
S

Programming C++

Lecture 4

Howest, Fall 2013
Instructor: Dr. Jennifer B. Sartor

Jennifer.sartor@elis.ugent.be

Interface vs. Implementation

S  Interface defines and standardizes way to interact – says
what services are available and how to request them.

S  Implementation – how services are carried out.

S  Separate them: interface = *.h, implementation = *.cpp

S  *.h includes function prototypes and data members

S  *.cpp defines member functions (use :: binary scope
resolution operator to tie functions to class definition)

2

Abstraction and Encapsulation

S  Abstraction = creation of a well-defined interface for object

S  Encapsulation = keep implementation details private
S  Data members and helper functions private

S  Promotes software reusability

S  Can change class data representation and/or implementation
without changing code that uses class

S  Good software engineering

3

Tricky Things with Objects

S  What happens if you…
S  Set one object equal to another?

Course myC++Course(“CS105: C++ Programming”);

Course myFavoriteCourse = myC++Course;
S  Pass an object to a method as a parameter?

void myMethod(Course myCourse);

4

Tricky Things with Objects

S  What happens if you…
S  Set one object equal to another?

S  Object =

S  Pass an object to a method as a parameter?
S  Object copy

S  Both assignment operator and object copy are provided by
default, and do member-wise assignment
S  However, if you have pointer member variables, you have to

write your own!

5

Object Copies

S  When objects are passed to functions or returned, they are by
default passed by value; a copy needs to be created

S  How: copy constructor (default provided by compiler) that does
member-wise copying of object (assign each member variable)

Course(const Course &courseToCopy) { //why “&”?

 courseName = courseToCopy.courseName;

}

6

Object =

S  When one object is set to equal another object

Course myFavoriteCourse = myC++Course; //example

S  How: object assignment method (default provided by
compiler) that does member-wise assignment of each
member variable

Course& operator= (Course const &otherCourse) {
 courseName = otherCourse.courseName;

}

7

Member Initializer Example

Employee::Employee(const char* const first, const char* const last,
const Date &dateOfBirth, const Date &dateOfHire)
: birthDate(dateOfBirth),

 hireDate(dateOfHire) {

/*above initializers each call

copy constructor of Date class*/

//here use first & last to initialize members

…..

}
8

//from Employee.h
class Employee {
private:

char firstName[25];
char lastName[25];
const Date birthDate;
const Date hireDate;

};

Why References, Why Pointers?

S  References
S  invoke functions implicitly, like copy constructor, assignment

operator, other overloaded operators
S  Can pass large objects without passing address

S  Don’t have to use pointer semantics

S  Pointers
S  Good for dynamic memory management
S  Ease of pointer arithmetic

S  Provides level of indirection in memory

9

Tidbits about Classes

S  Copy constructor and overloaded assignment operator (=)
have to be provided when you have member variables that
are dynamically allocated
S  Destructor also should be provided

S  To prevent one object from being assigned to another,
declare assignment operator as private member function.

S  To prevent objects from being copied, make both overloaded
assignment operator and copy constructor private.

10

Inheritance

S  Software reuse – inherit a class’s data and behaviors and enhance
with new capabilities.

S  Existing class = base class, inheriting class = derived class (no super/
subclass like Java)

S  Derived class is more specialized than base class. Object instances of
derived class are also object of base class (All cars are vehicles, but
not all vehicles are cars.)

S  There can be multiple levels of inheritance.

11

Inheritance Details

S  class Circle : public Shape
S  What is base, what is derived here?

S  Default = public inheritance (base member variables retain same
access level in derived class), but there are other types

S  When redefine something in derived class, use
<baseclassName>::member to access base class’s version.

12

Base Class Example

class Member {
public:

Member(string name);
Member(Member const &);
Member& operator= (Member const &);
~Member();

string getName() const;
void setName(string name);
void print() const;

private:
string myName;

};

13

Derived Class Example

14

#include “Member.h”
class Employee : public Member {
public:

Employee(string name, double money);
Employee(Employee const &);
Employee& operator= (Employee const &);
~Employee ();

double getSalary() const;
void setSalary(double money);
void print() const;

private:
double salary;

};

Employee Constructor

#include “Employee.h”
Employee::Employee(string name, double money)

: Member(name) //base class initializer syntax
{

salary = money;
}

S  C++ requires derived class constructor to call base class
constructor to initialize inherited base class data members (if
not explicit, default constructor would be called).

15

Employee’s print Function

void Employee::print() const

{
cout << “Employee: “;

Member::print(); //prints name from base class

cout << “\nsalary: “ << getSalary() << endl;

}

16

Inheritance and
Member Variables

S  Derived class has all attributes of base class.
S  Derived class can access non-private members of base class.

S  protected members of base class are accessible to members and
friends of any derived classes.

S  Derived does not inherit constructor or destructor of base.
S  Derived class can re-define base-class member functions for its

own purposes, customizing base class behaviors.

S  Size of derived class = non-static data members of derived class +
non-static data members of base class (even if private)

17

Constructor/Destructor Order

S  When we instantiate a derived class:
1.  Base class’s member object constructors execute (if they exist)

2.  Base class constructor executes
3.  Derived class’s member object constructors execute

4.  Derived class constructor executes

S  Destructors called in reverse order.

S  Base class constructors, destructors and overloaded assignment
operators are not inherited by derived classes. However derived class
can call base class’s version of these.

18

Encapsulation

S  Given a derived class can directly access and modify
protected data members of base class, should base class
member variables be protected? Or private?

19

Encapsulation

S  Given a derived class can directly access and modify
protected data members of base class, should base class
member variables be protected? Or private?
+  No overhead of function call in derived class

−  Direct modification does not allow for error checking.

−  If base class member variables names change, we have to
change all derived classes use of them.

20

Kinds of Inheritance

Base Class
Access (down)

Public
inheritance

Protected
inheritance

Private
inheritance

public public protected private

protected protected protected private

private private private private

21

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  cout << mPtr->getName(); //what does this print?
7.  mPtr->print(); //and this?

22

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  cout << mPtr->getName(); //Jill
7.  mPtr->print(); //Jill

23

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  Employee *ePtr = &e1;
7.  cout << ePtr->getName() << ePtr->getSalary(); //result?
8.  ePtr->print(); //what function does this call?

24

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  Employee *ePtr = &e1;
7.  cout << ePtr->getName() << ePtr->getSalary(); //Jack 65000
8.  ePtr->print(); //Employee.print which calls Member.print

25

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  Employee *ePtr = &e1;
7.  mPtr = &e1; //is this ok? Base class pointer to derived class?

26

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  Employee *ePtr = &e1;
7.  mPtr = &e1; //Yes, valid; all Employees are Members
8.  ePtr = &m1; //this valid? Derived class pointer to base class?

27

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  Employee *ePtr = &e1;
7.  mPtr = &e1; //Yes, valid; all Employees are Members
8.  ePtr = &m1; //No, not all Members are Employees;

 //compiler error

28

