, efficiency, correctness, comprehensibility, and acceptability by the users. Later in the
paper this RQ will be refined according to those aspects. For answering RQ1, we developed a
Proof of Concept (PoC) decision support tool for SP bottom-up, based on concrete requirements
and needs from industrial partners of a European research project. Towards RQ2, we explored
top-down how a standardized risk management approach can benefit the domain of SP. With the
birds-eye view of such an approach, we identified existing work to build on and aspects that need
more research and/or collaboration in the community. To ensure the relevance of our proposed
design, we build on our experience in our academic SP research and past collaborations with
the industry. That experience allows us to formulate the domain-specific requirements and to
consider the relevant industrial Software Development Life Cycle (SDLC) requirements and
practices. It also enables us to position existing domain-specific knowledge in the design. Finally,
for formulating a partial, lower bound answer to RQ3 we identified which artifacts from our
answer to RQ2 are already instantiated and automated in our PoC tool.

This paper reports our research findings and presents our answers to the RQs with the following
contributions. First, we provide a rationale for adopting and standardizing risk management
processes for SP. We discuss several observations on the failing SP market and we analyse why
existing standards are not applicable as is for SP. Where useful, we also highlight differences
between SP and other security fields such as cryptography, network security, and software security.

Secondly, we discuss in depth how to adopt the NIST risk management approach. We
identify which artifacts in the forms of constructs, models, methods, and instantiations (i.e.,
(semi-)automated tools) we consider necessary and feasible to introduce and deploy the NIST risk
management approach for SP. For all the required processes, we highlight (i) the current status;
(i1) SP-specific concepts/artifacts to be covered; (iii) what existing parts can be borrowed from
other fields; (iv) open questions and challenges that require further research; (v) needs for the
research community and industry to come together to define standards; and (vi) relevant aspects
towards formalizing and automating the processes.

Finally, we demonstrate that several aspects can already be formalized and automated by
presenting a PoC decision support system that automates some of the major risk management
activities. Even if not completely automated, this demonstrates that the more abstract constructs,
models, and methods we discuss can indeed be instantiated concretely. This PoC provides a
starting point for protecting applications and for building a more advanced system that follows
all the methodological aspects of a NIST 800-compliant standard with industrial-grade maturity.
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The first results obtained with the tool have been validated mostly positively by industry experts
on Android mobile app case studies of real-world complexity and are presented according to the
Framework for Evaluation of Design Science [104].

The remainder is structured as follows. Section 2 presents our research approach. Section 3
provides background information on standardization and the state of the field of SP. Section 4
provides a motivation for standardization, formalization, and automation and discusses challenges
towards them. Section 5 discusses how to adopt the four phases of the NIST IT systems risk
management standard for MATE SP. Section 6 presents the PoC decision support system we
designed, and Section 7 presents its evaluation. Section 8 draws conclusions and discusses future
work directions.

2. Research Approach

Beyond their quotes in the previous section, Hevner et al. describe DSR as ‘“‘achieving
knowledge and understanding of a problem domain and its solution by the building and application
of designed artifacts” [54]. For doing so in the SP risk management problem domain, in particular
for answering the three RQs, we followed up on the DSR guideline of design as an artefact [54]
by collecting, structuring, designing, building, and applying a large set of related artifacts. We did
so in the three research steps shown in Figure 1.

First, in the collaborative European ASPIRE research project, we designed, developed, and
evaluated a largely automated PoC called Expert system for Software Protection (ESP). This
bottom-up research was driven by the industrial partners’ business needs and SDLC requirements.
Section 6 presents the PoC, of which Section 7 presents the evaluation.

Second, we studied how to adopt a standardized IT risk management approach, the NIST
SP800-39 standard, in the domain of SP. This was driven by our observations of the state of the
domain of SP as discussed in Section 3 and the motivation presented in Section 4. The result of
this study is the approach presented in Section 5.

Third, we analyzed which of the constructs, models, and methods required in the adopted
approach are actually covered by the automated tool support in the ESP. The result is a mapping
between the artifacts introduced in Section 5 and those discussed in Section 6.

With the design, implementation, and evaluation of all the instantiation artifacts (which are
available as open-source), as well as with our study and the development of the standard-based
approach for MATE risk management and the discussion of more abstracts artifacts that constitute
that approach, we added design artifacts, as well as foundations, and methodologies to the
scientific knowledge base, in accordance with the DSR guideline on research contributions [54].

We now discuss our approach in the aforementioned three steps in more detail.

2.1. Step 1: Bottom-up Development and Evaluation of Proof-of-Concept Decision Support Tools

Our research into SP decision support intensified in the 2013-2016 European ASPIRE FP7
research project® in which we collaborated with three SP companies: Nagravision with a focus
on DRM, Gemalto (now Thales) with a focus on software trusted execution environments and
SafeNet (now Thales) with a focus on software license management. The project researched
a layered SP toolchain for mobile apps and corresponding (semi-)automated decision support
methods and tools. The companies identified the lack of such automated support tools as a critical,

3https://aspire-fp7.eu/
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Figure 1: Three research steps leading to the results presented in this paper.

foundational gap in the SP knowledge base that hampered the effective and efficient deployment
of SP in practice. In the traditions of DSR, we endeavoured to close this gap by researching the
design and development of novel artifacts, including proof-of-concept tools. The companies and
their technical and commercial SP business needs drove the project’s requirements analysis and
scope determination, as well as the considered attack model. In technical meetings, we engaged
with their stakeholders and experts in SP, including software developers, SP tool developers
and users, security architects, and penetration testers. We engaged with higher management in
advisory board meetings. The insights obtained there drove the development of decision support
techniques in a bottom-up fashion during the ASPIRE project, i.e., starting from concrete SP
problems and business requirements and solutions, as well as existing, mostly informally described
best practices*. By having our research driven by the companies needs, we acted according to
the DSR guideline of problem relevance [54]. As we were, to the best of our knowledge, the first
project to research largely automated end-to-end decision support tools, conforming to existing
standards was at that time not at all a requirement or concern.

Through the SP tool flow and decision support developed in the project, we provide an
answer to RQ1, demonstrating that automated decision support that effectively assists experts,
and possibly non-experts, may be within reach. That evidence in the form of artifacts and their
evaluation is presented later in this paper.

We performed and present that evaluation using the Framework For Evaluation of Design
Science (FEDS) [104], the taxonomy of evaluation methods for IS artifacts by Prat et al. [89], and
the evaluation criteria and terminology by Cleven et al. [36].

Our ex-post evaluation from an engineering perspective focused mainly on human risk and
effectiveness, as the aim was to determine whether the artifacts consisting of our PoC decision
support tool and all the data it generates are accepted by the involved users and whether it
benefits their work. We focused on properties compliant with the ISO/IEC 9126-1:2001 criteria®,
namely usability, efficiency, correctness, and comprehensibility and acceptability by the users. As
Section 7.1 will describe in much more detail, we organized the evaluation in multiple iterative
steps to gather timely feedback, and we gradually involved more external experts. Initially, a
qualitative assessment of the automatic decision support prototype (and of the artifacts it used)
was performed with three industrial experts working on the ASPIRE project. The objective was to

4Unfortunately, many documents that formalized and structured those insights in the ASPIRE project are confidential.
Shttps://www.iso.org/standard/22749.html
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improve the early versions and components iteratively, before the release of the final prototype.
This back and forth between design and evaluation clearly implements the design as a search
process guideline of DSR [54]. For this evaluation, three mobile applications provided by the
industrial partners have been used as reference scenarios: a media streaming app, a licence checker,
and a one-time password generator. These were developed by the partners to be representative of
their actual business applications. A second qualitative assessment was performed on the final
PoC, for which we involved two additional industrial experts that had not participated in the
development. Moreover, they evaluated the performance of the algorithms and techniques used in
the PoC on both the reference use cases and artificial applications, with measurements and with a
complexity analysis.

By relying on industrial experts as subject groups, by having them deploy the artifacts on
use cases representative for real-world cases, and by focusing the evaluation on aforementioned
standardized criteria, we aimed to meet the requirements of the DSR research rigor guideline [54].

In our evaluation, we also questioned the potential use of the developed tools by non-experts.
This allowed us to identify required knowledge that experts have to deploy the tools effectively
and that non-experts might be lacking, as will be reported in Section 7. This reporting is part of
the communication of research DSR guideline [54], in particular the part on communication to
management-oriented audiences.

In addition, we performed a purely technical artifact assessment to verify that the tool provides
solutions in a useful time with reasonable use of resources.

Combined, we deployed observational (case study), analytical (dynamic analysis), experi-
mental (simulation), and descriptive (informed argument) evaluation methods to implement the
design evaluation guideline of DSR [54].

2.2. Step 2: Top-Down Adoption of a Standardized IT Risk Management Approach

After the ASPIRE project had formally finished, we continued our collaboration and gradually
developed our vision that the best way to approach decision support is from the perspective of
information risk management approaches. This vision first manifested itself in the July 2019 Ph.D.
thesis of Leonardo Regano [90] that presents the components of the ESP and that is structured
according to the phases of information risk management standards.

We reached out to other researchers and practitioners in the SP domain to gather their opinions
and insights, as well as doubts on decision support for SP. This happened in informal discussions
but also in structured ones, including the August 2019 Dagstuhl seminar on Software Protection
Decision Support and Evaluation Methodologies [44], of which B. De Sutter was the main
organizer. In this one-week seminar, the three senior authors of this paper engaged again with
a range of experts, including, amongst others, SP researchers, security economists, reverse
engineering practitioners, software analysis experts, and commercial SP developers. During the
seminar, the need for standardization came to the forefront, if not formalized, then at least in terms
of best practices and guidelines for conducting research into SP and evaluating the strength of
proposed SPs and attacks thereon.

Following that seminar, we invested in a top-down approach, studying the adoption of existing
information and system security standards in the domain of SP. We investigated how the generic
concepts that make up these standards are specialized and adopted in specific security domains
such as network security. We then extensively brainstormed about how they can also be specialized
and adopted in the domain of SP. For example, the NIST SP800-39 IT systems risk management
standard [63] prescribes a top-level method consisting of four generic risk management phases,
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each corresponding to their own, conceptually formulated, abstract method. We studied the
domain-specific organizational problems that need to be solved in the different phases, and which
more concrete domain-specific concepts those phases need to encompass for SP.

We started this research by collecting our combined insights, then structuring them, and then
iteratively coming to the text of Section 5 that, in essence, presents a top-level SP risk assessment
method and the necessary artifacts for using that method, thus providing our answer to RQ2.

We want to thank the reviewers of earlier versions of this text for their valuable insights that
helped us produce the final result.

Our iterative process for coming to our description of the approach is again illustrative of how
we implemented the design as a search process DSR guideline [54]. The presented approach
is itself an artifact, in line with the design as an artifact guideline. Moreover, by rooting our
work in interactions with the wide variety of stakeholders mentioned above, by building on
existing standards, and by extensively discussing existing work that can be built upon, we further
implemented the problem relevance and research rigor guidelines.

During our research, and in the resulting description of the approach in Section 5, we also
discussed open research questions with potential interesting future research directions, as well as
open standardization issues into which collaborative community effort should be invested. These
discussions are particularly relevant for a management-oriented audience. With those discussions,
as well as by constructing and expressing the approach in line with existing risk management
standards and in terms of abstract, conceptual artifacts, we hope that this paper not only serves
a technology-oriented audience, but also management-oriented audience, in line with the DSR
guideline on communication of research [54].

Importantly, while this research step was rooted in our previous experience with SP, we tried
to perform this study as independently as possible from the PoC results of the ASPIRE project.
This shows, amongst others, in the fact that in Section 5, we put forward about 40% more concepts
to be included in the proposed standard approach adoption than are covered in the PoC results we
present in Section 6. As a concrete example, we discuss the organizational problem of SP tool
vendors and their customers not giving each other white-box access because they do not trust each
other in Section 5.1.5. That problem was out of scope in the ASPIRE project and is hence not
tackled by the presented PoC tools.

2.3. Step 3: Coverage Analysis of the Adopted Approach in the DSR Framework

An important consideration in our study in step 2 was the need for automation, as reflected
in the last part of RQ2 and in RQ3. In later sections, we argue in more detail why we consider
automation of many of the adopted and specialized methods beneficial, if not crucial.

Our answer to RQ3 is not based on theoretical analysis and abstract reasoning but on tangible
evidence, i.e., the existence of the concrete artifacts that form the PoC developed in step 1. To
provide this answer to RQ3, we organized numerous internal discussions in which we analyzed
which of the concepts from the different phases of the proposed approach are instantiated by the
automated components of our PoC.

To do this more methodologically, we adopted the DSR framework by Hevner et al. [54], in
particularly focusing on their design as an artifact guideline. First, we rephrased the adopted
approach such that all essential concepts of the approach’s four phases are clearly identified as
either constructs (vocabulary to define and communicate concrete SP cases), models (abstractions
and representations to aid case understanding and to link case features and solution components
to enable exploration), and methods (algorithms, practices, and processes, as well as guidance
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on how to tackle concrete cases). These are the three abstract types of artifacts that Hevner et al.
identify as foundational elements of an information systems knowledge base, in this case the SP
knowledge base.

Next, we identified which of these abstract artifacts are instantiated by means of components
of the PoC ESP. Such implementations are called instantiation artifacts by Hevner et al. They
form the fourth type of foundational element in a knowledge base.

The mapping from more abstracts DSR artifacts onto concrete PoC instantiation artifacts is
documented in this paper by means of recurring tags. The tags are introduced in Section 5 when
the constructs, models, and method artifacts are first introduced, and they recur in Section 6 where
the corresponding instantiations are discussed.

3. Background on Standardization and the State of Software Protection

We first discuss some risk management standards and how they have been adopted in other
security domains, such as network security, and the healthy market for products and services that
exists there as a result. We then contrast this with the lack of such a market and standards for SP.

3.1. Standardized Risk Management Approaches

Protecting software can be seen as a risk management process, a customary activity in various
industries such as finance, pharmaceutics, infrastructure, and Information Technology (IT). The
NIST has proposed an IT systems risk management standard that identifies four main phases [63]:

1. risk framing: to establish the scenario in which the risk must be managed;

2. risk assessment: to identify threats against the system assets, vulnerabilities of the system,
the harm that may occur if those are exploited, and the likelihood thereof;

3. risk mitigation: to determine and implement appropriate actions to mitigate the risks;

4. risk monitoring: to verify that the implemented actions effectively mitigate the risks.

The ISO27k framework also focuses on information risk management in three phases [59]:

1. identify risk to identify the main threats and vulnerabilities that loom over assets;
2. evaluate risk to estimate the impact of the consequences of the risks;

3. treat risk to mitigate the risks that can be neither accepted nor avoided.

ISO27k adds an explicit operational phase for handling changes that happen in the framed scenario.

Those approaches have been consistently applied in practice for securing corporate networks.
Regulations stimulate companies to analyse the risks against their IT systems. For instance,
the GDPR explicitly requires a risk analysis of all private data handling. Companies invest
in compliance with the ISO27k family to obtain market access. Consequently, risk analysis
of networks has developed a common vocabulary, and a company’s tasks have been properly
identified and often standardized, so offerings from consultancy firms can be compared easily.
There is a business market related to this task, best practices, and big consultant firms have risk
analysis of corporate networks in their catalogs [51].

In the domain of software security, several frameworks for risk analysis and decision support
exist that mainly focus on Software Vulnerability Management [45] and Enterprise Patch Man-
agement [96]. Other frameworks focus on quality assurance best practices and benchmarking,
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including the OWASP Software Assurance Maturity Model (SAMM) [86], the OWASP Applica-
tion Security Verification Standard (ASVS) [85], and the Building Security in Maturity Model
(BSIMM) [27]. These address problems of software security and are not applicable to SP.

NIST SP800-53 [62] extends beyond software security and provides a comprehensive and
flexible catalog of privacy and security controls for systems and organizations as part of their
organizational risk mitigation strategy, for which they build on NIST SP800-39 [63]. It targets
whole IT infrastructures, including hardware and software. Regarding software, it advises to
"Employ anti-tamper technologies, tools, and techniques throughout the system development life
cycle" in its SR-9 Supply Chain Risk Management family of controls. Obfuscation is mentioned
only as an option to strengthen the tamper protection, not to protect the original software. The
document does not discuss how to deploy these protections, or how to select the ones to deploy.
NIST SP800-53 is hence not applicable to SP. For much of the remainder of this paper, we will
actually discuss what an SP counterpart of NIST SP800-53 needs to entail.

3.2. The State of MATE Software Protection

Compared to network security and software security, SP has years of delay. For setting the
scope, Table 1 lists a number of well-known SPs. Out-of-scope are mitigations to prevent the
exploitation of vulnerabilities, such as Address Space Layout Randomization (ASLR), compart-
mentalization techniques, or safe programming language features in, e.g., Rust. In the MATE
attack model, attackers have full control over the devices on which they attack the software. They
can disable security features of the operating system and the run-time environment, such as ASLR,
which therefore cannot be trusted. For that reason, SP centers around protections embedded in the
software itself, rather than relying on the security provided by the run-time environment.

The market of such SP is neither open nor accessible to companies with a small budget. In
2017 Gartner projected that 30% of enterprises would have used SP to protect at least one of
their mobile, IoT, and JavaScript critical applications in 2020 [117]. However, two years later
Arxan reported that 97% (and 100% of financial institutions) of the top 100 mobile apps are easy
to decompile as they lack binary code protection or implement weak protection [70]. A study
confirms the absence of both anti-debugging and anti-tampering protections for 59% of about 38k
Play Store apps. The study highlights that weak Java-based methods are employed in 99% of the
SP uses [21]. Repackaging benign apps to obtain malicious apps [68, 116] is easy because of the
intrinsically weak app packaging process but also because used anti-repackaging protections are
currently weak [82]. Furthermore, it is estimated that 37% of installed software is not licensed,
for a total amount of losses estimated at $46.3B in 2015-2017 [26]. Consequently, the SP market,
which accounted for $365.4M dollars in 2018, is expected to grow fast [4].

Cybersecurity competences are lacking [52]. SP is no exception. Few companies have internal
SP teams: only 7% of respondents stated their organization has all it needs to tackle cybersecurity
challenges; 46% stated they need additional expertise/skills to address all aspects of cybersecu-
rity [58]. Meanwhile, many organizations lack competent staff, budget, or resources [79].

When the value of assets justifies it, developers resort to paying third parties to protect their
software. The price is typically high, involving licenses to tools and often access to expert
consultants. Moreover, the services and the strength of the obtained SP are covered by a cloak
of opaqueness, with StO omnipresent®. For example, whereas early white-box cryptography

6 Abandoning StO implies that transparency is given about the SP process, the design and implementation of all SP
tools being used, including the supported SPs and decision support tools. It does not at all imply that SP users need to be
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protection type explanation

anti-debugging Techniques to detect or prevent the attachment of an attacker’s debugger [8].

branch functions Indirect, computed jumps replace direct control transfers to prevent reconstruction
of control flow graphs [73].

call stack checks Checks if functions are called from allowed callers to block out-of-context calls.

code mobility Code is lifted from the binary to prevent static analysis. At run time, the code is
downloaded into the running app from a server [29].

code virtualization Code in the native instruction set is replaced by bytecode and an injected interpreter

interprets that bytecode, of which the format is diversified [12].

control flow flattening A structured control flow graph graph is replaced by a dispatcher that transfers
control to any of the original nodes based on data. This makes it harder to
comprehend the original flow of control and the code [106].

data obfuscation Transformations that alter data values and structures to hide the original ones.

opaque predicates Logic that evaluates to true/false based on invariants known at protection time but
that are hard to discover by an attacker [39]. This enables inserting bogus control
flow to hinder code comprehension and precise analysis [23, 102].

remote attestation Techniques in which a remote server sends attestation requests to a running
program. If the program fails to deliver valid proof of integrity, it is considered to
be tampered with, and an appropriate reaction can be triggered [105].

white-box crypto Implementations of cryptographic primitives such that even white-box access to
the run-time program state does not reveal the used keys [111].

Table 1: A number of software protections.

schemes were peer reviewed [22, 35] and then broken [43, 114], we could not find peer-reviewed
analyses of schemes currently marketed by big vendors. Moreover, most vendors’ licenses forbid
the publication of reverse engineering and pen testing reports on their products. They do not share
their internal procedures, tools, or reports with academics.

We deduce that many companies do not understand the risk and therefore do not feel the need
for deploying SP, or they do not have the internal competences and knowledge to do so properly,
or they lack the money to pay third-party providers. In short, there exists no widely accessible,
functional, transparent, open SP market. At some of the big SP vendors that are also active in
other security fields, risk analysis and mitigation is most certainly the principle that drives their
experts and that is encoded in policies. Yet no methodology is publicly available for applying a
risk analysis process when deciding how to protect software. Needless to say, no standard process
guarantees the proper selection and application of available SPs given a case at hand.

4. Motivation and Challenges for Standardization, Formalization, and Automation

This section first motivates why we strive for standardization. Next, it argues why formaliza-
tion and automation are (equally) important. The section concludes with a discussion of some
challenges towards these objectives, thus complementing the background provided above.

transparent about the applications they protect. Indeed, the very objective of using SP to hamper MATE attacks on assets
with confidentiality requirements is to keep those assets obscured. This is to be achieved by keeping the unprotected code
secret, and by keeping the used tool configuration secret, not by hiding the used tools or evaluations of their effectiveness.
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4.1. Motivation for Standardization

Standardization efforts aim at “striking a balance between users’ requirements, the technologi-
cal possibilities and associated costs of producers, and constraints imposed by the government for
the benefit of society in general” [98]. The benefits come from the positive impact of standards on
quality/reliability, information standards, compatibility/interoperability, and variety reduction [98].
In line with those benefits, a standardized, methodological approach to MATE risk analysis could
have a plethora of benefits. This section speculates on this potential.

First, it could force stakeholders to follow a more rigorous approach to SP. Risk framing forces
analysts to define workflows, processes, methods, and formulas to evaluate risks and the impact
of mitigations. In network security, a structured risk analysis has limited the impact of subjective
judgments by suggesting the use of collegial decisions involving more roles [63]. A more rigorous
approach for SP could similarly increase the transparency of all phases, guaranteeing a more
reliable estimation of the reached SP level and of the quality delivered by third parties. In turn,
we expect less reliance on StO. Simply adopting the OWASP Security Design Principles forces
security specialists to avoid StO, which is also considered a weakness in MITRE CWE 656 [1].

A standard could induce the community to use well-defined terminology and to agree on
the meaning of each term, as happened after NIST SP 800 [63]. Building common ground
and well-defined playing rules would also benefit the SP market by creating a more open and
transparent ecosystem where services can be compared as normal products, thus bridging the
gap with the network security market in which products are evaluated by third parties using
standardized methods such as the Gartner Magic Quadrant for Network Firewalls [2]. Hence, we
expect the rise of consultancy firms that can independently evaluate SP effectiveness. We also
expect a price reduction, as highlighted in a study [4]. With a lower entry price and the definition
of entry-level protection services, more companies can then afford professional SP services, with
benefits for all the stakeholders.

When SP becomes standardized and more clearly defined, it could also create a market for
decision support products that automate risk management. This could in turn lead to cost savings
and to more accessible and more effective SP.

The availability of standards increases awareness, as reported by an EU agency one year after
adopting the GDPR [50]. The mere existence of a standard would initially inform people about
the need for SP. Compliance would then force all parties to obtain in-depth knowledge, and the
standards and related best practices would eventually be incorporated into educational programs.

The work towards standards could also impact research. It could initially stimulate the
community to focus on identifying and plugging existing gaps and, later on, create new or more
effective, validated SPs to be integrated into a standard framework. The interest in the field
and the impact of research results would then likely attract more researchers to the SP field,
which is now marginal in the software engineering community. We have found analogies with
the impact of the ISO/SAE 21434 standard for cybersecurity engineering of road vehicles [78].
Years before its adoption, car manufacturers anticipated effort and funded research to cope with
the demanding standard. The investments in automotive cybersecurity will grow from $4.9B in
2020 to $9.7B in 2030, with a market size expected to grow from $238B in 2020 to $469B in
2030 [28]. Parts of this increase and of the focal shift towards cybersecurity might not be caused
directly by the ISO/SAE 21434 standardization. However, we are convinced that the planned
standardization was a major contributing factor in the past years, given that compliance with the
standard as part of UN R155 has already become mandatory in Europe, Japan, and Korea since
July 2022. The anticipation of the standard can also be observed in guidelines published long
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before its finalization, such as in the "ENISA good practices for security of Smart Cars" published
in November 2019 with contributions of major carmakers [5].

Increased attention by research institutions and academia usually translates into better edu-
cation opportunities, possibly with dedicated curricula, which usually pair well with the career
opportunities created by a more open market. Ultimately this could help companies employ skilled
people and support a freer job market to compensate at least partially for the lack of SP experts.

In the end, the benefit would extend to the whole society, as having better-protected software
reduces the global exposure of citizens to risks and, we hope, would make MATE attacks a less
lucrative field, or at least reduce its growth.

4.2. Motivation for Formalization and Automation

A standardized, methodological risk management approach is not necessarily formalized or
automated. We argue, however, that formalization and automation are by and large required. The
main reason is the need for precision, i.e., the repeatability or reproducibility of obtained results.

In the security field, including SP, we want to avoid a scenario in which different experts
that deploy the same risk management approach on the same software under the same conditions
would come up with different sets of identified threats and different sets of supposedly good
combinations of protections. One of the more important reasons to stay clear of such a scenario is
that it would complicate the validation and enforcement of compliance.

Cognitive psychology research has shown, however, that humans are incorrigibly inconsistent
in making summary judgments based on complex information [64, 84]. Hence they provide
different answers when asked to evaluate the same information multiple times. Experts also suffer
from this. Their judgments hence lack precision in environments that are not sufficiently regular
to be predictable [65, 64]. Those environments are also known as low-validity environments.
Determining the major MATE attack threats on a given piece of software given the source code,
the formulated security requirements, the domain knowledge, etc., as well as selecting appropriate
combinations of SPs come down to making predictions in such an environment. One of the reasons
is that there are many parameters one cannot think of in advance, such as the configurations with
which the final software will be deployed on-site. Psychology research has also shown that the
precision of expert judgment improves when there exists backup in the form of formulas and
algorithms to complement, guide, or replace otherwise imprecise human cognitive processes [42].
We hence put forward formalization and automation as important objectives for MATE risk
management.

We are not the first ones to do so. For example, in their survey on architectural threat analysis,
Tuma et al. analyse whether the surveyed methods are supported by formal frameworks and
by (semi-)automated tools because of their impact on precision [101]. They also differentiate
between template-based approaches and example-based ones, as the former yield higher precision.
Similarly, we put forward that using an unambiguous vocabulary with clear definitions will benefit
the precision of MATE risk management.

Economic arguments further support our claim that automation cannot be separated from the
aim of adopting a risk analysis process for SP. Manual SP decision making requires expertise,
effort, and hence time. As we discussed, there are not enough experts to protect all software
that can benefit from rigorous SP. Even if enough experts were available to put in the necessary
manual effort, they would remain costly, keeping good SP out of reach for SMEs.

Scaling up the number of experts to meet all demands without automating parts of the processes
is not realistic. Every time a new version of an application is issued (e.g., because of regular
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updates or a bug), it needs to be protected. Part of the work on previous versions can probably be
reused, but typically the SPs at least need to be diversified.

Additionally, SP firms may have to protect many versions, such as ports of the same software to
different platforms, including laptops or mobiles with limited computational power. If maintaining
the application’s usability is at risk on some platforms because of the SP overhead, developers
may decide to limit the features on those platforms. As an example, media players with DRM
will only access low-quality versions of media if the platform does not allow full protection.

Moreover, even if human experts were available, their latency would still be problematic.
Software vendors face time-to-market pressure. For that reason alone, automated tool support that
can cut the time and effort required to protect applications is beneficial.

4.3. Challenges towards Standardization, Formalization, and Automation

Despite the many benefits a standardized, formalized, and automated approach would bring,
such an approach is a long way off, and adopting a NIST-style risk management faces several
challenges.

A first challenge relates to the definition of asset categories and their relation with security
properties. These are lacking today, which is problematic for the framing of risks. SP relies on the
MATE attacker model that has never been defined clearly. The abilities of MATE attackers are
unclear, not in the least because of the complexity of modelling human code comprehension and
software tampering capabilities.

A second challenge is the definition of threat and risk assessment models that allow enough
precision and objectivity. Estimating the feasibility of MATE attacks requires a white-box analysis
of the assets and of the entire application. The complexity of mounting static, dynamic, symbolic,
and concolic attacks heavily depends on the structure and artifacts of the software, such as the
occurrence of all kinds of patterns or observable invariants.

Thirdly, moving towards a more precise categorization of protections and risk in the MATE
scenario is another challenge that needs to be overcome for the risk mitigation phase. In practice,
SP provides only fuzzy forms of protection. SPs have only been categorized coarsely (e.g.,
obfuscation vs. anti-tampering). In general, it is not clear what security level they offer where, and
there yet exists no well-defined set of categories of security controls to mitigate MATE risks. This
contrasts with, e.g., the field of cryptography, in which algorithms are characterized in terms of
well-defined properties such as ciphertext indistinguishability or second pre-image resistance [66].
Also in network security, it is clear what firewalls and VPNs do and how to use them to mitigate
network security risks. There are accepted measures and guidelines to estimate the effectiveness of
categories of network security mitigations and in some cases categorization of tools and vendors
that help in estimating their efficacy [60]. The MATE domain lacks such well-definedness.

Fourthly, today it remains a huge challenge to simply measure or estimate the efficacy of SPs.
This is obviously necessary to assess the residual risks of deployed SPs. However, no metrics are
currently available to quantify SP efficacy. Potency, resilience, and stealth are commonly accepted
criteria [38], but no standardized metrics are available for measuring them. Complexity metrics
originating from the field of software engineering have been proposed [31], and ad-hoc metrics
are used in academic papers [23, 73]. However, none have been empirically validated for use in
SP, and practitioners most often do not see the metrics used in academic papers as reliable proxies
of real-world potency, resilience, or stealth. Using those metrics is hence not yet considered a
viable replacement for human expertise and manual pen testing. In many cases, there are no hard
proofs that SPs are effective in delaying attackers. Rather than encouraging checks by external
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parties, SP vendors often contractually prevent the analysis of protected code, instead relying
on StO. As a result, there is neither an objective nor a measurable assurance of protection, nor
an objective evaluation of the companies’ work. In academic research, the situation is not much
better. For example, the seminal obfuscation versus analysis survey from Schrittwieser et al. never
refers to a risk analysis framework [94]. Their results, although widely acknowledged, are hence
not readily usable in a decision process.

The aforementioned challenges are particularly hard because in SP, determining the boundaries
between assets and protections is no easy task. SPs are often processes that transform assets to
hinder analysis and comprehension of their logic [94]. For instance, most forms of obfuscation
transform code fragments. Since SPs need to be layered for stronger and mutual protection and
to exploit synergies, obfuscation can transform code that results from previous transformations,
such as code guards injected for anti-tampering purposes. Some obfuscations even aim for
eliminating recognizable boundaries between different components [23], and others aim for
re-using application code for obfuscations [102]. As a result, the code of multiple SPs and of
the assets they protect becomes highly interwoven. We hence need to talk of protected assets,
certainly not of separated protection and asset entities.

Furthermore, software internals must be known to the tools. This includes the types of
instructions, structure and semantics of the code, and the presence of any artifacts that might
benefit attackers. This information is needed to decide whether some (layered) SP can be effective
or not and to tune its parameters. In addition, it is generally accepted that in order to deploy
SPs effectively, an application’s architecture needs to be designed with the protection of the
sensitive assets in mind. If it is not designed well, SPs will only provide superficial mitigation.
For theoretical definitions of SP, such as virtual black-box obfuscation, Barak already proved
the impossibility of achieving obfuscation on contrived programs [16]. But also in practice,
architectural weaknesses can often not be overcome with SP. Examples of design problems that
are hard, if not impossible, to fix with SPs are bad external or internal APIs, missing authorization,
and improper or missing crypto key ladders to protect various assets. Such ladders require
complex key management, key storage, and crypto functionality, which are easy to get wrong for
non-experts. Risk assessment methods must hence recognize software whose design prevents
proper protection and report that risks cannot be reduced to the desired level solely with SPs.
This again stresses that MATE risk analysis requires insights into software internals to identify
weaknesses that may turn into vulnerabilities that cannot be protected with SP.

SP thus poses challenges that impact the standardization and automation of risk management,
and, in particular, the definition of objective criteria for assessing the mitigations.

In conclusion, despite their obvious appeal, risk management standardization and a functioning
open market as they exist in other areas of ICT security are in our opinion missing in SP not only
because the community is late in developing them, but also because managing the risks in SP is
really challenging.

5. Adopting a Standard Towards Proper Risk Management

This section provides an answer to RQ2 by discussing what the four phases of the NIST
IT systems risk management standard would entail as applied to SP, i.e., what tasks need to
be done in its four phases. Figure 2 presents an overview. Note how the tasks flow quite
naturally, each task building on the previous ones. The discussion of these tasks will cover various
recurring aspects, which are highlighted by means of numbered text markings. We introduce
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Section 5.1 Risk Framing < » Section 6.1 Risk Framing in the ESP
5.1.1 Framing of the software and its assets
5.1.2 Framing of assets’ security requirements
5.1.3 Framing of potential attacks as threats on the software
5.1.4 Framing of available software protections to counter potential attacks
5.1.5 Framing of software development life cycle requirements for the protections

Section 5.2 Risk Assessment ¢———op Section 6.2 Risk Assessment in the ESP
5.2.1 Identification of the actual threats against the present assets
5.2.2 Evaluating and prioritizing those threats’ risks

Section 5.3 Risk Mitigation «—————— Section 6.3 Risk Mitigation in the ESP
5.3.1 Deciding on protections to deploy
5.3.2 Actual deployment of selected protections

Section 5.4 Risk Monitoring «————— Section 6.4 Risk Monitoring in the ESP
4.4.1 Keeping the risk analysis up-to-date
4.4.2 Monitoring of the released application

Figure 2: Four phases of the proposed risk management approach with reference to the corresponding sections in the
presentation of the approach in Section 5) and in the presentation of the PoC implementation in Section 6.

the necessary B84 constructs’, models, and EB4 methods/practices, introducing some useful
new terminology along the way.

Tables 2, 3, and 4 present an overview of the covered abstract artifacts. For those artifacts that
have already been implemented in an actual instantiation, the ESP column lists the subsections of
Section 6 in which that instantiation will be discussed in more detail. Those instantiations will
demonstrate that these artifacts can in fact be implemented in a working system. They will hence
demonstrate the feasibility of the covered artifacts, thus also enabling a concrete assessment of
their suitability for their intended purpose, as will be discussed in Section 7.

We also highlight f84 open issues that are research challenges and discuss where we think

5.1. Risk Framing

In this phase of the approach, one defines the context in which a risk analysis will be per-
formed. For the case at hand, one defines the relevant software targets, their assets and security
requirements, potential attacks, available SPs, and SDLC requirements. To enable standardization,
a common vocabulary needs to be established that covers all possible constructs and models to
describe all relevant scenarios. This needs to be unambiguous and formalized such that automated
support tools can be engineered. [ Provisioning the complete vocabulary to describe the risk

frame is, of course, out of reach here. That will instead need to be done in a larger document that
results from a community effort. [l The meta-model of Basile et al. can serve as a starting point

7In most cases, we identify only the abstract top-level constructs, under which more concrete constructs have to
be included as well. For example, we will mention the "software protection” construct, without enumerating concrete
protections such as opaque predicates, control flow flattening, virtualization, etc.
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No.  Construct Name ESP No.  Construct Name ESP
primary asset 6.1 protection applicability 6.1
secondary asset 6.1 protection composability 6.1,6.3
attack path 6.2 c.28 layered protection deployment 6.1,6.3
attack step 6.1,6.3 protection synergies 6.1,6.2
attack pivot (Bl potency 6.1,6.3
attack time frame resilience 6.1
asset renewability stealth 6.1
primary security req. 6.1 overhead/cost constraints 6.1,6.3
non-functional security req. 6.1 software development life cycle req. 6.1
attack identification phase profile information
attack exploitation phase software connectivity 6.1
secondary security req. 6.1 software update ability
functional security req. environment limitations 6.1
assurance security req. 6.1 actual threats 6.2
protection policy req. actual risks 6.2
weaknesses attack surface 6.2
attack resources 6.1 attack vectors 6.2
BB} attack capabilities 6.1 attack paths of least resistance
c.19 worst-case scenario assumptions analysis tools / toolbox 6.1,6.2
J attack enabling features 6.1 software features 6.2
attack preventing features 6.1 T3 third-party-provided incomplete analysis
attack effort determination features 6.1,6.2 c.47 residual risks 6.3
attack likelihood of success features 6.1 most protective protection solution 6.3.1
software protections 6.1 alternative protection targets 6.3.1
protection strength metrics 6.1,6.3 | BBl mitigation round

Table 2: Constructs of the proposed approach, with references to the discussions of their instantiation, if any.

No.  Model Name ESP | No. Model Name ESP
application and asset model 6.1 attack model 6.1
secondary asset attributes model 6.1 software protection model 6.1
asset value evolution model actual threat model 6.1

Table 3: Models required in the proposed approach, with references to the discussions of their instantiation, if any.

5.1.1. Assets

A first task for a case at hand is to determine which assets are potentially relevant. This
is needed for all the potential assets known a priori, i.e., in the original application, in already
deployed SPs, if any, or in any of the SPs that might later be deployed in the mitigation phase.

The Bl primary assets are static and dynamic software elements of which a MATE attacker
might violate security requirements because they have value for the attacker or the vendor:
monetary value, public image, customer satisfaction, bragging rights, etc. Examples are secret
keys or confidential data embedded in applications, algorithms that constitute valuable intellectual
property or trade secrets, multiplayer game logic that needs to remain intact to prevent cheating
(e.g., see-through walls, use aim-bots, or show full world maps), and authentication checks that
need to remain in place. These assets are the primary targets of MATE attackers. They cover a
range of abstraction levels and granularities corresponding to a range of code and data elements
(functions, variables, global data, constants, etc.). For example, an algorithm can be large and
expressed in abstract terms, while a secret encryption key to steal is merely a string of bits.
Primary assets are already present in the vanilla, unprotected software.
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Phase

& No. Method Name . Method Name ESP

risk analysis updating

application exposure monitoring

monitoring risk framing input evolution
monitoring running applications 6.4
monitoring communication of running apps 6.4
user experience evaluation

incremental attack path enumeration
incremental threat analysis
transparent threat analysis reporting
risk monetisation

OWASP risk rating methodology
mitigation decision making

=}
S

1 primary asset description mitigation deployment 6.3.3
1 software analysis tools mitigation validation

1 secondary asset description SP impact estimation 6.3
1 secondary asset identification algorithms single-pass mitigation decision making 6.3.2
1 B requirement description iterative mitigation decision making

1 B export models of supported protections asset hiding 6.3.2
2 threat analysis SP selection optimization 6.3.1
2 threat impact estimation SP select search space pruning 6.3.1
2 P risk prioritization cookbooks with SP recipes

2 defender’s analysis toolbox execution driving the SP tool 6.3.3
2

2 B

2

2 ENE

2

3

BIBIE B
12212
[ %0 B I°8

Table 4: Methods in the proposed approach’s phases, with references to the discussions of their instantiation, if any.

The secondary assets are software elements that attackers might target on their attack

consider these elements as mileposts on their way to their primary targets. Secondary assets can be
B attack pivots (a.k.a. hooks) in the vanilla software, but they can also be artifacts or fingerprints
of injected SPs that attackers need to overcome. An example pivot is a ciphertext buffer containing
high-entropy data, which an attacker might first try to identify with statistical dynamic analysis.
Once the buffers have been identified, the attacker might pivot to the program slices that produce
the buffers’ data, and in those slices they can obtain the secret keys. An example of an injected SP
is an integrity check. A gamer that wants to alter the speed with which he can move around in the
virtual game world might first have to undo or bypass the integrity check.

[ The distinction between primary and secondary assets should not be strict. For example, a
cryptographic key that protects one movie might be a secondary asset if the attacker tries to steal
one movie. A similar key that serves as a master key for all movie encryptions is clearly a primary
asset. Moreover, SP vendors consider the SPs supported with their tools as primary assets that
they do not want to be reverse-engineered easily. While those SPs protect the primary assets of
their customers’ software, they are the primary assets of the SP vendors. Should attackers learn
how to attack or circumvent them automatically, their value goes down the drain.

The deployment of some SPs requires one to describe the relationship between assets and
non-asset program elements. This is the case when SP transformations applied to the code of
assets require other non-asset code to be transformed with it to conserve the program semantics.
When deploying an SP on only the assets, this should not make those assets stand out to the
attacker, e.g., because the entropy of encrypted data or obfuscated code is much higher than
that of plain data or because the protection introduces recognizable fingerprints. To increase the
attacker’s effort needed to localize them, one can deploy the same SPs on non-asset code, as
proposed by Regano et al. [91]. Furthermore, to decide which SPs can be deployed conservatively,
it might be necessary to analyse the whole application and model it. In short, an application

application, including the elements of assets and non-assets, and the relevant relations between
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them. The ¥ application meta-model of Basile et al. can provide a useful starting point [19], but
it definitely needs to be refined, as it currently only captures coarse-grained relations such as call
graphs.

Multiple methods need to be considered for instantiating a concrete application model. Ob-

viously, a primary asset description method is required to let a user identify and describe

corresponding lower-level software elements (e.g., onto corresponding assembly operations) and
extract the structure and relevant properties of the software. Such tools are already used in all
SP tools we know of, both commercially and in research. If the SP decision support tools cannot
identify secondary assets themselves, a Bl secondary asset description method is required to
let a user describe the secondary assets and how they relate to primary assets. Alternatively, we
foresee that 7] ¥ secondary asset identification algorithms can be developed to automate their

identification. Such algorithms would be executed in the later risk assessment phase, but in the
framing phase, the necessary knowledge needs to be modelled in the form of secondary asset

them as mileposts. An example is the already mentioned buffers that contain high-entropy data.
Precisely the fact that some buffer holds such data makes it a potential milepost. i The design

recreated from scratch for every application. Instead, they would be reusable and grow over time
as new types of secondary assets are considered.
As SP aims to delay attacks rather than prevent them, we need asset value evolution

which assets have value as well as the impact a successful attack can have on a business model.
This includes the B renewability of assets, i.e., how easy it is to replace software and assets to

reduce the impact of successful attacks. For modelling this evolving relationship between business
value and assets, we expect that companies can use [#] their existing asset valuation models.

5.1.2. Security Requirements

The BB primary security requirements of assets are often the [ non-functional requirements
of confidentiality and integrity. These come in different forms, levels of abstraction, and granu-
larity. Their scope differs from that in other domains, so their classifications can not be trivially
reused. For example, MATE integrity requirements can include constraints on where or how code
is executed, that at any point in time at most one copy of a program is running, and that certain
program fragments are not lifted and executed ex-situ. In addition, there might be non-repudiation
requirements. For example, unauthorized copies must be detected upon execution.

¥ For different phases in the software SDLC, different requirements may hold, and different

key that should never leak; others may be time-limited, such as a key to a live event that should
remain secret for 5 minutes; still, others may be relative and economical, such as that running
many copies in parallel undetected should cost more than licensing them.
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Assessing whether non-functional requirements can be guaranteed is hard in practice be-
cause of the MATE attackers’ white-box access. [F] Secondary security requirements can help

frame possible risks. These can be (i) non-functional requirements for secondary assets; (ii)
functional requirements that are easier to check but of which the mere presence in itself

enable certain attacks. Such assumptions can compensate for the lack of proper evaluation of
primary requirements. For example, a lack of stealth resulting from easily identifiable invariants in
injected SPs hints for potential Bl weaknesses vis-a-vis certain attacks [115]. Protection policy
requirements then require that elements with certain features are not present at all or meet certain
requirements, such as statistical properties. This is similar to security policies in the domain of
remote exploitation, where, e.g., code pointer integrity is a policy about handling code pointers
that can ensure that indirect control flow cannot be hijacked by exploits [71].

In the risk framing phase, the task for a case at hand is to determine and describe the security

requirements for all assets and potential weaknesses identified as relevant. A requirement

previous section; the necessary models will hence best be co-designed.

5.1.3. Attack Models

MATE risk management needs to consider a range of potential attacks described in an
attack model. This needs to cover attackers with different levels of attack resources

tool usage scenarios (e.g., disassembling code) and very concrete ones (e.g., using the IDA Pro
8.0 disassembler) need to be supported. As the goal of SP is to delay attacks, [ not only the

including what attackers would probabilistically waste in unsuccessful attack strategies.
While research has shown that attackers commonly waste time on unsuccessful attack steps
in real attacks [34], P it is unclear whether useful attack models can build on worst-case

right attack path, and analysis tools producing results with ground-truth precision. For example,
locating the code of interest is an important, time-consuming attack step that cannot simply be
assumed to be performed effortlessly using an oracle [80]. Doing so would imply that increasing
the stealth of SPs is not useful, which experts certainly reject.

For each potential attack step, the attack model needs to encode which features of software
elements are attack-enabling features, attack-preventing features, and attack effort

An example is the presence of certain secondary assets. These features might include features of
the software under attack, the environment in which attacks can be performed, but also knowledge
obtained by the attacker. 8 The best abstraction levels to consider are an open question.



The same holds for the software protections and a set of (quantitative) protection

will need to invest in the attack steps in scope. Depending on the maturity of a decision support
tool, that set may have to be selected manually during the risk framing. As discussed in Section 4.3,
there currently is no widely accepted set of metrics. Many proposals [13, 31] have been made on
features that should be measured (e.g., control flow complexity) and on concrete metrics for doing
those measurements (e.g., cyclomatic complexity [81] or code comprehension [97]). [ Those

more productive research of human attack activities [99]. In the context of the Grand Reverse
Engineering challenge®, their data collection software is not only used to analyze attacks on
randomly generated programs but also on purposely designed MATE challenges, which allows
studying the relations between human attack effort and metrics. For automated attack tools,

requiring evaluations on many samples, it is not suited for manual attack activities.

In the risk framing phase, the task for a case at hand is to determine the attack model, i.e., the
combinations of the mentioned attributes that potential attackers in scope might potentially have.
Existing models from network security risk analysis cannot be reused. [l MATE attack modelling

network security. For example, in network security, the development of zero-day exploits (using
tools also found in the MATE toolbox) is handled as an unpredictable event, which side-steps the
complexity of analysing and predicting human activities. This entirely prevents the use of

can also be built upon to enable users to formulate attack models for their cases [11, 10, 15].

5.1.4. Software Protections
A [ software protection model is needed to describe in a unified manner the wide range of

SPs that a user’s tools might support. This model needs to include at least possible limitations
on applicability and composability, be it for layered SP deployment to protect

they help to enforce; (measurable) features or limitations they have that can enable, slow-down,
ease, block, or otherwise impact potential attacks, on the SPs themselves but also on the assets
they are supposed to protect; how big those impacts are on the potential attacks; and potential
implementation weaknesses including how they can fail to meet protection policy requirements
and become (easily) attackable assets themselves; etc. The link to validated (but as of yet still
missing) metrics mentioned above is clear, and the impact that deployed SPs have on metrics used
to asses attack effort, i.e., the potency, resilience, and when relevant the stealth of

potentially deployed SPs obviously also needs to be modelled.

8https://grand-re-challenge.org/
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The SP model needs to capture the costs of using an SP. This can include the direct monetary
costs of SP tool licenses, but also indirect costs such as having to budget for more security servers
or having a longer time to market, or any other cost that might follow from changes to the SDLC.

The potential overhead of all available SPs needs to be known w.r.t. run time, latency, through-
put, size, ... This is critical because many applications have a little overhead budget when it comes
to responsiveness, computation times, etc. In part, the performance impact depends solely on
an SP itself, such as the (constant) time or memory required to initialize it. The impact can also
depend on how an SP is deployed. For example, whenever an SP requires the injection of a few
instructions into code fragments, the resulting overhead will depend heavily on how frequently
executed those fragments are. [ Multiple ways for expressing the potential cost of SPs are hence

In the risk framing phase, the user needs to determine which combinations of SPs can
potentially be deployed to mitigate risks, given the available SP tools. For automating the later
phase of risk mitigation, f] the used SP tool should be able to export a model of all discussed

that the tool user does not have to provide the information manually. Therefore, the SP tool
vendor is responsible for instantiating the SP model of their tool. & This obviously requires tool

and Collberg to model pre/post-requirements, pre/post prohibitions, and pre/post suggestions for
combinations of SPs are an interesting idea [53].

5.1.5. Software Development Life Cycle Requirements

SPs come with side-effects, such as slowing down software, making it bigger, making debug-
ging harder, requiring changes to distribution models, requiring certain scalability on the side of
secure servers, etc. Taking the time to decide on SPs, possibly iteratively with the involvement of
experts and time-consuming human analysis, also affects the time to market.

Hard and soft constraints need to be collected in terms of quantifiable overheads/costs

Different constraints might apply to different parts of a program. For example, in an online game
or a movie player, the launching of the game or player might have a large overhead budget, while
during the game or movie real-time behavior is critical.

For all available SPs, later phases of the risk analysis will need to estimate the impact on the
relevant costs and SDLC. It is, therefore, necessary to obtain all relevant profile information
on the software, including execution frequencies of all relevant code fragments.

An important complication occurs when the vendors of SP tools (hereafter named SP vendors)
and users of such tools (hereafter called application vendors) do not trust each other. Both
parties often put severe constraints on how the SP tools are deployed and on the amount of
information they exchange. An SP vendor will typically not be very forthcoming about the
weaknesses or internal artifacts of the supported SPs and disallow reverse engineering of them,
while the application vendors do not want to share too many details or code with the SP vendor.
Consequentially, only illegitimate attackers will get white-box access to the protected applications
in which SPs and original assets are interwoven as discussed in Section 4.3. If the experts
performing the risk management lack white-box access to all available SPs and to the protected
application, this will have a tremendous impact on the methods and data that can be used during
the risk assessment and risk mitigation phases that target attackers with white-box access. [ This
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lack of white-box access by the defenders obviously needs to be documented, and the potential

In addition, aspects of the SDLC relevant to the monitoring phase (that will be discussed later)
need to be framed, such as connectivity and &l updatability. Whether an application will
always be online, occasionally connected, or mostly offline impacts which online SPs and which
monitoring techniques can be deployed. So does the ability to let application servers such as video
streaming servers or online game servers interact with online security services such as a remote

attestation server. Likewise, it is important [ to document whether updates can be forced upon

need to be documented. For example, Android supports fewer OS interfaces for debugging, and
some device vendors limit what applications can do after installation, such as iOS’s limitation on
downloading binary code blobs post-installment. Such limitations clearly affect the types of SPs
that can be deployed, so they need to be included in the risk framing.

[ To avoid the need for costly human expertise and manual intervention in the next process

this obviously requires a standardization effort by the community to create a standard vocabulary
and taxonomies that cover all constructs and models to be documented in the risk framing phase.

5.2. Risk Assessment

In the discussion of risk framing, the term “potential”" occurs frequently, because in that
phase all forms of knowledge are still considered in isolation, including potential SP weaknesses,
application features, SP tool capabilities, and attacker capabilities. In the risk assessment phase,
one assesses how they interact for the case at hand by determining which of all potential risks
actually manifest themselves in the software at hand. First, a threat analysis needs to identify

well as from attack strategies and their technical attributes that impact their feasibility. Then a
qualitative, semi-qualitative, or preferably quantitative threat impact estimation needs to be

5.2.1. Identification of the Actual Threats

This phase aims to determine a list of attacks that could succeed on one or more of the
application’s assets by violating their security requirements. This phase therefore consists of
a detailed threat analysis that outputs a actual threats model that describes those analyzed

attackers need to mount those attacks, the damage caused by exploitation, etc. For each attack
path contributing to the major threats, [ the weaknesses and secondary assets used by attackers

actual threat report is necessary to enable confidence in the outcome of the assessment.
Critically, [ the enumeration and assessment of feasible attack steps must be performed on

the attacker’s lab on their infrastructure, the latter more often takes place on other users’ devices.
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Several open issues need to be addressed to perform this task correctly. First, @standardization

from the target software. Assets can be attacked with different strategies, in which attackers rely
on automated tools and analyses to collect and exploit information about the software and to
represent the software in structured representations. A range of analysis tools and techniques
are applicable, all with their own strengths and limitations, including static, dynamic, symbolic,
and concolic analyses. Knowing the attacker’s goals and tools is the starting point for identifying
and enumerating the possible attack paths. This knowledge includes the kinds of analysis results
that the different tools can produce, i.e., software features such as taint information, profiles,
data, and control flow dependencies. It also includes the software features those analyses depend
on to produce their results, their weaknesses, limitations, and precision.

In this phase [ the defender hence needs to deploy their own analysis toolbox to determine
the features of the primary assets and related application elements that can have an impact on the
feasibility of attacks because they enable, prevent, slow down, or otherwise impact attacks. This

includes [ checking whether the protection policy requirements formulated in the risk framing

in the framing phase, such as invariants or fingerprints in the code that might facilitate certain
attack vectors. Moreover, [H the set of actually present secondary assets needs to be determined
to identify the presence of features that make them pivots for attackers towards the primary assets.
[ Obviously, most if not all of the analyses in the toolbox should be applied automatically.
While we are convinced that such defender toolboxes can produce most of the necessary
information for enumerating feasible attacks, a number of research questions are open. For

example, [ how can the formal pieces of information extracted by the tools be used to precisely

the assessment must drive the mitigation, the generated information must be rich enough for the
mitigation decision makers. Therefore, to some extent, the answer to the above question will
depend on the goal of the assessment. This can be a semi-automated or fully automated mitigation
phase. In the latter case, assessment information must be extensive and accurate, as an automated
decision support system cannot rely on human intuition and experts’ past experience.

The identification of attacks with an analysis toolbox requires white-box access to the

analysis reports provided by the involved parties. Alternatively, and as long as the discussed
enumeration approach cannot completely replace human expertise, the inclusion of results of
penetration tests performed by red teams could be considered. In short, [l the threat analysis

enumeration without repeating a full analysis from scratch when any of the involved aspects
evolve while the application is still being developed, be it the application itself, the SP tool flow,
23



the attackers’ tool boxes, etc. Especially if the attack enumeration involves human expertise, a

The current state of the art still requires such human expert involvement. Past research aimed
to [ automate the attack discovery with abductive logic and Prolog [17, 92]. That suffers
from computational issues, since generating attack paths as sequences of attack steps causes a
combinatorial explosion and requires massive pruning. With the pruning by Regano et al. [92]
only high-level attack strategies can be generated, which often do not contain enough information
to make fine-tuned selections among similar SPs. For example, they allow determining the need
for using obfuscation but do not provide hints for selecting among different types of obfuscation.

[ ML might be useful to synthesize attack paths from attack steps more effectively [6].
Moreover, methods for exploit generation [24, 95] that automatically construct remote
exploits for vulnerable applications could be investigated to determine MATE attack paths auto-
matically. They will certainly need modifications, as finding exploitable vulnerabilities is rather
different from finding MATE attack paths. For example, in the MATE threat analysis, for each

identified attack path defenders need to estimate the likelihood of succeeding as a function

not, etc. All of that is absent in the mentioned automated exploit generation.

Regarding automation, we think the identification and description of primary assets cannot
be automated, as those depend on the business model around the software. They can hence not
be determined by only analysing the software. By contrast, f¥] the identification of secondary

Even if full automation is out of reach because parts cannot be automated or do not produce
satisfactory results, automating large parts of the threat identification phase will already have
benefits. It will reduce human effort, thus making proper risk assessment cheaper and hence more
accessible, and it can raise awareness about identified attack strategies, thus making the assessment
more effective. A gradual evolution from a mostly manual process, over a semi-automated

to succeed, automated tools should then not only provide the necessary inputs for later (automated)
phases of the risk management, [ they should also enable experts to validate the produced results

5.2.2. Evaluating and Prioritizing Risks
The [@risk assessment report must indicate the consequences that exploitation of an identified

of potential gains for the attacker might be less attractive when it comes with a high probability of
being detected and having to face legal consequences.
When outcomes from the impact analysis are available in proper form, our feeling is that this
phase has no peculiarities compared to risk analysis in other fields. Models and methods can
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therefore be adopted from existing literature to build a system that allows the consistent evaluation
of estimating the economic loss related to risk and the ROI of Hifiééﬁéﬁ ﬁéﬁvity. This eases
reporting to higher management and is general enough to work for every asset type, including
software assets. [ 1] Investigating the aspects of the FNH OWASP risk rating methodology

could also yield interesting results that might work in the MATE context [109]. Automation
support for the available options can then obviously also be reused, possibly after some adaptations.

5.3. Risk Mitigation

This phase comprises two parts: first mitigation decision making, and next there is

5.3.1. Mitigation Decision Making
Risk mitigation requires the defenders to evaluate how the deployment of combinations

actually deploy the considered SPs and having to measure their effect. This is a major difference
from the risk assessment phase, which relied heavily on measurements. FE] How precise the

question. We consider two possible approaches.
First, we consider single-pass mitigation. [ This builds on an assumption that estima-

combination and configuration of SPs that achieves the minimal residual risk while not violating
hard constraints. Next, one selects alternative protection targets that trade off some of the
residual risks for other aspects, such as lower performance penalty. For each alternative target,
one then again selects the best target-specific SPs and estimates the delta in residual risk and
in other relevant aspects over the selection that yielded the minimal residual risk. Finally, one
then chooses between the most protective selection and the alternatives. This human decision
will typically involve SP experts, application architects, and managers familiar with the business
strategy. Given the complexity of SP as discussed before, we consider such a decision making
process not automatable at this point in time, nor in the near future.

The alternative is iterative mitigation. [l This approach, which is familiar to practitioners

an assessment is followed by mitigation. In the first round, the risk assessment is done on the
vanilla application. In later rounds, the assessment is performed on the application protected with
all SPs selected in previous rounds. During such later assessments, measurements are performed
on already selected and deployed SPs. This works around the lack of precise enough estimation
methods as needed for the first approach. It also eases the handling of novel risks introduced by
deployed SPs, such as when the location of non-stealthy SPs might leak the location of assets.
In each round, the mitigation adds an SP layer consisting of a few additional SPs to the
ones already selected in previous rounds. In each round, different combinations of SPs can be
proposed that offer different risk reduction and cost trade-offs. Humans will then again select one
combination and continue to the next round, or stop once the whole cost budget is consumed or
no more significant risk reduction is achieved. In each round, different constraints can be imposed
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that limit the SPs considered in that round, and the set of SP is chosen that offers the best potential
to reduce the residual risk. Estimating the reduction potential rather than the immediate reduction
in each round allows for taking into account a priori knowledge about the fact that some SPs have
the potential to become much stronger after additional rounds corresponding to additional layers
are deployed, while other SPs cannot become stronger because of a lack of synergies.

An example of constraints evolving between rounds is that in the first rounds SPs might only
be deployed on assets, while in later E¥# asset hiding rounds, non-stealthy SPs can be added for
non-assets to avoid that protected assets stand out because of SP fingerprints. Our PoC contains
such an asset hiding step, albeit in the same round as the asset protection step, i.e., without
performing measurements in between, as will be detailed in Section 6.3.2.

The iterative approach is more realistic for several reasons. The humans making decisions in
each round can make up for deficiencies in the existing tool support and formalized knowledge, and
they can build more confidence in the outcomes of the mitigation process. Secondly, measurements
are performed in each round, which again allows for more confidence in the outcomes.

Automation poses the most severe constraints on the mitigation task. Optimizing the

combinations efficiently. In some usage scenarios, optimization models returning far-from-

optimal results quickly are acceptable, such that the time-to-market requirements of a software

launch can be met while spending more time to find better SP combinations for later updates.’
Within one round of decision making, the optimization process should be driven by at

tency, resilience, and (to some extent) overheads are not usable for automatic decision support, as
they require the deployment of the SPs to perform a measurement. Given the time and resources
needed to apply SPs on non-toy programs to measure objective metrics and run-time overheads,
an optimization process that requires measurements instead of estimations would only consider a
very limited solution space, which would make the optimization process useless.

27 Estimating the strength (and overhead) of layered SPs is really hard, as their code is

of strength such as resilience against symbolic execution [14], but clearly need further research.

EAE] Another open issue is that SPs have varying effects on attack success probability, in
particular when the security requirements are time-limited or relative. In some cases, the effects
can be quantified in absolute terms, such as increased brute-force effort required to leak an
encryption key from well-studied white-box crypto protection. In other cases, such as the delay in
human comprehension of code that has undergone design obfuscations [83], the effect is harder to
quantify. When software contains different assets with different forms of security requirements,
the relative value of different SPs hence becomes difficult to determine, and hence the overall risk

mitigation optimization becomes increasingly difficult.

9 Anonymously, SP suppliers confirm to us that for many of their customers the norm is weak implementation at first
because security/protection is not on the feature list from product management, and then complaining when things get
broken, after which the supplier needs to help out. Obviously, they prohibit us to document concrete cases.
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[ There is a limited body of existing work available on the described decision support, and
it does not cover all necessary constructs, models, and methods. In industrial practice, companies
provide so-called cookbooks with SP recipes. For each asset, users of their tools are advised
to manually select and deploy the prescribed SPs in an iterative, layered fashion as long as the
overhead budget allows for additional SPs. Automated approaches are either overly simplistic or
limited to specific types of SPs, and hence only support specific security requirements. Collberg
et al. [38], and Heffner and Collberg [53] studied how to decide which obfuscations to deploy in
which order and on which fragments given an overhead budget. So did Liu et al. [74, 75]. They
differ in their decision logic and in the metrics they use to measure SP effectiveness. Importantly,
however, their used metrics are fixed and limited to specific program complexity and program
obscurity metrics, without adapting them to the identified attack paths. Coppens et al. proposed
an iterative software diversification approach to counter a concrete form of attack, namely diffing
attacks on security patches [40]. Their work measured the performance of concrete attack tools
to steer diversification and reduce residual risks. All of the mentioned works are limited to
obfuscations. In all works, measurements are performed after each round of transformations,
much like in the second approach we discussed above.

To improve the user-friendliness of manually deployed SP tools, Brunet et al. proposed com-
posable compiler passes and reporting of deployed transformations [25]. Holder et al. evaluated
which combinations and orderings of obfuscating transformations yield the most effective overall
obfuscation [56]. However, they did not discuss the automation of the selection and ordering
according to a concrete program and security requirements.

5.3.2. Actual Deployment
E=1 In each mitigation round, the chosen SP combination needs to be deployed, so SP tools

need to be configured and run to inject the SPs selected so far. Ideally, this is completely automated.
E¥0] This requires tool interfaces that allow the decision support tools to drive the SP tools.

Providing such interfaces and enabling this automation would have significant benefits. Besides
saving effort on manual user interventions, it would also skip the learning curve of configuring
the used tool flows properly. Moreover, having such an integrated framework could pave the road
for an open standard for an API for SP.

Following the deployment, it is critical to validate that the SP tools actually delivered

by multiple parties that do not want to share sensitive information and do not provide white-box
access to their software components.

5.4. Risk Monitoring

According to the NIST [61] risk monitoring includes “assessing control effectiveness, docu-
menting changes to the system or its environment of operation, conducting risk assessments and im-
pact analysis, and reporting the security and privacy posture of the system.” For SP, & monitoring
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5.4.1. Keeping the Risk Analysis Up-to-date
Keeping the analysis up-to-date requires [ monitoring how the inputs used in the three

information: the information related to the assessments (e.g.,, new attacks, attack techniques,
tool updates), the information related to SPs (e.g.,, updates, vulnerabilities, breaches), and the
information related to the protected application. Of course, monitoring can then lead to the
decision that a differently-protected version of the application should be released whenever any
tracked changes lead to a re-evaluation of earlier decisions.

The 2 monitoring of information related to SPs concerns both attacks against existing SPs

fuscation [115]) is first presented in the academic literature, it might not be considered relevant
during an original risk assessment because the attack is hard to replicate and its effectiveness has
not been demonstrated on more complex pieces of software. However, when attackers later release
a toolbox that automates the replication and publish a blog discussing how they used it to attack a
complex application successfully, this should lead to a re-evaluation. Similarly, [ when new SPs

the program that need to be protected. This can happen both as a late realisation after deployment,
but also in the case where the application itself evolves over time, by virtue of new versions being
released with changes in functionality or structure. Another example is that the priorities in the
company’s value estimation can change over time. This would mean that the associated formulas
for the risk analysis produce different values.

5.4.2. Risk Monitoring of the Released Application
Next, one needs to monitor how copies of the released software are running on their

online components that were not originally designed for online monitoring. This is particularly
the case when anomaly detection can link irregular communication patterns to unauthorized
activities, such as running multiple copies in parallel or executing program fragments in a
debugger in execution orders or frequencies not consistent with authorized uses. Such patterns
can occur from communications present in the original applications, or from online SPs such
as code renewability [7] and [ client-server code splitting [32]. Importantly, the use of
non-monitoring communication does not require the implementation of reaction mechanisms in
the protected application to be effective.

In many cases, [#H it is advisable to analyse the data obtained with the monitoring. The
insights extracted can be helpful to respond to detected anomalies, for example, by letting the
application server take action in case of discovered attacks, as well as to keep the risk analysis
process up-to-date, for example, to re-valuate the threats and their likelihood.

Finally, the vendor of the released application needs user experience evaluation methods

to monitor whether the impacts of the deployed SPs on the user experience and cost are in line
with expectations or promises by the SP vendor. For example, if users start reporting usability
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issues or if online SPs lead to scalability issues, e.g., because more copies are sold than originally
anticipated, those evolutions might also warrant a revision of the risk mitigation strategy.

6. Proof-of-Concept Expert System for Software Protection

Expert systems exist in cybersecurity since 1986 when Hoffman proposed one for the risk
analysis of computer networks [55]. From the initial intrusion detection systems [46, 100] to
modern ones using Al [87], expert systems have been used to automatically configure security
controls [49], for post-incident network forensics [69, 72] and decision making.

The Expert System for Software Protection (ESP) is our PoC tool that implements a semi-
automated SP risk analysis'?. Its complete code is available!!, as well as a technical report on
its inner workings [20], a user manual [41], and a demonstration video'?. The ESP is primarily
implemented in Java as a set of Eclipse plug-ins with customized UI. It protects software written in
C and needs source code access. The target users are software developers or SP consultants. After
the user manually annotates the assets in the source code, the ESP can generate what it considers
optimally protected binaries and the corresponding security-server-side logic without human
intervention. As requested by the SP experts involved in the evaluation, a step-wise execution is
also available where users can check and possibly override any information generated by the tool
before executing the next step.

Figure 3 depicts the high-level workflow, split into the four phases discussed in Section 5.

All the data needed for the risk analysis process, starting from the risk framing information
and including all the data obtained during the other three phases, are modeled and stored in a
Knowledge Base (KB). The used model and corresponding KB structure are designed specifically
to support the reasoning methods needed for a software risk analysis [19]. For example, it allows
representing context information, like the attacker model and the SPs available to mitigate the risks,
and information about the application to protect, including the assets and abstract representations
of the application code collected through code analyses. More details about these constructs and
the model are presented in Section 6.1.

Next, the ESP performs the risk assessment phase, whose details are provided in Section 6.2.
This phase enriches the data in the model. It infers the possible attacks against the assets and
assesses the risks against each asset by estimating the complexity of executing those attacks. The
risk is evaluated by considering the software’s structure and the attacker model, i.e., the skills an
attacker is likely to have, and asset values as defined by the user during the risk framing. The
ESP’s risk mitigation phase, detailed in Section 6.3, is also based on innovative methods. It uses
ML and optimization techniques to select the best solution, i.e., the best sequence of SPs to be
deployed and their configurations. It then automatically deploys it on the software to generate the
protected application binaries. If remote SPs are included in the selected solution, the deployment
phase also generates the server-side logic to be executed on a trusted remote entity.

Finally, the risk monitoring is performed. However, the ESP does not dynamically update the
risk analysis process parameters. It only performs real-time integrity checking (as discussed in
Section 5.4.2) depending on the methods implemented by the SPs used.

101n the ASPIRE project and in some cited papers, the ESP was called the ASPIRE Decision Support System (ADSS).
Uhttps://github.com/daniele-canavese/esp/
2https://www.youtube.com/watch?v=pl9p5Ngsx_o
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Figure 3: The ESP workflow.

The ESP can also be used in two additional modes. It can be configured to propose a set of
solutions that experts can manually edit to control the SP deployment fully. Moreover, it can be
used to evaluate the effectiveness of solutions manually proposed by experts.

6.1. Risk Framing in the ESP

This tasks’ purpose is to initialize all the constructs and their relations as needed for risk
analysis, and to store them into a model formally defined in [19] and named the KB. It covers half
of the models ([VAl, [¥%1, [¥&)) highlighted in Section 5. Figure 4 presents the core classes, which
will be discussed in the next sections. The KB is instantiated as an OWL 2 ontology [3].

The risk framing starts with the preparation of the KB with generic a-priori information. This
includes the core concepts and data not related to the specific application to be protected but
relevant to framing the risk analysis process. A priori information includes the assets types (I,
B); the supported security requirements (I, [, FH, [XEl, B¥#); all the known attack steps and
their characterization (I, F¥El, FNE], I, B0, B¥A)); the available SPs and their composability
(=21, B3, B, A, B¥X)); and the necessary constructs to evaluate risks and mitigations ([58,
R, BRI, A, PR, PR that were discussed in Section 5.1. The user can also set preferences and
analysis parameters (EES, B), including hard and soft constraints and SDLC requirements ([,
&), as well as the SPs to consider and the kinds of attacks to counter.

The ESP then performs a source code analysis (B#8) that populates the KB with a-priori
analysis-specific information using the Eclipse C Development Toolkit!3. The analysis collects

Bhttps://projects.eclipse.org/projects/tools.cdt
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Figure 4: The top level of ESP meta-model to support modeling the relations between all relevant constructs.

all the application parts, i.e., the variables, functions, and code regions. It determines addi-
tional information such as variables’ data types and function signatures. It produces additional
representations such as the call graph, which are useful for making decisions about the SPs to
apply.

The PoC of the ESP supports confidentiality and integrity requirements. The user needs
to annotate the source code with custom pragma and attribute annotations [20, 41] to formally
identify the code’s assets and to specify their security requirements ([N, ). The ESP then
uses the call graph to identify potential secondary assets. These are listed in the GUI where the
user can manually select which ones are to be considered assets in the later phases, and with
which security requirements (], ). Using only a call graph as a model ([¥#]) to find potential
secondary assets that need to be manually confirmed is overly simple, and hence definitely a topic
of future research.

Together with a-priori information, the KB model represents a-posteriori information, i.e.,
data inferred and stored during later workflow phases such as the inferred attacks and the solutions.

In addition, the ESP offers a GUI to edit the framing information, e.g., to mark additional
assets, characterize the attacker, and choose SPs. The GUI also allows importing and exporting
risk framing data as XML or OWL files (F¥). This feature was appreciated during the validation
as it allows augmenting the analysis with information that may be missed by the automatic but as
of yet incomplete process, like the secondary assets that might be linked into a protected program
as part of certain SPs.

6.2. Risk Assessment in the ESP

The risk assessment implements several methods to estimate the actual threats and risks. In
the threat analysis, the ESP uses backward reasoning methods ([i¥) to identify the attacks ([
that can breach the primary assets’ security requirements, and stores them in the KB [92]. This
stage is roughly equivalent to the ISO27k “identify risk” step as discussed in sections 3.1 and 5.2.

The identified attacks are represented as a set (IWH) of attack paths (FEE). These are ordered
sequences of atomic attacker tasks called attack steps (F#Y). Attack paths are equivalent to attack
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graphs [88] and can serve to simulate attacks with Petri Nets [107]. The attack steps that populate
our PoC KB originate from a study and taxonomy by Ceccato et al. [33, 34] and from data from
industrial SP experts who participated in the ASPIRE project.

The attack paths are built via backward chaining () as proposed in earlier work [17, 92] and
implemented with SWI-Prolog [108]. An attack step can be executed if its premises are satisfied.
It produces the results of its successful execution as conclusions. The chaining starts with steps
that allow reaching an attacker’s final goal (the breach of a primary requirement) and stops at
steps without any premise. The search algorithm builds a proof tree with increasing depth and
width, with exponential complexity. The ESP hence implements basic yet aggressive search space
pruning to build an attack catalogue, e.g., by considering a maximum length for the inferred attack
paths [90]. The proof tree models the actual threats (V). Its nodes can be seen as the exploited
attack vectors (F¥®), of which the leaves form the identified attack surface (FEN).

The ESP performs the threat impact evaluation (BE) and risk prioritization () by assigning
a risk index (B to each identified attack path. Every attack step in the KB is associated
with multiple attributes, including the complexity to mount it, the minimum skills required, the
availability of support fools and their usability. Additional attributes can be associated with
entities trivially. Each attribute assumes a numeric value in a five-valued range. For assessing
the actual risks, the values of complexity metrics and software features (I¥E) computed on the
involved assets (FfIl]) with the available analysis tools () are used as modifiers on the attributes
(BA). For instance, an attack step labelled as medium complexity can be downgraded to lower
complexity if the asset to compromise has a cyclomatic complexity below some threshold.

The risk index of an attack path is obtained by aggregating the modified attributes of its steps
into a single value (). Our PoC is rather simple. Per attack step, it first aggregates all the step’s
modified attributes into a single attack step risk index. The attack path risk index is then computed
by multiplying its steps’ indices. Other aggregation functions are supported, such as summing
the steps’ indices, selecting maxima, and more complex features can easily be incorporated, like
making the attack path risk index depend on how many different expert tools are required.

The report (FRNE]) presenting the attack paths and the computed risk indices was welcomed by
security experts (as will be discussed in more detail in Section 7), amongst others because they
serve as a starting point for evaluating the weaknesses of an application before more manual risk
mitigation. Experts were interested in refining the identified, most risky paths into more concrete
sequences of attack operations, and in some cases, they would have manually updated the risk
indices. In our PoC, the attack steps are coarse-grained, such as “locate the variable using dynamic
analysis” and “modify the variable statically”. This is an important limitation. As Section 5.2.1
discusses, understanding how much refinement is needed is an open research question.

6.3. Risk Mitigation in the ESP

Before presenting the ESP’s risk mitigation process [lld, we introduce more precise constructs.
In the ESP, an SP is a specific implementation of an SP technique by a specific SP tool. For
instance, control flow flattening [106] as applied by Diablo in the ASPIRE Compiler Tool Chain
(ACTC) and by Tigress are considered distinct SPs [37, 103].14 A protection instance (PI) is a
concrete configuration of an SP technique. The ESP can use the PI to drive the SP tool to apply
an SP technique on a chosen application part. Depending on the available parameters, multiple
PIs can be defined for the same SP. An applied PI is the association of a PI with an application

4https://github.com/aspire-fp7/actc and https://tigress.wtf/
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part, which states that the PI has been selected to be applied to the part. A candidate solution is a
sequence of applied PIs. It is ordered because of composability and layering requirements and
benefits (EED).

The ESP first searches for suitable SPs. These are SPs that impact attributes of the listed
attack steps (IfNE]). For example, they are able to defer an attack step. Each PI is associated with a
formula that alters these attributes for each attack step. After the application of an SP, the risk
index of the attack steps and paths are re-assessed.

The formulas also consider complexity metrics (l) computed on the protected assets’ code.
This way, the ESP incorporates Collberg’s prescription of potency [38] (I&H) as a measure of the
additional effort that attackers have to invest on protected code. The parameters to be used in the
formulas for evaluating the impact of SPs on attack steps are stored in the KB. They are based on
a survey among the developers of all SPs integrated into the ASPIRE SP tool flow [20], whom we
asked to score the impact of their SPs on a range of attack activities in terms of concrete impacts.
These include the impact on human comprehension difficulty by increasing code complexity, the
impact of moving relevant code fragments from the client-side software to a secure server not
under the control of an attacker [7, 29, 105], the impact on the difficulty of tampering through anti-
tampering techniques with different reaction mechanisms and monitoring capabilities [105], and
the impact of preventive SPs such as anti-debugging [8, 9]. The survey results were complemented
with expert feedback and validated in pen test experiments [33, 34].

Additional modifiers are activated when specific combinations of Pls are applied on the same
application part. They model the impact of layered SPs () when recomputing the risk indices
and synergies between SPs. The existence of synergies () was part of the mentioned survey.

Candidate solutions must also meet cost and overhead constraints (fg). Our PoC filters
candidate SPs using five overhead criteria: client and server execution time overheads, client and
server memory overheads, and network traffic overhead.

Finally, the SP index associated with a candidate solution is computed based on the recomputed
risk indices of all discovered attack paths against all assets, weighted by the importance associated
with each asset. The SP index is the ESP’s instantiation of residual risk ([).

6.3.1. Asset Protection Optimization

The ESP finds the mitigations by building an optimization model that it solves with a game-
theoretic approach ([&). The ESP tries to combine the suitable SPs to build the optimal layered
solutions, i.e., the candidate solution that maximizes the SP index and satisfies the constraints.

Computing the SP index by re-computing the risk index requires knowledge of the metrics
on the protected application. As applying all candidate solutions would consume an infeasible
amount of resources, we have built an ML model to estimate the metrics delta after applying
specific solutions without building the protected application [30]. The ESP’s ML model has
been demonstrated to be accurate for predicting variations of up to three PIs applied on a single
application part. With more SPs, however, the accuracy starts decreasing significantly. This issue
seems to be solvable with larger data sets and more advanced ML techniques.

The ESP uses the same predictors to estimate the overheads associated with candidate solutions.
Per PI and kind of overhead, the KB stores a formula for estimating the overhead based on
complexity metrics computed on the vanilla application. These formulas were determined by the
developers of the different SPs integrated into the tool flow of the ASPIRE project.

Combinations greatly increase the solution space. To explore it efficiently and to find (close
to) optimal solutions in an acceptable time, the ESP uses a game-theoretic approach, simulating a
non-interactive SP game (E¥). In the game, the defender makes one first move, i.e., proposes
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a candidate solution for the protection of all the assets. Each proposed solution yields a base
SP index, with a positive delta over the risk index of the vanilla application. Then the attacker
makes a series of moves that correspond to investments of an imaginary unit of effort in one attack
path, which the attacker selects from the paths found in the attack discovery phase. Similarly
to how potency-related formulas of the applied SPs yield a positive delta in the SP index, we
use resilience-related formulas that estimate the extent to which invested attack efforts eat away
parts of the SP potency, thus decreasing the SP index. These formulas are also based on expert
feedback. We refer to Regano’s thesis for more details on this game-theoretic approach that uses
mini-max trees and a number of heuristics to yield acceptable outcomes in acceptable times [90].

After solving the game, the ESP shows the best SP solutions (2, B it found, i.e., the
best first moves by the defender, from which the user can choose one. The ESP then invokes the
automated SP tools to apply the solution, as will be explained in Section 6.3.3.

6.3.2. Asset Hiding

As discussed in Section 5.1, SPs are not completely stealthy because they leave fingerprints.
In a previous paper [91], we proposed a solution to this problem based on the refinement of
existing SP solutions with additional SPs also deployed on non-asset code regions (E¥#). Those
lure the attacker into analyzing such regions in lieu of the assets’ code, thus hiding the assets from
plain sight. We have devised three asset-hiding strategies. In fingerprint replication, SPs already
deployed on assets are also applied to other code parts to replicate the fingerprints such that
attackers analyse more parts. With fingerprint enlargement, we enlarge the assets’ code regions
to which the SPs are deployed to include adjacent regions such that attackers need to process
more code per region. With fingerprint shadowing, additional SPs are applied on assets to conceal
fingerprints of the chosen SPs to prevent leaking information on the security requirements.

The PoC ESP hides the protected assets in an additional decision making step. In this step,
it adds confusion indices to the SP indices, which are computed by an ad hoc formula built to
estimate the additional time the attacker needs to find the assets in the application binary after the
application of hiding strategies. The computation of the confusion indices requires estimating the
code complexity metrics after the application of the SPs. To build this model, we have studied the
effects of the hiding strategies for the SPs devised during the ASPIRE project. The results of this
study, stored in the ESP KB, are used to compute the confusion index.

Starting from the solutions generated via the game-theoretic approach, the ESP proposes
additional application parts to protect by solving a Mixed Integer-Linear Programming (MILP)
problem, expressed as a heavily customized instance of the well-known 0-1 knapsack problem [67]
that maximizes the confusion index and uses overhead as weight in constraints. The MILP problem
is solved using an external solver; the PoC ESP supports Ip_solve and IBM CPLEX Optimizer!>.

In between the asset protection optimization and the asset hiding, no measurement is done on
code on which SPs are deployed. The ESP’s decision making is a single-pass process (IREl).

6.3.3. Deployment

The final step in the ESP workflow deploys the solution on the target application ([ENEl.I3).
The solution is chosen by the user amongst the ones presented by the ESP. The result of this
step (and of the whole workflow) is the protected binary plus source code for the server-side
components for selected online SPs. The ESP deploys a solution by driving automatic SP tools. At

15See http://Ipsolve.sourceforge.net/5.5/ and https://www.ibm.com/analytics/cplex-optimizer.
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REQUIREMENTS TOOL
PROTECTION TYPE

CONFIDENTIALITY INTEGRITY ACTC TIGRESS

anti-debugging o o V] 0]
branch functions (V] @] o o
call stack checks (@] (V] (V] o
code mobility o o V] 0]
code virtualization (V) (V] o'¢ (V]
control flow flattening (V] o o o
data obfuscation (V] (0] (V] (V]
opaque predicates o o © V]
remote attestation (@] (V] o o
white-box crypto o o V] 0]

Table 5: SPs supported by the ESP, with enforced security requirements and tools used to deploy the SPs. For each tool,
we only mark techniques supported on our target platforms, i.e., Android and Linux on ARMV7 processors.

the time of writing, the ESP supports Tigress, a source code obfuscator developed at the University
of Arizona, and the ACTC, which automates the deployment of SP techniques developed in the
ASPIRE FP-7 project [20, 41]. Table 5 summarizes the SP techniques supported by the ESP.

Finally, we point out that the ESP has been engineered to be extensible. All the modules can
be replaced with alternative components. For example, the risk assessment based on backward
reasoning could be replaced with a more advanced attack discovery tool, the only constraint being
that it needs to produce output compliant with the SP meta-model. It is also possible to support
new SPs. It is enough to add the required information into the KB, such as the evaluation of
strengths and impacts on attack steps, conflicts, and synergies with other SPs plus all parameters
of the discussed formula. The only demanding activities are training the ML algorithms to predict
how new SPs alter the metrics, and the automation of the deployment of the SPs.

6.4. Risk Monitoring in the ESP

If the selected SPs include online SPs such as code mobility [29] and reactive remote attesta-
tion [105], the ESP generates all the server-side logic, including the backends that perform the
risk monitoring of the released application. This includes the untampered execution as checked
with remote attestation, but also the communication with the code mobility server (ENET,EEl).

Our PoC does not automatically include the feedback and other monitoring data such as
the number and frequency of detected attacks and compromised applications, and server-side
performance issues. The knowledge base needs to be manually updated using GUIs to change risk
framing data related to attack exposure and SP effectiveness. Issues related to insufficient server
resources also need to be addressed independently; the ESP only provides the logic, not the server
configurations.

6.5. Coverage

As could already be seen in Tables 2, 3, and 4, the ESP covers many of the constructs, models,
and methods we positioned in the overall risk management approach in Section 5. Albeit to some

16The ACTC provides limited support for code virtualization, meaning that it is not reliably applicable to all code
fragments. Hence the ESP does not consider it a potential protection instance.
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extent in a rudimentary form, as can be expected from a proof-of-concept tool, the ESP instantiates
36 of the 50 identified constructs, 5 of the 6 discussed models, and 21 of the 32 methods.

All of the instantiated artifacts were required to meet the objectives and requirements of the
ASPIRE project. The reasons why the other 14+1+11 artifacts are not instantiated in the ESP
are that ASPIRE research project plan was drafted and executed before the development of our
vision on standardization, and that the project had a limited time frame and resources, and hence a
limited scope and set of requirements to meet.

The non-instantiated artifacts relate to five major limitations that in our opinion do not impact
the possibility to build an entire SP workflow that includes mostly automated tasks. Indeed, all
the activities that we have not (yet) automated can be performed manually, so if a fully automated
approach would be proven impossible at some point in the future, a semi-automated approach is
certainly possible.

First, ASPIRE focused solely on the technical threats, neglecting the relationship with business
risks. Constructs [ and [¥H, model [¥¥], and methods [NE, BNE, and that relate to business
models were hence out of scope. With the attack exploitation phase (IHl) being out of scope,
the decision support tool did not have to differentiate between threats in that phase and in the
attack identification phase, and hence no tool support to treat (F8Iil) as an explicit construct was
needed. Existing methods to link technical threats and constraints to business risks are available
as discussed in Section 5.2.2, if not automated then certainly relying on human judgments.
Furthermore, providing support for considering multiple attack phases requires no fundamental
changes to the used models and methods.

Second, another scope limitation was that ASPIRE only considered the protections of applica-
tion instances in isolation, not as they evolve over time, and with the SP tool having white-box
access to all relevant application code. Hence constructs [, and 4, and methods [ENH,
[ .12 M m.27 BB were out of scope. Experts can manually deal with those SDLC issues in case
future research would fail to provide automated solutions.

Third, whenever functional requirements were stated, such as the need to deploy a copy-
protection scheme, only one implementation of that functionality was developed. Hence no
decisions needed to be made on how to meet those requirements, making decision support for
functional requirements (f¥HE) irrelevant within the project. In general, decision support for
functional requirements is simpler than for non-functional requirements: functional requirements
are typically expressed as “some form of protection functionality X needs to be included.” If
anything, such requirements limit the search space that the SP optimization algorithms need to
explore, rather than complicating it.

Fourth, whereas Section 4.2 argued for maximal formalization and automation to minimize
the potential reduction in precision that can stem from the subjective expert judgments, within the
ASPIRE project complete automation was not considered viable yet. The involvement of experts
in making judgments was still accepted, so some aspects were not formalized and automated
but instead left to human experts. This is the case for methods and for validating that
the SP deployment is in line with made choices and requirements; for constructs [, [¥H. and
that serve to identify which application parts require protection despite not being primary
assets; for identifying the path of least resistance (F¥E) among the enumerated attack paths; and
for iterative mitigation decision making ([, E¥I). An expert can use the ESP manually in an
iterative manner, but the ESP does not automate this. Finally, while the SP tool developed in
ASPIRE considers profile information for minimizing the performance impact of injected control
flow obfuscations, the ESP does not consider profile information (Il for selecting SPs. It is
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hence left up to the human expert to manually exclude expensive SPs for assets on which they
cannot be afforded.

Fifth, the one remaining unsupported artifact is that of cookbooks with SP recipes (IRES).
Those cookbooks are only intended as backups for when automated SP selection is not supported.
They are hence superfluous in the ESP.

7. Evaluation of the Instantiated Artifact

The ESP has been designed and implemented to answer RQ1 (whether automated decision
support tools can assist experts with the deployment of SPs and the use of SP tools) within the
scope and requirements of the ASPIRE project. However, this evaluation also provides evidence
to answer RQ3 on which parts of a standardized risk management approach to SP can already
be automated, as it provides a lower bound on the set of those parts. Moreover, since the ESP
implements a NIST-based four-phase risk analysis approach, a positive evaluation of the tool
provides evidence that modelling SP as a risk management task is feasible. The ESP hence
partially backs up the list of constructs, models, and methods discussed in Section 5 to answer
RQ2 on which artifacts a standardized risk management approach in the domain of SP needs to
entail.

For this evaluation, the research question RQ1 is further split into more precise technical
questions according to ISO/IEC 9126-1:2001 evaluation criteria. Table 6 lists these questions and
the main results/answers. We answer RQ1.a—RQ1.c with the qualitative evaluation in Section 7.2
of which the design is first discussed in Section 7.1. RQIl.d is answered in Section 7.3 and
Section 7.4.

7.1. Design of the Qualitative Evaluation

The ESP has been validated with expert SP users drawn from the ASPIRE project consortium
and advisory boards. This qualitative evaluation is a snapshot of experts’ opinions about the final
ASPIRE PoC at the end of the project in Q4 2016, when they were last available to us.

In ASPIRE, each industrial partner provided an Android app use case: a One-Time Password
generator for home banking apps, an app licensing scheme, and a video player with Digital
Rights Management (DRM) for protected content. Each app included security-sensitive code
and data elements in dynamically linked, native libraries written in C. Those libraries served
as reference use cases for all research. They were designed and implemented to represent the
industrial partners’ commercial software. Being sensitive, the industrial partners only gave access
rights to their use cases to academic partners, not to each other. Less sensitive information on
the use cases, their assets, their security requirements, the software features obtained with the
analysis tools, and their experts’ assessments are available in a public report that presents a joint
validation of all project results [18]. Table 7 presents the Source Lines Of Code (SLOC) metrics
and the number of assets. Clearly, the ESP was not evaluated merely on toy examples.

The evaluation of the ESP in ASPIRE was planned to be done by two experts per industrial
partner: one internal expert familiar with the project and involved in it, and one external expert
that was not involved in the project. However, one of the three partners only made the internal
expert available, who hence participated in both roles. According to FEDS, this limitation in the
number of experts and the limitation in the scope (each company’s experts evaluated the artifact
using only their own use case) needs to be considered a significant constraint.

We then organized the qualitative evaluation of usability, correctness, comprehensibility, and
acceptability in three steps, as visualised in Figure 5.
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Usability

RQl.a.1  Is the ESP usable by software protection experts?
— positive answer: experts did not have problems in using the tool and understanding
the meaning of all the artifacts
RQl.a.2  Can the ESP become part of the experts’ daily workflow?
— positive answer: experts reported that the ESP was suitable for their daily job but
further effort is needed for a better business alignment
RQl.a.3  Could the ESP be used also by software developers with limited or no background in
software protection?
— partially positive answer: proper tuning of the ESP requires a solid background in SP,
protection will be less effective when using the ESP as a push-one-button tool
Correctness
RQI1.b Does the ESP propose appropriate combinations of protections to protect the assets and

to hide them properly?
— positive answer: experts analysed all artifacts produced by the ESP, compared them
to data from tiger teams, and judged them as correct or appropriate

Comprehensibility and Acceptability

RQl.c.1  Is the ESP’s output useful to comprehend and assess the tasks (automatically) performed
by the ESP?
— positive answer

RQl.c.2  Is the output produced by the ESP useful to help software protection experts manually
perform their job?
— answer is limited: the inferred attacks has been judged too coarse-grained, this affects

the precision in automatically deciding the mitigating protections

Efficiency

RQ1.d.1 Is the ESP fast enough to produce valid solutions in a useful time?
— positive answer

RQ1.d.2 Is the complexity of the algorithms it uses acceptable for the size of the tasks it has to

perform?

— positive answer: experts and developers considered the execution times acceptable,
scalability may be an issue due to worst-case complexity, but heuristics and optimiza-
tion allowed producing solution in useful time

Table 6: Refinement of RQ1 into concrete ESP research questions and this paper’s main answers to them.
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Figure 5: Graphical representation of the qualitative evaluation process.

7.1.1. Step 1: Early Internal Expert Assessment

During the ESP’s development the internal experts performed a qualitative analysis of the
prototype artifact to improve early versions. They followed the design and development of the
ESP throughout the three-year project and continuously monitored the results of the SP on their
use cases, using the ESP to provide constructive feedback. They analysed methods, models,
constructs, and instantiations of the individual ESP components to check the correctness of their
results. They were also involved in designing the workflows to comply with their corporate needs.
The result was an alpha version of the tool components integrated into the workflow.

This alpha version was then evaluated as a whole by the internal experts. Each internal
expert was asked to protect their software only using the artifact with the support of the ESP
developers. They manually annotated the assets in the source code using the ESP GUI and then
used the ESP to identify the best SPs and their configuration parameters. They then discussed
and analysed the identified threats and the selected SPs, as well as the entire decision making
process, on which they then commented in detail. We collected their inputs through interviews
during face-to-face meetings, ad-hoc calls, and emails. Since these inputs were collected during
the normal project development, the collection was managed informally. The experts also gave a
qualitative assessment of the correctness of the artifact’s used models.

Moreover, the effectiveness of the ESP’s selection of SPs was tested against the judgment
of other experts. Indeed, the use cases’ developers and security architects proposed the best
combination of SPs for each of the assets, according to their expertise and experience. Each of
the three use cases protected with the best combination were then pen tested by two external pen
testers per use case for several weeks to establish the attack paths. The pen testers reported on the
attacks that were prevented entirely for the DemoPlayer use case within the pen test time frame,

and that the attacks were delayed effectively for the other two use cases!”.

17This material is available in Section 5 of the public ASPIRE Validation Report [18] and in sections 811 of the public
ASPIRE Security Evaluation Methodology Report [31]
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7.1.2. Step 2: Final Internal Expert Assessment

Towards the end of the ASPIRE project, a first stable version of the whole ESP was available.
On the basis of this version, experts were asked to assess the ESP by answering a set of open-ended
questions, which are provided in Appendix A. The experts’ answers were used to develop the
final release of the tool during the ASPIRE project. Their answers are not reported in this paper as
they were considered confidential material. Several calls took place with those experts to clarify
questions and to ensure that we interpreted their answers correctly.

This assessment of the design and implementation of the ESP constitutes a qualitative evalua-
tion in a naturalistic scenario, which, using FEDS terminology, means that a real system (artifacts)
is used by real users to solve real problems [89]. In our case, the artifact consists of the first
complete version of the ESP; the real users are the industrial experts; and the real problem is the
selection of protections to mitigate real MATE attacks (as evaluated in pen tests by pen testing
experts [34]) on applications developed by the industrial project partners to be equivalent to their
commercial applications, i.e., feature the same types of assets, similar functionality, and similar
complexity.

7.1.3. Step 3: Assessment with External Experts

Finally, external experts from the industrial partners, which had no prior insights or bias
regarding the ESP, were involved in a qualitative evaluation of the final ESP version in the
ASPIRE project. We used the same questionnaire for this evaluation.

We prepared a virtual machine (VM) with a running copy of the ESP pre-configured with all
the manual operations already performed by their colleagues. The assets were already annotated,
and the other ESP running parameters were set to default values, which they were allowed to
modify. However, they experienced configuration issues when integrating the ESP VM with the
SP tools. To make good use of their extremely limited time, we therefore also executed the tool
with the pre-configured information and all automation enabled and provided them with the output
generated by the tool in the form of a report'®. The expert was then asked to assess the identified
threats, the selected SPs, and the selected properties of the evaluation.

7.2. Qualitative Evaluation Results and Discussion

Overall, based on the analysis of their questionnaires, the experts have judged the ESP as
promising and potentially effective because of the high level of automation and configurability
(including the possibility to override default configurations) and the detailed output. Nonetheless,
they were skeptical about extending the tool’s use to software developers with a more limited
background in SP as this background is needed for understanding the artifacts, making decisions,
and evaluating results. This is not preventing software developers from using the ESP as a
push-of-the-button tool and having their applications protected. However, they feared that in the
push-of-the-button mode, the applications risked being less protected than under the supervision
of experts. Furthermore, the acceptability showed limitations at the level of integration with their
daily work and tool chains, which means that further effort is needed to ensure so-called alignment
with business [89]. The usability was hence assessed positively for experts in SP (RQ1.a.1),

18The reports are available at https:/github.com/daniele-canavese/esp/tree/master/reports. The ESP user manual [41]
describes how to interpret the different parts of those reports. In two of the three reports, we renamed identifiers of code
and data elements (such as function names) in consideration of the two companies’ confidentiality requirements. Apart
from that, the linked reports are identical to the ones assessed by the experts. A summary of the most significant data, their
interpretation, and the major findings is presented on the aforementioned GitHub site.
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positively with limitations for the integration into the experts’ tool flow (RQ1.a.2), and only partial
for developers (RQ1.a.3).

Among the data extracted by the tool, experts highlighted the importance of making decisions
by considering the application structure and metrics because results are to be tailored to the
target application. They also appreciated that all the data extracted and represented in the KB are
structured using a formal meta-model, as this reassured them of the correctness of the inferences.

Experts analysed the attack paths inferred by the tool as well as the SPs solutions that were
proposed by the optimization process to mitigate the inferred attacks. The experts compared
those solutions to the ones they (or their colleagues) had assembled manually earlier on during
the project as part of the requirements formulation. Solutions have been validated in terms of
achieved security for the assets, preservation of the application business logic, and containment
of the inevitable slow-down of the protected application w.r.t. the original one. Furthermore,
the attack paths have been compared with the real attacks discovered by the professional pen
testers previously involved, as discussed in Section 7.1.1. In particular, the inferred solutions have
been judged as appropriate to protect the use case code and effective in blocking the inferred
attack paths and the real attacks reported by the pen testers. In addition, the protected binaries
were evaluated as semantically unaltered and usable: they still delivered the original observable
[O-relation without excessive overhead introduced by the SPs. It is worth mentioning that, as is
the case for all the risk analysis processes, there is not a correct set of answers forming a ground
truth. The experts hence provided their qualitative estimations of solution effectiveness.

The main flaw of ESP reported by the experts is that inferred attack steps were too coarse-
grained because of too generic attack rules. This limitation has a technical impact on the possibility
of making fine-grained decisions on the SPs to use. For instance, consider the listed attack step
staticallylLocate ('ProvisioningManager_LaunchProcess.rl6’ (attacker)). This
denotes an attacker disassembling the binaries with static tools such as Radare2 or IDA Pro to
locate basic block r16 in function LaunchProcess. From this, it is possible to infer that ob-
fuscation is needed. However, on the basis of this information alone, it is impossible to determine
which specific obfuscation technique should be preferred without looking at the actual code. So
expert judgment and interaction to refine the SP selection by the ESP is currently still required.
It is definitely possible to populate the KB with more fine-grained attacks steps, but as already
mentioned in Section 5.2.1, further research is needed to determine the best level of granularity to
model and enumerate attacks steps.

From all of the above, we conclude a positive evaluation of the correctness of the artifact
(RQL1.b) and the comprehensibility of the artifact-generated data (RQ1.c.1). The usability of
specific artifacts has limitations (RQ1.c.2).

The efficiency has been measured with a quantitative assessment, as will be discussed in
Section 7.3. In addition, no experts reported issues with the performance of the artifact.

Overall, the evaluation result is hence positive. Quoting from the related project deliverable,

“after the analysis of the validation data, the experts concluded that the tool has a very high potential”
to be used in their everyday tasks and to enter their current workflow in the near future, even if
some had doubts on the maturity of the tool and its readiness to be used to protect commercial
applications with all of their SDLC intricacies and complexity. For an artifact developed as a
research proof-of-concept, this should of course not come as a surprise.

We conclude that a large part of the proposed risk management approach can indeed be
automated through decision support tools, as identified by many of the checkmarks in Table 4 that
provide an answer to RQ3. While not yet capable of completely replacing human experts, those
proof-of-concept automated tools have shown promise to aid users of SP tools.
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C

APPLICATION JAvA  C++4+  ASSETS
SOURCES HEADERS

DemoPlayer 2,595 644 1,859 1,389 25

LicenseManager 53,065 6,748 819 0 43

OTP 284,319 44,152 7,892 2,694 25

Table 7: Lines of source code counts of the ASPIRE validation use cases.

APPLICATION TOTAL FRAMING  ASSESSMENT  MITIGATION
DemoPlayer 145.6 0.1 76.3 69.1
LicenseManager  296.1 0.3 187.6 108.1
OTP 170.0 0.9 69.2 99.9

Table 8: ESP times in seconds.

7.3. Technical Assessment

Our evaluation also includes a purely technical analysis of the performance of the algorithms
and techniques used in the ESP on both the reference use cases and artificial applications.

First, we have measured the execution time of the final version of the ESP on the three use
cases, with the assets annotated by the experts, as reported in Table 7. In all three cases, 17
PIs have been considered using the SPs listed in Table 5. Opaque predicates, branch functions,
and control flow flattening were applied at three configuration levels (low, medium, and high
frequencies with corresponding overhead levels). Data obfuscation included three techniques:
XOR-masking, residue number encoding, and data-to-procedural conversions [38].

Table 8 shows the ESP computation times. The framing phase is almost instantaneous and
driven by the lines of annotated code. Regarding the assessment and the mitigation phases, these
measurements do not provide sufficient data for a full assessment of the scalability and complexity
of the used algorithms, as the three applications do not provide enough data points to identify
correlations between the computation times and the number of assets/Pls.

We hence complemented the measurements with a formal evaluation of the algorithms’
complexity and a performance measurement on artificial scenarios (in FEDS terminology). The
formal validation investigated the most influential factors for the attack discovery tool and the
game-theoretic optimization of the mitigation phase. The complexity of the attack discovery
algorithms is exponential in the number of attack steps in the KB, hence the need to consider
pruning strategies. The complexity of the algorithms in the mitigation phase is linear in the number
of assets. It exponentially depends on the number of PIs and the number of attacks discovered in
the assessment phase. In this case, having a limited number of PIs and pruning the sequences of
SPs helped with reasonable performance.

To assess scalability, we evaluated the performance of the ESP on three synthetic standalone
Linux applications with an increasing number of assets. Table 9 summarizes their metrics. These
artificial applications have been randomly generated with a process that selects a call graph (from
a set of call graphs extracted from real applications), and then generates randomized function
bodies to meet specific code metrics. Then it randomly selects fragments in the generated code
as data or code assets. In this experiment, we used all the previously listed PIs except white-box
crypto (which was a proprietary algorithm of one industrial ASPIRE partner). We also added four
instances of obfuscation using Tigress, i.e., the ones marked in Table 5.
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ASSETS
APPLICATION SLOC FUNCTIONS

CODE DATA TOTAL

demo-s 443 18 2 2 4
demo-m 1029 47 12 3 15
demo-1 3749 178 26 13 39

Table 9: Statistics of ESP experimental assessment applications.
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Figure 6: ESP execution times on applications reported in Table 9.

On the three artificial applications, we deployed the asset protection optimization approach
described in Section 6.3 multiple times for different configurations that feature varying numbers
of available PIs. This deployment was done on an Intel i7-8750H workstation with 32 GB RAM,
using Java 1.8.0_212 under GNU/Linux Debian 4.18.0. Figure 6 depicts the measured total
ESP computation time, along with the time needed for the risk assessment, asset protection, and
asset hiding phases. The time needed to complete the workflow increases with the number of
PIs considered during the mitigation; such an increase strongly depends on the application code
complexity, and in particular on its SLOC and number of assets and functions.

The time needed to analyze the applications’ source code and to generate the application
meta-model instance was negligible at less than 1s. The time required to deploy the solution is
irrelevant for assessing the ESP’ computational feasibility, as it only measures the negligible time
needed to execute the external SP tools for the single selected solution.

As expected, the time needed to execute the risk assessment phase does not depend on
the number of PIs available to protect the application, as attacks are determined on the vanilla
application. Nonetheless, we report that it has limited impact because of the aggressive pruning
we have implemented that avoids exponential growth. The asset protection phase is by far the
most computationally intensive, especially when the number of available PIs increases. Since
the mitigation considers sequences of SPs, the execution time is exponential as it depends on the
combination of PIs. The same holds for the asset hiding phase, although less time is needed to
execute the latter compared to the asset protection phase.

These experiments allowed the positive evaluation of RQ1.d.1, as the computation times were
considered acceptable by both the tool developers and the involved experts. They also enable
the positive evaluation of RQ1.d.2, as the heuristics implemented in the game-theoretic approach
scaled sufficiently well in our experiments to allow producing solutions in useful time, even
though its theoretic worst-case behavior might be intractable.
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7.4. Framing Effort in the ESP

As mentioned in Section 7.1.3, all framing tasks, including the annotation of the assets in the
source code, were performed before the external industrial experts got involved in the assessment
of the ESP. This enabled them to focus on the qualitative assessment without wasting their precious
time on the more mechanistic framing tasks. This section analyzes the effort that is needed to
perform those framing tasks with the ESP.

First, the user needs to annotate the assets in the source code. The ESP supports two options:
manually annotating the source code or manually tagging code and data elements in the ESP. Our
evaluation with experts only used source code annotations, which consist of (mostly single-line)
pragmas and attributes [20, 41] that identify the assets and specify security requirements. For
users proficient with their syntax, typing out the annotations requires at most tens of seconds per
asset.

More time is required to determine precisely which elements in the source code need to be
annotated because they correspond to the application assets. Security architects and software
designers describe assets abstractly. When those are known upfront, developers can annotate
their code as they write it, thus only requiring the aforementioned tens of seconds per asset. For
developers that are familiar with the code base but need to annotate the code afterwards, we
estimate that locating the assets in the code takes less than a minute for assets with high locality
(e.g., single variables or single functions) to potentially tens of minutes for assets that are spread
out more throughout the code base (e.g., the invocations of a specific reaction mechanism spread
throughout the code for remote attestation).

The annotations were added to the ASPIRE use cases by their original developers after the
development was finished. It was the first time they were adding our style of annotations. They
hence faced a learning curve. Moreover, while adding the annotations, they had to validate the
syntax and expressiveness of the annotation language on the fly. Had they already been proficient
with the annotations beforehand and had they just needed to inject them without having to validate
their design, we estimate that the time needed to annotate their use cases would have been less
than one hour for the use cases with 25 assets, and less than two hours for the one with 43 assets.

In any case, locating the assets in the code base given abstract descriptions is something that
any user of any non-trivial SP tool needs to do, both to configure the tool to protect the relevant
code and to validate that that code has actually been protected by the tool. So compared to other
SP approaches, the mentioned times are not considered overhead required to use the ESP. The
same holds for selecting the attacks the user wants to mitigate and for determining which of the
available SPs to consider. In the ESP, selecting attacks and SPs from the ones modelled in the
KB happens with a click-of-a-button GUI interface. The time required for clicking is negligible
compared to the time for deciding which ones to include or exclude. That decision making needs
to happen with any decision support tool, so the ESP is not less efficient in this regard than any
other decision making process. This discussion completes the answer to RQ1.d.1.

7.5. Threats to Validity

We have checked the procedure we used for evaluating the ESP against a checklist of the
possible threats to validity: construct, internal, conclusion, and external validity threats [110], as
well as instantiation validity threats [76].

Threats to construct validity concern the metrics defined for the evaluation. We have used a
set of standard metrics from the ISO. Nonetheless, the risk remains that the selected metrics are
not the best ones for our assessment. The evaluation scores were positive, negative, and partial,
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which appeared expressive enough for our purposes. However, we could not objectively assess
these criteria’ satisfaction as the questionnaires included open answers. To limit subjectivity, we
have evaluated the answers within the ASPIRE project. Moreover, the ASPIRE project reviewers
hired by the European Commission did not contradict our conclusions.

Threats to internal validity concern the inferences between independent variables and eval-
uation outcomes. One possible noise factor that may confound the inference relates to the task
comprehension. We assess this factor as negligible in this case. The task, resembling their
day-to-day job and their typical applications, was described by the experts as clear; the use of the
tool was documented; moreover, the experts were assisted in case of doubts (by their colleagues
or by us). Another potential noise factor is the experts’ commitment to perform their tasks
diligently before answering the questionnaire. We gave the experts the tool and the reports to be
assessed offline. We hence cannot establish the effort they invested in using and reading them. We
checked that all relevant artifacts were analysed in their comments (main attack paths and all the
combinations of protections); however, we cannot assess their commitment accurately. Moreover,
another confounding factor is the actual objective evaluation. The experts were selected from the
industrial partners of the project. Even if they were asked to evaluate the artifact objectively, their
judgment may have been biased by the will not to hinder the project and the positive evaluation
by the European funding agency.

Threats to external validity affect the generalisation of the research results to the real world,
i.e., experts who want to protect real applications using an automated decision support system. In
our case, the subjects of the evaluation are real experts that are protecting apps. The evaluation
could hence be generalized to experts with a similar background protecting programs analogous
to the ones presented in the evaluation and not too dissimilar from the ones they protect during
normal job tasks in the same companies. However, it does not necessarily extend to other experts
protecting different applications in other companies. Significant effort was invested in the use case
applications to ensure that they are representative (in terms of size and complexity) of the code
bases such experts have to protect in their daily jobs. However, since every expert only evaluated
the ESP on one application, we cannot be sure that applications with different structures or from a
different domain would yield similar results.

Another potential threat to external validity concerns the possibility to generalize the evaluation
made on a specific tool, the ESP, to general SP tasks, which may affect answers to RQ3. In other
words, this threat is not limited to the ESP, but extends to the whole approach we presented in
Section 5. In this case, we assessed this threat as negligible. Having automated a specific SP
task, we have proved that automation is feasible, even if the same task could be done in different,
possibly better ways. Moreover, the external experts performing the evaluation did not assess the
ESP within the ASPIRE scope and requirements, as they did not know about the ASPIRE-defined
scope. Instead, they evaluated it vis-a-vis their day-to-day job requirements. The limitations
identified in Section 6.5 on the ESP, which does not automate all tasks of the full risk management
approach we presented, do not apply, as RQ3 is related to individual parts of a risk management
approach for SP.

Threats to conclusion validity affect the validity of the methods to draw reasonable conclusions
from the assessment. In the evaluation of the ESP, we have asked experts to answer open questions
from a standard questionnaire structured according to the main protection workflow. Given the
experts’ limited availability, a state-of-the-art controlled experiment was impossible. The number
of experts involved was limited as well, which does not allow us to use statistical methods that
are standard in quantitative evaluations. However, through interactions with the experts, and by
splitting the questions and formulating them clearly, we have been able to interpret their qualitative
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inputs reliably, thus minimizing the noise and errors that might otherwise have obscured the data
from which we have drawn conclusions.

Finally, threats to instantiation validity affect the possibility of considering the artifact we
have implemented, i.e., the ESP, an instance of the theoretical object we had in mind, i.e., a
semi-automated decision support system for SP [77]. The instantiation space is very large, as one
can imagine many ways to implement all the tasks the ESP performs. In this space, we opted for
a NIST-based four-phases approach. We have not considered alternative approaches, first and
foremost because we were convinced upfront that the standard approach that works for other
fields is also valid for SP. Secondly, we have implemented the ESP in the ASPIRE project, where
resources for PoC and completion times were constrained. This relates to another threat, the
artifact cost, that prevented the implementation of more alternatives.

Two more threats to instantiation validity apply to the ESP: auxiliary features and emergent
properties, which stress the complexity of IT tools and oblige considering additional aspects that
are not the main focus of the instantiation. Indeed, the integration of the components and the
definition of the workflow has revealed several auxiliary features related to the UI comprehension,
the user experience, and the effectiveness of the designed workflow to cope with daily SP experts’
tasks. Furthermore, several emergent properties appeared related to the complexity of the data,
their relationships, and the correct data presentation. We tried to mitigate these threats by
continuously interacting with the internal experts during the design, development, integration,
and validation of the ESP and the data artifact it produces. Moreover, every time we received
suggestions in the answers to the questionnaires, we have incorporated them before the next
evaluation phase. Nonetheless, we cannot exclude that these threats to the instantiation validity
may have an impact.

8. Conclusion and future work

8.1. Conclusions

We discussed the necessity and potential benefits of a standardized, formalized, and automated
approach for risk management in the context of software protection against man-at-the-end attacks.
To that end, we discussed just such a risk management approach for software protections, which
we based on the NIST SP800-39 standard for risk management for information security.

To provide an answer to RQ1 on the feasibility of automated decision support tools to improve
the useability of SP tools, we developed and presented the ESP design and an evaluation of its
PoC implementation. We found that many human expert judgment tasks can already benefit from
automated tools and the data they produce, which experts found sufficiently usable, acceptable,
and efficient; and of which they assessed the results as sufficiently correct and comprehensible.

As an answer to RQ2 on how standardized risk management approaches can be adopted for
SP, we discussed in detail how the different aspects of software protection deployment decision
making could and should be mapped onto risk framing, risk assessment, risk mitigation, and risk
monitoring phases. For all phases combined, we identified 50 required constructs, 6 models, and
32 methods that the adopted approach should entail.

We answered RQ3 on the feasibility of formalizing and automate parts of the adopted approach
by providing a mapping of the abstract construct, model, and method artifacts identified for the
adopted approach onto the concrete instantiation artifacts that make up the ESP.

With these answers, we have provided convincing evidence that the proposed approach is
feasible and can be automated to a large degree, and deserves the launch of a structured community
effort that leads to future standardization and automation.
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Open Issue / Research Question Subjects

secondary asset (a.k.a. pivots, hooks, and mileposts) model design

selection and models of protection policy requirements

level of detail needed in models of attacker capabilities

to what extent worst-case assumptions are useful

5]  best abstractions to model software features that impact the execution of attack steps

empirical validation of such models and metrics, in particular for manual human activities

identification of viable attack paths on the basis of software analysis results

estimation of attack step’s required effort and likelihood of success

extent to which automated techniques can replace human pen testing

required granularity of attack steps forming attack paths

incorporation of informal information obtained from experts (e.g., pen testers) in automated threat analysis
incremental attack path enumeration

x4 51 52
=1=1=1212120128:
N = =1 R ke

k] required precision of pre-deployment SP impact estimation
pre-deployment potency, resilience, and stealth estimation for layered SPs
pre-deployment estimation of SP impact on attack success probability
validation of deployed SP against assumptions made pre-deployment

Table 10: Open issues and topics of open research questions identified in the paper

Research Direction

the concept and use of protection policy requirements

machine learning techniques to identify and quantify feasible attack paths

adoption of exploit generation techniques to identify feasible attack paths

gradual path from a mostly manual process to automated feasible attack path identification
adoption of risk monetisation to evaluate and prioritize actual risks

adoption of the OWASP risk rating methodology to evaluate and prioritize actual risks
single-pass selection of layered SPs with accurate assessment of impact on threats and risks
multi-pass selection of layered SPs with accurate assessment of impact on threats and risks
machine learning techniques to select the most effective layered combinations of SPs

Table 11: Potentially interesting research directions identified in the paper

8.2. Future Work

It is clear that quite some future work is needed, however, for the standardization itself, as
well as for improving, refining, extending, replacing, and complementing the rather embryonic
instantiations of the necessary constructs, models and methods currently available in the presented
ESP in support of the automation of tasks in the approach. The artifacts in Tables 2, 3, and 4
which have no counterpart in the ESP yet are clear examples of where more research is needed.

Section 5 also highlighted a number of topics for future work in the form of open issues and
open research questions, research directions that we consider interesting, and development steps
for which a community effort is needed. Tables 10, 11, and 12 provide an overview of that future
work.
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Required community efforts

provisioning a complete vocabulary and methodology to describe the risk frame

provisioning a standard taxonomy of assets and their relevant features

provisioning a standard taxonomy of SP security requirements

provisioning and maintaining a living catalog of potential attack steps and their relevant features
provisioning a standard taxonomy of SPs and their relevant features in support of decision support
standardizing methodology for defining the actual threat model, attack surface and attack vectors

HERERE Z

Table 12: Topics requiring a collaborative development effort by various stakeholders in the SP community
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Appendix A. The questionnaire for the expert assessment of the ESP.

This questionnaire is semantically equivalent to the questionnaire provided to the experts
during the ASPIRE project. We removed ASPIRE-specific terms, which have been substituted
with a wording coherent with this paper, and slightly rephrased some sentences for clarity.

Preparation

The primary Assets are the ones selected and protected for preparing the application for the tiger
team experiments. The assets’ relevance has been assigned by NAME during the PLACE meeting.
NOTE: In general, any feedback on the visualisation, presentation, data, and options in both the
tool and the report is welcome.

Application Parts

1. Is the list of the APPLICATION PARTS useful for your software protection purposes/tasks?

2. Report if you want to see them differently or if some information is missing.

Attack Steps

1. VALIDATE if the attack steps identified by the automatic analysis are meaningful. Check if
they are exhaustive.

2. For all the attack steps, VALIDATE if the Suggested Protections are correct, sound, proper,
and effective. Report if the estimated attack EFFECTIVENESS is correct.

3. REPORT if the attack data shown are useful. Report if you want to see them differently or if
you miss some important information.

Golden Configurations

1. VALIDATE if the golden combinations are meaningful and you consider them effective/opti-
mal.

2. For all the 10 golden combinations presented in the tool and report, you should NOTIFY
us if you noticed something strange in the use of the protection techniques, like some
association/combination of techniques which is strange according to your expert judgment,
the use of some techniques to protect specific assets that you may consider anomalous

3. REPORT us if the data shown are useful. Report if you want to see them differently or if you
miss some important information.
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Asset hiding

1. VALIDATE if the layer-two protections (asset hiding) and check if they are effective/optimal.

2. NOTIFY if you noticed something anomalous in the use of techniques, e.g., some association
of techniques which is strange for experts, the use of techniques for assets in anomalous/i-
nappropriate ways, or some cases where you wouldn’t extend/randomly pick other areas.

3. REPORT us if the data shown are useful. Report if you want to see them differently or if you
miss some important information.

4. REPORT if the estimated maximum degradation thresholds (overheads sections of the Golden
Configurations and Asset Hiding) are reasonable.
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