
S

Programming C++

Lecture 5

Howest, Fall 2013
Instructor: Dr. Jennifer B. Sartor

Jennifer.sartor@elis.ugent.be

Templates

S  Function and class templates – you specify with a single code
segment an entire range of related (overloaded) functions or
classes (function or class-template specializations).

S  Generic programming!

S  Templates are stencils of pretty shapes

S  Template specializations are tracings we make of stencils –
same shape but maybe different colors.

2

Remember Function Templates

S  We can do function overloading
int boxVolume(int side) {

 return side * side * side;
}
double boxVolume(double side) {

 return side * side * side;
}

S  Why define 2 functions that look identical, but have different types?

S  Overloading that is more compact and convenient = function
templates. Only write it once!

3

Function Templates

S  Template
template <class T> //or template <typename T>
T boxVolume(T side) {

 return side * side * side;
}

S  C++ compiler automatically generates separate function template
specializations for each type the function is called with.

S  T is placeholder for actual data type

S  int result = boxVolume(3); double result = boxVolume(6.2);

4

Class Stack Template Example

5

//Stack.h
template< typename T >
class Stack {
public:

 Stack(int = 10);
 ~Stack() { delete [] stackPtr; }
 bool push(const T &); //push element
 bool pop(T &); //pop element
 bool isEmpty() const {
 return top == -1;
 }
 bool isFull() const {
 return top == (size -1);
 }

private:
 int size;
 int top;
 T *stackPtr;

};

template< typename T >
Stack< T >::Stack(int s) //constructor

 : size(s > 0 ? s : 10),
 top(-1),
 stackPtr(new T[size]) { }

template< typename T >
bool Stack< T >::push(const T &pushValue) {

 if (!isFull()) {
 stackPtr[++top] = pushValue;
 return true;
 } return false;

}
template< typename T >
bool Stack< T >::pop(T &popValue) {

 if (!isEmpty()) {
 popValue = stackPtr[top--];
 return true;
 } return false;

}

Test Stack

6

#include <iostream>
using namespace std;
#include “Stack.h”
int main() {

 Stack< double > doubleStack(5);
 double doubVal = 1.1;
 while (doubleStack.push(doubVal))
 doubVal += 1.1;
 while (doubleStack.pop(doubVal))
 cout << doubVal << ‘ ‘;

 Stack< int > intStack; //default size
 int intVal = 1;
 while (intStack.push(intVal))
 intVal ++;
 while (intStack.pop(intVal))
 cout << intVal << ‘ ‘;
 return 0;

}

S  Testing double stack vs.
int stack is very similar
pattern.

S  You could create a
template function to
test your template class!

More Details

S  Because a compiler compiles template classes on demand, it
requires the definition (usual .cpp) to be in the same file as
the declaration (usual .h).

S  http://www.cplusplus.com/doc/tutorial/templates/

S  Make sure operators used in template class are implemented
if used with user-defined type!
S  Our Stack requires user-defined type to have default

constructor and assignment operator.

7

Specifics of Templates

S  You can have nontype template parameters too
S  template< typename T, int elements > //compile time

constant
S  Stack< double, 100 > mostRecentSalesFigures;
S  .h could contain member: T stackHolder[elements];

S  Type parameter can specify default type
S  template< typename T = string >
S  Stack<> jobDescriptions;

S  Explicit specialization for a particular type
S  template<>
S  class Stack< Employee > { … };

8

9

Input to Main Function

int main(int argc, char* argv[]) {

cout << "Number of arguments is " << argc << endl;

for (int i = 0; i < argc; i++) {

cout << "Argument " << i << " is " << argv[i] << endl;

}
ifstream inputFile(argv[1], ios::in);

}

10

11

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  cout << mPtr->getName(); //what does this print?
7.  mPtr->print(); //and this?

12

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  cout << mPtr->getName(); //Jill
7.  mPtr->print(); //Jill

13

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  Employee *ePtr = &e1;
7.  cout << ePtr->getName() << ePtr->getSalary(); //result?
8.  ePtr->print(); //what function does this call?

14

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  Employee *ePtr = &e1;
7.  cout << ePtr->getName() << ePtr->getSalary(); //Jack 65000
8.  ePtr->print(); //Employee.print which calls Member.print

15

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  Employee *ePtr = &e1;
7.  mPtr = &e1; //is this ok? Base class pointer to derived class?

16

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  Employee *ePtr = &e1;
7.  mPtr = &e1; //Yes, valid; all Employees are Members
8.  ePtr = &m1; //this valid? Derived class pointer to base class?

17

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  Employee *ePtr = &e1;
7.  mPtr = &e1; //Yes, valid; all Employees are Members
8.  ePtr = &m1; //No, not all Members are Employees;

 //compiler error

18

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  mPtr = &e1; //yes, this is valid; all Employees are Members
7.  cout << mPtr->getName(); //what does this print?
8.  cout << mPtr->getSalary(); //this ok?
9.  mPtr->print(); //what function does this call?

19

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  mPtr = &e1;
7.  cout << mPtr->getName(); //Jack
8.  cout << mPtr->getSalary(); //compiler error
9.  mPtr->print(); //calls Member’s print: Jack

20

Introducing Polymorphism

S  Member *mPtr = &e1; mPtr->print();

S  By default, method that is called depends on the type of the
handle, not the type of the object

S  Polymorphism enables the compiler to call the more specific
method, i.e. call based on the type of object dynamically.

S  Because all derived class objects ARE base class objects, 1 base
class pointer can enable calls to any number of derived class
methods.
S  Program “in the general” rather than “in the specific”

21

Polymorphism!

S  Member *mPtr = &e1; mPtr->print();

S  To get the Employee print function to be called, the method
has to be declared virtual (in the .h)

S  For virtual functions, the type of the object being pointed to
determines function call, not type of handle.
S  At execution time we determine what function to call (not

compile time), so it is done dynamically.

S  This is called dynamic binding

22

Polymorphism!

S  Member *mPtr = &e1; mPtr->print();

S  Dynamic binding with virtual functions only works with pointer
and reference handles (you need a level of indirection).
S  Member m1(“Jill”);

S  m1.print(); resolved at compile time => static binding!

S  Base class declares functions as virtual, and implicitly for all
derived classes that function is virtual (whether declared thus or
not – virtualness is inherited).

S  Derived class function can override/redefine base class regular or
virtual function, or takes on base class’s implementation if not
defined

23

Base Class Example

class Member {
public:

Member(string name);
Member(Member const &);
Member& operator= (Member const &);
~Member();

string getName() const;
void setName(string name);
virtual void print() const;

private:
string myName;

};

24

Derived Class Example

25

#include “Member.h”
class Employee : public Member {
public:

Employee(string name, double money);
Employee(Employee const &);
Employee& operator= (Employee const &);
~Employee ();

double getSalary() const;
void setSalary(double money);
virtual void print() const; //keywork here unnecessary, but good practice.

private:
double salary;

};

Instantiating Objects Example

1.  #include “Member.h”
2.  #include “Employee.h”
3.  Member m1(“Jill”);
4.  Employee e1(“Jack”, 65000);
5.  Member *mPtr = &m1;
6.  mPtr = &e1;
7.  cout << mPtr->getName(); //Jack
8.  mPtr->print(); //calls Employee’s print: Jack 65000

26

Kinds of Assignments

S  Base class pointer -> base class object = FINE
S  Invokes base class functionality

S  Derived class pointer -> derived class object = FINE
S  Invokes derived class functionality

S  Base class pointer to derived class object = FINE
S  Will invoke base class functionality unless functions declared virtual, then

will invoke derived class functionality

S  Derived class pointer to base class object = COMPILER ERROR
(unless explicit cast)

27

Base class is a Derived class?

S  Derived class pointer -> base class object
S  Could downcast?
S  DANGEROUS!

Member *mPtr;

…

Employee *ePtr = static_cast< Employee* > (mPtr);

ePtr->getSalary();

S  We will see a safe way to do this – with dynamic cast.

28

Derived Class Example2

29

#include “Member.h”
class Student: public Member {
public:

Student(string name, int id);
Student(Student const &);
Student& operator= (Student const &);
~Student ();

int getUniqueID() const;
void setUniqueID (int id);
virtual void print() const; //keywork here unnecessary, but good practice.

private:
int uniqueID;

};

Member

Employee Student

Example of Polymorphism

vector < Member* > members(4);

members[0] = new Employee(“Alice”, 60000); //name & salary

members[1] = new Student(“Bob”, 987654); //name & uniqueID

for (size_t i = 0; i < members.size(); i++) {

members[i]->print(); //polymorphic behavior here

}

30

Example of Polymorphism

vector < Member* > members(4);

members[0] = new Employee(“Alice”, 60000); //name & salary

members[1] = new Student(“Bob”, 987654); //name & uniqueID

for (size_t i = 0; i < members.size(); i++) {
members[i]->print();
//what if we want to change salary here – give everyone a raise?

}

31

Example of Polymorphism

vector < Member* > members(4);
members[0] = new Employee(“Alice”, 60000);
members[1] = new Student(“Bob”, 987654); //name & uniqueID
for (size_t i = 0; i < members.size(); i++) {

Employee *ePtr = dynamic_cast < Employee* > (members[i]);
if (ePtr != 0) { //if downcast succeeded, we have Employee*

ePtr->setSalary((ePtr->getSalary()) * 1.1);

}
members[i]->print();

}

32

Memory Management

vector < Member* > members(4);
members[0] = new Employee(“Alice”, 60000);
members[1] = new Student(“Bob”, 987654); //name & uniqueID
for (size_t i = 0; i < members.size(); i++) {

Employee *ePtr = dynamic_cast < Employee* > (members[i]);
if (ePtr != 0) { //if downcast succeeded

ePtr->setSalary((ePtr->getSalary()) * 1.1);
}
members[i]->print();

}
for (size_t i = 0; i < members.size(); i++) {

delete members[i];
}

33

Destructors

S  What happens if we call delete on a base class pointer to a
derived class object?
S  Call base class destructor?

S  Derived class destructor?

S  Error?

34

Destructors

S  What happens if we call delete on a base class pointer to a
derived class object?
S  Call base class destructor?

S  Derived class destructor?

S  Error?

S  This is undefined and can cause compiler warnings. BAD

35

Virtual Destructors

S  When virtual methods exist, declare destructor virtual in
base class.

S  All derived classes destructors are then by default virtual as
well (even though they have different names).

S  Enables proper destruction of derived classes from base
class pointers (behavior undefined if destructor not virtual)

S  Constructors CANNOT be virtual.

36

Base Class Example

class Member {
public:

Member(string name);
Member(Member const &);
Member& operator= (Member const &);
virtual ~Member();

string getName() const;
void setName(string name);
virtual void print() const;

private:
string myName;

};

37

Abstract Classes

S  An abstract class provides a common public interface for its
class hierarchy. It is usually the base class.

S  Class is made abstract by declaring 1 or more of its virtual
functions to be “pure” in .h, no implementation in .cpp
S  virtual void print() const = 0;
S  Abstract classes are never instantiated (lack implementation)

S  Abstract classes provide a framework but are incomplete.
Derived classes must define missing pieces.

38

Pure Virtual

S  Every concrete derived class must override all base-class pure
virtual functions with concrete implementations.
S  If not overridden, derived class is abstract (can’t be

instantiated).

S  A virtual-only function in base class has an implementation
and gives derived class an option to override (as with regular
functions).

39

Abstract Classes

S  Abstract class can have data members and concrete
functions (constructors/destructors) which go by normal
inheritance rules.

S  Can use pointers to abstract classes to use polymorphic
functionality on all concrete derived classes.
S  Useful with container classes (vector of abstract base class)

S  Can use iterator to iterate over items in container class

40

