
S

Programming C++

Lecture 3

Howest, Fall 2013
Instructor: Dr. Jennifer B. Sartor

Jennifer.sartor@elis.ugent.be

Interface vs. Implementation

S  Interface defines and standardizes way to interact – says
what services are available and how to request them.

S  Implementation – how services are carried out.

S  Separate them: interface = *.h, implementation = *.cpp

S  *.h includes function prototypes and data members

S  *.cpp defines member functions (use :: binary scope
resolution operator to tie functions to class definition)

2

Abstraction and Encapsulation

S  Abstraction = creation of a well-defined interface for object

S  Encapsulation = keep implementation details private
S  Data members and helper functions private

S  Promotes software reusability

S  Can change class data representation and/or implementation
without changing code that uses class

S  Good software engineering

3

const Objects

S  const Course courseOne(“Intro to CS”);

S  const objects can only call const member functions – even if
function does not modify object

S  Member function that is const cannot modify data members

S  Member function that is const cannot call non-const
member functions

S  Constructors and destructors cannot be const

4

Member Initializer Syntax

#ifndef INCREMENT_H
#define INCREMENT_H
class Increment {
public:

Increment(int c = 0, int i = 1);
void addIncrement() {

count += increment;
}
void print() const;

private:
int count;
const int increment;

};
#endif

5

#include <iostream>
using namespace std;
Increment::Increment(int c, int i)

 : count(c), increment(i) {
 //empty body

}
void Increment::print() const

 cout << “count = “ << count <<
 “, increment = “ << increment <<
 endl;

}

Member Initializer Syntax

S  All data members can be initialized with this

S  const data members and data members that are references must be
initialized with this

S  After constructor’s parameter list and before left brace, put “:”
then dataMemberName(initialValue)

S  Member initializer list executes before constructor body

S  Member objects either initialized with member initializer or
member object’s default constructor

6

Static Data Members

S  Classes have only 1 copy of static data members whereas
object instances each have their own copy of non-static data
members
S  Object instance size determined by non-static members

S  Static member initialization
S  Initialized only once, only static members can be initialized in class

definition (.h)

S  Static members with fundamental types initialized by default to 0.

7

Static and Scope

S  We now have another scope: class scope
S  Inside class scope, data members accessible by all member

functions

S  Outside, public data members referenced through object handle

S  Static data members have class scope

S  Access using className::staticDataMemberName (can use a
particular object instance name if any exist)

8

A Class

//Course.h
#include <string>
using namespace std;
class Course {
public:

Course(string name);
void setCourseName(

 string name);
string getCourseName() const;
static int getCount();

private:
string courseName;
static int count;

};

9

//Course.cpp
#include “Course.h”
int Course::count = 0; //no static here!
int Course::getCount() {//no static here!

 return count;
}
Course::Course(string name) {

 setCourseName(name);
 count++;

}
void Course::setCourseName(string name) {

courseName = name;
}
string Course::getCourseName() const {

return courseName;
}

Using static Data Members

S  Course::getCount(); //don’t need objects of class to exist to
access static data member

S  Course *myCourse = new Course(“CS105 C++”);

S  myCourse->getCount(); //but you can use them if they
exist

10

this

S  Every object has access to its own address through pointer called
this (C++ keyword)

S  this pointer passed by the compiler as implicit argument to each
object’s non-static member functions

S  this pointer’s type is const pointer to type of class (i.e. Course *
const)

S  In Course class, accessing data member “courseName” implicitly
uses this. Or: this->courseName or (*this).courseName

11

Tricky Things with Objects

S  What happens if you…
S  Set one object equal to another?

Course myC++Course(“CS105: C++ Programming”);

Course myFavoriteCourse = myC++Course;
S  Pass an object to a method as a parameter?

void myMethod(Course myCourse);

12

Tricky Things with Objects

S  What happens if you…
S  Set one object equal to another?

S  Object =

S  Pass an object to a method as a parameter?
S  Object copy

S  Both assignment operator and object copy are provided by
default, and do member-wise assignment
S  However, if you have pointer member variables, you have to

write your own!

13

Object Copies

S  When objects are passed to functions or returned, they are by
default passed by value; a copy needs to be created

S  How: copy constructor (default provided by compiler) that does
member-wise copying of object (assign each member variable)

Course(const Course &courseToCopy) { //why “&”?

 courseName = courseToCopy.courseName;

}

14

Object =

S  When one object is set to equal another object

Course myFavoriteCourse = myC++Course; //example

S  How: object assignment method (default provided by
compiler) that does member-wise assignment of each
member variable

Course& operator= (Course const &otherCourse) {
 courseName = otherCourse.courseName;

}

15

Member Initializer Example

Employee::Employee(const char* const first, const char* const last,
const Date &dateOfBirth, const Date &dateOfHire)
: birthDate(dateOfBirth),

 hireDate(dateOfHire) {

/*above initializers each call

copy constructor of Date class*/

//here use first & last to initialize members

…..

}
16

//from Employee.h
class Employee {
private:

char firstName[25];
char lastName[25];
const Date birthDate;
const Date hireDate;

};

Why References, Why Pointers?

S  References
S  invoke functions implicitly, like copy constructor, assignment

operator, other overloaded operators
S  Can pass large objects without passing address

S  Don’t have to use pointer semantics

S  Pointers
S  Good for dynamic memory management
S  Ease of pointer arithmetic

S  Provides level of indirection in memory

17

Tidbits about Classes

S  Copy constructor and overloaded assignment operator (=)
have to be provided when you have member variables that
are dynamically allocated
S  Destructor also should be provided

S  To prevent one object from being assigned to another,
declare assignment operator as private member function.

S  To prevent objects from being copied, make both overloaded
assignment operator and copy constructor private.

18

