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Interface vs. Implementation 

S  Interface defines and standardizes way to interact – says 
what services are available and how to request them. 

S  Implementation – how services are carried out. 

S  Separate them: interface = *.h, implementation = *.cpp 

S  *.h includes function prototypes and data members 

S  *.cpp defines member functions (use :: binary scope 
resolution operator to tie functions to class definition) 
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A Class 

//Course.h 
#include <string> 
using namespace std; 
class  Course { 
public: 

Course( string name ); 
void setCourseName( 

  string name); 
string getCourseName(); 

private: 
string courseName; 

}; 
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//Course.cpp 
#include “Course.h” 

 
Course::Course( string name ) { 

 setCourseName(name); 
} 
void Course::setCourseName(string name) { 

courseName = name; 
} 
string Course::getCourseName() { 

return courseName; 
} 



Test Program 
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//test program can be in another file – testCourse.cpp 
#include <iostream> 
using namespace std; 
#include “Course.h” 
int main() { 

Course myCourse1( “CS105: Programming in C++” ); 
string nameOfCourse; 
cout << “Enter course name: “; 
getline( cin, nameOfCourse ); 
Course myCourse2(nameOfCourse); 
cout << myCourse1.getCourseName(); 
cout << endl; 
cout << myCourse2.getCourseName(); 
cout << endl; 
return 0; 

} 



Preprocessor Wrapper 

//Course.h 
#include <string> 
using namespace std; 
#ifndef  COURSE_H 
#define COURSE_H 
class  Course { 
public: 

Course( string name ); 
void setCourseName( 

  string name); 
string getCourseName(); 

private: 
string courseName; 

}; 
#endif  
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S  Prevent header code from being 
included into same source code 
file more than once 

S  Use uppercase, usually file name 
with “.” replaced by “_” 



Abstraction and Encapsulation 

S  Abstraction = creation of  a well-defined interface for object 

S  Encapsulation = keep implementation details private 
S  Data members and helper functions private 

S  Promotes software reusability 

S  Can change class data representation and/or implementation 
without changing code that uses class 

S  Good software engineering 
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Constructors with Defaults 

S  Constructors can have 
default values. 

S  Specify them in .h 

Course c1; 

Course c2(54520); 

S  If  multiple parameters, they 
are omitted right to left 
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//Course.h 
#include <string> 
using namespace std; 
#ifndef  COURSE_H 
#define COURSE_H 
class  Course { 
public: 

Course( int num = 50000 ); 
void setUniqueNum( 

  string num); 
string getUniqueNum ( ); 

private: 
int uniqueNum; 

}; 
#endif  



const Objects 

S  const Course courseOne(“Intro to CS”); 

S  const objects can only call const member functions – even if  
function does not modify object  

S  Member function that is const cannot modify data members 

S  Member function that is const cannot call non-const 
member functions 

S  Constructors and destructors cannot be const 
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A Class 

//Course.h 
#include <string> 
using namespace std; 
class  Course { 
public: 

Course( string name ); 
void setCourseName( 

  string name); 
string getCourseName() const; 

private: 
string courseName; 

}; 
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//Course.cpp 
#include “Course.h” 

 
Course::Course( string name ) { 

 setCourseName(name); 
} 
void Course::setCourseName(string name) { 

courseName = name; 
} 
string Course::getCourseName() const { 

return courseName; 
} 



const Objects 
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Object Member 
Function 

Allowed? 

non-const non-const ? 

non-const const ? 

const non-const ? 

const const ? 



const Objects 
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Object Member 
Function 

Allowed? 

non-const non-const YES 

non-const const YES 

const non-const NO 

const const YES 



Member Initializer Syntax 

#ifndef  INCREMENT_H 
#define INCREMENT_H 
class Increment { 
public: 

Increment(int c = 0, int i = 1);  
void addIncrement() { 

count += increment; 
} 
void print() const; 

private: 
int count; 
const int increment; 

}; 
#endif  
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#include <iostream> 
using namespace std; 
Increment::Increment(int c, int i) 

 : count(c), increment(i) { 
 //empty body 

}  
void Increment::print() const 

 cout << “count = “ << count << 
    “, increment = “ << increment <<  
    endl; 

} 



Member Initializer Syntax 

S  All data members can be initialized with this 

S  const data members and data members that are references must be 
initialized with this 

S  After constructor’s parameter list and before left brace, put “:” 
then dataMemberName(initialValue) 

S  Member initializer list executes before constructor body 

S  Member objects of  a class are either initialized with member 
initializer or member object’s default constructor 
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Static Data Members 

S  Classes have only 1 copy of  static data members whereas 
object instances each have their own copy of  non-static data 
members 
S  Object instance size determined by non-static members 

S  Static member initialization 
S  Initialized only once, only static members can be initialized in class 

definition (.h) 

S  Static members with fundamental types initialized by default to 0. 
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Static and Scope 

S  We now have another scope: class scope 
S  Inside class scope, data members accessible by all member 

functions 

S  Outside, public data members referenced through object handle 

S  Static data members have class scope 

S  Access using className::staticDataMemberName  (can use a 
particular object instance name if  any exist) 
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A Class 

//Course.h 
#include <string> 
using namespace std; 
class  Course { 
public: 

Course( string name ); 
void setCourseName( 

  string name); 
string getCourseName() const; 
static int getCount(); 

private: 
string courseName; 
static int count; 

}; 
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//Course.cpp 
#include “Course.h” 
int Course::count = 0;  //no static here! 
int Course::getCount() {//no static here! 

 return count; 
} 
Course::Course( string name ) { 

 setCourseName(name); 
 count++; 

} 
void Course::setCourseName(string name) { 

courseName = name; 
} 
string Course::getCourseName() const { 

return courseName; 
} 



Using static Data Members 

S  Course::getCount(); //don’t need objects of  class to exist to 
access static data member 

S  Course *myCourse = new Course(“CS105 C++”); 

S  myCourse->getCount(); //but you can use them if  they 
exist 
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this 

S  Every object has access to its own address through pointer called 
this (C++ keyword) 

S  this pointer passed by the compiler as implicit argument to each 
object’s non-static member functions 

S  this pointer’s type is const pointer to type of  class (i.e. Course * 
const) 

S  In Course class, accessing data member “courseName” implicitly 
uses this.  Or: this->courseName or (*this).courseName 
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Tricky Things with Objects 

S  What happens if  you… 
S  Set one object equal to another? 

Course myC++Course( “C++ Programming” ); 

Course myGPUCourse(“GPU Programming with C++”); 

Course myC++Course = myGPUCourse; 
S  Pass an object to a method as a parameter? 

void myMethod(Course myCourse);  
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Tricky Things with Objects 

S  What happens if  you… 
S  Set one object equal to another? 

S  Object = 

S  Pass an object to a method as a parameter? 
S  Object copy 

S  Both assignment operator and object copy are provided by 
default, and do member-wise assignment 
S  However, if  you have pointer member variables, you have to 

write your own! 

20 



Object Copies 

S  When objects are passed to functions or returned, they are by 
default passed by value; a copy needs to be created 

S  How: copy constructor (default provided by compiler) that does 
member-wise copying of  object (assign each member variable) 

Course( const Course &courseToCopy ) {   //why “&”? 

 courseName = courseToCopy.courseName; 

} 
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Object = 

S  When one object is set to equal another object 

Course myC++Course = myGPUCourse;  //example 

S  How: object assignment method (default provided by 
compiler) that does member-wise assignment of  each 
member variable  

Course& operator= (Course const &otherCourse) { 
 courseName = otherCourse.courseName; 
 return *this; 

} 
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Member Initializer Example 

Employee::Employee(const char* const first, const char* const last, 
const Date &dateOfBirth, const Date &dateOfHire) 
: birthDate( dateOfBirth ),  

  hireDate( dateOfHire ) { 

/*above initializers each call  

copy constructor of  Date class*/ 

//here use first & last to initialize members 

….. 

} 
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//from Employee.h 
class Employee { 
private: 

char firstName[25]; 
char lastName[25]; 
const Date birthDate; 
const Date hireDate; 

}; 



Why References, Why Pointers? 

S  References  
S  invoke functions implicitly, like copy constructor, assignment 

operator, other overloaded operators 
S  Can pass large objects without passing address 

S  Don’t have to use pointer semantics 

S  Pointers 
S  Good for dynamic memory management 
S  Ease of  pointer arithmetic 

S  Provides level of  indirection in memory 
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Tidbits about Classes 

S  Copy constructor and overloaded assignment operator (=) 
have to be provided when you have member variables that 
are dynamically allocated 
S  Destructor also should be provided 

S  To prevent one object from being assigned to another, 
declare assignment operator as private member function. 

S  To prevent objects from being copied, make both overloaded 
assignment operator and copy constructor private. 
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Inheritance 
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Inheritance 

S  Software reuse – inherit a class’s data and behaviors and enhance 
with new capabilities.   

S  Existing class = base class, inheriting class = derived class (no super/
subclass like Java) 

S  Derived class is more specialized than base class.  Object instances of  
derived class are also object of  base class (All cars are vehicles, but 
not all vehicles are cars.) 

S  There can be multiple levels of  inheritance. 
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Inheritance Details 

S  class Circle : public Shape 
S  What is base, what is derived here? 

S  Default = public inheritance (base member variables retain same 
access level in derived class), but there are other types 

S  When redefine something in derived class, use 
<baseclassName>::member to access base class’s version. 
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Inheritance and  
Member Variables 

S  Derived class has all attributes of  base class. 
S  Derived class can access non-private members of  base class. 

S  protected members of  base class are accessible to members and 
friends of  any derived classes. 

S  Derived does not inherit constructor or destructor of  base. 
S  Derived class can re-define base-class member functions for its 

own purposes, customizing base class behaviors.  

S  Size of  derived class = non-static data members of  derived class + 
non-static data members of  base class (even if  private) 
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Base Class Example 

class Member { 
public:  

Member(string name); 
Member( Member const &); 
Member& operator= (Member const &); 
~Member(); 
 
string getName() const; 
void setName(string name); 
void print() const; 

private: 
string myName; 

}; 
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Derived Class Example 
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#include “Member.h” 
class Employee : public Member { 
public:  

Employee(string name, double money); 
Employee( Employee const &); 
Employee& operator= (Employee const &); 
~Employee (); 
 
double getSalary() const; 
void setSalary(double money); 
void print() const; 

private: 
double salary; 

}; 



Employee Constructor 

#include “Employee.h” 
Employee::Employee( string name, double money ) 

: Member(name)   //base class initializer syntax 
{ 

salary = money; 
}  

S  C++ requires derived class constructor to call base class 
constructor to initialize inherited base class data members (if  
not explicit, default constructor would be called). 
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Employee’s print Function 

void Employee::print() const  

{ 
cout << “Employee: “; 

Member::print();  //prints name from base class 

cout << “\nsalary: “ << getSalary() << endl; 

} 
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Constructor/Destructor Order 

S  When we instantiate a derived class:  
1.  Base class’s member object constructors execute (if  they exist) 

2.  Base class constructor executes 
3.  Derived class’s member object constructors execute 

4.  Derived class constructor executes 

S  Destructors called in reverse order. 

S  Base class constructors, destructors and overloaded assignment 
operators are not inherited by derived classes.  However derived class 
can call base class’s version of  these. 
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Encapsulation 

S  Given a derived class can directly access and modify 
protected data members of  base class, should base class 
member variables be protected?  Or private? 
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Encapsulation 

S  Given a derived class can directly access and modify 
protected data members of  base class, should base class 
member variables be protected?  Or private? 
+  No overhead of  function call in derived class 

−  Direct modification does not allow for error checking. 

−  If  base class member variables names change, we have to 
change all derived classes use of  them. 
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Kinds of  Inheritance 

Base Class 
Access (down) 

Public 
inheritance 

Protected 
inheritance 

Private 
inheritance 

public public protected private 

protected protected protected private 

private private private private 
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