Programming C++
Lecture 5

Howest, Fall 2013
Instructor: Dr. Jennifer B. Sartor
Jennifer.sartor@elis.ugent.be

Templates

¢ Function and class templates — you specify with a single code
segment an entire range of related (overloaded) functions or
classes (function or class-template specializations).

¢ Generic programming!

¢ Templates are stencils of pretty shapes .I D

¢ Template specializations are tracings we make of stencils —
same shape but maybe different colors.

Remember Function Templates

¢ We can do function overloading
int boxVolume(int side) {
return side * side * side;
h
double boxVolume(double side) {
return side * side * side;

}

¢ Why define 2 functions that look identical, but have different types?

¢ Overloading that is more compact and convenient = function
templates. Only write 1t once!

Function Templates

¢ Template

template <class T> //or template <typename T>
T boxVolume(T side) {
return side * side * side;

b

¢ C++ compiler automatically generates separate function template
specializations for each type the function 1s called with.

¢ T is placeholder for actual data type

¢ int result = boxVolume(3); double result = boxVolume(6.2);

Class Stack Template Example

//Stack.h
template< typename T >
class Stack {
public:
Stack(int = 10);
~Stack() { delete [] stackPtr; }
bool push(const T &); //push element
bool pop(T &); //pop element
bool isEmpty() const {
return top == -1;
b
bool isFull() const {
return top == (size -1);
B
private:
int size;
int top;
T *stackPtr;

X

template< typename T >
Stack< T >::Stack(ints) //constructor
:size(s>07s:10),
top(-1),
stackPtr(new T[size]) { }
template< typename T >
bool Stack< T >::push(const T &pushValue) {
if (lisFull()) {
stackPtr[++top] = pushValue;
return true;
} return false;
b
template< typename T >
bool Stack< T >::pop(T &popValue) {
if (liIsEmpty()) {
popValue = stackPtr[top--];
return true;
} return false;

Test Stack

#include <iostream>
using namespace std;
#include “Stack.h”
int main() {
Stack< double > doubleStack(5);

¢ Testing double stack vs.

double doubVal = 1.1; int stack 1s very similar
while (doubleStack.push(doubVal)) pattern.

doubVal +=1.1;
while (doubleStack.pop(doubVal)) ¢ You could create a

cout << doubVal << "% template function to
Stack< int > intStack; //default size test your template class!

int intVal = 1;

while (intStack.push(intVal))
intVal ++;

while (intStack.pop(intVal))
cout << intVal << * %

return 0;

More Details

¢ Because a compiler compiles template classes on demand, it
requires the definition (usual .cpp) to be in the same file as
the declaration (usual .h).

¢ http://www.cplusplus.com/doc/tutorial/templates/

¢ Make sure operators used in template class are implemented
if used with user-defined type!

Our Stack requires user-defined type to have default
constructor and assignment operator.

Specifics of Templates

¢ You can have nontype template parameters too

template< typename T, int elements > //compile time
constant

Stack< double, 100 > mostRecentSalesFigures;
.h could contain member: T stackHolder[elements |;

¢ Type parameter can specify default type
template< typename T = string >
Stack<> jobDescriptions;

¢ Explicit specialization for a particular type
template<>
class Stack< Employee > { ... };

Input to Main Function

int main(int argc, char™ argv[]) {
cout << "Number of arguments is " << argc << endl;
for (int1 = 0; 1 < argc; 1++) {
cout << "Argument " <<1<<"1s" << argv|[i] << end];

b

ifstream 1nputFile(argv[1], 10s::1n);

10

11

Instantiating Objects Example

#include “Member.h”

#include “Employee.h”

Member m1(*“Jill”);

Employee el(“Jack”, 65000);

Member *mPtr = &ml;

cout << mPtr->getName(); //what does this print?
mPtr->print(); //and this?

NS W=

12

Instantiating Objects Example

#include “Member.h”

#include “Employee.h”

Member m1(“Jill”);

Employee el(“Jack”, 65000);
Member *mPtr = &ml;

cout << mPtr->getName(); //Jill
mPtr->print(); //Jill

NS W=

13

Instantiating Objects Example

#include “Member.h”

#include “Employee.h”

Member m1(*“Jill”);

Employee el(“Jack”, 65000);

Member *mPtr = &ml;

Employee *ePtr = ⪙

cout << ePtr->getName() << ePtr->getSalary(); //result?
ePtr->print(); / /what function does this call?

© =N ok Db =

14

Instantiating Objects Example

#include “Member.h”

#include “Employee.h”

Member m1(*“Jill”);

Employee el(“Jack”, 65000);

Member *mPtr = &ml;

Employee *ePtr = ⪙

cout << ePtr->getName() << ePtr->getSalary(); //Jack 65000
ePtr->print(); //Employee.print which calls Member.print

© =N ok Db =

15

Instantiating Objects Example

#include “Member.h”

#include “Employee.h”

Member m1(“Jill”);

Employee el(“Jack”, 65000);

Member *mPtr = &ml;

Employee *ePtr = ⪙

mPtr = ⪙ //1s this ok? Base class pointer to derived class?

NS WD

16

Instantiating Objects Example

#include “Member.h”

#include “Employee.h”

Member m1(*“Jill”);

Employee el(“Jack”, 65000);

Member *mPtr = &ml;

Employee *ePtr = ⪙

mPtr = ⪙ //Yes, valid; all Employees are Members

ePtr = &m1; //this valid? Derived class pointer to base class?

© =N ok Db =

17

Instantiating Objects Example

#include “Member.h”

#include “Employee.h”

Member m1(“Jill”);

Employee el(“Jack”, 65000);

Member *mPtr = &ml;

Employee *ePtr = ⪙

mPtr = ⪙ //Yes, valid; all Employees are Members

ePtr = &m1l; //No, not all Members are Employees;
//compiler error

el IS AN o e

18

Instantiating Objects Example

#include “Member.h”

#include “Employee.h”

Member m1(“Jill”);

Employee el(“Jack”, 65000);

Member *mPtr = &m1;

mPtr = ⪙ //yes, this 1s valid; all Employees are Members
cout << mPtr->getName(); //what does this print?

cout << mPtr->getSalary(); //this ok?

mPtr->print(); //what function does this call?

A R RS A N S e

19

Instantiating Objects Example

#include “Member.h”

#include “Employee.h”

Member m1(“Jill”);

Employee el(“Jack”, 65000);

Member *mPtr = &ml;

mPtr = ⪙

cout << mPtr->getName(); //Jack

cout << mPtr->getSalary(); //compiler error
mPtr->print(); //calls Member’s print: Jack

A S RS AN

20

Introducing Polymorphism

¢ Member *mPtr = ⪙ mPtr->print();

¢ By default, method that is called depends on the type of the
handle, not the type of the object

¢ Polymorphism enables the compiler to call the more specific
method, i.e. call based on the type of object dynamically.

¢ Because all derived class objects ARE base class objects, 1 base
class pointer can enable calls to any number of derived class
methods.

Program “in the general” rather than “in the specific”

21

Polymorphism!

¢ Member *mPtr = ⪙ mPtr->print();

¢ To get the Employee print function to be called, the method
has to be declared virtual (in the .h)

¢ For virtual functions, the type of the object being pointed to
determines function call, not type of handle.

At execution time we determine what function to call (not
compile time), so it is done dynamically.

This is called dynamic binding

22

Polymorphism!

Member *mPtr = ⪙ mPtr->print();

Dynamic binding with virtual functions only works with pointer
and reference handles (you need a level of indirection).

Member m1(“Jill”);

m1.print(); resolved at compile time => static binding!

Base class declares functions as virtual, and implicitly for all
derived classes that function is virtual (whether declared thus or
not — virtualness 1s inherited).

Derived class function can override/redefine base class regular or

virtual function, or takes on base class’s implementation if not
defined

23

Base Class Example

class Member {

public:
Member(string name);
Member(Member const &);

Member& operator= (Member const &);
~Member();

string getName() const;

void setName(string name);

virtual void print() const;
private:

string myName;

55

24

Derived Class Example

#include “Member.h”

class Employee : public Member {

public:
Employee(string name, double money);
Employee(Employee const &);
Employee& operator= (Employee const &);
~Employee ();

double getSalary() const;

void setSalary(double money);

virtual void print() const; //keywork here unnecessary, but good practice.
private:

double salary;
I3

25

Instantiating Objects Example

#include “Member.h”

#include “Employee.h”

Member m1(*“Jill”);

Employee el(“Jack”, 65000);

Member *mPtr = &ml;

mPtr = ⪙

cout << mPtr->getName(); //Jack
mPtr->print(); //calls Employee’s print: Jack 65000

© =N ok Db =

26

Kinds of Assignments

¢ Base class pointer -> base class object = FINE
Invokes base class functionality

¢ Derived class pointer -> derived class object = FINE
Invokes derived class functionality

¢ Base class pointer to derived class object = FINE

Will invoke base class functionality unless functions declared virtual, then
will invoke derived class functionality

¢ Derived class pointer to base class object = COMPILER ERROR
(unless explicit cast)

27

Base class 1s a Derived class?

¢ Derived class pointer -> base class object

Could downcast?
DANGEROUS!

Member *mPtr;

Employee *ePtr = static_cast< Employee* > (mPtr);
ePtr->getSalary();

¢ We will see a safe way to do this — with dynamic cast.

28

Derived Class Example?2

#include “Member.h”
class Student: public Member {

public:
Student(string name, int 1d); W il
Student(Student const &); / \\v
Student& operator= (Student const &);
~Student (); Employee Student

int getUniquelD() const;

void setUniquelD (int 1d);

virtual void print() const; //keywork here unnecessary, but good practice.
private:

int uniquelD;
I3

29

Example of Polymorphism

vector < Member* > members(4);
members[0] = new Employee(“Alice”, 60000); //name & salary
members[1] = new Student(“Bob”, 987654); //name & uniquelD

for (size_t 1 = 0; 1 < members.size(); 1++) {

members[1]->print(); //polymorphic behavior here

30

Example of Polymorphism

vector < Member* > members(4);
members[0] = new Employee(“Alice”, 60000); //name & salary

members[1] = new Student(“Bob”, 987654); //name & uniquelD

for (size_t 1 = 0; 1 < members.size(); 1++) {
members|[1]->print();
//what if we want to change salary here — give everyone a raise?

31

Example of Polymorphism

vector < Member* > members(4);
members[0] = new Employee(“Alice”, 60000);
members[1] = new Student(“Bob”, 987654); //name & uniquelD
for (size_t1 = 0; 1 < members.size(); 1++) {
Employee *ePtr = dynamic_cast < Employee* > (members|[i]);
if (ePtr !=0) { //if downcast succeeded, we have Employee*
ePtr->setSalary((ePtr->getSalary()) * 1.1);

b

members[i]->print();

32

Memory Management

vector < Member* > members(4);
members[0] = new Employee(“Alice”, 60000);
members[1] = new Student(“Bob”, 987654); //name & uniquelD
for (size_t 1 = 0; 1 < members.size(); i++) {
Employee *ePtr = dynamic_cast < Employee* > (members][i]);
if (ePtr != 0) { //1if downcast succeeded
ePtr->setSalary((ePtr->getSalary()) * 1.1);

members[i]->print();

;
for (size_t 1 = 0; 1 < members.size(); i++) {
delete members|i];

h

33

Destructors

¢ What happens if we call delete on a base class pointer to a
derived class object?

Call base class destructor?
Derived class destructor?
Error?

34

Destructors

¢ What happens if we call delete on a base class pointer to a
derived class object?

Call base class destructor?
Derived class destructor?
Error?

¢ This 1s undefined and can cause compiler warnings. BAD

35

Virtual Destructors

¢ When virtual methods exist, declare destructor virtual in
base class.

¢ All derived classes destructors are then by default virtual as
well (even though they have different names).

¢ Enables proper destruction of derived classes from base
class pointers (behavior undefined if destructor not virtual)

¢ Constructors CANNOT be virtual.

36

Base Class Example

class Member {
public:
Member(string name);
Member(Member const &);
Member& operator= (Member const &);
virtual ~Member();

string getName() const;

void setName(string name);

virtual void print() const;
private:

string myName;

55

37

Abstract Classes

¢ An abstract class provides a common public interface for its
class hierarchy. It 1s usually the base class.

¢ Class 1s made abstract by declaring 1 or more of its virtual
functions to be “purelin .h, no implementation in .cpp

virtual void print() const = 0;
Abstract classes are never instantiated (lack implementation)

¢ Abstract classes provide a framework but are incomplete.
Derived classes must define missing pieces.

38

Pure Virtual

¢ Every concrete derived class must override all base-class pure
virtual functions with concrete implementations.

If not overridden, derived class is abstract (can’t be
instantiated).

¢ A virtual-only function in base class has an implementation
and gives derived class an option to override (as with regular
functions).

39

Abstract Classes

é Abstract class can have data members and concrete

functions (constructors/destructors) which go by normal
inheritance rules.

¢ Can use pointers to abstract classes to use polymorphic
functionality on all concrete derived classes.

Useful with container classes (vector of abstract base class)

Can use iterator to iterate over items in container class

40

