Programming C++
Lecture 6

Howest, Fall 2013
Instructor: Dr. Jennifer B. Sartor
Jennifer.sartor@elis.ugent.be




Friends




Friends of Objects

¢ Classes sometimes need friends.

¢ Friends are defined outside the class’s scope, but are allowed
to access non-public (and public) data members.

Friend functions — see example

Friend classes: friend class ClassTwo; (if placed inside
ClassOne definition, all ClassTwo is friend of ClassOne)

¢ Class must explicitly declare who its friends are.



Friend Example

#include <iostream> void setX( Count &c, int val ) {

using namespace std; c.x = val; //accesses private data!
class Count {

friend void setX(Count &, int);
public:

Count() : x(0) { }

int main() {
Count counter;

void print() const { counter. print();
cout << x << endl:; setX(counter, 8);
} counter.print();
private: return 0;

int x; }

55



Compiling and Makefiles




Compiling with g++

¢ g++ basic.cpp (creates “a.out” executable)
¢ g++ -0 program basic.cpp (“program” 1s executable)
./program

¢ Flags that are good practice
g++ -Wall -o program basic.cpp (print all warnings)

g++ -Wall -Werror -0 program basic.cpp (treat warnings as
compilation errors)



WELGEIIE

CC = g++ -Wall —~-Werror —g
testC: testCourse.o Course.o
${CC} —o testC testCourse.o Course.o
testCourse.o: testCourse.cpp Course.h
${CC} —c testCourse.cpp ¢

Course.o: Course.cpp Course.h
${CC} —c Course.cpp

clean: N
rm —1f *.0

O

Reusability!
Written 1n different language
é # denotes comments

List of
rule_name . dependencies
<tab> command

Can do “make” with any
rule, or by itself for 1% rule



Compilation and Linking

¢ Compiler uses included interface .h files to compile .cpp file
into object code

g++ -Wall -Werror —c testCourse.cpp DOES
Course.h + testCourse.cpp -> testCourse.o

g++ -Wall -Werror —c Course.cpp DOES
Course.h + Course.cpp -> Course.o

¢ Linker takes object code of testCourse.cpp and Course.cpp and
STL and puts it together into an executable.

g++ -Wall —Werror —o testC testCourse.o Course.o DOES
testCourse.o + Course.o + stl.o -> testC.exe

8



Example

¢ For example Makefile, see
http://users.elis.ugent.be/~jsartor/howest/ MemberAndDate/




Operator Overloading




Operator Overloading

Think of “+” — does different things based on the types that
it is applied to.

Can we apply “+” to objects — like the Date class?

Can achieve same thing with function calls, but operator
notation is often clearer and more familiar (in C++).

Can’t create new operators, but can overload existing ones
so they can be used with user-defined types.

11



See Example

Overloading +

Instead of myDate.add(otherDate), we do doeslno(t1 i+m_plicitly
myDate + otherDate. overload +=

Write a non-static member function or global function with
function name as “operator<symbol>" (aka operator+)

One argument of operator function must be user-defined
(can’t re-define meaning of operators for fundamental types)

http:/ /users.elis.ugent.be/~jsartor/howest/ ArrayClass/

12



(GGlobal vs Member Functions

¢ Difference: member functions already have “this” as an argument
implicitly, global has to take another parameter.

6 “O” “[” “->" orassignment has to be member function

¢ Leftmost operand

For member function: must be object (or reference to object) of
operator’s class.

Global function used when it 1s not user-defined object (overloading
<< and >> require left operand to be ostream& and istreamé&)

¢ Global operators can be made friend of class if needed.

¢ Global functions enable commutative operations

13



Overloading Restrictions

¢ To use an operator with class, operator must be overloaded with 3
exceptions (but these can be overloaded too):

Assignment (=) does member-wise assignment for objects.
(overload for classes with pointer members)

The “&” and “,” operators may be used with objects without
overloading

¢ The following cannot be changed for operators:
Precedence
Associativity (left-to-right or right-to-left)
Arity (how many operands)

¢ Can’t overload: “.” “*7 .7 “1.”

14



Operators:

Converting between Types

Conversion constructor is a single-argument constructor that turns
objects of other types (including fundamental types) into objects
of a particular class.

Conversion/cast operator converts object into object of another
class or to a fundamental type

A::operator char *() const; //convert object of type A into char*®
object. “const” above means does not modify original object

A myA;
static_cast<char *>(myA); //CALLS myA.operator char® ()
Conversion functions can be called implicitly by the compiler

15



Why References, Why Pointers?

é References

invoke functions implicitly, like copy constructor, assignment
operator, other overloaded operator

Can pass large objects without passing address
Don’t have to use pointer semantics

¢ Pointers
Good for dynamic memory management
Ease of pointer arithmetic
Provides level of indirection in memory

16



Overloading ++ and --

é Prefix (++x)
Member function: Array &operator++();

Global: Array &operator++( Array & );
Returns incremented reference to object (Ivalue)

¢ Postfix (x++)

Member function: Array operator++( int );

Global: Array operator++( Array &, int );
Use dummy int (0) to distinguish prefix from postfix

myA++ translates to myA.operator++(0)

Returns temp object that contains original value before increment
(rvalue instead of lvalue)

¢ Save: Array temp = *this. Then do your increment, then return
(unmodified) temp.

17



Overloaded Function Call

Operator

¢ Use () operator

¢ String operator()( int index, int subLength ) const;

Returns a substring for class String starting at index, of length
subLength

String s1(“Hello”);  cout << s1(1,3) << end],

18



Pointers to Functions

19



Function Pointers

¢ A pointer to a function contains the address of the function
In memory

¢ Name of a function 1s actually starting address in memory
of the code (like array name!)

¢ Function pointers can be
Passed to and returned from functions
Stored in arrays
Used to call the underlying function

20



Function Pointers

¢ See
http://users.elis.ugent.be/~jsartor/howest/
functionPointers.cpp

¢ See http://users.elis.ugent.be/~jsartor/howest/
arrayFunctionPointers.cpp

21



Functor

¢ Where a pointer to a function is required — can instead put
object of a class that overloads operator () (function call).

¢ Object like that 1s called function object, and can be used
like a function or function pointer.

¢ Call operator () by using object name plus parentheses with
arguments inside.

¢ Functor = function object + function.

22



O

O

O

O

O

Functor Example

class AddNum{
Int num;
public:
AddNum (int m) : num(m) {}

int operator()(int x) { return num + Xx;}

h
AddNum add44(44);

int newNum = add44(8); //newNum == 52

23



Other Topics




enum Mood { HAPPY, FROWNY, NEUTRAL};

Mood current = HAPPY;
if (current == FROWNY) current = NEUTRAL;
reality: HAPPY =0, FROWNY =1, NEUTRAL = 2;

enum Months {JAN =1, FEB, MAR, APR, MAY, ...,
DEC};

25



const_cast< T > (v)

é Adds or removes const or volatile modifiers
¢ Single cast removes all modifiers

¢ Result 1s an rvalue unless T 1is a reference

¢ Types cannot be defined within const_cast
const int a = 10;

const int* b = &a;

int* ¢ = const_cast< int* > (b);

*p = 20; //compiler error

*c=30; //OK

26



Namespace

Namespace defines a scope in which identifiers and variables are
placed.

Try to help with naming conflicts.

To use a namespace member, need MyNameSpace:.member or using
declaration/directive.

Using declaration (using std::cout;) brings 1 name into scope
where declaration 1s (therefore no need to do std::cout every time).

Using directive (using namespace std;) brings all names from
namespace into scope.

27



Namespace Example

#include <iostream>
using namespace std;
int integer]l = 98;
namespace Example {
const double PI = 3.14159;
int integerl = §;
void printValues();
namespace Inner {
enum Years{ FISCALI =
1990, FISCAL?2 };
h
b
namespace {
double doubInUnnamed = 3.2;
)

int main() {
cout << doubInUnnamed << endl;
cout << integer]l << end]l;
cout << Example::PI << “ “ <<
Example::integer]l << “ “ <<
Example::Inner::FISCAL2 <<
endl;
Example::printValues();
return O;
b
void Example::printValues() {
cout << integer]l << “ “ << PI << “ *“ <<
doubInUnnamed << *“ “ << ::integerl <<
““ << Inner::FISCAL2 << end];

28



Exceptions

¢ Exception Handling
try { ... } catch(Exception &e) { cout << e.what(); }

Can make derived classes from base exception classes to create
your own types of exceptions.

Deals with errors and can keep execution of program going.

29



Exceptions

//DivideByZeroException.n—
#include <stdexcept>
using std::runtime_error;

== #include “DivideByZeroException.h”
double quotient(int numer, int denom)
d
if (denom == 0) { throw
DivideByZeroException();

class DivideByZeroException : L
public runtime_error { !

public: int main {
DivideByZeroException() try {double result = quotient(3, 0); }

catch (DivideByZeroException &d)
{ cout << d.what() << endl; }

U / /after exception, execution continues
55 return 0;

b

30

: runtime_error(“div by zero’’)



Exceptions

/ /DivideByZeroException.n-
#include <stdexcept>

== #include “DivideByZeroException.h”
double quotient(int numer, int denom)
_ _ throw ( DivideByZeroException )
using std::runtime_error; // above is exception specification
d
if (denom == 0) { throw
DivideByZeroException();

class DivideByZeroException :
public runtime_error { v
public: )

. : int main {
DivideByZeroException() try {double result = quotient(3, 0); }

: runtime_error(“div by zero”)  .z¢ch (DivideByZeroException &d)
{1 { cout << d.what() << endl; }

! / /after exception, execution continues
' return O;

b

31



Exception Specification

¢ This 1s a guarantee that the function will throw only exceptions
listed 1n specification (or classes derived from those)

¢ You can specify a comma-separated list of types

¢ A function with no exception specification allows ALL types of
exceptions

¢ A function that has an empty list such as: throw( ) does NOT
allow any exceptions

32



Threads

é Pthreads

http:// Www.tutqrialspoint.com/ cplusplus/
cpp multithreading. htm

http://codebase.eu/tutorial /posix-threads-c/

¢ Lots of examples, including C++ thread class

http:/ /stackoverflow.com/questions/266168/simple-example-of-
threading-in-c

http://www.cplusplus.com/reference/thread/thread/

http://www.codeproject.com/Articles/ 540912/ Cplusplus-11-
Threads-Make-your-multitasking-life-e

33



34



int x = 1;
void useStaticLocal();
3. void useGlobal();

4. 1nt main() {

5. int X = 5;

6. {int x = 7; //other x’s??}
7. useStaticL.ocal ();

8. useGlobal();

9. useStaticL.ocal ();

10.  useGlobal();

1. »

1. void useStaticLocal () {

2. static int x = 83;
3. X++;
4, }

5. void useGlobal() {

6. x *=10;



int x = 1;

/ /file scope

void useStaticLocal();
void useGlobal();
int main() {
int X = 5;
{imtx=17;}

useStaticL.ocal ();

2.

/ /function prototype scope

/ /function prototype scope

/ /block scope

/ /block scope

void useStaticLocal () {
static int x = 83; //block scope

X++;

)

36



int x = 1;

void useStaticLocal();
void useGlobal();
int main() {
int x = 5;
{imtx=17;}

//how do we access global x?



int x = 1;

void useStaticLocal();
void useGlobal();
int main() {
int x = 5;
{imtx=17;}

cout << ::x << endl;

Unary scope resolution operator ::

Only use with global variables, not
locals 1in outer block

Not good style to have global and
local variables with same name!

38



Volatile/Mutable/const cast

¢ Keyword volatile means variable could be modified by hardware
not known to the compiler. Key to tell compiler not to optimize it.

6 Cast const_cast adds or removes const and volatile modifiers

Useful when get const char* back from function, and you need to
modify it.

¢ Keyword mutable is an alternative to const_cast.

mutable member variable is always modifiable even with const
member function or const object of that class.

39



