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Interface vs. Implementation 

S  Interface defines and standardizes way to interact – says 
what services are available and how to request them. 

S  Implementation – how services are carried out. 

S  Separate them: interface = *.h, implementation = *.cpp 

S  *.h includes function prototypes and data members 

S  *.cpp defines member functions (use :: binary scope 
resolution operator to tie functions to class definition) 
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Abstraction and Encapsulation 

S  Abstraction = creation of  a well-defined interface for object 

S  Encapsulation = keep implementation details private 
S  Data members and helper functions private 

S  Promotes software reusability 

S  Can change class data representation and/or implementation 
without changing code that uses class 

S  Good software engineering 
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Tricky Things with Objects 

S  What happens if  you… 
S  Set one object equal to another? 

Course myC++Course( “CS105: C++ Programming” ); 

Course myFavoriteCourse = myC++Course; 
S  Pass an object to a method as a parameter? 

void myMethod(Course myCourse);  
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Tricky Things with Objects 

S  What happens if  you… 
S  Set one object equal to another? 

S  Object = 

S  Pass an object to a method as a parameter? 
S  Object copy 

S  Both assignment operator and object copy are provided by 
default, and do member-wise assignment 
S  However, if  you have pointer member variables, you have to 

write your own! 
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Object Copies 

S  When objects are passed to functions or returned, they are by 
default passed by value; a copy needs to be created 

S  How: copy constructor (default provided by compiler) that does 
member-wise copying of  object (assign each member variable) 

Course( const Course &courseToCopy ) {   //why “&”? 

 courseName = courseToCopy.courseName; 

} 
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Object = 

S  When one object is set to equal another object 

Course myFavoriteCourse = myC++Course;  //example 

S  How: object assignment method (default provided by 
compiler) that does member-wise assignment of  each 
member variable  

Course& operator= (Course const &otherCourse) { 
 courseName = otherCourse.courseName; 

} 
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Member Initializer Example 

Employee::Employee(const char* const first, const char* const last, 
const Date &dateOfBirth, const Date &dateOfHire) 
: birthDate( dateOfBirth ),  

  hireDate( dateOfHire ) { 

/*above initializers each call  

copy constructor of  Date class*/ 

//here use first & last to initialize members 

….. 

} 
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//from Employee.h 
class Employee { 
private: 

char firstName[25]; 
char lastName[25]; 
const Date birthDate; 
const Date hireDate; 

}; 



Why References, Why Pointers? 

S  References  
S  invoke functions implicitly, like copy constructor, assignment 

operator, other overloaded operators 
S  Can pass large objects without passing address 

S  Don’t have to use pointer semantics 

S  Pointers 
S  Good for dynamic memory management 
S  Ease of  pointer arithmetic 

S  Provides level of  indirection in memory 
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Tidbits about Classes 

S  Copy constructor and overloaded assignment operator (=) 
have to be provided when you have member variables that 
are dynamically allocated 
S  Destructor also should be provided 

S  To prevent one object from being assigned to another, 
declare assignment operator as private member function. 

S  To prevent objects from being copied, make both overloaded 
assignment operator and copy constructor private. 
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Inheritance 

S  Software reuse – inherit a class’s data and behaviors and enhance 
with new capabilities.   

S  Existing class = base class, inheriting class = derived class (no super/
subclass like Java) 

S  Derived class is more specialized than base class.  Object instances of  
derived class are also object of  base class (All cars are vehicles, but 
not all vehicles are cars.) 

S  There can be multiple levels of  inheritance. 
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Inheritance Details 

S  class Circle : public Shape 
S  What is base, what is derived here? 

S  Default = public inheritance (base member variables retain same 
access level in derived class), but there are other types 

S  When redefine something in derived class, use 
<baseclassName>::member to access base class’s version. 
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Base Class Example 

class Member { 
public:  

Member(string name); 
Member( Member const &); 
Member& operator= (Member const &); 
~Member(); 
 
string getName() const; 
void setName(string name); 
void print() const; 

private: 
string myName; 

}; 
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Derived Class Example 
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#include “Member.h” 
class Employee : public Member { 
public:  

Employee(string name, double money); 
Employee( Employee const &); 
Employee& operator= (Employee const &); 
~Employee (); 
 
double getSalary() const; 
void setSalary(double money); 
void print() const; 

private: 
double salary; 

}; 



Employee Constructor 

#include “Employee.h” 
Employee::Employee( string name, double money ) 

: Member(name)   //base class initializer syntax 
{ 

salary = money; 
}  

S  C++ requires derived class constructor to call base class 
constructor to initialize inherited base class data members (if  
not explicit, default constructor would be called). 
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Employee’s print Function 

void Employee::print() const  

{ 
cout << “Employee: “; 

Member::print();  //prints name from base class 

cout << “\nsalary: “ << getSalary() << endl; 

} 
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Inheritance and  
Member Variables 

S  Derived class has all attributes of  base class. 
S  Derived class can access non-private members of  base class. 

S  protected members of  base class are accessible to members and 
friends of  any derived classes. 

S  Derived does not inherit constructor or destructor of  base. 
S  Derived class can re-define base-class member functions for its 

own purposes, customizing base class behaviors.  

S  Size of  derived class = non-static data members of  derived class + 
non-static data members of  base class (even if  private) 
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Constructor/Destructor Order 

S  When we instantiate a derived class:  
1.  Base class’s member object constructors execute (if  they exist) 

2.  Base class constructor executes 
3.  Derived class’s member object constructors execute 

4.  Derived class constructor executes 

S  Destructors called in reverse order. 

S  Base class constructors, destructors and overloaded assignment 
operators are not inherited by derived classes.  However derived class 
can call base class’s version of  these. 
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Encapsulation 

S  Given a derived class can directly access and modify 
protected data members of  base class, should base class 
member variables be protected?  Or private? 
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Encapsulation 

S  Given a derived class can directly access and modify 
protected data members of  base class, should base class 
member variables be protected?  Or private? 
+  No overhead of  function call in derived class 

−  Direct modification does not allow for error checking. 

−  If  base class member variables names change, we have to 
change all derived classes use of  them. 
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Kinds of  Inheritance 

Base Class 
Access (down) 

Public 
inheritance 

Protected 
inheritance 

Private 
inheritance 

public public protected private 

protected protected protected private 

private private private private 
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Instantiating Objects Example 

1.  #include “Member.h” 
2.  #include “Employee.h” 
3.  Member m1(“Jill”); 
4.  Employee e1(“Jack”, 65000); 
5.  Member *mPtr = &m1; 
6.  cout << mPtr->getName();  //what does this print? 
7.  mPtr->print();     //and this? 
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Instantiating Objects Example 

1.  #include “Member.h” 
2.  #include “Employee.h” 
3.  Member m1(“Jill”); 
4.  Employee e1(“Jack”, 65000); 
5.  Member *mPtr = &m1; 
6.  cout << mPtr->getName();  //Jill 
7.  mPtr->print();     //Jill 
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Instantiating Objects Example 

1.  #include “Member.h” 
2.  #include “Employee.h” 
3.  Member m1(“Jill”); 
4.  Employee e1(“Jack”, 65000); 
5.  Member *mPtr = &m1; 
6.  Employee *ePtr = &e1; 
7.  cout << ePtr->getName() << ePtr->getSalary();  //result? 
8.  ePtr->print();  //what function does this call? 
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Instantiating Objects Example 

1.  #include “Member.h” 
2.  #include “Employee.h” 
3.  Member m1(“Jill”); 
4.  Employee e1(“Jack”, 65000); 
5.  Member *mPtr = &m1; 
6.  Employee *ePtr = &e1; 
7.  cout << ePtr->getName() << ePtr->getSalary();  //Jack 65000 
8.  ePtr->print();      //Employee.print which calls Member.print 
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Instantiating Objects Example 

1.  #include “Member.h” 
2.  #include “Employee.h” 
3.  Member m1(“Jill”); 
4.  Employee e1(“Jack”, 65000); 
5.  Member *mPtr = &m1; 
6.  Employee *ePtr = &e1; 
7.  mPtr = &e1;  //is this ok?  Base class pointer to derived class? 
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Instantiating Objects Example 

1.  #include “Member.h” 
2.  #include “Employee.h” 
3.  Member m1(“Jill”); 
4.  Employee e1(“Jack”, 65000); 
5.  Member *mPtr = &m1; 
6.  Employee *ePtr = &e1;  
7.  mPtr = &e1;    //Yes, valid;  all Employees are Members 
8.  ePtr = &m1;    //this valid? Derived class pointer to base class? 
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Instantiating Objects Example 

1.  #include “Member.h” 
2.  #include “Employee.h” 
3.  Member m1(“Jill”); 
4.  Employee e1(“Jack”, 65000); 
5.  Member *mPtr = &m1; 
6.  Employee *ePtr = &e1; 
7.  mPtr = &e1;     //Yes, valid;  all Employees are Members 
8.  ePtr = &m1;     //No, not all Members are Employees; 

          //compiler error 
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