
S

Computer Programming

C++

Howest, Fall 2014
Instructor: Prof. Jennifer B. Sartor

Jennifer.sartor@elis.ugent.be

About Me

S  PhD at The University of Texas at Austin in August 2010

S  Currently: professor at VUB & post-doctoral researcher at
Ghent University

S  I research how to make memory more efficiently managed,
from the application on top of a Java virtual machine, to the
operating system, then to hardware caches. I also do
performance analysis of programs on modern multi-core
machines.

2

Whole Course

S  Intro to C++ programming with me (6 classes, 3
hours each)
S  Jennifer.sartor@elis.ugent.be

S  Intro to Graphics programming with (6 classes, 2
hours each)
S  C/C++-like language is used to program the GPU

(like CUDA or OpenCL)

S  You will use C++AMP

S  Final project in graphics

3

GPU Final Project

S  Textures used in video games are becoming larger and larger
with sizes of up to 16k x 16k pixels. These textures are
typically compressed to save disk space, e.g., using JPEG
compression. Yet the GPU requires these textures to be in a
compressed format called DXT. As a result, the game
textures need to be transcoded from JPEG to DXT on the
fly. The main goal of the project is to build a texture encoder
which uses the massively parallel GPU to accelerate the
DXT encoding steps.

4

Application for Final Project

5

Course Overview

S  Intro to C++

S  Good to have previous knowledge of object-oriented and
procedural programming

S  Website:
http://users.elis.ugent.be/~jsartor/howest/c++Fall14.htm

S  Communication will be through Minerva

6

Additional Info

S  Books (optional)
S  Aan de slag met C++, Gertjan Laan

S  C++ Primer, Stanley B. Lippman,

S  C++: How to Program, Deitel & Deitel

S  Grades will be based on programming assignments (80%)
and one final test (20%)

7

Programming Assignments

S  4-5 programming assignments
S  Individual programming

S  In order to pass the class, you must submit all assignments, and
they must compile and run (with provided test programs)

S  Programming style worth 15% of each assignment

S  1 emergency late day (mulligan)

8

Microsoft Visual Studio

S  General IDE (integrated development environment) to
write, compile, debug, and run code

S  You will use it for both C++ and C++AMP

S  Download from Howest webpage

S  Only runs on Windows platform

9

C++

S  Extension of C, created by Bjarne Stroustrup in 1980s

S  We will try to cover:
S  basic syntax, I/O, functions and argument passing,

S  arrays, references, pointers, classes, dynamic memory
management,

S  classes and inheritance,

S  generic programming with templates

S  polymorphism with virtual functions and dynamic binding,

10

Similarities & Differences

S  Look at basic.cpp for example C++ program
S  Operators, if/else, loops, commenting are the same as Java

S  Variables are not by default zero-initialized!

S  You need a main function:

int main() { !
… !
return 0; //success !

}

11

Some I/O Basics

S  At the top of a program
S  #include <iostream> //library you intend to use
S  Using declaration (which parts of library you will use), use either:

1)  using namespace std; //common (standard) parts of library
2)  using std::cin; using std::cout; //only these parts of library

S  Input: int foo; cin >> foo;

S  Output: cout << “bar ” << foo;

S  If you put “using std::endl” above, can use newline:
 cout << 5 << endl;

12

Functions

S  Example:
int boxVolume(int side) {

 return side * side * side;

}

S  Need to declare a function before it is used. If a function is
defined later than it is used, provide function prototype at
top:
S  int boxVolume(int);

13

S  int boxVolume(int side = 1); //can specify default parameters

C++ Compilation

S  Compilation
1)  Preprocessor (expand things like #include <iostream>)
2)  Compiler – creates object (machine-language) code
3)  Linker – links object code with libraries, creates executable file

myProgram.o + library.o = program.exe

S  Preprocessor goes and finds library header file (iostream.h)
with function prototypes for things you will use (cin, cout).

S  Actual functions are defined in .cpp file (and .o object file)
that linker will fetch.

S  C++ compiler compiles for a specific machine type

14

Compiling on Command Line

S  g++ basic.cpp (creates “a.out” executable)

S  g++ -o program basic.cpp (“program” is executable)

 ./program

S  g++ -c basic.cpp –o basic.o (create .o object file, compile but not link)

S  Flags that are good practice
S  g++ -Wall -o program basic.cpp (print all warnings)
S  g++ -Wall -Werror -o program basic.cpp (treat warnings as compilation

errors)

15

C++ Compilation

S  Usually include files are called header files, are *.h and
define function prototypes.
S  C++ libraries are usually in < >: #include <iostream>

(compiler looks in standard library paths)

S  Header files you define are in “ ”: #include
“myHeader.h” (compiler looks in current directory)

S  Using declaration says exactly which function prototypes to
include, or “namespace std” includes all common/standard
ones.

16

How to Cast Safely?

S  In Java:
S  double pi = 3.1415;

S  int num = (int) pi;

S  C++ uses a static cast:
S  int num = static_cast <int> (pi);

S  Keyword, built into language

17

Storage Class: Static

S  “static” is a keyword that helps program determine how
long a variable will live

S  Without “static” keyword, variable is alive inside it’s code
block

S  With “static”
S  Exist from program begin to end
S  Can be global (outside a function or class) or local
S  Static local variables retain their value when function returns

18

Fun with Static Variables

S  What does this print?

void func() {
static int x = 0;

x++;

cout << x << endl;

}

19

int main() {
func();

func();

func();

return 0;

}

Storage of Variables

S  Function call stack
S  Piece of memory allocated to manage information for calling

and returning from a function
S  Each function called gets its own stack frame which holds

information about the parameters passed, and the address to
return to in the caller, and local variables

S  Static and global variables are stored separately

S  Later – dynamic memory and the heap, also separate

20

Storage and Scope

21

1.  int global = 1;

2.  void useStaticLocal();

3.  void useGlobal();

4.  int main() {

5.  int x = 5;

6.  { int innerX = 7;}

7.  useStaticLocal ();

8.  useGlobal();

9.  }

1.  void useStaticLocal () {

2.  static int num = 83; //where?

3.  num++;

4.  }

5.  void useGlobal() {

6.  global *= 10;

7.  }

Statics and globals
global

num: useStaticLocal

main
Parameters: (none)
Locals: x, innerX

useStaticLocal
Return: main l.8

Parameters: (none)
Locals: (none)

useGlobal
Return: main l.9

Parameters: (none)
Locals: (none)

S
t
a
c
k

Parameter passing

S  2 types
S  Pass-by-value

S  Pass-by-reference

22

Parameter passing

S  2 types
S  Pass-by-value

S  Argument copied

S  Caller and callee each have own copy

S  Pass-by-reference
S  Only 1 copy! Caller and callee share it

S  Beware – it can be modified by everyone

23

Pass-by-value

int squareByValue(int number) {

return number *= number;

}

int main() {

 int x = 3;

 int x_squared = squareByValue(x);

 //what is x and what is x_squared?

}

24

Pass-by-reference

void squareByReference(int &number) {

number *= number;

}

int main() {

 int x = 3;

 squareByReference(x);

 //what is x?

}

25

Pass-by-reference

S  void myFunction(int &x);
S  x is a reference to an int.

S  Be careful – you are giving callee method power to change
your variable

S  To save copying space, but protect your variable, use const
S  void myFunction(const int &x);

S  Now myFunction cannot modify x.

26

References as Aliases

int count = 1;

int &cRef = count;

cRef++;

//count is ?

S  Reference variables must be initialized in their declaration
and cannot be reassigned later.

27

Returning References

S  Returning references from a function is dangerous

S  Variable declared on stack cannot be returned

S  Can return static variable, but might not be what you want

S  Dangling reference = reference to undefined variable

28

Arrays!

S  Indexed data structure
S  Starts at zero!

S  How do we declare an array?

29

Arrays!

S  Indexed data structure
S  Starts at zero!

S  How do we declare an array?
S  type arrayName[arraySize];

S  Ex: int array[5];

30

Array Initialization

S  Loop

S  Initializer list

S  Use const array size

31

Array Initialization

S  Loop
int array[5];

for (int i = 0; i < 5; i++) {
array[i] = i;

}

S  Initializer list

S  Use const array size

32

Array Initialization

S  Loop

S  Initializer list
S  int array[5] = {99, 88, 77, 66, 55};

S  int array2[5] = {}; //what does this do?

S  int array[] = {44, 33, 22, 11};

S  Use const array size

33

Array Initialization

S  Loop

S  Initializer list

S  Use const array size
const int arraySize = 10;
int array[arraySize]; //what does this array contain?
S  const variables must be initialized when declared, are constant
S  Only constants can be used to declare size of local (stack) and

static arrays

34

Differences from Java

S  No automatic “.length” for arrays

S  No guaranteed compiler array bounds checks – if you go
outside [0 through (arraySize-1)], undefined behavior

S  Arrays are always contiguous in memory

S  Arrays are not by default zero-initialized

35

Character Arrays

S  char string1[] = “hello”;

S  What is the size of the array above?

36

Character Arrays

S  char string1[] = “hello”;

S  What is the size of the array above? 6

S  Char arrays are terminated with null character!

S  char string1[] = {‘h’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};

37

for (int i = 0; string1[i] != ‘\0’; i++) {

cout << string1[i] << ‘ ‘;

}

Strings

S  C++ does have string type

S  #include <string>

S  string hello = “hello”;

S  Some useful string functions:

S  hello.data(); or hello.c_str(); //get string’s character array

S  hello.length(); //get length

S  char oneChar = hello[1]; //can index strings

S  string wstr = “world”;
hello.append(wstr, 0, wstr.length()); //append to get “helloworld”

S  char chArray[10];
wstr.copy(chArray, wstr.length(), 0); //copy wstr string into array

38

Input with Char Arrays

S  char string2[20];

S  cin >> string2;
S  cin reads in a string (until whitespace) and appends null

character to end
S  Make sure input from user <= 19 characters, otherwise error

S  For a line at a time:
S  cin.getline(string2, 20);
S  string myStr; getline(cin, myStr);

39

Passing Arrays to Functions

void modifyArray(int b[],
int arrSize) {
for (int i = 0; i < arrSize; i++) {

 b[i] *= 2;

}

}

40

void modifyArray(int [], int);

int main() {
const int arraySize = 5;

int a[arraySize] = {0, 1, 2, 3, 4};

modifyArray(a, arraySize);

return 0;

}

Passing Arrays to Functions

S  Arrays are passed by reference

S  Name of array is the address in memory of the 1st element

S  Need to pass size too – unlike Java

S  Use const to make sure function can’t change array
S  void cannotModifyArray(const int b[]);

41

Static Local Arrays

void staticArrayInit(void) {
static int array1[3];

for (int i = 0; i < 3; i++) {

 arrays1[i] += 5;

}

} //what if array is not static?

42

void staticArrayInit();

int main() {
staticArrayInit();

staticArrayInit();

return 0;

}

Multidimensional Arrays

S  int array[2][3] = {{1, 2, 3}, {4, 5, 6}};

S  int array[2][3] = {1, 2, 3, 4};

S  int array[2][3] = {{1, 2}, {4}};

S  Different from Java – contiguous in memory

S  2nd dimension needs to be known when passing to a
function

43

Multidimensional Arrays

S  int array[2][3] = {{1, 2}, {4}};

S  Different from Java – contiguous in memory
S  Conceptually:

S  Actual layout:

44

[0][0] = 1 [0][1] = 2 [0][2] = 0

[1][0] = 4 [1][1] = 0 [1][2] = 0

[0][0] = 1 [0][1] = 2 [0][2] = 0 [1][0] = 4 [1][1] = 0 [1][2] = 0

Passing Multi-D Arrays

void printArray(const int[][3],

 int numRows);

int main() {

int array1[2][3] = {1, 2, 3, 4};

printArray(array1, 2);

return 0;

}

45

void printArray(const int[][3], //why?

 int numRows) {

for (int i = 0; i < numRows; i++) {

for (int j = 0; j < 3; j++) {

cout << a[i][j] << ‘ ‘;

} cout << endl;

}

}

2D as 1D array

S  int array1[2][3] = {};

S  // to access array1[1][0] – we need to skip over 1st row then go
over to element 0 in second row

S  //number of entries per row = number of columns

S  array1[3 * 1 + 0] == array1[1][0];

S  //formula: numColumns * 1stIndex + 2ndIndex

46

[0][0] = 0 [0][1] = 0 [0][2] = 0 [1][0] = 0 [1][1] = 0 [1][2] = 0

typedef

S  typedef is a keyword that declares synonyms (aliases) for
previously defined data types

S  Does not create a data type, it creates a type name (usually
shorter, simpler) that maybe be used in the program

S  typedef unsigned long int ulint;

S  ulint myNum;

S  size_t is a typedef for unsigned int (used for string’s length())

47

sizeof Operator

S  sizeof does exactly what you’d expect – give it a variable or
type, it will return the size of it in bytes.

S  return type: not int, but size_t (unsigned int)

int x = 5;

cout << sizeof x << endl; //can omit parens with variable

cout << sizeof(int) << endl;

48

Pointers

S  Mysterious, but very powerful.

S  int *countPtr, count; //what are types of each variable?

49

countPtr count

7
S  count = 7;

S  countPtr = &count;

S  & means “obtain memory address”

S  countPtr indirectly references count

Pointer Operators

S  Similar to references

S  count = 7;

S  countPtr = &count;

S  *countPtr == count == 7;

S  * is indirection or dereferencing operator. * returns synonym for
object to which operand points.

S  & and * are inverses

50

countPtr count

7

Pointers

S  int *countPtr, count;

S  count = 7;

S  countPtr = &count;

S  *countPtr++;

S  countPtr indirectly references count, *countPtr is called
“deferencing a pointer”

51

countPtr count

7

x5000 location: x6000

x6000 8

Pointer Operators

S  * is indirection or dereferencing operator.

S  Pointer is undefined when created – can be set to 0 or
NULL

S  Dereferencing an uninitialized or NULL pointer is BAD!
S  What if we did (*count)?

S  Or int *countPtr; then (*countPtr) ?

52

count

7

Pointers vs. References

S  Differences
S  In reference declaration (int &cRef = count;), “&” is part of type,

it is not an operation (as with pointers)
S  References have to be initialized at declaration time

S  void func_ptr(int *pi) {*pi = 5;}

S  void func_ref(int &ri) {ri = 6;}

S  int num; int *p = # int &r = num;

S  func_ptr(&num);

S  func_ref(num); //We are passing parameters by… what?

53

Pointer Example

void cubeByReferenceWithPointer(int *nPtr) {
*nPtr = *nPtr * *nPtr * *nPtr;

}

int main() {
int number = 5;
cubeByReferenceWithPointer(&number);
cout << number;
return 0;

}

54

Arrays are Just Pointers

int arrayName[5] = {};

S  “arrayName” is constant pointer to start of array

S  arrayName == &arrayName[0];

S  void modifyArray(int [], int) == void modifyArray(int*, int);

S  Array parameter translated by the compiler to be int *. So
2nd function above has to know whether it receives array or
int pointer.

55

sizeof Array vs. Pointer

size_t getSize(double *);

int main() {
double array[20];
cout << sizeof(array) << endl;

cout << getSize(array) << endl;
cout << (sizeof(array) / sizeof(double)) << endl; //array length

return 0;

}

56

size_t getSize (double *ptr) {

 return sizeof(ptr);

}

Parameter Arithmetic & Arrays

S  int v[5]; int *vPtr = v; (or = &v[0];)

57

v[0] v[1] v[2] v[3] v[4] vPtr

x5000 location: x5004 x5008 x500c x5010

like 5012 like 5016

S  vPtr += 2; //goes from x5000 to ?

Parameter Arithmetic & Arrays

S  int v[5]; int *vPtr = v; (or = &v[0];)

S  vPtr += 2; //goes from x5000 to x5008

S  Pointer arithmetic depends on type of pointer

S  cout << (vPtr – v) << endl; //what is this?

58

v[0] v[1] v[2] v[3] v[4] vPtr

x5000 location: x5004 x5008 x500c x5010

like 5012 like 5016

Parameter Arithmetic & Arrays

S  int v[5]; int *vPtr = v; (or = &v[0];)

S  v[3] == * (vPtr + 3) == * (v + 3) == vPtr[3]

S  vPtr + 3 is the same as &v[3]

S  Array names cannot be modified in arithmetic expressions
because they are constant.

59

Void*

S  void* voidPtr;

S  void* is generic pointer, it can point to any type, but can’t be
dereferenced.

S  Cannot do (*voidPtr) (even if initialized) – why?

S  All pointer types can be assigned to a pointer of type void* without
casting. void* pointer cannot be assigned to pointer of other type
without casting.

S  void* voidPtr = whateverPtr; //assigning specific to general

S  int* intPtr = (int*) voidPtr;//assigning general to specific – need cast

60

Arrays and Pointers

void myPrint(const char *);

int main() {
char *phrasey = “C++Fun”;

myPrint(phrasey);

return 0;

}

61

void myPrint(const char * s1) {

 while ((*s1) != ‘\0’) {

 cout << *s1;

 s1++;

 }

}

Arrays and Pointers

void copy1(char*, const char *);

int main() {
char phrase1[10];
char *phrase2 = “Hello”;
copy1(phrase1, phrase2);
cout << phrase1 << endl;
return 0;

}

62

void copy1(char * s1,

 const char * s2) {
for(int i =0; s2[i] != ‘\0’; i++) {

 s1[i] = s2[i];

}

}

Arrays and Pointers

void copy2(char*, const char *);

int main() {
char phrase3[10];
char *phrase4 = “GBye”;
copy2(phrase3, phrase4);
cout << phrase3 << endl;
return 0;

}

63

void copy2(char * s1,

 const char * s2) {
for(; *s2 != ‘\0’;

 s1++, s2++) {

 *s1 = *s2;

}

}

