
S

Programming C++

Lecture 6

Howest, Fall 2013
Instructor: Dr. Jennifer B. Sartor

Jennifer.sartor@elis.ugent.be

Friends

2

Friends of Objects

S  Classes sometimes need friends.

S  Friends are defined outside the class’s scope, but are allowed
to access non-public (and public) data members.
S  Friend functions – see example

S  Friend classes: friend class ClassTwo; (if placed inside
ClassOne definition, all ClassTwo is friend of ClassOne)

S  Class must explicitly declare who its friends are.

3

Friend Example

#include <iostream>
using namespace std;
class Count {

friend void setX(Count &, int);
public:

Count() : x(0) { }
void print() const {
 cout << x << endl;
}

private:
int x;

};

4

void setX(Count &c, int val) {
c.x = val; //accesses private data!

}
int main() {

Count counter;
counter.print();
setX(counter, 8);
counter.print();
return 0;

}

Compiling and Makefiles

5

Compiling with g++

S  g++ basic.cpp (creates “a.out” executable)

S  g++ -o program basic.cpp (“program” is executable)

 ./program

S  Flags that are good practice
S  g++ -Wall -o program basic.cpp (print all warnings)

S  g++ -Wall -Werror -o program basic.cpp (treat warnings as
compilation errors)

6

Makefile

CC = g++ -Wall –Werror –g
testC: testCourse.o Course.o

${CC} –o testC testCourse.o Course.o
testCourse.o: testCourse.cpp Course.h

${CC} –c testCourse.cpp
Course.o: Course.cpp Course.h

${CC} –c Course.cpp
clean:

rm –rf *.o

7

S  Reusability!

S  Written in different language

S  # denotes comments

S  List of
rule_name : dependencies
<tab> command

S  Can do “make” with any
rule, or by itself for 1st rule

Compilation and Linking

S  Compiler uses included interface .h files to compile .cpp file
into object code
S  g++ -Wall -Werror –c testCourse.cpp DOES

Course.h + testCourse.cpp -> testCourse.o
S  g++ -Wall -Werror –c Course.cpp DOES

Course.h + Course.cpp -> Course.o

S  Linker takes object code of testCourse.cpp and Course.cpp and
STL and puts it together into an executable.
S  g++ -Wall –Werror –o testC testCourse.o Course.o DOES

testCourse.o + Course.o + stl.o -> testC.exe

8

Example

S  For example Makefile, see
S  http://users.elis.ugent.be/~jsartor/howest/MemberAndDate/

9

Operator Overloading

10

Operator Overloading

S  Think of “+” – does different things based on the types that
it is applied to.

S  Can we apply “+” to objects – like the Date class?

S  Can achieve same thing with function calls, but operator
notation is often clearer and more familiar (in C++).

S  Can’t create new operators, but can overload existing ones
so they can be used with user-defined types.

11

See Example

S  Instead of myDate.add(otherDate), we do
myDate + otherDate.

S  Write a non-static member function or global function with
function name as “operator<symbol>” (aka operator+)

S  One argument of operator function must be user-defined
(can’t re-define meaning of operators for fundamental types)

S  http://users.elis.ugent.be/~jsartor/howest/ArrayClass/

12

Overloading +
does not implicitly
overload +=

Global vs Member Functions

S  Difference: member functions already have “this” as an argument
implicitly, global has to take another parameter.

S  “()” “[]” “->” or assignment has to be member function

S  Leftmost operand
S  For member function: must be object (or reference to object) of

operator’s class.
S  Global function used when it is not user-defined object (overloading

<< and >> require left operand to be ostream& and istream&)

S  Global operators can be made friend of class if needed.

S  Global functions enable commutative operations

13

Overloading Restrictions

S  To use an operator with class, operator must be overloaded with 3
exceptions (but these can be overloaded too):
S  Assignment (=) does member-wise assignment for objects.

(overload for classes with pointer members)
S  The “&” and “,” operators may be used with objects without

overloading

S  The following cannot be changed for operators:
S  Precedence
S  Associativity (left-to-right or right-to-left)
S  Arity (how many operands)

S  Can’t overload: “.” “.*” “::” “?:”
14

Operators:
Converting between Types

S  Conversion constructor is a single-argument constructor that turns
objects of other types (including fundamental types) into objects
of a particular class.

S  Conversion/cast operator converts object into object of another
class or to a fundamental type
S  A::operator char *() const; //convert object of type A into char*

object. “const” above means does not modify original object

S  A myA;
S  static_cast<char *>(myA); //CALLS myA.operator char* ()

S  Conversion functions can be called implicitly by the compiler

15

Why References, Why Pointers?

S  References
S  invoke functions implicitly, like copy constructor, assignment

operator, other overloaded operator
S  Can pass large objects without passing address

S  Don’t have to use pointer semantics

S  Pointers
S  Good for dynamic memory management
S  Ease of pointer arithmetic

S  Provides level of indirection in memory

16

Overloading ++ and --

S  Prefix (++x)
S  Member function: Array &operator++();
S  Global: Array &operator++(Array &);
S  Returns incremented reference to object (lvalue)

S  Postfix (x++)
S  Member function: Array operator++(int);
S  Global: Array operator++(Array &, int);
S  Use dummy int (0) to distinguish prefix from postfix
S  myA++ translates to myA.operator++(0)
S  Returns temp object that contains original value before increment

(rvalue instead of lvalue)
S  Save: Array temp = *this. Then do your increment, then return

(unmodified) temp.

17

Overloaded Function Call
Operator

S  Use () operator

S  String operator()(int index, int subLength) const;
S  Returns a substring for class String starting at index, of length

subLength

S  String s1(“Hello”); cout << s1(1,3) << endl;

18

Pointers to Functions

19

Function Pointers

S  A pointer to a function contains the address of the function
in memory

S  Name of a function is actually starting address in memory
of the code (like array name!)

S  Function pointers can be
S  Passed to and returned from functions
S  Stored in arrays
S  Used to call the underlying function

20

Function Pointers

S  See
http://users.elis.ugent.be/~jsartor/howest/
functionPointers.cpp

S  See http://users.elis.ugent.be/~jsartor/howest/
arrayFunctionPointers.cpp

21

Functor

S  Where a pointer to a function is required – can instead put
object of a class that overloads operator () (function call).

S  Object like that is called function object, and can be used
like a function or function pointer.

S  Call operator () by using object name plus parentheses with
arguments inside.

S  Functor = function object + function.

22

Functor Example

S  class AddNum{

S  int num;

S  public:

S  AddNum (int m) : num(m) {}

S  int operator()(int x) { return num + x;}

S  }

S  AddNum add44(44);

S  int newNum = add44(8); //newNum == 52
23

Other Topics

24

Enum

S  enum Mood { HAPPY, FROWNY, NEUTRAL};

S  Mood current = HAPPY;

S  if (current == FROWNY) current = NEUTRAL;

S  reality: HAPPY = 0, FROWNY = 1, NEUTRAL = 2;

S  enum Months {JAN = 1, FEB, MAR, APR, MAY, …,
DEC};

25

const_cast< T > (v)

S  Adds or removes const or volatile modifiers

S  Single cast removes all modifiers

S  Result is an rvalue unless T is a reference
S  Types cannot be defined within const_cast
const int a = 10;
const int* b = &a;
int* c = const_cast< int* > (b);
*b = 20; //compiler error
*c = 30; //OK

26

Namespace

S  Namespace defines a scope in which identifiers and variables are
placed.
S  Try to help with naming conflicts.

S  To use a namespace member, need MyNameSpace::member or using
declaration/directive.

S  Using declaration (using std::cout;) brings 1 name into scope
where declaration is (therefore no need to do std::cout every time).

S  Using directive (using namespace std;) brings all names from
namespace into scope.

27

Namespace Example

28

int main() {
 cout << doubInUnnamed << endl;
 cout << integer1 << endl;
 cout << Example::PI << “ “ <<

 Example::integer1 << “ “ <<
 Example::Inner::FISCAL2 <<
 endl;

 Example::printValues();
 return 0;

}
void Example::printValues() {

 cout << integer1 << “ “ << PI << “ “ <<
doubInUnnamed << “ “ << ::integer1 <<
“ “ << Inner::FISCAL2 << endl;

}

#include <iostream>
using namespace std;
int integer1 = 98;
namespace Example {

 const double PI = 3.14159;
 int integer1 = 8;
 void printValues();
 namespace Inner {
 enum Years{ FISCAL1 =

 1990, FISCAL2 };
 }

}
namespace {

 double doubInUnnamed = 3.2;
}

Exceptions

S  Exception Handling
S  try { … } catch(Exception &e) { cout << e.what(); }

S  Can make derived classes from base exception classes to create
your own types of exceptions.

S  Deals with errors and can keep execution of program going.

29

Exceptions

30

#include “DivideByZeroException.h”
double quotient(int numer, int denom)
{

 if (denom == 0) { throw
 DivideByZeroException();

 } …
}
int main {

 try {double result = quotient(3, 0); }
 catch (DivideByZeroException &d)
{ cout << d.what() << endl; }
 //after exception, execution continues
 return 0;

}

//DivideByZeroException.h
#include <stdexcept>
using std::runtime_error;

class DivideByZeroException :

public runtime_error {
public:

 DivideByZeroException()
 : runtime_error(“div by zero”)
{}

};

Exceptions

31

#include “DivideByZeroException.h”
double quotient(int numer, int denom)

throw (DivideByZeroException)
 // above is exception specification
{

 if (denom == 0) { throw
 DivideByZeroException();

 } …
}
int main {

 try {double result = quotient(3, 0); }
 catch (DivideByZeroException &d)
{ cout << d.what() << endl; }
 //after exception, execution continues
 return 0;

}

//DivideByZeroException.h
#include <stdexcept>
using std::runtime_error;

class DivideByZeroException :

public runtime_error {
public:

 DivideByZeroException()
 : runtime_error(“div by zero”)
{}

};

Exception Specification

S  This is a guarantee that the function will throw only exceptions
listed in specification (or classes derived from those)

S  You can specify a comma-separated list of types

S  A function with no exception specification allows ALL types of
exceptions

S  A function that has an empty list such as: throw() does NOT
allow any exceptions

32

Threads

S  Pthreads
S  http://www.tutorialspoint.com/cplusplus/

cpp_multithreading.htm
S  http://codebase.eu/tutorial/posix-threads-c/

S  Lots of examples, including C++ thread class
S  http://stackoverflow.com/questions/266168/simple-example-of-

threading-in-c
S  http://www.cplusplus.com/reference/thread/thread/
S  http://www.codeproject.com/Articles/540912/Cplusplus-11-

Threads-Make-your-multitasking-life-e

33

34

Scope

35

1.  int x = 1;

2.  void useStaticLocal();

3.  void useGlobal();

4.  int main() {

5.  int x = 5;

6.  { int x = 7; //other x’s??}

7.  useStaticLocal ();

8.  useGlobal();

9.  useStaticLocal ();

10.  useGlobal();

11.  }

1.  void useStaticLocal () {

2.  static int x = 83;

3.  x++;

4.  }

5.  void useGlobal() {

6.  x *= 10;

7.  }

Scope

36

1.  int x = 1; //file scope

2.  void useStaticLocal(); //function prototype scope

3.  void useGlobal(); //function prototype scope

4.  int main() {

5.  int x = 5; //block scope

6.  { int x = 7; } //block scope

7.  useStaticLocal ();

8.  }

1.  void useStaticLocal () {

2.  static int x = 83; //block scope

3.  x++;

4.  }

Scope

37

1.  int x = 1;

2.  void useStaticLocal();

3.  void useGlobal();

4.  int main() {

5.  int x = 5;

6.  { int x = 7; }

7.  //how do we access global x?

8.  }

Scope

38

1.  int x = 1;

2.  void useStaticLocal();

3.  void useGlobal();

4.  int main() {

5.  int x = 5;

6.  { int x = 7; }

7.  cout << ::x << endl;

8.  }

Unary scope resolution operator ::

Only use with global variables, not
locals in outer block

Not good style to have global and
local variables with same name!

Volatile/Mutable/const_cast

S  Keyword volatile means variable could be modified by hardware
not known to the compiler. Key to tell compiler not to optimize it.

S  Cast const_cast adds or removes const and volatile modifiers

S  Useful when get const char* back from function, and you need to
modify it.

S  Keyword mutable is an alternative to const_cast.

S  mutable member variable is always modifiable even with const
member function or const object of that class.

39

