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1 Overview

This supplemental material categorizes all papers according to their perspective (Section 2), lists our definitions of
software protection methods (Section 3), analysis methods (Section 4), and measurements aspects and categories
(Section 5). Furthermore, Section 6 provides additional information about the use of samples in papers, and Section 7
on the correlation of sample sets with publication venues. Sections 8 and 9 provide additional data on the papers’
deployment of protection methods and analysis methods, respectively. Section 10 describes the actual tools that were
most commonly used in the surveyed papers and provides some recommendations on their use in evaluations. Section 11
provides some additional information on the protections layered in experiments involving human subjects. Finally,
Section 12 presents a more extensive discussion of other surveys in the domain of software protection, complementary
to the shorter related work discussion in the main paper.

The first 202 references in the reference list at the end of this supplemental material are the same as the 202 references
in the main paper, in the same order, such that they have the same number. The additional references give a complete

picture of all 571 surveyed papers.

2 Paper Categorization along Perspectives

This Venn diagram in Figure 1 includes references to all 571 papers of our survey. As discussed in Section 2.3 of our
main paper, the survey includes many more defensive papers than offensive ones. This is confirmed by the dominance
of the blue goodware papers in the obfuscation part of the Venn diagram and the dominance of the red malware papers

in the analysis part.
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Fig. 1. Venn diagram of the 571 surveyed goodware and malware papers. Papers targeting mobile platforms are underlined. Overlined
papers use data science methods such as machine learning and deep learning. Bold references are surveys and literature and meta
analyses. A subscript index indicates the CORE ranking of the paper’s publication venue, ranging from A*, A, B, to C, and w for

workshop. An absent index denotes that the venue is national, new, or unranked.

3 Protection Definitions
For each surveyed paper, we recorded which types of novel protections were presented, which protections were included
in the samples of their experimental evaluation, which protections were discussed in their (theoretical) security analysis,

and which protections were surveyed (in the case of surveys). So for each paper in scope, one or more of the protections

listed below were marked.
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Importantly, concrete protection transformations, as presented in papers, can match multiple classes. For example, a
tool can inject opaque predicates based on aliasing pointer computations as a means to inject spurious data dependencies.
Such a protection is classified as “opaque predicates”, “aliasing”, and “data flow transformation”. Some classes are
conceptually subclasses of others. For example, “control flow indirections” such as branch functions are a specific type
of “control flow transformations”. Whenever some protection discussed in a paper matches a more concrete subclass,
we only mark that subclass, not the superclass. Furthermore, if some transformation is merely a side-effect of another
one, we do not mark it. For example, “parallelization” inherently implies control flow and data flow transformations.
However, we only mark the latter if the parallelization is used as an enabler of a specific flow transformation, for
example when implicit data flow is implemented by measuring timing differences between fast and slow threads [128].

Furthermore, it is essential to raise the issue of potential bias. We collected data by interpreting the information and
claims in the papers. Some papers present explicitly and exhaustively which protections the authors deployed; others
do not. For instance, many malware papers only mention where they got their malware samples but do not discuss
in detail how those samples were generated or obfuscated, in many cases because that ground-truth information is
not public. Furthermore, some authors detail how they configured publicly available obfuscation tools; others do not.
Some such tools have minimal or default configurations; others do not. For some (malware) data sets, descriptions
of the deployed protections are available in the literature that we are aware of; for others, this is not the case. For
each paper, we only marked protections if we could determine without reasonable doubt that they had been deployed
on samples. Our discovery process mostly involved the papers themselves, any references in them to other papers
discussing the used data sets, and publicly available descriptions of the used tools. When individual malware samples
or families were mentioned without discussing the protections used in them, we did not, however, go as far as looking
up external reverse engineering blogs or analysis reports on those individual samples. As a result, the reader should be
aware that for quite some papers, in particular malware analysis papers, protections deployed on their samples might
not be recorded as such. For goodware papers, in particular papers in the obfuscation perspective (for which authors

typically generated their protected samples themselves), this is less of an issue.

Data encoding/encryption (DEN). Encrypting or changing the type, encoding, and bit representation of data in a
program. This includes replacing static data (e.g., strings) with compressed or encrypted versions. It also excludes the

special case of white-box cryptography in which the keys are replaced by other data or code.

Static data to code conversion (D2C). Replacing constant data available in a static program representation by compu-
tations that reproduce the data at run time. If those computations merely involve decryption or decompression, we

consider it data encoding/encryption, not static data to code conversion.

White-box cryptography (WBC). Implementation of cryptographic primitives such that stored and used keys no

longer occur in plain text in the binaries or in the program state during execution.

Mixed Boolean-arithmetic (MBA). Code and data obfuscation technique in which computations are replaced by more

complex mixes of boolean and arithmetic operations.

Data flow transformation (DFT). Introducing fake, covert, or implicit data dependencies with the goal of obfuscating
the data dependencies. Includes anti-taint protections (over-tainting as well as under-tainting), but not MBA which has

its own category.
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Data transformation (DTR). Splitting, merging, and reordering of structured data; changing the shape or layout with

which data is stored in memory.

Aliasing (ALI). Obfuscations building on or targeting potential aliases among pointers, e.g., to make data analyses
imprecise or to yield larger points-to sets. Includes replacing direct data accesses with indirect ones, e.g., through

reflection.

Class based transformations (CBT). Class hierarchy transformations, class type hiding, class refactoring, transforma-

tions with overriding methods. This includes adding fake/dead methods to classes to hamper class-based analyses.

Code reordering (CRE). Reordering of instructions, functions, basic blocks, expressions, or other code elements;

changing the alignment/padding of binary code fragments.

Code diversity (DIV). Replacing instructions or sequences thereof with other equivalent ones in the same ISA (e.g.,
CALL replaced by PUSH & JMP). Diversity can be spatial (diversified instances exist at the same point in time), or

temporal (code within a software instance is diversified over time).

Control flow flattening (CFF). Obscuring structured control flow graphs by replacing them with a flat structure and a
data-controlled dispatcher that controls the order in which code fragments are executed. The goal is to hide the original

structure.

Opagque predicates (OPP). Using boolean-valued expressions whose values or other invariant properties are known at
obfuscation time but difficult for an attacker to figure out, e.g., to steer execution around inserted bogus control flow

transfers. The goal is to inflate the complexity of the code’s CFGs.

Control flow indirections (CFI). Replacing direct control flow transfers by indirect ones, which can be, e.g., indirect
calls or jumps, faulting instructions and exception handlers, uses of reflection. The goal is to hide the call graph’s edges

or the control flow graph’s edges from static analysis, not to change those graphs.

Control flow transformation (CFT). All other ways of obfuscating the control flow, except control flow flattening,
opaque predicates, and control flow indirections. The goal here is to change the control flow graph, not to hide edges

from static analyses.

Function transformation (FUT). Transformations at the granularity of functions, such as wrapping, cloning, splitting,
merging, inlining, and outlining of functions or methods. This excludes protections based on adding fake/dead methods

to classes to hamper class-based analyses.

Identifier renaming (IRE). Renaming identifiers such as the names of variables, sections, functions, methods, classes,

registers, etc. to remove information useful for an attacker or to complicate analyses.

Junk code insertion (JCI). Inserting junk bytes, dead code (which can be executed but without impact on the program

semantics), or unreachable code (which cannot be executed).

Library hiding (LIH). Hiding which library functions are called, e.g., by making calls indirect or by inlining library
functions. If this is achieved by means of specific transformations, such as encrypting the names of the functions, those

transformations are also marked.
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Loop transformations (LOT). Transformation of loops, including fusion, unrolling, splitting, reordering iterations, as

well as altering counters, exit conditions, etc.

Overlapping Code (OLC). Overlapping instructions or functions. Native overlapping instructions share bytes in the
binaries or in text segments. Overlapping functions share instructions, i.e., some instructions are executed as part of

multiple functions.

Parallelizing (PAR). Injecting additional threads or processes or other forms of parallelism into a program in order to
complicate analysis, i.e., to make it harder to use analysis tools and to obtain precise models of the software’s data flow

and control flow.

Repacking (RPA). Recompilation, reassembly, or repackaging of code taken from one software component into

another.
Anti-debugging (ADB). Techniques for preventing the use of debuggers and debugging techniques.

Code mobility (CMO). Removing static code in a distributed program by equivalent code that is downloaded dynami-

cally from a (secure) server to hamper static analysis.

Server side execution (SSE). Removing code fragments from a distributed program and instead having equivalent

code executed on a remote (secure) server to hamper static and dynamic analysis.

Dynamic code modification (DCM). Just-in-time compilation, self-modifying code, custom dynamic class loading,
and use of functionality such as JavaScript’s eval () function that allows to execute code extracted from (dynamically

generated) strings. This excludes packing/encryption techniques, as discussed below.

Packing/encryption (ENC). Packing/encryption/compression of software components at different levels of granularity

(binaries, text sections, functions, basic blocks, ...) to be unpacked/decrypted/decompressed at run time.

Environmental requirements (ERE). Checks to identify being emulated, checks for path variables, and for other
properties of the host system on which the software runs to detect and block the use of certain tools. Excludes anti-
debugging techniques that check for the presence of a debugger or try to prevent being debugged. Includes techniques

to delay execution to avoid detection in short-running dynamic analysis.

Hardware-assisted protection (HWO). Hardware-assisted protections such as USB-dongles, SGX enclaves, hardware-

supported software encryption, etc.

Virtualization (VIR). Virtualization-based obfuscation, i.e., replacing code in a native, well-known real or virtual ISA
by code in a custom virtual ISA, and an interpreter thereof. This includes lightweight forms in which only opcodes are

remapped from their standard values to a custom numbering.

4 Analysis Definitions

Similar to how we analyzed the deployment of protections, we classified the papers’ use of code analysis methods and
features thereof to evaluate the strength of obfuscations against attackers’ toolboxes.
Earlier remarks on our evaluation of deployed protections in the previous section regarding sub-/superclasses of

methods and possible biases also apply here.
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Abstract interpretation (AI). General theory of the sound approximation of a program’s semantics. Parts of the

program are abstracted (simplified) and then interpreted step-by-step.

Constraint based analysis (CBA). Defining the specifications of a program analysis in a constraint language and using

a constraint solver to automate the implementation of the analysis.

Control flow analysis (CFA). Analyzing a program’s control flow on the basis of reconstructed control flow graphs or

call graphs.
Cryptanalysis (CRA). Custom analyses techniques of cryptographic algorithms, this includes algebraic attacks.

Disassembly / CFG reconstruction (DIS). Techniques to disassemble a program (i.e., identify its instructions) and to
(re)construct the functions and their control flow graphs. This is only marked for publications that specifically aim
for hampering or improving the disassembly process and the CFG reconstruction, not for papers that merely consider

reconstructed control flow graphs or disassembled code as a starting point for further analysis.

Diffing (DIF). Similarity detection; use of diffing tools; looking for similar patterns or corresponding code fragments
in one or more software versions. This excludes the identification of a priori determined patterns, in which case the

technique would be classified as pattern matching.

Data flow analysis (DFA). Analyzing the data flow and data dependencies in a program. This includes performing

alias analysis. Excludes slicing.

Dynamic event monitoring (DEM). Monitoring of events during the execution of a program. This includes API call
and system call monitoring, function hooking (e.g., via interposers or detours), code breakpoints, and data watches in

debuggers, etc.

Fuzzing (FUZ). Analyzing the operation or behavior of a program when executing it on numerous inputs, which

might be invalid, unexpected, or random data. This includes brute-forcing.

Human analysis (HUA). Manual analysis conducted by a human, manual reverse engineering activities such as

studying code fragments to comprehend them, or browsing through lists of filtered fragments.

Library dependency analysis (LIB). Analyses to identify used/imported/exported libraries and invocations of their
APIs.

Lifting (LIF). Decompilation of code in a concrete low-level representation to a more abstract (intermediate) repre-

sentation. This excludes the mere disassembling of code.

Machine Learning (ML). The use of machine learning for optimizing or training an analysis. Can be combined with
other analyses. For example, when a pattern matcher is optimized using machine learning techniques, the paper is

classified as using both pattern matching and machine learning.

Memory dumping (MD). Obtaining one or more snapshots of (part of) the memory state of a program under execution

for analysis.

Model checking (MCH). Using formal methods to prove or disprove the correctness of a certain system. Excludes the

use of model checking techniques to identify path conditions as part of symbolic execution or fuzzing.
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Network analysis (NEA). Sniffing of network traffic, looking at the network data from outside of the binary.
Normalization (NOR). Performing a code normalization/canonicalization step.

Out-of-context execution (OOC). Executing parts of a program on chosen inputs without executing the whole program
as is. This can be achieved with a debugger by injecting a custom “main” function into an existing program, by

interposing function calls, by extracting code from a program and repacking it into another program, etc.

Pattern matching (PAT). Signature-based analysis, pattern matching on, e.g., data, call sequences, instruction se-

quences, regular expressions obtained somehow, etc.

Sandboxing (SAN). Emulating or simulating a program, or running it in a virtualized environment to observe its

execution.

Slicing (SLI). Generating a subset of a program that includes all code statements that might affect the value of a

variable at a certain statement for all possible inputs.

Statistical analysis (SAN). All kinds of program analyses that rely on statistics. This includes, e.g., entropy measure-
ments and counting the occurrences of certain instructions or values or events, etc. Importantly, this only includes the
use of statistical methods during an attack or analyses, but excludes the a priori use of statistics during the learning
phases of analyses based on machine learning. Furthermore, a paper is not classified as using statistical analyses if

statistics are merely used to evaluate a presented analysis technique in the paper.

Symbolic execution (SYM). Exploring many possible execution paths by interpreting the execution of code on symbolic

rather than concrete inputs. Analyzing which paths can be executed and under which conditions.

Taint analysis (TNT). Marking and tagging variables/input/output or other data of a program and tracking which
data and computations depend on the tagged data or on which the tainted data depends.

Tampering (TAM). Statically or dynamically altering a program or its state. In this survey, we only consider tampering
with the goal of enabling some analysis (e.g., to circumvent anti-debugging techniques or to revert obfuscations), not
tampering to obtain a program with altered functionality. Furthermore, tampering excludes transforming an obtained

program representation without altering the program or its state itself.

Theorem proving (THE). Theorem proving includes SAT/SMT analysis. We do not classify a paper as relying on

theorem proving if it is only used to determine path execution conditions during symbolic execution or fuzzing.

Tracing (TRA). Generating or analyzing a trace of a program’s execution, i.e., a list of the executed operations and

possibly of other features, such as the data on which they operate.

Type analysis (TYP). This includes type inference and analyses of the class hierarchy.

5 Measurements Definitions

For each surveyed paper, we also recorded which aspects of samples, which effects of protections on samples, and
which properties of analyses and analysis results were measured in the experimental evaluation, and why those were
measured. We consider four possible reasons to perform measurements: to quantify stealth, potency, resilience, and

costs. The first three, relating to protection effectiveness, can share concrete metrics, depending on the considered
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analyses and protections. In other words, the same or similar concrete measurements can be used to evaluate stealth,
potency, or resilience, depending on the perspective and context. For costs, there is less ambivalence: all measurements

of different forms of costs serve only one purpose: measuring cost.

Stealth. The stealth of a protection is a measure of how difficult it is to detect that the concrete protection, its class,
or particular aspects of are present in a program and where. Protections in malware are stealthy if the presence of the
protection is hard to detect, not if the malware is hard to classify as malware. We mark a paper as measuring stealth if
we interpret the paper as evaluating it through some measurement, independent of whether or not the authors explicitly

mention stealth.

Potency. The potency of a protection is the effect that the protection has to make some analysis harder, meaning the
analysis will require more time or resources to reach the same result or that the result will be less precise or less useful.
Potency is typically obtained by increasing the (apparent) complexity of the object to be analyzed and/or by lowering its
suitability as input for an analysis. Potency is hence always measured or defined with respect to one or more concrete
or conceptual analyses or classes thereof. Historically, only human, manual analysis are considered for potency, but we
extend it to any analysis. For example, when facing malware detection techniques, a deployed protection is potent if it
succeeds in thwarting one or more (state-of-the-art) malware detection and classification techniques. We mark a paper

as measuring potency if we interpret the paper as evaluating potency through some measurement.

Resilience. The resilience of a protection is a measure of how difficult it is to counter-attack the protection, i.e., to
lower its potency with respect to some analysis. Counter-attacks can come in the form of adaptations to that analysis or
in the form of analyses and transformations that can be executed a priori. Resilience can also be measured with respect
to one or more analyses. For example, a potent protection used to protect malware against detection is also resilient if it
is hard to come up with improved or alternative detection and classification techniques to mitigate the protection’s
potency or if that potency can only be mitigated partially. We mark a paper as measuring resilience if we interpret
the paper as evaluating resilience through some measurement, even in case the paper does not explicitly mentions

resilience.

Classification statistics. These are the traditional metrics derived from false rates and true rates of identification
techniques. We mark papers in this category if the present precisions, recalls, F-scores, etc. This excludes malware

classification, for which we have a separate category.

Malware classification statistics. When a paper reports classification metrics for the binary classification of samples

as malware or goodware, we put it in this category.

Deltas/similarity. Does the paper measure how similar two or more samples or derivations thereof are, such as

original, unprotected programs vs. deobfuscated protected programs?
Entropy. Does the paper measure or discuss entropy (or related statistical properties) of some artifacts of a sample?
Size. Does the paper measure or discuss the impact of a protection on the size of a sample (e.g., file size)?
Manual analysis. Does the paper discuss or evaluate the complexity of a manual, human analysis?

Controlled human experiment analysis. Does the paper present the result of a controlled experiment with human

subjects (e.g., with students, reverse engineers, developers, penetration testers, etc.) related to software protection?
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Fig. 2. Number of papers per year with and without samples. Although the number of papers increases because of the methodology
as discussed in Section 2.1 of the main paper), the number of papers without samples in total per year does not increase.

Memory usage. Does the paper report or discuss the impact of a protection on the memory consumption of a sample?

Measurements on memory usage of a performed analysis were put into the Other costs category.
Opcode distribution. Does the paper evaluate the distribution of opcodes/instructions in a sample?

Code complexity. Does the paper report code complexity measurements, such as branching complexity, cyclomatic

complexity, points-to set sizes, etc.

Applicability (code coverage). Does the paper report on what fraction of the samples’ code a protection can be

deployed?

Power consumption. Does the paper evaluate a protection’s effect on power consumption? Measurements on power

consumption of a performed analysis were put into the Other costs category.

Attack/analysis overhead time. Does the paper evaluate how much (more) time certain attacks or analyses require

(except for manual effort) on samples?
Compilation time. Does the paper evaluate how long it takes to add a protection to samples?
Performance overhead time. Does the paper report the run-time overhead of protection?

Other costs. Does the paper present measurements of any other costs of a protection/analysis not listed above?
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Fig. 3. Cumulative graph of the sample size for goodware publications. On the x-axis we have the sample set size. On the y-axis we
have the percentage of papers lower or equal to the current x-value.

6 To Sample or not to sample

Figure 2 shows, per paper category, how many papers perform an evaluation on samples and how many lack such
an evaluation. This information complements that of Figure 3 in the main paper. The low number of malware papers
without samples is not surprising, given that one of the rules we used to categorize papers as malware papers is
specifically that the paper uses malware samples in its evaluation, as discussed in Section 2.3 of the main paper. Over
the years, we do not see a general trend in the absolute number of papers without samples. The relative numbers (i.e.,

comparing papers without samples to total number of papers per year) indicate a downward trend.

7 Correlation between Publication Venue Ranking and Sample Set Sizes

The cumulative graph for total sample set sizes in goodware papers in Figure 3 further illustrates the observation from
Section 3.3 from the main paper on the correlation between sample total set size and publication venue ranking. In
particular, for A" venues, but also for A and B venues, it is clear that their papers consider larger sample sets than lower

ranked venues.

8 Deployment of Protections

Figure 4 visualizes how many papers feature implementations of protections. It features six crosstabs for different
categories of papers. Next to each category inside the crosstab, the total number of papers reported in the crosstab is
given, i.e., how many papers in that category had at least one protection implemented, as well as the top value of the
color scale, i.e., the largest number occurring in the crosstab, which differs for each crosstab. Note that we included the
eleven goodware papers and seven malware papers with both obfuscation and deobfuscation/analysis contributions in
both of the corresponding crosstabs. These low numbers of multi-perspective papers with protection implementations
confirm our earlier discussion in Section 2.3 of the main paper about few papers presenting both cat and mouse moves

in the ongoing war between defenders and attackers.
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Each cell in the left part of each crosstab on Figure 4 reports the number of papers that deploy at least the protection
classes mentioned in its column and row. The diagonal shows how many papers deploy each type of protection; the
other cells show in how many papers at least two protection classes were deployed.

For each row, the right part of each crosstab in Figure 4 presents the distribution of the number of protections
deployed in the papers that also deploy that row’s protection. The top row of the right part sums up the number of
papers that deploy 1, 2, ..., up to “7 and more” different protections.

The studied protections differ from one type of programming language to another. This can be observed by comparing
the refinements of Figure 4, where similar crosstabs are presented in Figures 5 to 7 per type of programming language:

script, managed, and natively compiled.

8.1 Individual Protections

Complementary to the main observations discussed in Section 4.2 in the main paper, this section analyzes the popularity
of different protections for different types of languages.

Identifier renaming is popular in script and managed languages such as JavaScript and Java, obviously because
symbolic information such as class, field, and method names cannot be stripped from such software, they can only be
obfuscated. It is not popular in native languages, although some papers do research the obfuscation of C source code
for protecting it when it is distributed as source code.

For script languages, few other protections are frequently studied. Only data encoding/encryption, data-to-code-
conversion, and data transformation are deployed frequently on scripts, typically for obfuscating strings by encoding (as
data or code) and splitting them. And in fact many protections have not been researched at all for script languages. For
some techniques, this is probably the case because they are not (directly) applicable to script languages. Hardware-based
obfuscation and overlapping code are examples. For other techniques such as parallelization, which are not frequently
researched for any type of language, the reason for those not showing up in script obfuscation papers is probably the
relatively low sample size, i.e., the low number of papers. One clear exception is virtualization, which is frequently
researched for natively compiled languages and even a couple of times for managed languages, but not once for script
languages. We consider this a useful opportunity for future research, complementary to existing techniques, which, e.g.,
compile JavaScript to WebAssembly as a form of obfuscation [493].

Almost all papers that consider class-based transformations target managed languages, as do the vast majority of
the papers that consider repackaging. In the case of repackaging, the reason is that it is mostly used in the context of
Android malware apps, which consist mostly of Java bytecode. In the case of class-based transformations, this is due to
the object-oriented nature of Java and the fact that papers targeting natively compiled code focus on obfuscations that
can be deployed on imperative C code. This is the case, e.g., for all papers that rely on the Tigress, Obfuscator-LLVM,
and Diablo-based obfuscators. While the latter two can, to some extent, also protect IR and binary code originating
from C++ source code, they feature no protections specifically targeting classes.

Regarding control flow obfuscations, we notice that opaque predicates, control flow indirections, and the more general
category control flow transformation are less popular for script languages than for managed and native languages.
The one exception is control flow flattening, which is far less popular for managed languages than for script, let alone
native languages. We can only speculate on the reason for this, taking into account that managed language software is
obfuscated mainly by transforming bytecode, in particular, Java bytecode (and the DEX-variant thereof) as we observed
in Section 4.1 in the main paper. While we see no fundamental issue for implementing global (i.e., function-wide)

obfuscating transformations such as control flow flattening for Java or DEX bytecode, we do think that it is more
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complex than implementing control flow flattening in script source code or in native code compiled from C source code.
In particular, we think that the omnipresence of exception handling constructs in Java code could be a reason. Exception
handling is implemented in Java bytecode by means of exception tables that contain an entry for each exception that is
caught by each try block. Randomly mixing code fragments from a method body, as is done for control flow flattening,
requires rewriting and extending the exception tables. This adds complexity to the obfuscators, but it might also reduce
the strength of the protection, as the rewritten exception table allows one to identify which flattened fragments likely
belonged together in the original code.

Looking specifically at natively compiled languages, we notice that data transformation is much less popular there
than for other types of languages. We conjecture this is due to pointer aliasing complicating data flow analysis, a
prerequisite to deploying data transformation.

Regarding dynamic code modification, we observe that it is quite popular for script and native languages but less so
for managed languages. Importantly, the nature of this protection is very different in the three types of languages. In
native languages, dynamic code modification denotes binary code being updated/rewritten as the program executes.
In managed languages, dynamic code modification denotes custom class loading to alter which code gets loaded and
executed. In script languages, it denotes dynamic generation of source code not present statically, such as with an
eval () function that is provided a string decrypted at run time.

Anti-debugging is much less popular in managed language research than in script and natively compiled languages
research, despite anti-debugging being used in the vast majority of Android apps [25]. The reason for this discrepancy

is not clear.

8.2 Combinations of Protections

We also observed some interesting relations between protections. For example, almost all malware papers that deploy
repackaging also deploy data encoding/encryption and identifier renaming. This is not surprising, as data encoding/en-
cryption and identifier renaming are absolutely necessary to avoid trivial detection of repackaging. In this regard, these
papers do show maturity. Likewise, the vast majority of the papers deploying data transformation or identifier renaming
also deploy data encoding/encryption. This is also not surprising, as all of them are typically needed to mitigate trivial
malware detection.

For goodware papers, we notice that of those deploying control flow flattening, 63% = 46/73 also deploy opaque
predicates. Both are popular control flow obfuscations of which the implementation requires similar kinds of analyses
and transformations, so this correlation is not surprising. Of the 11 goodware papers that deploy loop transformations,
73% = 8/11 also deploy data transformation. This is also no surprise: transforming how data is stored in arrays and
transforming the loops iterating over the array’s elements go hand in hand. Perhaps more surprising is that of the
19 goodware papers in which MBA is deployed, 63% = 12/19 also deploy virtualization. This is not because MBA or
virtualization have any similarity or dependence in how they are deployed. Instead, they are related through the analysis
with which they are attacked, such as dynamic symbolic execution or code synthesis techniques that can be used to
deobfuscate, and are hence evaluated on, both MBA expressions and bytecode instruction handlers [14, 33, 66, 128, 135,
147].

9 Deployment of Analyses

Figure 8 depicts the use of individual analysis methods and combinations of them for each paper category, similar

to how previous crosstab figures visualized protections. Furthermore, Figure 9 depicts which protections are being
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evaluated with which analysis techniques in the surveyed papers. The analysis in Section 4.3 of the main paper is
mostly based on the numbers in these crosstabs. The ones in Figure 9 can help researchers who design new obfuscations
to select the most appropriate analysis to evaluate their obfuscations’s strengths, assuming that popularity relates to
appropriateness. Vice versa, those crosstabs can help researchers of new analysis techniques identify the obfuscations
with which they can stress-test their analysis. In this regard, these crosstabs complement the survey by Schrittwieser et
al. [148].

10 Software Protection Research Tools

Table 1 is an extended version of Table 4 in the main paper, now including the references to the papers that used the
tools.

The tools used in at least five surveyed papers can be categorized into compilation, obfuscation, analysis, and
anti-virus tools. When some tool can be used for multiple purposes, we list in the category of its most popular usage.
Unless noted otherwise, tools listed here are actively being developed and maintained at the time of writing of this
paper.

For many tools, we provide concrete recommendations on their usage for SP research. These recommendations
are tool-specific instantiations of the general recommendations in Section 7 of the main paper. Importantly, the tool-
specific recommendations need to be understood as applying to classes of tools: While we only formulate them for
the more popular tools listed in Table 1 and below, they can also apply to similar, non-listed tools. For example, the
recommendations provided below for IDA Pro also hold for Binary Ninja and Ghidra. Similarly, the recommendation

for TXL can be extended to any source-to-source rewriter with which one could implement source-level obfuscations.

10.1 Compilation tools

Recommendation: Whatever compilers with code optimization capabilities you use to generate natively compiled
samples, make sure to specify the compiler version being used and the optimization flags. Compilation of natively
compiled code without any optimization (i.e., with -00, which is the default option for most compilers) is absolutely

not acceptable, so make sure you provide a proper optimization level flag.

LLVM! is an open-source collection of modular and reusable compiler and toolchain technologies. Its core libraries
for optimization and code generation are built around a well-specified code representation known as the LLVM IR. This
IR is also suitable for deploying obfuscations (e.g., with OLLVM as will be discussed below), for symbolic execution
(with KLEE as will be discussed below), and as a target for code lifting techniques. LLVM is hence used in research as a

build tool, as a protection tool, and as an analysis tool.

Clang? is the open-source frontend of LLVM for C-like languages, including C, C++, and Objective-C. It can also be

used for source-to-source transformations and, hence, for protecting software.

GCC? or the open-source GNU Compiler Collection is Linux’ default compilation tool flow. As GCC’s design is not as
modular as LLVM, it is much less popular for implementing protections, and it is used much less for analysis. As for the

latter, GCC is only used to assess the resilience of obfuscations against compiler-like code analysis and optimizations.

!https:/llvm.org/
https://llvm.org/
Shttp://gee.gnu.org/
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Fig. 9. Crosstab analysis vs. protections. These crosstabs show how many papers deploy the listed analysis techniques (rows) on
samples protected with the listed protections (columns) for evaluating them. The acronyms are defined in Section 4 and Section 3.
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Table 1. The 39 tools used by more than five surveyed papers in their experimental evaluation. The columns A = Analysis, B = Build,
and P = Protection list how many papers use a tool for which purposes. T = Total gives the number of publications using the tool. The
$ column indicates whether the tool is: @ = free to use, @ = has a demo version, O = paid version only. The symbols in column O
describe the access to the source-code and mean @ = open-source, @ = upon request, O = closed-source. The F column describes how
flexible/adjustable the tool is, meaning @ = adaptable/extendable, ® = plug-ins, @ = configurable, O = rigid. Column History = Usage
per year since 2012 (left to right).

Tool History $ O F B A P T Tool History $ O F B A P T
LLVM _atamatlls @ @ @ 71 22 57 73 angr ® 0 0 - 3 - 13
GW:[2,3,4,6,13, 14, 15, 17, 35, 69, 71, 76, 77, 85, 104, 111, 127, 130, 134, 136, 147, 152, 161, GW:[4, 13,29, 36, 127, 134, 153, 159, 393, 509] — MW:[100, 149, 485]
162, 165, 167, 168, 178, 195, 199, 200, 207, 238, 241, 247, 282, 296, 297, 344, 345, 346, 350, 354, OllyDbg P - 13 — 13
364, 367, 368, 369, 371, 405, 410, 412, 426, 456, 468, 504, 506, 509, 530, 535, 555, 571, 572, 574, oW MW
594] — MW-[20, 100, 149, 185, 370, 388, 448, 472, 479] 3W:([103, 397, 408, 569, 570] — MW:[140, 144,25, 3:381,462,465, 544]
IDA Pro s @ O @ — 63 — 63 APKTool 8 4 — 12
GW:[3, 35, 69, 77, 103, 105, 112, 119, 138, 165, 167, 168, 171, 176, 177, 204, 221, 222, 223, 224, GW:[164, 193, 201, 354, 396] — MW:[50, 217, 218, 298, 467, 489, 525]
277,278, 279, 282, 292, 311, 312, 372, 379, 386, 397, 405, 415, 426, 456, 492, 505, 546, 548, 555, Code Virtualizer @d@ O O - - 12 12
564, 566, 568, 569, 570, 572] — MW:[20, 54, 100, 140, 144, 341, 363, 392, 403, 453, 458, 498, GW:[60, 125, 130, 153, 177, 359, 415, 534] — MW:[513, 533, 573, 581]
513, 515, 544, 576, 593] Allatori O 0O - - 10 10
= uanaullls p
GCC ® 0 03 52 GW:[43, 160, 181, 250, 380, 497, 554] — MW:(70, 92, 450]
W:(2, 3, 4, 6, 29, 30, 36, 69, 75, 78, 87, 103, 112, 114, 127, 128, 130, 134, 138, 145, 159, 161, o
165, 171, 175, 199, 200, 203, 221, 224, 238, 240, 247, 249, 277, 284, 320, 324, 364, 376, 378, 379, DashO S o 10 10
393, 406, 415, 500, 541, 547, 596] — MW:[149, 185, 192] GW:[181, 380, 428, 434, 449, 554] — MW:[70, 92, 208, 450]
Tigress Ceninals @ O D - - 37 37 Jad 00 0 _ - 1
GW:[4, 13, 14, 15, 29, 33, 36, 66, 69, 77, 85, 101, 103, 127, 128, 134, 136, 145, 147, 161, 162, 163, GW:[44, 93, 231, 250, 337, 342, 353, 380, 449, 460]
165, 167, 168, 199, 200, 350, 359, 378, 503] — MW:[20, 115, 149, 237, 479, 536] Sandmark ® O ® - — 10 10
OLLVM Ceeenatn. @ @ @ — 35 35 GWH[43, 44, 46, 93, 202, 250, 347, 449, 497, 528]
GW:[13, 35, 69, 71, 76, 85, 111, 130, 136, 161, 162, 165, 167, 168, 195, 199, 200, 354, 364, 367, UPX . . . 0 0 - _ 10
368, 369, 371, 412, 530, 572, 574] — MW:[20, 100, 149, 185, 388, 448, 472, 479] GW:433] — MW:(54, 140, 144, 275, 280, 363, 479, 544, 576]
Diablo 0 0 - 3 24 objdump ® - 9 — 9
GW:[2, 3, 8, 21, 47, 48, 119, 130, 141, 171, 203, 204, 247, 249, 277, 278, 288, 324, 326, 431, 432, GW:[105, 112, 138, 145, 279, 350] — MW:[189, 385, 485]
461, 540, 541] Syntia Y 9 9
4 . _ _
VirusTotal (AV) ® OO — 2 - 24 GW:[33, 66, 114, 128, 143, 147, 153, 199] — MW:[115]
MW:[42, 49, 92, 102, 507, 208, 219, 269, 323, 413, 414, 418, 424, 438, 442, 459, 467, 482, 485, .
507, 537, 544, 545, 598, 599] Triton e ® - 9 — 9
PIN O @ — »n — 20 .GW:[.IS,17,66,103,134,145,147,159,503] o0
GW:[103, 147, 153, 240, 324, 359, 408, 410, 433, 487] — MW:[20, 41, 65, 83, 189, 280, 339, 387, BinDiff - 8 = 8
533,581] GW:[35, 177, 204, 277, 278, 386, 548, 572]
ProGuard .. ®@ O @ - — 19 Dex2Jar 00 - : - 3
GW:[166, 181, 246, 314, 396, 477, 478, 497, 512, 554, 592] — MW:[26, 70, 92, 109, 356, 450, GW:[25, 164, 396, 476, 512] — MW:[281, 334, 385]
527, 600] TXL O - — 38 8
Soot ® 00 - 11 19 GW:[2, 21, 47, 48, 142, 203, 247, 258]
GW:[67, 166, 179, 180, 193, 231, 300, 316, 317, 318, 337, 353, 460] — MW:[26, 49, 322, 385, 73 ® ® 0 - ;3 1 8
9
450,591 GW:[77, 103, 128, 147, 238, 503] — MW:([65, 341]
Clang i @ O @17 — 18 ACTC e e - 7 7
GW:[2, 4, 6,13, 77, 85, 134, 152, 161, 241, 282, 296, 412, 456, 509, 572] — MW:[149, 370] GW:[2, 21, 47, 48, 142, 171, 203]
VMProtect 2 @O O - — 18 18 AndroGuard o0 0 - 7
;38\)\/1]:[60, 103, 125, 147, 153, 359, 408, 410, 415, 492, 526, 534] — MW:[115, 420, 513, 533, 573, GW:[194, 354, 396] — MW-[265, 525, 591, 599]
KLEE 00 - Arybo e — -7 - 7
GW:[103, 114, 143, 147, 238, 503] — MW:[115]
GW:[4, 13, 14, 15, 35, 77, 104, 127, 134, 238, 350, 405, 426, 509, 535, 555]
Eclipse .. e ®®: 3 ¢ 15 MeAfee (AV) O-7- 7
MW:[49, 54, 219, 268, 414, 453, 474]
GW:[21, 44, 45, 46, 93, 141, 142, 150, 197, 198, 202, 257] — MW:[401, 402, 403] ikit-1 oo o 7 7
. . scikit-learn — —
VisualStudio - _ _«» @ O @ 14 4 1 15
GW:[131, 145] — MW:([50, 132, 452, 479, 527]
GW:[27, 28, 103, 175, 198, 222, 433, 486, 570] — MW:[41, 51, 209, 274, 502, 537] Zelix Kl . 00 7 ;
. elix Klassmaster - -
Themida a0 O - - 14 14
5W:[43, 250, 256, 380, 428, 460] — MW:[109
GW:[125, 147, 153, 359, 408, 410, 487, 526] — MW:[51, 323, 363, 513, 573, 581] Q](:",M[I;Y 50. 256, 380, 428, 460 (109] PP p p

GW:[3] — MW:[54, 370, 395, 465, 513]

Visual Studio* is a proprietary IDE developed by Microsoft. It is used primarily for building applications but also as a

debugger for dynamic analysis and, in one case, for implementing a protection scheme.

10.2 Obfuscation tools

Tigress® is a state-of-the-art academic SP tool for the C programming language. It is developed by C. Collberg from

the University of Arizona, and by far the most popular tool for obfuscation research. Its non-commercial use is free, and

*https://visualstudio.microsoft.com/
Shttps://tigress.wtf/
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source code is available to academics upon demand. Tigress is capable of a wide variation of transformations (such
as virtualization, control flow flattening, opaque predicates, MBA expressions, self-modifying code, etc.) which it can
compose in a layered fashion. While Tigress approaches ten years of age, it is still under active development.
Recommendation: Tigress is a complex tool that requires thoughtful decision-making, and hence a considerable
effort, to select which protections to deploy, on which program fragments, and with which configurations. Make sure
to describe your choices and provide convincing arguments for them. Importantly, over time, the default configuration
options for Tigress have evolved, implying that the defaults that will be mentioned in the future on the Tigress website
for its latest version might no longer reflect the default options of the version you used at the time of your research. So,

make sure to mention what the default options are if you rely on them in your research.

OLLVM?® or Obfuscator-LLVM is an open-source, academic software protection tool built upon the LLVM compilation
suite [371]. It supports a number of relatively simple control flow obfuscations and diversifications applied to the
compiler’s IR. Unlike Tigress, OLLVM has only seen active development for a brief period, namely in the years 2015-2017,
and has not been maintained since.

Recommendation: Compared to Tigress, OLLVM is a weak and mostly obsolete protection tool, so using it to

generate protected samples is discouraged.

VMProtect” is a commercial code virtualization tool that transforms the original binary code into bytecode that is
interpreted by a VM embedded in the application. The VM code is obfuscated and hardened against code analysis,
and on top, this protection is layered with encryption, anti-debugging, and anti-process-virtualization techniques to
mitigate reverse engineering.

Recommendation: Compared to Tigress, VMProtect is more focused on a single protection. It still requires
configuration, however, to select the level of protection and the code to be protected. So as with Tigress, make sure to

do a proper configuration,and report it in your paper.

Code Virtualizer® is another commercial code virtualization tool.
Recommendation: Similar to VMProtect, Code Virtualizer is mostly focused on a single protection. It still requires

configuration, however, so spend the necessary effort to select configurations, and report them in your paper.

Themida® is a commercial SP tool that includes a wide range of techniques, including obfuscation, tamperproofing,
and preventive techniques such as dynamic encryption, anti-debugging, metamorphic code, code virtualization, and
API-wrapping.

Recommendation: Compared to VMProtect and Codevirtualizer, Themida offers more configuration options, and
hence requires more configuration effort, so spend the necessary effort to select configurations, and report them in

your paper.
UPX'0 is a simple, free executable packer.

Zelix Klassmaster'! is a commercial Java obfuscator. Its features include identifier renaming, string encryption,

control flow obfuscation, integer constant encryption, and type obfuscation.

Chttps://github.com/obfuscator-llvm/obfuscator
"https://vmpsoft.com/
8https://www.oreans.com/codevirtualizer.php
“https://www.oreans.com/themida.php
WOhttps://upx.github.io/
Uhttps://zelix.com/klassmaster/index.html
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Recommendation: As with other configurable commercial SP tools, you need to spend the necessary effort to select

configurations, and report them in your paper.

Allatori'? is a commercial Java obfuscation tool capable of, among others, identifier renaming, control flow obfuscation,
string encryption, and debug-info obfuscation, anti-decompilation techniques, and watermarking.
Recommendation: As with other configurable commercial SP tools, you need to spend the necessary effort to select

configurations and report them in your paper.

DashO"3 is another commercial Java and Android software protection tool that offers, among others, identifier
renaming, control flow obfuscation, string encryption, watermarking, tamperproofing, anti-debugging, anti-emulation,
and anti-hook protections.

Recommendation: As with other configurable commercial SP tools, you need to spend the necessary effort to select

configurations, and report them in your paper.

Sandmark' was an academic SP framework/tool developed at the University of Arizona to study software wa-
termarking, tamper-proofing, and code obfuscation of Java bytecode, including decision support for deploying the
supported protections [272]. It has not been maintained or developed since August 2004.

Recommendation: Being unmaintained for 20 years now, Sandmark should no longer be used for SP research.

ProGuard" is GuardSquare’s proprietary but free tool for Android mobile app developers. ProGuard is mainly aimed
at shrinking Java and Kotlin apps and obfuscates them as a side-effect. The resulting protection is much weaker than
what is available in tools that specifically target software protection, such as GuardSquare’s non-free DexGuard tool.
While ProGuard is one of the few popular proprietary obfuscators in SP research, its representativeness of real-world
obfuscation can hence be questioned.

Recommendation: Given its lack of advanced SPs, the use of ProGuard for state-of-the-art SP research is question-
able.

Diablo'® is a proof-of-concept, open-source link-time binary rewriting framework developed at Ghent University. It
has been used in research to deploy protections on binary code, including as the binary-level protection tool in the
already aforementioned ACTC. Furthermore, it has been used for program analysis, such as for implementing program
instrumentation in the style of the PIN tool listed below. Contrary to PIN, Diablo-based instrumentation is static. In
2020, the active maintenance and development of Diablo stopped.

Recommendation: Diablo, only supported long outdated versions of Android, GCC, LLVM, GNU binutils, and the
GNU C library. Furthermore, it lacks full support for today’s most used instruction set architectures such as 64-bit Intel,

AMD, and ARM architectures. We therefore advise against using it for SP research.

ACTC'7 or the ASPIRE Compiler Tool Chain was a proof-of-concept, open-source toolchain for protecting native
ARM Android libraries and native Linux libraries/binaries. It comprised several source-to-source rewriting stages as well

as several binary-rewriting stages for layering a range of SPs that implement an SP reference architecture [294], with

2https://allatori.com/
Bhttps://www.preemptive.com/products/dasho/
Yhttp://sandmark.cs.arizona.edu/
Dhttps://github.com/Guardsquare/proguard
LShttps://diablo.elis.ugent.be/
Thttps://github.com/aspire-fp7/actc
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GCC and LLVM compilers used in between for compiling the software. The ACTC supported a range of control flow and
data flow obfuscations, remote attestation, code mobility [247], code renewability [2], as well as anti-debugging [3, 203].

Recommendation: As the ACTC builds on Diablo, we advise against using it for SP research, for the same reason.

TXL'8 is a domain-specific language and toolset for implementing source-to-source rewriters. It is leveraged in the
aforementioned ACTC to implement its source-level protections.

Recommendation: Using source-to-source rewriters for deploying SPs is fine. However, in case your SPs target
natively compiled languages such as C or C++, there is the caveat that evaluating the SPs’ strength should not rely
solely on source-level measurements. Instead, the evaluation needs to include measurements and experiments on
properly built binaries (see our recommendations in Section 10.1 on compilers). Critically, check and report how the
transformations applied on the source code are reflected in changed binary code. Optimizing compilers can radically
transform code, including by eliminating code that is functionally redundant, so it is paramount to validate that the

source-level transformations survived the optimizing compiler as intended.

The crosstab in Figure 10 shows how the deployment of protection tools and the deployment of different types of

protections overlaps in the surveyed papers.

10.3 Analysis/Deobfuscation tools

IDA Pro'? is the most widely used interactive disassembler for natively compiled code. This proprietary tool from Hex-
Rays also serves as a debugger, thus integrating static and dynamic analysis. The user can override IDA Pro’s decisions
and provide hints to improve the disassembly results. The user can also inspect, query, and edit the disassembled code
through a range of views and interfaces. IDA Pro’s functionalities can be extended with plug-ins and scripts. Some
popular types of plug-ins and tools that build on IDA Pro are differs (e.g., BinDiff), decompilers, and library function
identification tools such as FL.ILR.T.

Recommendation: IDA Pro is extensible and it offers an API to manipulate the data it extracted from a binary, such
as the functions it reconstructed, their control flow graphs, and other data. Exploit these features in the way a real
reverse engineer would do, such that your evaluation by means of IDA Pro is representative. Hex-Rays’ yearly plug-in

t20 and their plug-in repository?! can provide inspiration for ways to exploit IDA Pro’s capabilities, and so do

contes
some research papers that included plug-ins in their evaluations [20, 69, 103, 140, 167, 168, 171, 372, 492, 498, 515].

In addition, it is critical to be aware that the heuristics that IDA Pro implements to disassemble a program and to
model the program in terms of its components are unique to IDA Pro. Radically different approaches exist, however, so
relying on only IDA Pro cannot give a complete answer to how disassemblers are impacted by new (anti-disassembly)
obfuscations. For example, IDA Pro considers each code byte to be part of, at most, one instruction and each basic block
to be part of only one function. Binary Ninja differs in those two aspects, as a result of which it can deal with overlapping
instructions much better and handles bogus interprocedural control flow very differently from IDA Pro [171]. In short, be
careful when only relying on IDA Pro; instead consider also using Binary Ninja, Ghidra, Radare2, and other comparable

tools.

Bhttps://www.txl.ca/
https://hex-rays.com/IDA-pro/
Zhttp:hex-rays.com/contest
Hhittps://plugins.hex-rays.com/
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Fig. 10. Crosstab Tools and Protection Techniques. For papers that evaluate samples protected with a specific tool, this crosstab
shows which protections are deployed in those papers, i.e., how many of those papers deploy the different protections.
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For additional recommendations regarding the evaluation of anti-disassembly obfuscations and disassemblers, we
refer to Section 4.1 of the report of the 2019 Dagstuhl Seminar on Software Protection Decision Support and Evaluation
Methodologies [68].

PIN?2 by Intel is a dynamic binary instrumentation framework for the the IA-32 and x86-64 instruction-set architec-
tures that enables the creation of dynamic program analysis tools. Its main use is the generation of execution profiles
and traces. PIN has been used in hundreds of research projects in the domains of computer architecture, programming
language design and implementation, and software engineering.

Recommendation: For dynamic analysis techniques, in particular trace-based techniques, it is important to evaluate
(experimentally or with an informed argument) their scalability to sufficiently complex dynamic behaviors, such as
traces in which the boundaries between relevant and irrelevant trace fragments have been obfuscated, or traces in
which dependencies between instructions have been obfuscated with anti-taint techniques.

For additional recommendations regarding the evaluation of trace-based analysis techniques, we refer to Section 4.2

of the report of the 2019 Dagstuhl Seminar on Software Protection Decision Support and Evaluation Methodologies [68].

KLEE?? is an open-source dynamic symbolic execution engine that is built on top of the LLVM compiler infrastructure
and operates on LLVM bitcode. KLEE has been used in hundreds of research projects on software testing. It is also used
for deobfuscation, e.g., to identify unreachable bogus code.

Recommendation: When using KLEE on IR code generated directly from source code with LLVM, e.g., to evaluate
how an obfuscation impacts symbolic execution, either provide convincing arguments as to why such experiments
are representative for how attackers could use symbolic execution starting from binaries instead of source code, or
complement KLEE with native code symbolic execution engines, such as BINSEC/SE [65] or angr [154]. Alternatively,
deploy KLEE on IR code obtained by decompiling or lifting binary code [77].

Eclipse®* is an open-source IDE for Java development that is extensible with different kinds of plug-ins. Such plug-ins
have been used for the analysis as well as the protection of software, and some authors use Eclipse as an interface to

their build tools.

Soot?® is an open-source static Java analysis and optimization framework. Its functionality to analyze and transform
Java bytecode has been used widely in the static software analysis community, in particular to obfuscate and to reverse

engineer such bytecode in SP research. Since December 2022, Soot has been officially succeeded by SootUp.

angr?® is an open-source binary analysis framework written in Python [154]. Its analysis capabilities include static
disassembly, lifting, decompilation, and control flow graph recovery, as well as dynamic symbolic execution, a.k.a.

concolic execution.

OllyDbg?’ is a closed-source but free GUI-based Win32 debugger. Its latest release dates from 2013, and offers no
functional 64-bit support. OllyDbg is, hence, no longer usable in research. It used to be very popular among hackers, in

part because of its open architecture. Many third-party plug-ins were available, including to defeat anti-debugging

Zhttps://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool. html
Bhttps://klee.github.io/

Znttps://eclipseide.org/

Bhittps://www.sable.mcgill.ca/soot/

Zhttps://angr.io/

2Thttp://ollydbg.de/
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software protections by interposing those protections’ queries to the OS and environment for evidence of ongoing

debugging.

Z3% is an open-source theorem prover from Microsoft Research. In the surveyed papers, Z3 is mainly used for
solving path conditions during symbolic execution but also for checking the equivalence of obfuscated and deobfuscated

code, such as MBA expressions.

objdump?® is part of the GNU Binutils, a collection of tools to inspect and manipulate binaries. It allows for the
inspection of object files and executables, their header data as well as their code and data content, and includes a simple

(linear-sweep) disassembler.

Syntia®® is an academic deobfuscation tool [33], which is reused as a baseline in several other papers that propose
alternative or improved deobfuscation techniques, and as an evaluation of novel or improved obfuscation techniques.
Recommendation: While Syntia is the most commonly evaluated black-box deobfuscation approach in the surveyed
papers, better-performing alternatives are now available, such as Xyntia [128], that can hence replace Syntia as a

baseline for comparison.

Dex2Jar3! is a tool to inspect Android Dalvik Executable (DEX) files and to convert them to related bytecode file
formats such as Java .class files or Smali, an IR for DEX files. It is used as a basic component in a number of non-trivial
analyses/deobfuscation methods approaches, but also as a standalone tool to evaluate the effectiveness of preventive

obfuscations that target this type of tool.

BinDiff* is a binary differ that builds on IDA Pro. This used to be a proprietary closed-source tool, but as of September
2023, it has been released as open-source code. Obviously, all uses collected in our survey predate that release. BinDiff

is mainly used for evaluating obfuscations, but also in the reverse engineering case study of DropBox [386].

APKTool?? is a tool for extracting resources from Android apps in the form of APK files, for rebuilding APK files

after manipulation of the resources, and for disassembling the code resources into the Smali IR.

Jad>* is a now obsolete Java bytecode decompiler that has mainly been used to study the effect of Java obfuscation

on decompilation.
AndroGuard® is a Python tool for analyzing, disassembling, decompiling, and debugging Android DEX files.

QEMU?® is an open-source machine emulator and virtualizer that is popular for dynamic analysis.
Recommendation: Given QEMU’s similarity to PIN, the same recommendations apply regarding scalability to

complex enough programs.

7

scikit-learn’’ is a collection of open-source Python tools for machine learning that has some popularity in malware

detection research.

Bhittps://github.com/Z3Prover/z3
Phttps://www.gnu.org/software/binutils/
3https://github.com/rub-sysSec/syntia

31 https://github.com/pxb1988/dex2jar
32https://www.zynamics.com/bindiff.html
$https://apktool.org/
34http://www.javadecompilers.com/jad
$https://github.com/androguard/androguard
3https://www.qemu.org/
SThttps://scikit-learn.org/
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Arybo®® is a tool for manipulation, canonicalization, and identification of MBA expressions. Given a complex
expression, it can return the bit-level symbolic representation thereof. It has been used for reverse engineering MBA

expressions and VM handlers.

Triton® is a Python library for building dynamic binary analysis tools. It can be used for dynamic symbolic execution,
dynamic taint analysis, lifting code to LLVM IR, and more.
Recommendation: Given that Triton can be used, among others, for similar dynamic analyses as PIN and QEMU,

the same recommendations apply regarding scalability to complex enough programs.

10.4 Anti-virus tools

McAfee AV* is a range of anti-virus and digital security solutions. In the surveyed papers, it is mainly used to
evaluate how (deobfuscating) transformations applied on samples before feeding them to malware detection tools can

improve those tools’ outcomes.
VirusTotal*! is a platform for analyzing files to detect malware.

The crosstabs in Figure 11 and Figure 12 show how the deployment of analysis tools, deobfuscation tools, and
anti-virus tools in the surveyed papers overlaps with the types of measurements and the types of analysis results being

reported in those papers.

11  Experiments with Human Subjects

Table 2 extends the information already presented in Table 6 of the main paper with details regarding the specific
protections that were composed and layered in the samples handled by humans in the reported experiments. It is clear
that few experiments included samples in which many protections were composed and layered.

We want to point out that the three largest combinations and layerings of protections listed for the two papers by
Ceccato et al. [47, 48] were selected by industrial SP experts for protecting the assets in use cases representative for
their business. As such, these combinations can serve as inspiration for researchers in search for relevant combinations

of protections. Another inspiration can be found on the Tigress website, which lists so-called protection recipes*2.

12 Overview and Description of Related Work

Table 3 lists related surveys in specific topics in the SP domain in chronological order by year.

38 https://github.com/quarkslab/arybo
3https://triton-library.github.io/
“Ohttps://www.mcafee.com/
“Thttps://www.virustotal.com/
“2https://tigress.wtf/recipes.html
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Fig. 11. Crosstab Tools and Measurements. For papers that evaluate samples by analysing them with a specific analysis tool, this
crosstab shows which measurements are reported in those papers, i.e., how many of those papers report the different measurements.
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Fig. 12. Crosstab Tools and Analysis Methods. For papers that evaluate samples by analysing them with a specific analysis tool, this
crosstab shows which analyses are reported in those papers, i.e., how many of those papers report results for the different types of
analysis.
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Table 2. Papers that report on (controlled) experiments involving human subjects performing MATE protection and attack tasks.
Subjects indicates how many subjects participated of different level of expertise, ranging from O bachelor and master students,
over ® PhD students and postgraduate students that are not experts in SP or reverse engineering, O students and amateurs with
considerable experience in SP or reverse engineering, @ professional programmers, to @ professional security experts and pen
testers. The samples column indicates what type of samples were handled by the human participants. The asterisks mark samples
that are real-world programs rather than being just a “Complex” program that is somewhere between a toy program and a real-world
program. The combinations column indicates which protections are deployed in the different samples, in which combinations, using
abbreviations defined in Section 3. Commas separate different samples, and + indicates that protections are composed in samples.
“Vanilla” denotes unprotected samples. The “Lang” column indicates what type of programming language was targeted: (N)ative,
(M)anaged, or (S)cript. The format column indicates the format in which the software was reverse engineered: (S)ource, (N)ative, or
(I)ntermediate. The time column indicates how long the experiments lasted. Question marks indicate the information is not available.

Paper Year Subjects Samples Combinations of protections deployed on samples Lang Format Time
f199] 2021 50 Toy MBA, DIV N N 12h
[27] 2021 14@ Toy Vanilla, CFF+OPP M 1 ?
[175) 2020 870 Complex Vanilla, SSE N S 2h
[91] 2020 22D @O Complex Vanilla, ? M S 1h
[48] 2019 1 J *Mobile, D2C+WBC+VIR+ADB+OPP+CFF+SSE+CMO+DIV, N N 30d

D2C+WBC+VIR+ADB+OPP+CFF+CMO+DIV,
D2C+ADB+OPP+CFF+SSE+CMO+DIV,

1P Toy OPP+CFF+ADB, DEN+ADB, DEN, WBC, VIR
[28] 2019 14 Toy Vanilla, CFF+OPP M 1 ?
[193] 2019 4@ Mobile DCM M I 40h
[93] 2018 2®64O  Complex Vanilla, IRE, OPP M 1 1.5h
fos] 2018 2®130O  Complex, Toy VIR+DIV N N 72h
[181] 2018 63 Mobile 2 M 1 ?
6] 2017 103100 Complex 2 S S 2
171 2017 6@ *Mobile D2C+WBC+VIR+ADB+OPP+CFF+SSE+CMO+DIV, N N 30d
D2C+WBC+VIR+ADB+OPP+CFF+CMO+DIV,
D2C+ADB+OPP+CFF+SSE+CMO+DIV
[117]1 2016 20 Complex 2 S S ?
[125] 2016 1 0 Complex, Toy VIR+ADB+LIH, ENC+ABD, VIR+DEN N N ?
n74] 2006 1®140O  Complex Vanilla, DTR N S 3.5h
[202] 2014 120 Complex Vanilla, IRE, OPP, IRE+OPP M S 1h
[44] 2014 22®520  Complex Vanilla, IRE, OPP M 1 h
[140) 2009 Q@ Malware ENC N N ?
[46] 2000 22®100  Complex Vanilla, IRE M i 4h
[45] 2008 8O Complex Vanilla, IRE M 1 4h

[137] 2007 5@ *Complex ?2+DEN+CFT+FUT+LIH+HWO N N 80m
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Table 3. Overview of existing surveys in the SP domain. The second column indicates whether the surveys focus on malware (M) or
goodware (G) software protection, as well as if it targets protections (P) and/or analyses including deobfuscation (A).

Ref. M/G ) o
Brief description
Year P/A
[58] G Collberg and Thomborson gave an overview of SPs and describe obfuscation, watermarking and tamper
2002 P proofing methods and group argue about their stealth, resilience, obscurity and costs. This work also
defines a threat model for each protection.
[12] Balakrishnan and Schulze categorized SPs into general, obstructing static analysis, targeting the disassembly
2005 P phase, and obfuscation related to malware.
[124] P Majumdar, Thomborson, et al. shortly gave an overview of the dynamic dispatcher model and opaque
2006 predicates as provable control-flow obfuscations.
Brand’s PhD thesis and its corresponding publications revised different anti-analysis techniques. While
[38] this work heavily focuses on analysis avoidance it also includes obfuscations (control flow and data
2010 P transformation as well as packing). Brand implements the different anti-analysis techniques into simple
programs and tries to detect or mitigate them.
s G Long, Liu, et al. opposed refactoring methods and obfuscation methods regarding their objectives, readability,
2010 P complexity, uniformity and understandability. They also create a model to link the business or functional
goals of the designer and attacker with the refactoring and obfuscation methods.
You and Yim described different types of anti-signature techniques for malware (encryption, oligomorphism,
[191] polymorphism, and metamorphism) and obfuscation techniques used by polymorphic and metamorphic
2010 P malware. The following obfuscation are discussed: dead-code insertion, register reassignment, subroutine
reordering, instruction substitution, code transposition, and code integration into the target. The focus is
on how the techniques look at a binary level.
[198] G A book chapter by Zhang, He, et al. describes the theory of obfuscation before the authors present and
2010 P evaluate a call-flow obfuscation and instruction substitution method.
[126] P Mavrogiannopoulos, Kisserli, et al. presented a taxonomy of self-modifying code. They categorize the
2011 methods in concealment, encoding, visibility, and exposure and assess several tools and methods.
[74] Egele, Scholte, et al. covered different automated dynamic analysis tools and techniques for malware. The
2012 MA dynamic analysis techniques entail: function call monitoring, function parameter analysis and information
flow tracking.
[95] G Hataba and El-Mahdy gauged the strength of obfuscation transformations and argued the usefulness for
2012 P cloud computing applications. The publication discusses potency, resilience and costs as well as complexity
metrics and map them to obfuscation techniques.
This special issue article by Willems and Freiling briefly summarizes static and dynamic program analysis
[182] A and reverse engineering countermeasures. In regards to obfuscation the authors mention code optimiza-
2012 P tion, opaque predicates, invalid branches, multi threading, import table obfuscation, runtime packers,

polymorphism, and virtualization.

Continues on the next page...
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Continued from the previous page...

Ref. M/G ) o
Year P/A Brief description
Branco, Barbosa, et al. gave an overview of anti-debugging and anti-disassembly as well as anti-vm used
[37] by malware. The identified techniques include the use of push and pop instructions instead of returns,
2012 P converting static data to procedures, dead and fake code insertion, instruction substitutions, code reordering,
register reassignment and library hiding.
Roundy and Miller analyzed different malware packers. The authors took several code measurements and
[144] M grouped those into categories, namely dynamic code, instruction obfuscation, code layout, anti-rewriting,
2013 A anti-tracing. Measurements in the “instruction obfuscation” class are e.g., percentage of indirect calls,
F number of indirect jumps or non-standard uses of call and ret instructions.
[43] G A study by Ceccato, Capiluppi, et al. quantified 44 obfuscation methods for Java by applying them on 18
2015 P applications and measuring 10 code metrics. The metrics consider the modularity, size and complexity of
the code. Their work shows, that some obfuscations substantially alter the potency of the code.
A short review by Sebastian, Malgaonkar, et al. described the areas of application, possible obfuscation
[150] measurements, available techniques and drawbacks of code obfuscation. They classify different obfuscation
2016 F techniques into layout transformations, control flow transformations, data abstraction and procedural
abstractions.
Hosseinzadeh, Rauti, et al. conducted a survey to compare the different programming languages, aims and
environments of publications in the areas of diversification and obfuscation. The systematic search and
selection process yielded 209 publications. One of their results is a categorization of the programming
language (e.g., Java, C, Machine code, JavaScript, SQL....) the publications apply the protection techniques
(7] P to. Hosseinzadeh, Rauti, et al. mapped the languages into language classes (e.g., native code, domain
2016 specific languages, scripts,...). Their identified aims of the publications in the field of software protection
cover: prevent reverse engineering, resist tampering, hide data and prevent exploitation. The targeted
environments (e.g., server, cloud, desktop, mobile, any) are mostly independent according to the two biggest
categories in their results being any and any native environments.
[19] The review article “Hopes, Fears, and Software Obfuscation” surveys research on indistinguishability
2016 P obfuscation and its potential impact.
Schrittwieser, Katzenbeisser, et al. described the arms race between SPs and code analysis. The authors
[148] used analysis goals (locating data, locating code, extracting data, extracting code, understanding code,
2016 P and simplifying code) and methods (pattern matching, automatic static, automatic dynamic, automatic
symbolic, and manual analysis) to classify the field of analysis.
Dalla Preda and Maggi tested the effectiveness and influence of obfuscation techniques on the detection
22?6 i/[ rate of anti-malware products for Android apps. Their results indicate malware detectors are not able to

recognize obfuscated malware versions.

Continues on the next page...
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Ref. M/G ) o
Year P/A Brief description
Collberg and Proebsting published a large-scale study on repeatability in the general field of computer
[55] science. For more than 600 publications they tried to get access to the code for the experiments from the
2016 authors and to reproduce the experiments. For only 37% of the publications the code for the experiments
could be obtained, and only just over half of them were executable (20% of the total number of papers).
Their lack of success of obtaining the results can also be seen in our data from little sample reuse.
In 2017 Banescu and Pretschner classified obfuscations against MATE attacks based on abstraction level
[16] (source, intermediate, binary machine code), unit (instruction, basic block, function, program, system
2016 P level), dynamics (static, dynamic) and target (data, code). MATE attacks based on the attack type (code
understanding, data item recovery, location recovery), dynamics (static, dynamic analysis), interpretation
(syntactic, semantic attacks) and alteration (passive, active attacks).
[188] P Xu, Zhou, et al. surveyed the field of SP and split it into code (source, binary) vs. model (circuits, Turing
2017 machines) oriented obfuscation.
In 2018 Hammad, Garcia, et al. compared different obfuscation tools for Android. They run the obfuscation
tool on benign and malicious apps and afterwards check if apps are installable and runnable. Furthermore
[92] M the obfuscated Malware is run through anti-malware products to check their detection rate. The authors
2018 A group the obfuscation techniques into trivial (disassembly/reassembly, modifying the AndroidManifest,
Moving the uncompressed data, repackaging) and non-trivial (junk code insertion, class renaming, member
reordering, string encryption, identifier renaming, control flow manipulation, reflection).
Wermke, Huaman, et al. measured the usage of obfuscation used by Android apps in the Google Play store
[181] G and visualized the details about obfuscation depending on last updated, number of downloads, number
2018 A of apps per account. The second part of their investigation targeted the developer. Of the around 300
participants 78% had heard of obfuscation, while only 48% had used protections. 78% of a subgroup of 70
people were not able to protect an app using ProGuard.
Kumar and Kurian studied control flow obfuscation techniques in Java. They looked at the control flow
obfuscation techniques for java used in papers and tools, tested 13 obfuscators on 16 programs and manually
[108] G evaluated the outcome. They identified 36 unique techniques in literature and seven from tools. The different
2018 P methods were put into classes based on the transformed component: expression, statement, basic block,
method, class. Their studies indicate a gap between theory and practice as only 13 of the 36 are implemented
by tools.
113 M Lita, Cosovan, et al. shared their knowledge on malware packers resulting from monitoring the development
2018 A of packers for almost two years. The authors described three packers used by malware families like Upatre,
Gamarue, Hedsen and explained the current trends in malware packers.
The systematic literature review by Hosseinzadeh, Rauti, et al. from 2018 analyzed 357 publications
[9%] from 1993-2017. The authors surveyed metadata, environment and aims of publications in the areas of
2018 P diversification and obfuscation. Analyzed metadata includes involved countries and universities, publication

type (journal article, conference paper,...) and the associated organizations’ sector (academic, industrial,

both, unknown).

Continues on the next page...
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Ref. M/G
Brief description
Year P/A
Wang, Bao, et al. analyzed the usage of obfuscation in the iOS ecosystem. They developed a system to
compute the likelihood of an app being obfuscated and evaluated it on over a million apps. The system
07 G identifies symbol renaming, string encoding, decompilation disruption and control flow flattening by
w018 A means of a natural language processing model, CFG analysis and the number of IDA Pro failures. Their
results suggest an upwards trend for obfuscation and a correlation between the likelihood of an app being
obfuscated and the type of application (finance, privacy intellectual properties and monetization are more
likely).
[29] The tutorial by Biondi, Given-Wilson, et al. describes static and dynamic malware detection techniques
2018 A and tools such as PEiD, DIE, YARA, Cuckoo, and angr. The authors show the basic usage for each tool and
describe their limitations in the presence of SPs.
In 2018 a huge study by Dong, Li, et al. investigated the dispersiveness of obfuscation in over 110.000
[70] M Android apps. The authors used machine learning on apps from Google Play and six 3rd-party markets as
2018 GA well as VirusShare and VirusTotal to detect identifier renaming, encryption, reflection and packing. The
machine learning approach uses the F-Droid Android app repository for the learning phase.

[5] Ahmadvand, Pretschner, et al. developed a taxonomy for the field of software protections. The taxonomy
2019 P describes the view from a view of the defender, the system and the attacker and portray how these views
interact with each other. The authors applied the taxonomy to around 50 publications.

M Graux, Lalande, et al. studied the development of obfuscation techniques over time. They used goodware
[82] G (GOOD dataset) as well as malware (AndroZoo, AMD and Drebin dataset) and compared the different
2019 A datasets. The observed techniques are packing (encrypting bytecode), native (usage of native code), DCL
(dynamic code loading) and reflection (for hiding method and fields).
[151] Semenov, Davydov, et al. described available code complexity metrics for obfuscated code and proposed
2019 A several improvements. Furthermore, for the different types of metrics the work outlines retrieval algorithms
using graphs.
[135] Ollivier, Bardin, et al. explored a subset of SPs against dynamic symbolic execution. For each protection the
2019 P publication outlines the strength, cost, correctness, stealth, and known mitigations as well as experimental
evaluations from previous literature.
Berlato and Ceccato looked at the state of protections against debugging and tampering in Android apps.
[25] G The work analyzed 23610 apps, out of which 75.62% employ two to four protections and only 7.49%
2020 A implemented no protection. The protection present in most apps were signature checking (88.90%), installer
verification (74.42%) and emulator detection (49.83%).
[139] M Qiu, Zhang, et al. compared the performance and resilience of Android malware detection and classification
2020 A approaches against code obfuscation.
[96] G In their book Horvath and Buttyan surveyed and explained concepts and methods for cryptographic
2020 P obfuscation, such as virtual black box obfuscation, indistinguishability obfuscation.

Continues on the next page...
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Ref. M/G
Brief description
Year P/A
Xu, Zhou, et al. created a taxonomy for layered obfuscation. It splits SPs into four layers: code element,
[187] P software component, inter-component and application layer. Each layer contains several sub-layers with
2020 the individual targets (layout, controls, data, methods, classes, library calls, resources, DRM systems, neural
networks).
Ardagna, Wu, et al. surveyed the features of machine learning approaches to detect malicious Android
[9] M applications, as well as which malware datasets were used for evaluation and the achieved accuracy.
2021 A Furthermore, the authors discussed the various obfuscation techniques present in the data sets and how
they influence the features.
[94] M Hagq and Caballero compared different approaches for binary code similarity detection. They focused on
2021 G the platform, targeted architectures, availability, datasets, methodology, and if the approach was tested
A against obfuscated code.
[196] A Zhang, Breitinger, et al. survey Android obfuscation and deobfuscation tools. They categorize, describe
2021 P each tool and publication and oppose the obfuscation techniques with the deobfuscation tools and analysis
methods.
Ebad, Darem, et al. analyzed 67 studies in the field of software obfuscation in a systematic literature review
M and look at the measurements, evaluation of the obfuscation quality. They reported numbers on the venues
[73] G with at least two publications (top being Computers & Security with six), the type of study (51 experiments,
2021 P one case study, 16 simulations) dataset (top two are: 33 in-the-wild, 10 manually written) as well as which
obfuscation quality the examined studies measured (20 potency, nine resilience, 21 cost, eight stealth, 36
similarity).
[103] Kochberger, Schrittwieser, et al. classified deobfuscation frameworks for virtualization-protected applica-
2021 tions based on the degree of automation, extracted artifacts, and analysis methods. The work also presents
experiments with existing tools on a uniform sample set for comparable results.
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