
S

Programming C++

Lecture 3

Howest, Fall 2014
Instructor: Dr. Jennifer B. Sartor

Jennifer.sartor@elis.ugent.be

Interface vs. Implementation

S  Interface defines and standardizes way to interact – says
what services are available and how to request them.

S  Implementation – how services are carried out.

S  Separate them: interface = *.h, implementation = *.cpp

S  *.h includes function prototypes and data members

S  *.cpp defines member functions (use :: binary scope
resolution operator to tie functions to class definition)

2

A Class

//Course.h
#include <string>
using namespace std;
class Course {
public:

Course(string name);
void setCourseName(

 string name);
string getCourseName();

private:
string courseName;

};

3

//Course.cpp
#include “Course.h”

Course::Course(string name) {

 setCourseName(name);
}
void Course::setCourseName(string name) {

courseName = name;
}
string Course::getCourseName() {

return courseName;
}

Test Program

4

//test program can be in another file – testCourse.cpp
#include <iostream>
using namespace std;
#include “Course.h”
int main() {

Course myCourse1(“CS105: Programming in C++”);
string nameOfCourse;
cout << “Enter course name: “;
getline(cin, nameOfCourse);
Course myCourse2(nameOfCourse);
cout << myCourse1.getCourseName();
cout << endl;
cout << myCourse2.getCourseName();
cout << endl;
return 0;

}

Preprocessor Wrapper

//Course.h
#include <string>
using namespace std;
#ifndef COURSE_H
#define COURSE_H
class Course {
public:

Course(string name);
void setCourseName(

 string name);
string getCourseName();

private:
string courseName;

};
#endif

5

S  Prevent header code from being
included into same source code
file more than once

S  Use uppercase, usually file name
with “.” replaced by “_”

Abstraction and Encapsulation

S  Abstraction = creation of a well-defined interface for object

S  Encapsulation = keep implementation details private
S  Data members and helper functions private

S  Promotes software reusability

S  Can change class data representation and/or implementation
without changing code that uses class

S  Good software engineering

6

Constructors with Defaults

S  Constructors can have
default values.

S  Specify them in .h

Course c1;

Course c2(54520);

S  If multiple parameters, they
are omitted right to left

7

//Course.h
#include <string>
using namespace std;
#ifndef COURSE_H
#define COURSE_H
class Course {
public:

Course(int num = 50000);
void setUniqueNum(

 string num);
string getUniqueNum ();

private:
int uniqueNum;

};
#endif

const Objects

S  const Course courseOne(“Intro to CS”);

S  const objects can only call const member functions – even if
function does not modify object

S  Member function that is const cannot modify data members

S  Member function that is const cannot call non-const
member functions

S  Constructors and destructors cannot be const

8

A Class

//Course.h
#include <string>
using namespace std;
class Course {
public:

Course(string name);
void setCourseName(

 string name);
string getCourseName() const;

private:
string courseName;

};

9

//Course.cpp
#include “Course.h”

Course::Course(string name) {

 setCourseName(name);
}
void Course::setCourseName(string name) {

courseName = name;
}
string Course::getCourseName() const {

return courseName;
}

const Objects

10

Object Member
Function

Allowed?

non-const non-const ?

non-const const ?

const non-const ?

const const ?

const Objects

11

Object Member
Function

Allowed?

non-const non-const YES

non-const const YES

const non-const NO

const const YES

Member Initializer Syntax

#ifndef INCREMENT_H
#define INCREMENT_H
class Increment {
public:

Increment(int c = 0, int i = 1);
void addIncrement() {

count += increment;
}
void print() const;

private:
int count;
const int increment;

};
#endif

12

#include <iostream>
using namespace std;
Increment::Increment(int c, int i)

 : count(c), increment(i) {
 //empty body

}
void Increment::print() const

 cout << “count = “ << count <<
 “, increment = “ << increment <<
 endl;

}

Member Initializer Syntax

S  All data members can be initialized with this

S  const data members and data members that are references must be
initialized with this

S  After constructor’s parameter list and before left brace, put “:”
then dataMemberName(initialValue)

S  Member initializer list executes before constructor body

S  Member objects of a class are either initialized with member
initializer or member object’s default constructor

13

Static Data Members

S  Classes have only 1 copy of static data members whereas
object instances each have their own copy of non-static data
members
S  Object instance size determined by non-static members

S  Static member initialization
S  Initialized only once, only static members can be initialized in class

definition (.h)

S  Static members with fundamental types initialized by default to 0.

14

Static and Scope

S  We now have another scope: class scope
S  Inside class scope, data members accessible by all member

functions

S  Outside, public data members referenced through object handle

S  Static data members have class scope

S  Access using className::staticDataMemberName (can use a
particular object instance name if any exist)

15

A Class

//Course.h
#include <string>
using namespace std;
class Course {
public:

Course(string name);
void setCourseName(

 string name);
string getCourseName() const;
static int getCount();

private:
string courseName;
static int count;

};

16

//Course.cpp
#include “Course.h”
int Course::count = 0; //no static here!
int Course::getCount() {//no static here!

 return count;
}
Course::Course(string name) {

 setCourseName(name);
 count++;

}
void Course::setCourseName(string name) {

courseName = name;
}
string Course::getCourseName() const {

return courseName;
}

Using static Data Members

S  Course::getCount(); //don’t need objects of class to exist to
access static data member

S  Course *myCourse = new Course(“CS105 C++”);

S  myCourse->getCount(); //but you can use them if they
exist

17

this

S  Every object has access to its own address through pointer called
this (C++ keyword)

S  this pointer passed by the compiler as implicit argument to each
object’s non-static member functions

S  this pointer’s type is const pointer to type of class (i.e. Course *
const)

S  In Course class, accessing data member “courseName” implicitly
uses this. Or: this->courseName or (*this).courseName

18

Tricky Things with Objects

S  What happens if you…
S  Set one object equal to another?

Course myC++Course(“C++ Programming”);

Course myGPUCourse(“GPU Programming with C++”);

Course myC++Course = myGPUCourse;
S  Pass an object to a method as a parameter?

void myMethod(Course myCourse);

19

Tricky Things with Objects

S  What happens if you…
S  Set one object equal to another?

S  Object =

S  Pass an object to a method as a parameter?
S  Object copy

S  Both assignment operator and object copy are provided by
default, and do member-wise assignment
S  However, if you have pointer member variables, you have to

write your own!

20

Object Copies

S  When objects are passed to functions or returned, they are by
default passed by value; a copy needs to be created

S  How: copy constructor (default provided by compiler) that does
member-wise copying of object (assign each member variable)

Course(const Course &courseToCopy) { //why “&”?

 courseName = courseToCopy.courseName;

}

21

Object =

S  When one object is set to equal another object

Course myC++Course = myGPUCourse; //example

S  How: object assignment method (default provided by
compiler) that does member-wise assignment of each
member variable

Course& operator= (Course const &otherCourse) {
 courseName = otherCourse.courseName;
 return *this;

}

22

Member Initializer Example

Employee::Employee(const char* const first, const char* const last,
const Date &dateOfBirth, const Date &dateOfHire)
: birthDate(dateOfBirth),

 hireDate(dateOfHire) {

/*above initializers each call

copy constructor of Date class*/

//here use first & last to initialize members

…..

}
23

//from Employee.h
class Employee {
private:

char firstName[25];
char lastName[25];
const Date birthDate;
const Date hireDate;

};

Why References, Why Pointers?

S  References
S  invoke functions implicitly, like copy constructor, assignment

operator, other overloaded operators
S  Can pass large objects without passing address

S  Don’t have to use pointer semantics

S  Pointers
S  Good for dynamic memory management
S  Ease of pointer arithmetic

S  Provides level of indirection in memory

24

Tidbits about Classes

S  Copy constructor and overloaded assignment operator (=)
have to be provided when you have member variables that
are dynamically allocated
S  Destructor also should be provided

S  To prevent one object from being assigned to another,
declare assignment operator as private member function.

S  To prevent objects from being copied, make both overloaded
assignment operator and copy constructor private.

25

Inheritance

26

Inheritance

S  Software reuse – inherit a class’s data and behaviors and enhance
with new capabilities.

S  Existing class = base class, inheriting class = derived class (no super/
subclass like Java)

S  Derived class is more specialized than base class. Object instances of
derived class are also object of base class (All cars are vehicles, but
not all vehicles are cars.)

S  There can be multiple levels of inheritance.

27

Inheritance Details

S  class Circle : public Shape
S  What is base, what is derived here?

S  Default = public inheritance (base member variables retain same
access level in derived class), but there are other types

S  When redefine something in derived class, use
<baseclassName>::member to access base class’s version.

28

Inheritance and
Member Variables

S  Derived class has all attributes of base class.
S  Derived class can access non-private members of base class.

S  protected members of base class are accessible to members and
friends of any derived classes.

S  Derived does not inherit constructor or destructor of base.
S  Derived class can re-define base-class member functions for its

own purposes, customizing base class behaviors.

S  Size of derived class = non-static data members of derived class +
non-static data members of base class (even if private)

29

Base Class Example

class Member {
public:

Member(string name);
Member(Member const &);
Member& operator= (Member const &);
~Member();

string getName() const;
void setName(string name);
void print() const;

private:
string myName;

};

30

Derived Class Example

31

#include “Member.h”
class Employee : public Member {
public:

Employee(string name, double money);
Employee(Employee const &);
Employee& operator= (Employee const &);
~Employee ();

double getSalary() const;
void setSalary(double money);
void print() const;

private:
double salary;

};

Employee Constructor

#include “Employee.h”
Employee::Employee(string name, double money)

: Member(name) //base class initializer syntax
{

salary = money;
}

S  C++ requires derived class constructor to call base class
constructor to initialize inherited base class data members (if
not explicit, default constructor would be called).

32

Employee’s print Function

void Employee::print() const

{
cout << “Employee: “;

Member::print(); //prints name from base class

cout << “\nsalary: “ << getSalary() << endl;

}

33

Constructor/Destructor Order

S  When we instantiate a derived class:
1.  Base class’s member object constructors execute (if they exist)

2.  Base class constructor executes
3.  Derived class’s member object constructors execute

4.  Derived class constructor executes

S  Destructors called in reverse order.

S  Base class constructors, destructors and overloaded assignment
operators are not inherited by derived classes. However derived class
can call base class’s version of these.

34

Encapsulation

S  Given a derived class can directly access and modify
protected data members of base class, should base class
member variables be protected? Or private?

35

Encapsulation

S  Given a derived class can directly access and modify
protected data members of base class, should base class
member variables be protected? Or private?
+  No overhead of function call in derived class

−  Direct modification does not allow for error checking.

−  If base class member variables names change, we have to
change all derived classes use of them.

36

Kinds of Inheritance

Base Class
Access (down)

Public
inheritance

Protected
inheritance

Private
inheritance

public public protected private

protected protected protected private

private private private private

37

