Computer Programming
CAsh

Howest, Fall 2014
Instructor: Prof. Jennifer B. Sartor
Jennifer.sartor@elis.ugent.be

¢ PhD at The University of Texas at Austin in August 2010

¢ Currently: professor at VUB & post-doctoral researcher at
Ghent University

¢ I research how to make memory more efficiently managed,
from the application on top of a Java virtual machine, to the
operating system, then to hardware caches. I also do
performance analysis of programs on modern multi-core
machines.

Whole Course

¢ Intro to C++ programming with me (6 classes, 3
hours each)

Jennifer.sartor@elis.ugent.be

¢ Intro to Graphics programming with (6 classes, 2
hours each)

C/C++-like language 1s used to program the GPU
(like CUDA or OpenCL)

You will use C++AMP
Final project in graphics

GPU Final Project

¢ Textures used in video games are becoming larger and larger
with sizes of up to 16k x 16k pixels. These textures are
typically compressed to save disk space, e.g., using JPEG
compression. Yet the GPU requires these textures to be in a
compressed format called DXT. As a result, the game
textures need to be transcoded from JPEG to DXT on the
fly. The main goal of the project 1s to build a texture encoder
which uses the massively parallel GPU to accelerate the
DXT encoding steps.

Application for Final Project

€2 BasicHLSL

=R
D3D9 Vsync on (800x600), XBR8G8B8 (D24X8)
HAL (hw vp): NVIDIA GeForce GT 555M (#0)
fTime: 220.2 sin(fTime): 0.2915

Toggle full screen
Toggle REF (F3)

Change device (F2)

Refresh FX and Texture

Controls:

Rotate model: Left mouse button
Rotate light: Right mouse button
Rotate camera: Middle mouse button
Zoom camera: Mouse wheel scroll

Hide help: F1
Quit: ESC

Course Overview

é Introto C++

¢ Good to have previous knowledge of object-oriented and
procedural programming

¢ Website:
http://users.elis.ugent.be/~jsartor/howest/c++Fall14.htm

¢ Communication will be through Minerva

Additional Info

¢ Books (optional)
Aan de slag met C++, Gertjan Laan
C++ Primer, Stanley B. Lippman,
C++: How to Program, Deitel & Deitel

¢ Grades will be based on programming assignments (80%)
and one final test (20%)

Programming Assignments

é 4-5 programming assignments
Individual programming

In order to pass the class, you must submit all assignments, and
they must compile and run (with provided test programs)

Programming style worth 15% of each assignment
1 emergency late day (mulligan)

Microsoft Visual Studio

¢ General IDE (integrated development environment) to
write, compile, debug, and run code

¢ You will use it for both C++ and C++AMP
¢ Download from Howest webpage

¢ Only runs on Windows platform

¢ Extension of C, created by Bjarne Stroustrup in 1980s

¢ We will try to cover:
basic syntax, I/0O, functions and argument passing,

arrays, references, pointers, classes, dynamic memory
management,

classes and inheritance,
generic programming with templates

polymorphism with virtual functions and dynamic binding,

10

Similarities & Difterences

¢ Look at basic.cpp for example C++ program
Operators, 1f/else, loops, commenting are the same as Java

¢ Variables are not by default zero-initialized!
é You need a main function:

int main() {

return 0; //success

11

Some I/0O Basics

At the top of a program
#include <iostream> //library you intend to use

Using declaration (which parts of library you will use), use either:
1) using namespace std; //common (standard) parts of library
2) using std::cin; using std::cout; //only these parts of library

Input: int foo; cin >> foo;
Output: cout << “bar ” << f00;

If you put “using std::endl” above, can use newline:
cout << 5 << end];

12

Functions

¢ Example:
int boxVolume(int side) {

return side * side * side;

b

¢ Need to declare a function before it 1s used. If a function 1s
defined later than it 1s used, provide function prototype at
top:
int boxVolume(int);

¢ 1nt boxVolume(int side = 1); //can specify default parameters

13

C++ Compilation

Compilation
1) Preprocessor (expand things like #include <iostream>)
2) Compiler — creates object (machine-language) code

3) Linker — links object code with libraries, creates executable file
myProgram.o + library.o = program.exe

Preprocessor goes and finds library header file (10stream.h)
with function prototypes for things you will use (cin, cout).

Actual functions are defined 1n .cpp file (and .o object file)
that linker will fetch.

C++ compiler compiles for a specific machine type

14

Compiling on Command Line

¢ g++ basic.cpp (creates “a.out” executable)
é g++ -0 program basic.cpp (“program” is executable)
./program
é g++ -c basic.cpp —o basic.o (create .0 object file, compile but not link)

¢ Flags that are good practice
g++ -Wall -0 program basic.cpp (print all warnings)

g++ -Wall -Werror -o program basic.cpp (treat warnings as compilation
errors)

15

C++ Compilation

¢ Usually include files are called header files, are *.h and
define function prototypes.

C++ libraries are usually in < >: #include <iostream>
(compiler looks in standard library paths)

Header files you define are in “ ”’: #include
“myHeader.h” (compiler looks in current directory)

¢ Using declaration says exactly which function prototypes to
include, or “namespace std” includes all common/standard
ones.

16

How to Cast Safely?

¢ In Java:
double p1 = 3.1415;

int num = (int) pi;

¢ C++ uses a static cast:
int num = static_cast <int> (pi);
Keyword, built into language

17

Storage Class: Static

¢ “static” 1s a keyword that helps program determine how
long a variable will live

¢ Without “static” keyword, variable is alive inside it’s code
block

¢ With “static”
Exist from program begin to end
Can be global (outside a function or class) or local
Static local variables retain their value when function returns

18

Fun with Static Variables

¢ What does this print?

void func() {
static int x = 0;
X++;

cout << x << endl;

19

int main() {
func();
func();
func();

return O;

Storage of Variables

¢ Function call stack

Piece of memory allocated to manage information for calling
and returning from a function

Each function called gets its own stack frame which holds
information about the parameters passed, and the address to
return to in the caller, and local variables

¢ Static and global variables are stored separately

¢ Later — dynamic memory and the heap, also separate

20

Storage and Scope

void useStaticL.ocal () {

. int global = 1; 2. static int num = 83; //where?
2. void useStaticLocal(); 3 num-++;

3. void useGlobal(); 4. }

4. int main() { 5. void useGlobal() {

5. int x = 5; 6. global *= 10;

6. { int innerX = 7;} 7.}

7. useStaticLocal ();

8. useGlobal();

S
t
a
C
k

21

Parameter passing

¢ 2 types
Pass-by-value
Pass-by-reference

22

Parameter passing

¢ 2 types
Pass-by-value
¢ Argument copied
¢ Caller and callee each have own copy
Pass-by-reference
¢ Only 1 copy! Caller and callee share it

¢ Beware — it can be modified by everyone

23

Pass-by-value

int squareByValue(int number) {
return number *= number;

b

int main() {
int x = 3;
int x_squared = squareByValue(x);

//what i1s x and what is x_squared?

24

Pass-by-reference

void squareByReference(int &number) {
number *= number;

b

int main() {
int x = 3;
squareByReference(x);
//what 1s x?

25

Pass-by-reference

¢ void myFunction(int &x);

X 1s a reference to an int.

¢ Be careful — you are giving callee method power to change
your variable

¢ To save copying space, but protect your variable, use const
void myFunction(const int &Xx);

Now myFunction cannot modify x.

26

References as Aliases

int count = 1;

int &cRef = count;
cRef++;

//count 1s ?

é Reference variables must be initialized in their declaration
and cannot be reassigned later.

27

Returning References

¢ Returning references from a function is dangerous
¢ Variable declared on stack cannot be returned
¢ Can return static variable, but might not be what you want

¢ Dangling reference = reference to undefined variable

28

¢ Indexed data structure

Starts at zero!

¢ How do we declare an array?

29

¢ Indexed data structure

Starts at zero!

¢ How do we declare an array?
type arrayNamelarray Size/;
Ex: int array[5];

30

Array Initialization

¢ Loop
¢ Initializer list

¢ Use const array size

31

Array Initialization

¢ Loop
int array[5];
for(int1=0;1<35;1++) {
array[i] = 1;

b

¢ Initializer list

¢ Use const array size

32

Array Initialization

¢ Loop

¢ Initializer list
int array[5] = {99, 88, 77, 66, 55};
int array2[5] = {}; //what does this do?
int array[| = {44, 33, 22, 11};

¢ Use const array size

33

Array Initialization

¢ Loop
¢ Initializer list

¢ Use const array size
const int arraySize = 10;
int array[arraySize]; //what does this array contain?
const variables must be initialized when declared, are constant

Only constants can be used to declare size of local (stack) and
static arrays

34

Differences from Java

¢ No automatic “.length” for arrays

¢ No guaranteed compiler array bounds checks — if you go
outside [0 through (arraySize-1)], undefined behavior

¢ Arrays are always contiguous in memory

é Arrays are not by default zero-initialized

35

Character Arrays

¢ char stringl[] = “hello”;

¢ What 1s the size of the array above?

36

Character Arrays

¢ char stringl[] = “hello”;
¢ What 1s the size of the array above? 6
¢ Char arrays are terminated with null character!
é char stringl[] = {‘h’, ‘e’, ‘I’, ‘I’, ‘0’, ‘\0’};
for (int 1 = 0; string1[i] != ‘\0’; 1++) {

cout << stringl[i] << *

37

#include <string>

string hello = “hello”;

¢ Some useful string functions:
hello.data(); or hello.c_str(); //get string’s character array
hello.length(); //get length
char oneChar = hello[1]; //can index strings

string wstr = “world”;
hello.append(wstr, 0, wstr.length()); //append to get “helloworld”

char chArray[10];
wstr.copy(chArray, wstr.length(), 0); //copy wstr string into array

38

Input with Char Arrays

¢ char string2[20];

é cin >> string2;

cin reads 1n a string (until whitespace) and appends null
character to end

Make sure input from user <= 19 characters, otherwise error

¢ For a line at a time:
cin.getline(string2, 20);
string myStr; getline(cin, myStr);

39

Passing Arrays to Functions

void modifyArray(int [], int); void modifyArray(int b[],
int arrSize) {

for (int 1 = 0; 1 < arrSize; 1++) {
const int arraySize = J; b[i] *= 2;

int a[arraySize] = {0, 1, 2, 3, 4}; y
modifyArray(a, arraySize);
return 0O; h

int main() {

40

Passing Arrays to Functions

¢ Arrays are passed by reference
¢ Name of array is the address in memory of the 15t element
¢ Need to pass size too — unlike Java

¢ Use const to make sure function can’t change array
void cannotModifyArray(const int b[]);

41

Static Local Arrays

void staticArraylInit();

int main() {
staticArraylnit();
staticArraylnit();
return O;

void staticArrayInit(void) {
static int array1[3];
for(int1=10;1<3;1++) {
arraysl[i] +=5;

b

} //what if array 1s not static?

42

Multidimensional Arrays

¢ int array[2][3] = {{1, 2, 3}, {4, 5, 6}};
¢ int array[2][3] = {1, 2, 3, 4};

¢ intarray[2][3] = {{1, 2}, {4}};
¢ Different from Java — contiguous in memory

¢ 27 dimension needs to be known when passing to a
function

43

Multidimensional Arrays

¢ int array[2][3] = {{1, 2}, {4}};

¢ Different from Java — contiguous in memory

Conceptually:
[0][0] =1 [0][1] =2 [0][2] =0
[1][0] = 4 [1]{1] =0 [1][2] =0
Actual layout:

[0][0] = 1] [0][1] =2][0]]2] =0 [1][0] =4 |[1][1] =0][1][2] =0

Passing Multi-D Arrays

void printArray(const int[][3],
int numRows);

int main() {
int array1[2][3] = {1, 2, 3, 4};
printArray(arrayl, 2);

return O;

void printArray(const int[][3], //why?
int numRows) {

for (int 1 = 0; 1 < numRows; 1++) {
for (intj = 0;j < 3; j++) {
cout << afi][j] <<

} cout << end];

45

2D as 1D array

¢ int arrayl[2][3] = {};

IE]M

// to access arrayl [1][] — we need to sk1p over 15t row then go
over to element 0 in second row

¢ //number of entries per row = number of columns
¢ arrayl[3 * 1+ 0] == arrayl1[1][0];

6 //formula: numColumns * 1stIndex + 2ndIndex

46

typedef 1s a keyword that declares synonyms (aliases) for
previously defined data types

Does not create a data type, it creates a type name (usually
shorter, simpler) that maybe be used in the program

typedef unsigned long int ulint;
ulint myNum,;

size_t 1s a typedef for unsigned int (used for string’s length())

47

s1izeof Operator

¢ sizeof does exactly what you’d expect — give it a variable or
type, 1t will return the size of it in bytes.

é return type: not int, but size_t (unsigned int)
int x = 5;
cout << sizeof x << endl; //can omit parens with variable

cout << sizeof(int) << end];

48

Pointers

¢ Mysterious, but very powerful.

¢ int *countPtr, count; //what are types of each variable?

—

,, countPtr count

é count =7;

é countPtr = &count;
¢ & means “obtain memory address
¢ countPtr indirectly references count

49

Pointer Operators

é Similar to references

é count=17;

é countPtr = &count;
é *countPtr == count == 7; countPtr count

¢ *isindirection or dereferencing operator. * returns synonym for
object to which operand points.

é & and * are inverses

50

Pointers

¢ int *countPtr, count; location: x5000 x6000

é count =7,

é countPtr = &count; countPtr count

¢ *countPtr++;

¢ countPtr indirectly references count, *countPtr 1s called
“deferencing a pointer”

51

O

O

Pointer Operators

* 1s indirection or dereferencing operator.

Pointer is undefined when created — can be set to 0 or
NULL

Dereferencing an uninitialized or NULL pointer 1s BAD!
What if we did (*count)?

Or int *countPtr; then (*countPtr) ? ‘ i ‘

count

52

Pointers vs. References

é Differences

In reference declaration (int &cRef = count;), “&” is part of type,
it is not an operation (as with pointers)

References have to be initialized at declaration time
¢ void func_ptr(int *p1) {*p1 = 5;}
¢ void func_ref(int &r1) {ri = 6;}
é int num; int *p = # int &r = num,;
¢ func_ptr(&num);

¢ func_ref(num); //We are passing parameters by... what?

53

Pointer Example

void cubeByReference WithPointer(int *nPtr) {
*nPtr = *nPtr * *nPtr * *nPtr;

b

int main() {
int number = 5;
cubeByReference WithPointer(&number);
cout << number;
return 0;

54

Arrays are Just Pointers

int arrayName[5] = {};

¢ “arrayName” 1s constant pointer to start of array

¢ arrayName == &arrayName[0];

¢ void modifyArray(int [], int) == void modifyArray(int*, int);

¢ Array parameter translated by the compiler to be int *. So
274 function above has to know whether it receives array or
int pointer.

55

sizeof Array vs. Pointer

size_t getSize(double *); size_t getSize (double *ptr) {
int main() { return sizeof(ptr);

double array[20];

cout << sizeof(array) << endl,;)

cout << getSize(array) << endl;
cout << (sizeof(array) / sizeof(double)) << endl; //array length
return O;

56

Parameter Arithmetic & Arrays

é 1nt v[5]; int *vPtr = v; (or = &v[0];)
like 5012 like 5016

location: x5000 x5004 x5008 x500c¢ x5010

¢ vPtr +=2; //goes from x5000 to ?

57

Parameter Arithmetic & Arrays

é 1nt v[5]; int *vPtr = v; (or = &v[0];)
like 5012 like 5016

location: x5000 x5004 x5008 x500c¢ x5010

¢ vPtr +=2; //goes from x5000 to x5008
¢ Pointer arithmetic depends on type of pointer

¢ cout << (vPtr—v) << endl; //what is this?

58

Parameter Arithmetic & Arrays

é 1nt v[5]; int *vPtr = v; (or = &v[0];)
¢ v[3] ==*(VPtr + 3) ==* (v + 3) == vPtr[3]
¢ vPtr + 3 1s the same as &v[3]

¢ Array names cannot be modified in arithmetic expressions
because they are constant.

59

é void* voidPtr;

¢ void* 1s generic pointer, it can point to any type, but can’t be
dereferenced.

Cannot do (*voidPtr) (even if initialized) — why?

¢ All pointer types can be assigned to a pointer of type void* without
casting. void* pointer cannot be assigned to pointer of other type
without casting.

void* voidPtr = whateverPtr; //assigning specific to general

int* intPtr = (int*) voidPtr;//assigning general to specific — need cast

60

Arrays and Pointers

void myPrint(const char *); void myPrint(const char * s1) {
int main() { while ((*s1) 1= \0’) {
char *phrasey = “C++Fun”; cout << *sl;
myPrint(phrasey); sl++;
return O; }

61

Arrays and Pointers

void copyl(char*, const char *);

int main() {
char phrasel[10];
char *phrase2 = “Hello”;
copyl(phrasel, phrase2);
cout << phrasel << endl,
return O;

62

void copyl(char * sl,

const char * s2) {
for(int i =0; s2[i] != ‘\0’; i++) {
s1[1] = s2[i];

Arrays and Pointers

void copy2(char*, const char *);

int main() {
char phrase3[10];
char *phrase4 = “GBye”;
copy2(phrase3, phrase4);

cout << phrase3 << endl,
return O;

63

void copy2(char * sl,

const char * s2) {
for(; *s2 1= “\0’;
sl++, s2++) {
*s1 = *s2;

