
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 1

DEP+BURST: Online DVFS Performance
Prediction for Energy-Efficient Managed

Language Execution
Shoaib Akram, Jennifer B. Sartor, and Lieven Eeckhout

Abstract—Making modern computer systems energy-efficient is of paramount importance. Dynamic Voltage and Frequency Scaling
(DVFS) is widely used to manage the energy and power consumption in modern processors; however, for DVFS to be effective, we
need the ability to accurately predict the performance impact of scaling a processor’s voltage and frequency. No accurate performance
predictors exist for multithreaded applications, let alone managed language applications.
In this work, we propose DEP+BURST, a new performance predictor for managed multithreaded applications that takes into account
synchronization, inter-thread dependencies, and store bursts, which frequently occur in managed language workloads. Our predictor
lowers the performance estimation error from 27% for a state-of-the-art predictor to 6% on average, for a set of multithreaded Java
applications when the frequency is scaled from 1 to 4 GHz. We also novelly propose an energy management framework that uses
DEP+BURST to reduce energy consumption. We first target reducing the processor’s energy consumption by lowering its frequency
and hence its power consumption, while staying within a user-specified maximum slowdown threshold. For a slowdown of 5% and
10%, our energy manager reduces on average 13% and 19% of energy consumed by the memory-intensive benchmarks. We then use
the energy manager to optimize total system energy, achieving an average reduction of 15.6% for a set of Java benchmarks. Accurate
performance predictors are key to achieving high performance while keeping energy consumption low for managed language
applications using DVFS.

Index Terms—Dynamic voltage and frequency scaling, multithreaded performance estimation, managed runtimes, dynamic energy
management.

F

1 INTRODUCTION

In modern times, improving the energy-efficiency of computer
systems is of prime importance. One way to manage the proces-
sor’s power and energy consumption is using Dynamic Voltage
and Frequency Scaling (DVFS). DVFS allows one to simultane-
ously change a processor’s voltage and frequency. To effectively
utilize DVFS, we need the ability to predict its performance
impact on applications at run-time. Accurate DVFS performance
prediction enables different opportunities for reducing the energy
consumed by our applications. In particular, two possibilities
include reducing the energy consumption while honoring a user-
specified performance constraint, or running applications at the
frequency that minimizes total energy consumption.

During the last decade, significant progress has been made in

• S. Akram is with Ghent University, Belgium. E-mail:
Shoaib.Akram@UGent.be.

• J. B. Sartor is with Ghent University and Vrije Universiteit Brussel,
Belgium. E-mail: Jennifer.Sartor@UGent.be.

• L. Eeckhout is with Ghent University, Belgium. E-mail:
Lieven.Eeckhout@UGent.be.

This article is an extension of ‘DVFS Performance Prediction for Managed
Multithreaded Applications’, by Shoaib Akram, Jennifer B. Sartor and Lieven
Eeckhout, presented at the 2016 International Symposium on Performance
Analysis of Systems and Software (ISPASS). The new contributions include:
(1) An exploration of the scalability of our proposed DVFS predictor.
(2) An extension to our energy manager to still achieve energy savings with a
coarser frequency step setting.
(3) The results of a sensitivity study of different parameters of the energy
manager including quantum and hold-off.
(4) A new case study using our energy manager to optimize total system energy.
(5) New discussions, clarifications, and revisions of many parts of the confer-
ence version of the paper.

understanding and predicting the performance impact of DVFS
for native sequential applications written in C and C++, see for
example [11], [19], [29], [35], [38], [46]. However, prior work
lacks a DVFS predictor for multithreaded applications, especially
those written in managed languages, such as Java.

Existing DVFS predictors for sequential applications view
a processor core as either executing instructions or waiting for
memory accesses to return. The time spent executing instructions
scales with frequency, whereas the time spent waiting for memory
does not. Although this view suffices for sequential applications, it
is not sufficient for multithreaded applications. For one, synchro-
nization activity in multithreaded applications leads to inter-thread
dependencies. Consequently, speeding up or slowing down one
thread using DVFS impacts the execution of dependent threads,
leading to complex interactions which affect overall application
performance. A DVFS predictor for multithreaded applications
therefore needs to take into account synchronization when pre-
dicting the total execution time at the target frequency.

Managed applications, which run on top of a virtual machine,
exhibit even more inter-thread dependencies than native applica-
tions. Service threads, such as those that perform garbage collec-
tion and just-in-time compilation, run alongside the application
threads [9], [37]. Application and service threads need to syn-
chronize from time to time, leading to increased synchronization
activity, which further complicates DVFS performance prediction.

An additional complication is that managed applications issue
bursts of store operations. These occur for two reasons: due to
garbage collection activities that move memory around, and due
to the zero-initialization upon fresh allocation that many managed

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 2

languages, such as Java, require to provide memory safety. Current
predictors ignore store operations assuming they are not on the
critical path. We find that ignoring store operations leads to
incorrect DVFS performance prediction for managed applications.

In this paper, we propose DEP+BURST, a novel DVFS
performance predictor for managed multithreaded applications.
DEP+BURST consists of two key components, DEP and BURST.
DEP decomposes the execution time of a multithreaded applica-
tion into epochs based on the synchronization activity of both the
application and service threads. We predict the duration of epochs
at a different frequency, and aggregate the predicted epochs while
taking into account inter-thread dependencies to predict the total
execution time at the target frequency. A crucial component of
DEP is its ability to predict critical threads across epochs. BURST
identifies store operations that are on the application’s critical
path, and predicts their impact on performance across different
frequency settings. Based on a run at the baseline frequency of
1 GHz, DEP+BURST achieves an average absolute error of 6%
when predicting performance at a 4 GHz target frequency, for a
set of multithreaded Java applications from the DaCapo suite [5].
DEP+BURST’s error is a significant decrease from the 27% error
achieved by M+CRIT, a multithreaded extension of the state-of-
the-art CRIT [35] performance predictor.

We integrate DEP+BURST into an energy management frame-
work for managed applications. We first use the energy manager
to reduce the processor’s energy consumption by tolerating a
slowdown in performance compared to running at the highest
frequency. On average, for a user-specified slowdown threshold of
5% and 10%, our energy management framework reduces energy
consumption by 13% and 19%, respectively, for a set of memory-
intensive applications. In a second use case, the energy manager
optimizes for total system energy consumption, including that
of the processor plus DRAM. On average, our energy manager
reduces total energy consumption by 15.6% through dynamically
responding to application’s phase behavior to pick a frequency
per time quantum that lowers total system energy. For each use
case, we compare against an oracle scheme that explores all
possible frequency settings, and for a number of benchmarks, we
outperform this scheme by exploiting dynamic phase behavior.
We make the following contributions:

1) We identify that inter-thread dependencies and store
bursts need to be taken into account to have an accurate
performance predictor for multithreaded managed appli-
cations.

2) We introduce a performance predictor, DEP+BURST,
that significantly lowers the error of accurately predicting
performance when scaling the frequency.

3) We perform two case studies with an energy manager that
1) targets reducing the processor’s energy consumption
by slowing down a program not more than a user-
specified slowdown threshold, and 2) optimizes total
system energy, taking memory’s energy consumption into
account.

4) We perform experiments exploring the scalability of
DEP+BURST, the ramifications of having a coarser fre-
quency step setting, and the execution time overhead of
running the proposed DVFS predictor.

Having an accurate performance predictor for DVFS is crucial
to maintaining good performance, especially for multithreaded
managed applications, while reducing energy consumption.

2 BACKGROUND AND MOTIVATION

In this section, we first provide background on the state-of-
the-art predictor for sequential applications. We then describe
the challenges introduced by multithreading and managed lan-
guages. Finally, we discuss naive extensions to the state-of-the-
art predictor to predict the performance of multithreaded managed
applications.

2.1 DVFS Performance Predictors for Sequential Appli-
cations

The impact of changing the frequency on application performance
is easily understood by dividing execution time into ‘scaling’ and
‘non-scaling’ components. The scaling component scales in pro-
portion to frequency; the non-scaling component remains constant
when changing frequency. This simple division of execution time
into scaling and non-scaling components works because changing
the processor’s frequency does not alter DRAM service time,
whereas an increase or decrease in processor frequency has a
proportional impact on the rate at which instructions execute in
the core pipeline. The key challenge for accurately predicting the
performance impact of DVFS is due to the out-of-order nature
of modern processor pipelines in which memory requests are
resolved while executing and retiring other instructions. Three
DVFS performance predictors have been proposed over the past
few years for sequential applications, with progressively improved
accuracy. We now briefly discuss these three predictors.
Stall Time. The simplest, and least accurate, of the three models
is the stall time model [19], [29], which estimates the non-scaling
component by measuring the time the pipeline is unable to commit
instructions. The non-scaling component is underestimated be-
cause it does not account for the fact that instructions may commit
underneath a memory access. The simplicity of this model implies
that it is easy to deploy on real hardware using existing hardware
performance counters.
Leading Loads. Proposed by three different groups around the
same time [19], [29], [38], the leading loads model computes
the non-scaling component by accounting for the full latency of
the leading load miss in a burst of load misses. Modern out-of-
order pipelines are able to exploit memory-level parallelism and
handle independent long-latency load misses simultaneously. The
leading loads model assumes that each long-latency load miss
incurs roughly the same latency, and hence, for a cluster of long-
latency load misses, the miss latency of the leading load is a good
approximation for the non-scaling component. Recent work shows
that the leading loads model can be deployed on real hardware by
using performance counters available on modern processors [43].
CRIT. A fundamental limitation of the leading loads model is
that it does not take into account that long-latency load misses
may incur variable latency, for a variety of reasons, including
memory scheduling, bank conflicts, open page policy, etc. This
leads to prediction inaccuracy for the leading loads model, which
is overcome by CRIT, the state-of-the-art DVFS predictor pro-
posed by Miftakhutdinov et al. [35]. CRIT identifies the critical
path through a cluster of long-latency load misses to model
a realistic, variable-latency memory system. CRIT includes an
algorithm to identify dependent long-latency load misses and uses
their accumulated latency as an approximation for the non-scaling
component. We will use CRIT as our DVFS performance predictor
for an individual thread. Note that as of today, no implementation
of CRIT exists on real hardware.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 3

2.2 Challenges in DVFS Performance Prediction for
Managed Multithreaded Applications
There are three major challenges for predicting the performance
impact of DVFS for multithreaded managed applications.
Inter-thread dependencies due to multithreading. To protect
shared variables, different threads of a multithreaded application
use synchronization primitives. Common examples of synchro-
nization include critical sections and barriers. Synchronization
leads to inter-thread dependencies. No thread is allowed to con-
tinue past the barrier until all threads reach the barrier. The
slowest thread determines the barrier execution time at the target
frequency. With a critical section, the progress of a thread waiting
for a lock will depend on how fast the thread currently holding the
lock is progressing at the target frequency. Scaling the frequency
of one thread in a multithreaded application impacts the execution
of other dependent threads, affecting overall performance in a non-
trivial way.
Interaction between application and service threads. A man-
aged language execution engine, such as the Java Virtual Machine
(JVM), consists of application threads and service threads. The
most important service threads include garbage collection and
just-in-time compilation. Application and service threads interact
with each other. For instance, a stop-the-world garbage collector
suspends the application for a short duration to traverse the heap,
and reclaim memory being used by objects that are no longer
referenced. To estimate the total execution time at a different
frequency, a DVFS predictor thus needs to take the interaction
between application threads and service threads into account.
Store bursts. To provide memory safety, the Java programming
language requires that a region of memory is zero-initialized upon
fresh allocation. The process of zero-initialization leads to a burst
of store operations that fill up the processor’s pipeline. Another
source of store bursts is the copying of objects during garbage
collection. Ignoring store operations completely, as prior DVFS
predictors do, leads to incorrect predictions for managed language
workloads.

2.3 Straightforward Extensions of Prior Work
Before describing our new predictor in the next section, we first
present two straightforward extensions of prior work to deal
with multiple threads and, in the second case, service threads.
We will quantitatively compare DEP+BURST against these naive
extensions in the results section, and detail why these models are
insufficient.
M+CRIT. We call the first predictor M+CRIT (short for mul-
tithreaded CRIT), which is generally applicable to any multi-
threaded application. M+CRIT uses the intuition that the execution
time of a multithreaded application is determined by the critical
(slowest) thread. We first use CRIT to identify each thread’s
scaling and non-scaling components at the base frequency. We
then predict each thread’s execution time at the target frequency.
The thread with the longest predicted execution time is the critical
thread. The execution time of the critical thread is also the total
execution time of the application at the target frequency.
COOP. We term the second predictor COOP (short for coop-
erative), which is specific to Java applications. A typical Java
application with a stop-the-world garbage collector goes through
an ‘application’ phase, followed by a ‘collector’ phase. COOP in-
tercepts the communication between the application and collector
threads using signals from the JVM. Using these signals, COOP is
able to distinguish application and collector phases. Once these

individual phases are identified, COOP then uses M+CRIT to
predict the execution time of the individual phases and aggregates
the predictions to obtain a prediction for the total execution time.

3 THE DEP+BURST MODEL

We now discuss our new DVFS performance predictor for man-
aged multithreaded applications in detail.

3.1 Overview
Our proposed DVFS predictor estimates the performance of a
managed multithreaded application in two steps. In the first step,
the predictor decomposes execution time into epochs based on
synchronization activity in the application to account for inter-
thread dependencies and the interaction between the application
and service threads. In the second step, the predictor estimates
the execution time of each active thread at a target frequency,
taking into account which thread is critical and adjusting for
dependencies with other epochs. Our model, which we call DEP,
estimates the epoch execution time at the target frequency, and
aggregates epochs to predict the total application execution time.
To additionally take into account store bursts, we modify the
second step to adjust the calculation of the scaling and non-scaling
portions per thread within an epoch. When accounting for store
bursts, we call our full model DEP+BURST. In the following
sections, we first describe DEP, and then BURST.

3.2 Identifying Synchronization Epochs
First, we describe how DEP decomposes execution time into
synchronization epochs. A synchronization epoch consists of
a variable number of threads running in parallel. Two events
mark the beginning of a new synchronization epoch: a thread
is scheduled out by the OS and put to sleep, or a sleeping (or
newly spawned) thread is scheduled onto a core. In multithreaded
applications, threads typically go to sleep when access to a critical
section is not available, or threads sleep while waiting at a barrier
for other threads to join.

We identify synchronization epochs by intercepting the fu-
tex wait and futex wake system calls. Multithreading libraries
such as pthreads use futexes, or fast kernel space mutexes [21]
for handling locking. In the uncontended case, the application
acquires the lock using atomic instructions without entering the
kernel. Only in the contended case does the application invoke the
kernel spin locks using the futex interface. Intercepting futex calls
incurs limited overhead (less than 1%) [17].

To understand why futex-based decomposition is necessary,
consider the example of a multithreaded execution in Figure 1(a).
Two threads t0 and t1 from the same application are running in
parallel. When t1 attempts to enter a critical section, t0 is already
executing the critical section, which leads to t1 being scheduled
out and made to wait for t0 to finish executing the critical section.
When t0 is done executing the critical section, t1 is woken up.

An intuitive way to estimate the execution time of the example
in Figure 1(a) is to first identify the non-scaling component of
t0 and t1 when running at the base frequency, and subtract those
from the total execution time to obtain the scaling components.
This is what M+CRIT does. Using these per-thread components,
it is straightforward to estimate the execution time of individual
threads at the target frequency (see Section 2). Then the estimated
execution time of the slowest thread serves as an estimate of total
execution time. However, this leads to an incorrect estimation
of execution time. Non-scaling component of execution time is

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 4

t0 t1 t0 t1

epoch 1

epoch 2

epoch 3

wake

t0 t1

a

b

c

x

y

z

b’

a’

c’ z’

x’

t0 t1

b’

a’

c’ z’

x’

T’ = max(a’,x’) + b’
 + max(c’,z’)

T’ = a’ + b’ + max(c’,z’)

(a) Multithreaded
 Execution

(b) Synchronization
 Epochs

(c) Per-Epoch Critical
 Thread Prediction

(d) Across-Epoch Critical
 Thread Prediction

active wait

Fig. 1: Showing how DEP breaks up a multithreaded application (a) into synchronization epochs (b) while running at the base frequency.
DEP then estimates per-thread epoch durations at the target frequency, calculates the critical thread per epoch (c), and accounts for
changes in the critical thread across epochs (d).

actively accumulated in a counter only during the time a thread is
active. During the time t1 is waiting, its non-scaling component
depends on the activity taking place in the core where the thread
holding the lock is running (t0). In the simple approach, the time
t1 is waiting gets incorrectly attributed to the scaling component.
Accurately estimating the execution time requires taking the
dependency between t0 and t1 into account.

Figure 1(b) shows how our predictor decomposes the execu-
tion shown in Figure 1(a) into three epochs. a and x represent
the duration of the first epoch, for threads t0 and t1, respectively.
While these values are equal at the base frequency, we label them
differently per thread because these values could be different when
estimating time at the target frequency. b represents the duration
of time that t0 is active during the second epoch when running
at the base frequency. Similarly, c and z represent the duration of
the third epoch. By decomposing execution time into epochs, DEP
is able to model the dependency between t0 and t1 by analyzing
b and predicting the new duration of b at a different frequency,
which affects when both threads begin the third epoch at the new
frequency.

It should be noted that the synchronization incurred by service
threads, namely between garbage collection threads, and the
coordination between application and garbage collection threads
is also communicated through futex calls. Therefore, by breaking
down execution into epochs, we not only model the inter-thread
dependencies between the application threads, but also account for
the extra interactions between managed language application and
service threads.

3.3 Predicting Performance at a Target Frequency

We now discuss how DEP estimates the duration of an epoch at a
target frequency. During an epoch, DEP uses CRIT to accumulate
the non-scaling component of each active thread in a counter. At
the end of an epoch, both the scaling and non-scaling components
are known. This provides DEP with a prediction of the duration of
each thread at the target frequency. This is shown in Figure 1(c)
and Figure 1(d) where a’, b’ and c’ represent the estimated duration
of t0’s first, second and third epoch, respectively, at the target
frequency. Similarly, x’ and z’ is the estimated duration of t1’s first
and third epoch at the target frequency. The next goal is to predict
the execution time of an epoch from these individual estimates of
all the active threads.

Per-epoch Critical Thread Prediction (CTP). An intuitive ap-
proach is to take the duration of the thread that runs the longest
in the epoch, i.e., the critical thread, as the duration of the epoch
at the target frequency. This approach is shown in Figure 1(c).
This approach is simple to implement and does not require
any bookkeeping across epochs. This technique does model the
dependency between threads t0 and t1 in our running example
and predicts when the third epoch would begin for both threads
in the target frequency. However, using per-epoch critical thread
prediction does not result in an accurate estimate of total execution
time.

Across-epoch Critical Thread Prediction (CTP). We add across-
epoch critical thread prediction to our DEP model to make it more
accurate. This is shown in Figure 1(d). In the figure, a’ is estimated
to be shorter than x’. But if x’ is taken as the duration of the first
epoch, this leads to an incorrect estimation of the duration of the
three epochs i.e., x’ + b’ + max(c’,z’). The correct duration is a’
+ b’ + max(c’,z’), because thread t0 would just continue running
after a’ time units. In effect, part of x’ gets overlapped with b’ at the
target frequency. Therefore, during each epoch, we need to store
extra state to be able to identify the identity and duration of the
critical thread to take that into account across epochs. Following
the current example, we store the delta, x’ - a’, in a separate counter
at the end of the first epoch. We also speculatively estimate the
total execution time at the end of first epoch to be x’. In the second
epoch, we subtract the delta-counter from b’. This way, at the end
of the second epoch, we correctly estimate the total execution time
to be a’ + b’.

Algorithm. Our algorithm for performing across-epoch critical
thread prediction is shown in Algorithm 1. First, we introduce
the terminology used in Algorithm 1. αt represents the estimated
duration of a thread t at the target frequency. δt is the difference
between the estimated duration of thread t and the estimated
duration of the critical thread; δt of the critical thread is zero.
The first step in Algorithm 1 is to compute the estimated duration,
αt , of each thread using CRIT (line 2). Next, we calculate the
‘effective’ execution time (et) of each thread by subtracting δt
from αt (line 3). The thread with the largest et is the critical
thread, and the corresponding et is the duration of the epoch (I′)
(line 5). Note that δt is accumulated across epochs, with a term
representing the difference between I′ and αt added during each
epoch until the thread stalls (line 7). We reset δt of a stalling thread

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 5

ALGORITHM 1: Algorithm for across-epoch CTP.
input : A synchronization epoch S (I time units)
input : Initial delta-counters (δt) of all threads
input : Identity of the stalled thread if any (stall tid)
output: Estimated duration (I’ time units) of S at target frequency

1 for each active thread t in S do
2 αt = computeEstimatedTimeUsingCRIT()
3 et = αt - δt
4 end
5 I’ = Largest et
6 for each active thread t in S do
7 δt = (I’ - αt) + δt
8 end
9 δstall−tid = 0

to zero (line 9).

3.4 Modeling Store Bursts

Store bursts occur more frequently in managed language work-
loads than in native applications. In Java in particular, store
bursts originate from two main sources: (1) zero-initialization
to provide memory safety, and (2) copying of objects during
garbage collection. A DVFS model for Java applications should
incorporate the impact of store bursts.

CRIT assumes that store instructions are not on the applica-
tion’s critical path. This is true for a few isolated store requests
that miss in the L1 cache because the store queue provides
modern processors with the ability to execute loads in the presence
of outstanding stores (through load bypassing and store-to-load-
forwarding). Furthermore, it contains committed stores until they
are retired by the memory hierarchy, freeing up space in the ROB
or active list. Normally, the work done underneath a store miss
scales with frequency. However, a fully-occupied store queue stalls
the processor pipeline. Store bursts fill up the store queue before
eventually stalling the pipeline.

In typical out-of-order pipelines, an entry is allocated in the
ROB and the store queue at the time the store instruction is issued.
When a store commits from the head of the ROB, the entry is
no longer maintained in the ROB, but the entry is maintained
in the store queue until the outstanding request is finally retired.
Commit stalls when the store queue is full and the next instruction
to commit is a store.

To account for store bursts, we accumulate the amount of
time the store queue is full in a counter when running at the
base frequency. For each active thread during an epoch, we add
the counter’s contents to the non-scaling component measured by
CRIT. When modeling the impact of store bursts, we add BURST
next to the model name. Thus, our proposed model that takes both
inter-thread dependencies and store bursts into account is called
DEP+BURST.

3.5 Implementation Details

Now, we discuss implementation issues when porting
DEP+BURST to real hardware. First, the OS is the best
place to identify synchronization epochs, for instance, as a kernel
module. The OS is aware of thread creation, deletion, and other
events regarding thread scheduling including the futex wait and
futex wake system calls.

Multiple threads time-sharing a single core is a common prac-
tice to consolidate resources. In such a case, the OS periodically
schedules out the currently executing thread out of the core, and

Benchmark Type Heap size Execution GC time
[M/C] [MB] time (ms) (ms)

xalan M 108 1,400 270
pmd M 98 1,345 230
pmd.scale M 98 500 80
lusearch M 68 2,600 285
lusearch.fix C 68 1,249 42
avrora C 98 1,782 5
sunflow C 108 4,900 82

TABLE 1: Our benchmarks from the DaCapo suite, including a
classification of their type, heap size, execution time and GC time
at 1 GHz. M represents a memory-intensive benchmark, and C
represents a compute-intensive benchmark.

schedules one of the waiting threads in. Whenever that happens,
we start a new epoch. As a result, time-multiplexing cores among
threads is seamlessly handled by DEP.

We require extra counters to implement DEP+BURST on real
hardware. We use CRIT [35] within an epoch to divide a thread’s
execution into scaling and non-scaling portions, so our model
requires the same bookkeeping information as CRIT.

Tracking store bursts requires simple additional logic in the
store queue that generates a signal once all its entries are occupied.
The performance counter hardware monitors this signal to account
for the time the store queue is full.

To account for critical threads across epochs, we require one
counter per thread. This counter can be maintained in software
inside the kernel module that intercepts the futex calls.

4 EXPERIMENTAL METHODOLOGY

Before evaluating the accuracy of DEP+BURST, we first describe
our experimental setup.
Simulator. We use Sniper [10] version 6.0, a parallel, high-speed
and cycle-level x86 simulator for multicore systems; we use the
most detailed cycle-level core model available. Sniper was further
extended [40] to run a managed language runtime environment
including dynamic compilation, and emulation of frequently used
system calls.
Java Virtual Machine and benchmarks. We use Jikes RVM
3.1.2 [3] to evaluate the seven multithreaded Java benchmarks
from the DaCapo suite [5] that we can get to work on our
infrastructure. We use five benchmarks from the DaCapo-9.12-
bach benchmark suite (avrora, lusearch, pmd, sunflow, xalan).
We also use an updated version of lusearch, called lusearch-fix
(described in [47]), that eliminates needless allocation. Finally,
we use an updated version of pmd, called pmd-scale (described
in [17]) that eliminates the scaling bottleneck due to a large
input file. All benchmarks we use in this work are multithreaded.
The avrora benchmark uses a fixed number (six) of application
threads, but has limited parallelism [17]. For the remaining multi-
threaded benchmarks, we evaluate using four application threads.
Table 1 lists our benchmarks, a classification of whether they
are memory or compute-intensive, the heap size we use in our
experiments (reflecting moderate, reasonable heap pressure [40]),
and their running time when using Sniper with each core running
at 1 GHz. We classify the benchmarks based on the intensity
of garbage collection. An application that spends more than
10% of its execution time in garbage collection is considered a
memory-intensive benchmark. lusearch.fix, avrora, and sunflow
are compute-intensive, and the remaining five benchmarks are
memory-intensive.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 6

Component Parameters
Processor 4 cores, 1.0 GHz to 4.0 GHz

4-issue, out-of-order, 128-entry ROB
Outstanding loads/stores = 48/32

Cache hierarchy L1-I/L1-D/L2, Shared L3 (1.5 GHz)
Capacity: 32 KB / 32 KB / 256 KB / 4 MB
Latency : 2 / 2 / 11 / 40 cycles
Set-associativity: 4 / 8 / 16
64 B lines, LRU replacement

Coherence protocol MESI
DRAM FR-FCFS, 12 GB/s, 45 ns latency
DVFS states (1, 0.737); (1.5, 0.791); (2, 0.845);
(GHz,Vdd) (2.5, 0.899); (3, 0.958); (3.5, 1.012);

(4, 1.07)

TABLE 2: Simulated system parameters.

We follow common practice in Java performance evaluation by
using replay compilation [6], [22] to eliminate non-determinism
introduced by the just-in-time compiler. During profiling runs,
the optimization level of each method is recorded for the run
with the lowest execution time. The JIT compiler then uses this
optimization plan in our measured runs, optimizing to the correct
level the first time it sees each method [6], [26]. To eliminate the
perturbation of the compiler, we measure results during the second
invocation, which represents application steady-state behavior. We
run each application four times, and report averages in the graphs.
We use the default stop-the-world generational Immix garbage
collector in JikesRVM [7] along with the default nursery settings.
Processor architecture. We consider a quad-core processor con-
figured after the Intel Haswell processor i7-4770K, see Table 2.
Each core is a superscalar out-of-order core with private L1 and L2
caches, while sharing the L3 cache. We vary the cores’ frequency
between 1 and 4 GHz.
Power and energy modeling. We use McPAT version 1.0 [32] for
modeling power consumed by the processor. For DVFS support,
we use the Sniper/McPAT integration described in [23] while
considering a 22 nm technology node. We use a frequency step
setting of 125 MHz when dynamically adjusting the frequency
to save energy (Section 6). We use the voltage and frequency
settings for a 22 nm technology node, closely following Intel’s i7-
4770K (Haswell) [13]; see Table 2 for a subset of settings1. When
reporting power numbers, we include both static and dynamic
power. We model the DVFS transition latency as a fixed cost of
2 µs [25].

5 MODEL EVALUATION

We now evaluate the accuracy of DEP+BURST. We first compare
the accuracy of DEP against M+CRIT and COOP to understand
the impact of taking inter-thread dependencies into account. We
then evaluate DEP with and without BURST, teasing apart the
contribution of taking store bursts into account.

5.1 Prediction Accuracy

Evaluating the accuracy of a DVFS performance predictor is done
as follows. We run the application at both the baseline and target
frequency. We predict the execution time at the target frequency
based on the run at the baseline frequency, and we compare the
predicted execution time against the measured execution time.
We quantify prediction accuracy as the relative prediction error
(estimated - actual) / actual. A negative error thus implies an

1. The remaining settings can be found using the linear relationship between
core voltage (v) and frequency (f), v = 0.11 * f + 0.63 [13].

0

10

20

30

2.0 GHz 3.0 GHz 4.0 GHz

%
 A

vg
 A

b
s

Er
ro

r M+CRIT COOP DEP

(a) Low-to-high prediction

0

20

40

60

80

3.0 GHz 2.0 GHz 1.0 GHz

%
 A

vg
 A

b
s

Er
ro

r M+CRIT COOP DEP

(b) High-to-low prediction

Fig. 2: Showing the average absolute prediction error of M+CRIT,
COOP and DEP: (a) prediction at higher frequency from a baseline
of 1 GHz, and (b) prediction at lower frequency from a baseline of
4 GHz. DEP outperforms all other predictors both when predict-
ing from 1 GHz to 4 GHz and vice-versa.

underestimation of the execution time or a performance overesti-
mation. The reverse applies for a positive error.

Evaluating a DVFS performance predictor requires choosing
a baseline and target frequency. When used as part of an energy
management framework — as we will explore in Section 6 — it is
important that we are able to accurately predict performance both
at higher and lower frequencies. We hence consider two scenarios:
one in which we consider a low base frequency and predict
performance at higher frequencies, and one in which we consider a
high base frequency and predict performance at lower frequencies.
Figure 2(a) shows the average absolute error of M+CRIT, COOP,
and DEP for three target frequencies when the base frequency is
set at 1 GHz, i.e., predicting performance at a higher frequency
than the baseline frequency2. Figure 2(b) shows similar data for
target frequencies smaller than the base frequency set to 4 GHz.

M+CRIT has the worst prediction error of all models. The
average absolute error is 27% when predicting from 1 GHz to
4 GHz, and 70% when predicting from 4 GHz to 1 GHz. Clearly,
not taking into account synchronization, inter-thread dependencies
and store bursts leads to highly inaccurate DVFS performance
prediction for managed multithreaded applications.

Taking into account the interaction of application and man-
aged language service threads, as COOP does, slightly improves
accuracy over M+CRIT. However, the prediction error is still
significant with average absolute prediction errors for COOP of
22% and 63% for the base 1 and 4 GHz scenarios, respectively.

Taking all synchronization activity into account, as DEP does,
further improves accuracy, with an average absolute error of 19%
and 57% for the base 1 and 4 GHz scenarios, respectively. The
conclusion from this result is that managed multithreaded ap-
plications require accurate modeling of inter-thread dependencies
both through coarse-grained synchronization between application
phases and garbage collection phases, as well as through fine-
grained synchronization between application threads and between
garbage collection threads. Unfortunately, although the prediction
error is decreased compared to M+CRIT and COOP, DEP’s error
is still high.

Next, we compare the prediction error of DEP to
DEP+BURST in Figure 3(a) which shows the errors for all bench-
marks for a target frequency of 4 GHz when the base frequency is
set at 1 GHz. Figure 3(b) shows similar data for a target frequency
of 1 GHz when the base frequency is 4 GHz. Modeling store bursts
brings the error down substantially, especially for the memory-
intensive benchmarks. DEP+BURST has an average absolute error
of 6% when predicting from 1 GHz to 4 GHz, and an average

2. An earlier version of this paper includes per-benchmark results [2].

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 7

-30

-20

-10

0

10

%
 E

rr
o

r

DEP DEP+BURST

~-60 %

(a) Low-to-high prediction

0
10
20
30
40
50
60

%
 E

rr
o

r

DEP DEP+BURST
~-180 %

(b) High-to-low prediction

Fig. 3: Per-benchmark prediction errors for DEP and DEP+BURST: (a) prediction at 4 GHz from a baseline of 1 GHz, and (b)
prediction at 1 GHz from a baseline of 4 GHz. DEP+BURST substantially outperforms DEP both when predicting from 1 GHz to
4 GHz and vice-versa.

absolute error of 8% when predicting from 4 GHz to 1 GHz.
Modeling both synchronization and inter-thread dependencies as
well as store bursts is critical for DVFS performance prediction of
managed multithreaded applications.

Prediction errors tend to increase for target frequencies that
are ‘further away’ from the base frequency, due to accumulat-
ing errors, which is especially noticeable for memory-intensive
applications. Further, when predicting the execution time in the
high-to-low scenario, an error in incorrectly estimating the scaling
component multiplies as the target frequency increases. This leads
to increased inaccuracy in identifying the critical thread in an
epoch. When predicting low-to-high, the scaling component is
divided by a factor, making the error less prominent.
Explaining lusearch and avrora. From the results in Figure 3,
we note a higher estimation error for two benchmarks: avrora and
lusearch. Our analysis indicates that each of the two benchmarks
stresses a different component of DEP+BURST. avrora has the
largest number of epochs among all of our benchmarks, pointing
to a large number of inter-thread dependencies, thus stressing the
DEP component. On the other hand, lusearch allocates the most
memory. Its error is high because it is overly sensitive to the
approximation we make to model store bursts.

5.2 Per-Epoch vs. Across-Epochs CTP

As argued in Section 3, it is important to accurately predict the
critical thread at each point during the execution. We described
two approaches to this problem, namely per-epoch critical thread
prediction (CTP) and across-epoch CTP. We now quantify the
importance of across-epoch CTP. Figure 4 reports the prediction
error for DEP+BURST with across-epoch CTP versus per-epoch
CTP. Across-epoch CTP brings down the average absolute error
by a significant margin compared to per-epoch CTP: by 4% (from
10% to 6% average absolute error) at 4 GHz with a 1 GHz base
frequency, and by 6% (from 14% to 8% average absolute error)
at 1 GHz with a 4 GHz base frequency. This result confirms
that being able to accurately predict the critical thread at all
points during the execution time, and carry this dependence across
epochs, is a key component of DEP+BURST.

5.3 Scalability

We have shown the accuracy of DEP+BURST with four applica-
tion and two GC threads. We now experiment with different thread

0
2.5

5
7.5
10

12.5
15

2 GHz 3 GHz 4 GHz

%
 A

vg
 A

b
s

Er
ro

r

per-epoch CTP

across-epoch CTP

(a) 1.0 GHz to 4.0 GHz

0
2.5

5
7.5
10

12.5
15

3 GHz 2 GHz 1 GHz

%
 A

vg
 A

b
s

Er
ro

r

per-epoch CTP

across-epoch CTP

(b) 4.0 GHz to 1.0 GHz

Fig. 4: Comparing per-epoch versus across-epoch critical thread
prediction. Detecting critical threads across epochs leads to a
more accurate predictor for multithreaded managed applications.

counts to explore our predictor’s scalability. Increasing the number
of application threads stresses the predictor in different ways.
More application threads lead to more inter-thread dependencies.
Increasing the thread count also increases the rate that store bursts
are issued, because there is also more memory allocation. This is
because thread-local storage increases the total amount of memory
allocated when running benchmarks with different numbers of
threads. Prior work also shows that the amount of work that GC
performs increases with more application threads [17].

To understand the scaling behavior of our proposed model, we
show the accuracy of DEP+BURST with 1, 2, 4 and 8 application
threads. Because of the presence of service threads such as the
garbage collector, managed environments are multithreaded even
with one application thread. When running the benchmarks with
one application thread, we use a single garbage collector thread.
We use two garbage collector threads for experiments with more
than one application thread. Prior work by Du Bois et al. [17]
reports that Jikes’ generational Immix garbage collector does not
scale beyond two threads. We use a single core per application
thread in our experiments. We set the last-level cache to have
1 MB/core and the memory bandwidth is set to 3 GB/s/core.
Our modeled processors reflect many commercial designs in the
market today.

Figure 5 shows the average absolute error of our predictor with
different thread counts. The average error with one application
thread is 5.4% when predicting from 1 GHz to the highest target
frequency of 4 GHz, and 3.2% when predicting from 4 GHz
to 1 GHz. Thus, our DEP+BURST predictor is also accurate

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 8

0
2.5

5
7.5
10

1 2 4 8%
 A

vg
 A

b
s

Er
ro

r

Thread Count

2 GHz 3 GHz 4 GHz

(a) 1.0 GHz to 4.0 GHz

0
2.5

5
7.5
10

1 2 4 8%
 A

vg
 A

b
s

Er
ro

r

Thread Count

3 GHz 2 GHz 1 GHz

(b) 4.0 GHz to 1.0 GHz

Fig. 5: The accuracy of DEP+BURST for different thread counts.
DEP+BURST’s error increases only slightly as the number of
threads is increased from one to eight.

DVFS Performance Counters
tolerable-slowdown

Start at the highest
frequency (1)

Run at the optimal
frequency (2)

- - -

hold-off = 2 quantum

Maintain the same
frequency (3)

Run at the new (4)
optimal frequency

Fig. 6: Example illustrating the energy manager using DVFS per-
formance prediction. The input parameters of the energy manager
are shown in italics.

for single-threaded managed applications. As the thread count
increases, the average absolute error goes up. However, for up
to eight threads, the increase is not dramatic. When predicting
from 1 GHz to higher frequencies, the average error with eight
application threads is below 10% for any target frequency. The
average error with more than one application thread is slightly
higher when predicting from 4 GHz to 1 GHz (9.3% with eight
threads). Note that the frequency range that we explore, 1 GHz to
4 GHz, represents a very wide frequency spectrum. Memory be-
havior is likely to change across such a wide frequency spectrum,
making it harder to predict performance accurately, especially as
the number of threads is increased.

6 CASE STUDIES
Having described and evaluated the DEP+BURST DVFS perfor-
mance predictor, we now use it in two case studies involving
an energy manager. In the first case study, the energy manager
leverages a performance predictor to reduce the processor’s energy
consumption without slowing down the application more than a
user-specified threshold. In the second case study, the energy man-
ager uses analytical performance and energy models to optimize
the full system energy consumed by an application.

6.1 Case Study 1: Energy Minimization under Perfor-
mance Constraints

It is well-known that it is possible to reduce the processor’s energy
consumption by lowering the frequency. The intuition is that low-
ering the frequency reduces power consumption, leading to a more
energy-efficient execution. Lowering the frequency reduces energy
consumption as long as the reduction in power consumption is
not offset by an increase in execution time. This is typically the
case for memory-intensive applications for which lowering the
frequency incurs a small performance degradation. For compute-
intensive applications on the other hand, the reduction in power
consumption may be offset by an increase in execution time,
leading to a (close to) net energy-neutral operation. In other words,
different applications exhibit different sensitivities to scaling the

processor’s frequency. Moreover, compute- and memory-intensive
phases may occur within a single application; this is especially
the case for managed language workloads for which garbage
collection is typically memory-intensive [9], [37]. Hence, this calls
for an energy management approach that dynamically determines
when and to what extent to scale the frequency to minimize
energy consumption while not exceeding a user-specified slack
in performance.

6.1.1 Energy Manager
To demonstrate the importance of having an accurate DVFS
performance predictor for multithreaded managed applications,
we design an energy manager that minimizes energy consumption
while guaranteeing performance within a user-specified threshold
compared to running at the highest frequency. The high-level
design is shown in Figure 6. The figure shows how the manager
works for the first four intervals of the application. We always start
the application at the highest frequency (4 GHz for our modeled
processor). During this interval, the performance predictor reads
the DVFS-related performance counters as described in Section 3.
At the end of the first interval, the manager estimates performance
at all of the DVFS states. The tolerable-slowdown is a user-
specified parameter that the manager uses to identify all of the
DVFS states that satisfy the performance constraint, i.e., perfor-
mance is slowed down by no more than tolerable-slowdown, as
a percentage compared to running at the highest frequency. Of
all the states that satisfy the performance constraint, the manager
then chooses the state with the minimum energy consumption
(lowest frequency) for the next quantum. The hold-off parameter
represents the number of intervals to wait before changing the
frequency again. In the example shown in the figure, hold-off
is set to two. Therefore, the third interval also runs at the same
frequency as the second interval. In case the application has no
phase behavior, using a large hold-off prevents needless profiling.
The scheduling quantum is also an adjustable parameter, and is
set to 5 ms in our experiments. We set the hold-off parameter to
one unless otherwise specified.

The key idea we use to guarantee that the application does
not experience a slowdown more than the specified threshold is
that, if each interval experiences a slowdown of x%, then the
entire application experiences a slowdown of x% compared to
always running the application at the highest frequency. To fulfill
this requirement during each interval, we need to estimate the
slowdown that the application experiences compared to running at
the highest frequency, even when running at a slower frequency.
We solve this problem in two steps. The energy manager first
estimates the execution time at the highest frequency, before
predicting execution time at the target frequency in the second
step and its relative slowdown compared to running at the highest
frequency. The manager finally chooses the minimum frequency
setting that does not slow down the interval more than the user-
specified threshold.

In the following sections, we explore the opportunity to reduce
energy consumption with our proposed energy manager in detail.

6.1.2 Evaluation
Figure 7 reports the slowdown experienced by each benchmark
and the corresponding reduction in energy consumption for user-
specified slowdown thresholds of 5% and 10%. We observe
substantial reductions in energy consumption for the memory-
intensive benchmarks, by 13% on average (and up to 15%) for
the 5% threshold, and by 19% on average (and up to 22%) for the

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 9

0
2.5

5
7.5
10

12.5
15

%

Performance Degradation Energy Reduction

(a) Tolerable Slowdown = 5%

0

5

10

15

20

25

%

Performance Degradation Energy Reduction

(b) Tolerable Slowdown = 10%

Fig. 7: Per-benchmark reductions in energy consumption using DEP+BURST in our energy manager for a slowdown threshold of
(a) 5% and (b) 10%. Memory-intensive benchmarks are to the left while compute-intensive are to the right. Using the DEP+BURST
predictor as part of our energy manager leads to a significant reduction in energy consumption for the memory-intensive benchmarks
with only a slight performance degradation.

3000

3125

3250

3375

3500

3625

3750

3875

4000

1 51 101 151 201 251 301

Fr
e

q
u

e
n

cy
 (

M
H

z)

time (Quantum)

Xalan Sunflow

Fig. 8: Per-quantum frequency settings chosen by the energy
manager for xalan and sunflow for a slowdown threshold of 5%.
There is a larger variation in the processor’s frequency during the
execution of the memory-intensive benchmarks, compared to the
compute-intensive benchmarks.

10% threshold. As expected, the reduction in energy consumption
is not as significant for the compute-intensive workloads.

It is interesting to note that the obtained performance is
close to the user-specified performance target, i.e., the execu-
tion slowdown is around 5% and 10% for most benchmarks
for the 5% and 10% thresholds, respectively. The benchmarks
for which we observe an exception are avrora and lusearch,
with a slight overshoot for avrora at the 5% threshold, and an
undershoot for lusearch at both the 5% and 10% thresholds.
The reason is the inaccuracy of the DVFS performance predictor:
lusearch and avrora experience the largest prediction errors, as
shown in Figure 3. This result re-emphasizes the importance of
accurate DVFS performance prediction for effectively managing
energy consumption and performance when running managed
multithreaded applications. Nevertheless, since lusearch stresses
the memory subsystem the most, we observe a large reduction in
its energy consumption despite slowing its execution less than the
user-specified slowdown threshold.

Figure 8 shows the frequency settings chosen by our energy
manager for xalan and sunflow for a slowdown threshold of
5%. The frequency settings chosen by our energy manger for
the memory-intensive xalan cover a wider range compared to the
compute-intensive sunflow. We observe similar trends in other
benchmarks.
Comparison to static-optimal. To further analyze the robustness

0

10

20

30

40

%
 r

e
d

u
ct

io
n

 in
 e

n
e

rg
y

Static-Opt DEP+BURST

Fig. 9: Reduction in energy consumption achieved by our energy
manager compared to the static optimal (Static-Opt) for a slow-
down threshold of 10%. For six out of seven benchmarks, our
energy manager reduces the energy consumption about the same
as, or more than, that of Static-Opt.

and importance of dynamically adjusting frequency, we compare
our dynamic energy manager (using DEP+BURST) against the op-
timal frequency setting obtained statically. Static-optimal (Static-
Opt) is determined by running the application multiple times
offline, and selecting the optimal frequency that minimizes energy
consumption across the entire run; because this static frequency
is obtained while using the same input data set, we can consider
the static-optimal frequency as an oracle setting. Note that Static-
Opt is not a practical approach and is shown here for purposes
of comparison only. Figure 9 compares the reduction in energy
consumption by our dynamic energy manager to the reduction
achieved by Static-Opt for a slowdown threshold of 10%. Our
energy manager leads to larger reductions in energy consumed
by all of the memory-intensive benchmarks with the exception
of lusearch. For lusearch, DEP+BURST exhibits a larger error
compared to the other benchmarks, which is the reason our
energy manager misses the full potential for reducing the energy
consumption. The overall reduction is 2% on average and up to
10%. The reason why our energy manager outperforms Static-
Opt for xalan, pmd and pmd.scale is because it is able to
dynamically adjust the frequency in response to varying execution
phase behavior, which Static-Opt, by definition, is unable to do.
The reduction on average is on par with static-optimal for the
compute-intensive applications.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 10

6.1.3 Frequency Step Setting

The granularity at which you can change the frequency, or the step
setting, is an important factor in meeting performance targets yet
striving for energy efficiency. In the previous results, we assumed
a frequency step setting of 125 MHz with a total of 25 DVFS
settings between 1 GHz and 4 GHz. A coarser frequency step
setting makes it difficult to meet the user-specified slowdown
thresholds. For instance, assume that slowing down one phase of
a benchmark by 5% requires a frequency setting of 3.8 GHz. If
the machine only offers a frequency step setting of 500 MHz, our
energy manager will run that benchmark’s phase at 4 GHz, since
running at 3.5 GHz slows down the phase by more than 5%. This
leads to a missed opportunity to save energy.

We add extra accounting to our energy manager to keep track
of these missed opportunities per phase so that in a later phase,
the application can run at a lower frequency while still meeting
the user-specified slowdown target over the entire run, thus reduc-
ing energy consumption. More specifically, during each profiling
quantum, our energy manager stores the difference between the
execution time of running at the ideal frequency that would get
closest to the slowdown threshold and the execution time given the
best-available frequency setting (less than the highest frequency
and does not violate the slowdown threshold). In our example
above, this would be the execution time difference when running
the benchmark’s phase at the desired 3.8 GHz versus the energy
manager’s chosen 4 GHz. We call this difference σexcess, which
is shown in Equation 1. Tdesired is the execution time running at
some ideal frequency if we did have fine-grained step settings,
and Testimated represents the estimated execution time at the best-
available frequency setting. Note that Tdesired is just the time
quantum’s duration plus the user-specified slowdown. σexcess is
multiplied by the hold-off to account for there being no change in
frequency for hold-off quantums.

Tdesired = quantum∗ (1+ tolerable slowdown)

σexcess = (Tdesired−Testimated)∗hold o f f
(1)

During a subsequent profiling quantum, the manager adds this
previously calculated σexcess to the execution time we want to
achieve in this phase. For example, because we did not slow down
the previous phase at all, even though we had a target of 5%,
we can slow down the current phase by more than 5%. However,
over the entire run, we expect to still meet the user’s specified
slowdown threshold, while reducing more energy consumption.

Figure 10 presents the per-benchmark slowdown with and
without modeling σexcess for two systems with a different number
of DVFS states. One system provides a frequency step setting
of 125 MHz (25 DVFS states), and the other system provides
a frequency step setting of 500 MHz (7 DVFS states), which
is more limiting. The slowdown threshold is set to 5%; hold-
off is one; and the quantum length is 5 ms. With a frequency
step setting of 125 MHz, the slowdown is 3.7% on average both
with and without modeling σexcess. However, with a 500 MHz
frequency step setting, the average slowdown without modeling
σexcess (w/o-excess-500) is 0.7%, which is much lower than the
5% target. For several benchmarks, a 5% slowdown in execution
time compared to running at 4 GHz is achieved by running at
a frequency somewhere between 3.5 GHz and 4 GHz. However,
running at 3.5 GHz is likely to slow down the execution more
than 5% for these benchmarks. Therefore, the energy manager
runs these benchmarks at the highest frequency during most of

0

1

2

3

4

5

%
 s

lo
w

d
o

w
n

w/o-excess (125) excess (125)

w/o-excess (500) excess (500)

Fig. 10: Per-benchmark slowdown for different frequency step
settings with and without modeling excess-time. Modeling excess-
time results in an average slowdown close to the user’s expecta-
tions, regardless of the available frequency step setting.

0

5

10

15

%
 r

e
d

u
ct

io
n

 in
 e

n
e

rg
y

w/o-excess (125) excess (125)

w/o-excess (500) excess (500)

Fig. 11: Per-benchmark reduction in energy consumption for dif-
ferent frequency step settings with and without modeling excess-
time. Modeling excess-time results in an average energy reduction
for both the compute-intensive and the memory-intensive bench-
marks regardless of the frequency step setting.

the execution. The average slowdown increases to 3.2% when
modeling σexcess (excess-500). In fact, all except one benchmark
(avrora) experience a slowdown similar to excess-125.

Figure 11 shows the reduction in energy consumption with
and without modeling σexcess. For both the compute-intensive and
the memory-intensive benchmarks, the energy reduction of w/o-
excess-125 and excess-125 is almost the same. However, w/o-
excess-500 achieves only 7.7% reduction in energy consump-
tion for the memory-intensive benchmarks compared to 12.5%
provided by excess-500. For the memory-intensive benchmarks,
modeling σexcess helps get closer to the user-specified slowdown
threshold, and thus achieves a higher reduction in energy con-
sumption. For the compute-intensive benchmarks, w/o-excess-500
barely provides any reduction in energy consumption at all. We
conclude that modeling σexcess is especially important with coarser
frequency step settings, and that it makes our energy manager
robust to whatever DVFS granularity is provided by the processor.

6.1.4 Varying Hold-off and Length of Profiling Quantum

In all previous experiments, we use a hold-off of one and a
quantum length of 5 ms. In this section, we vary these parameters
to see if it is possible to meet the user’s execution time requirement
while running the model less often. A large hold-off would
translate to the energy manager running the model less often.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 11

0

1

2

3

4

5

6
%

 S
lo

w
d

o
w

n

hold-off = 1 hold-off = 5 hold-off = 10

Fig. 12: Per-benchmark slowdown for different values of hold-
off. On average, a hold-off of 5 is a good compromise between
running the model less often, and being close to the user-specified
slowdown threshold.

Similarly, if the quantum is small, then the overhead of running
the model is small.

In Figure 12, we vary the hold-off and keep the quantum length
fixed at 5 ms. We show results with a hold-off of 1, 5, and 10. The
tolerable slowdown is set to 5%. Using a large hold-off results
in a slowdown further away from the user-specified threshold for
three benchmarks, namely xalan, pmd and pmd.scale. Others
either show no trend when increasing the hold-off or a slowdown
slightly closer to the user’s expectations. The average slowdown
with a hold-off of 5, which runs the model less often, is 3.8%,
compared to an average slowdown of 3.7% with a hold-off of one.

We show the impact of varying the quantum length on each
benchmark’s slowdown in Figure 13. We show results for five
different quantum lengths, each a multiple of five. Because we
are investigating the sensitivity to quantum length, we keep the
hold-off at one. As before, the slowdown threshold is 5%. Each
benchmark is affected differently, and we observe no general
trend. For instance, avrora and pmd generally see increasing per-
formance slowdowns as the quantum is increased, and sometimes
their slowdown exceeds the user-specified 5%. lusearch.fix is not
sensitive to quantum length, implying little or no phase behavior.
We conclude that using a quantum length of 5 ms and a hold-off
of 5 leads to performance that is, on average, close to the user’s
expectation. Using these parameters, the DEP+BURST model is
active during only 20% of the benchmark’s execution time.

To estimate the overhead of running DEP+BURST, we first
note the number of epochs during the time we run DEP+BURST.
We then use the latency of reading DVFS-related performance
counters per epoch from prior work [14]. Our analysis show that
the overhead of running DEP+BURST is less than 1% of the
execution time of our benchmarks on average.

6.2 Case Study 2: Minimizing Full System Energy

To demonstrate the robustness of our energy manager to different
optimization targets, we perform another case study, this time op-
timizing total system energy, i.e., the sum of the energy consumed
by both the processor and DRAM. The optimal system energy
is not obtained by running the processor at the lowest frequency,
since as the processor frequency is lowered, the energy consumed
by DRAM becomes the dominant factor. To optimize total system
energy, the energy manager estimates the energy consumption at
all the available DVFS states at the end of each profiling quantum,

0

1

2

3

4

5

6

7

%
 S

lo
w

d
o

w
n

5 ms 10 ms 15 ms 20 ms 25 ms

Fig. 13: Per-benchmark slowdown for different quantum lengths.
The smaller quantum length of 5 ms incurs less overhead for the
model while still achieving a slowdown close to the user-specified
threshold.

using the predictions of DEP+BURST for estimating the execution
time, T ′. The optimal frequency is the one which results in the
lowest energy consumption. To estimate the total energy at a target
DVFS setting (v′, f ′), when running at a base DVFS setting (v, f),
we perform the following steps:

1) We scale the static power of the processor (processor-p-
static) by a factor v/v′ to estimate the processor-p-static
at (v′, f ′) [8].

2) We collect the estimated execution time, T ′, at f ′

from DEP+BURST. We multiply T ′ by the estimated
processor-p-static to get the estimated static energy of
the processor (processor-e-static).

3) We estimate the dynamic energy of the processor
(processor-e-dynamic) as the sum of the dynamic energy
of individual cores. The dynamic energy of each core at
(v′, f ′) is estimated by multiplying the energy consumed
by the core at (v, f) with the factor, (v/v′)2, similar
to [19].

4) The static energy of DRAM (dram-e-static) at (v′, f ′) is
estimated as T ′ multiplied by the static power consumed
by the DRAM at (v, f).

5) For the number of DRAM requests seen in the previous
quantum, we obtain the dynamic energy consumed by
DRAM (dram-e-dynamic) from McPAT. Since a change
in execution time does not impact the number of DRAM
requests (only the request rate), we use the value obtained
from McPAT as an estimate of the dynamic energy
consumed by DRAM at the target frequency.

6) Finally, the total estimated energy at (v′, f ′) is the sum
of the estimated processor-e-static, processor-e-dynamic,
dram-e-static and dram-e-dynamic.

Figure 14 shows the per-benchmark reduction in energy
consumption obtained from different executions: running at the
lowest frequency (1 GHz); running each benchmark multiple times
offline, each time statically setting the frequency, and choosing
the optimal energy consumption (Static-Opt); and dynamically
adjusting the frequency at the end of each quantum using the above
steps (Dynamic). Our baseline is the energy consumption obtained
by running the entire benchmark at 4 GHz. We simulate a DDR3
DRAM main memory based on specifications from Micron [34].

First, some benchmarks experience an increase in energy from
running at 1 GHz. Running at 1 GHz increases the execution time,

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 12

-10

-5

0

5

10

15

20
%

 r
e

d
u

ct
io

n
 in

 s
ys

te
m

 e

n
e

rg
y

1 GHz Static-Opt Dynamic

Fig. 14: Per-benchmark reduction in energy consumption when
the energy manager optimizes for total system energy. Our en-
ergy manager achieves reduction in energy consumption that is
comparable to or better than the optimal reduction in energy
consumption obtained statically.

which in turn increases the DRAM static energy. On average,
running at 1 GHz reduces the energy consumption by only 5%. On
the other hand, Static-Opt provides a higher reduction in energy
consumption for all benchmarks. The average energy reduction
is 15%, and the maximum reduction is 20% for sunflow. Since
this case study does not impose a performance constraint, even
the compute-intensive benchmarks benefit greatly from DVFS
because reducing the processor voltage and frequency results in a
quadratic drop in the dynamic energy consumed by the processor
(at the expense of performance).

Next, we observe that our dynamic energy manager delivers a
reduction in energy consumption on par with or better than Static-
Opt. The average reduction in energy consumption is 15.6% with a
maximum reduction of 18.5% for sunflow. For three benchmarks,
including xalan, pmd, and pmd.scale, our proposed energy
manager achieves a higher reduction in energy consumption than
Static-Opt. Unlike Static-Opt, our dynamic manager is able to
exploit phase behavior. Having an accurate performance predictor
is necessary to optimize the full system energy consumption of
multithreaded managed language applications.

In this section, we considered only the energy consumed by
the processor and the DRAM. Other components such as the
cooling unit, motherboard etc., also contribute to the system
energy. Our energy manager can be easily extended to take into
account any of these non-scaling components of system energy.
It should be noted that if the increase in execution time due
to lowering the processor’s frequency leads to an increase in
the total system energy - because the energy consumed by the
other components offsets the reduction in the processor’s dynamic
energy consumption - our energy manager will run the processor
at the highest frequency.
7 RELATED WORK

In this section, we discuss three areas of related work.

7.1 DVFS Performance and Power Prediction
Performance and power prediction is either done using analytical
models or using regression models. Section 2 already discussed
previously proposed analytical DVFS performance predictors in
great detail [11], [20], [29], [35], [38], [41], [46]. These papers
introduce new hardware performance counters specifically for the
purpose of predicting the performance impact of DVFS. Su et
al. [42] have recently shown how to implement the Leading Loads

DVFS predictor on real AMD CPUs. In contrast, other works
propose regression models that are built using offline training
to predict the power and performance impact of frequency and
architectural changes [12], [31], [43]. To build a regression model,
these works leverage existing hardware performance counters to
measure various microarchitectural events.

Deng el al. [15] propose an algorithm to manage DVFS
for both the processor and the memory while honoring a user-
specified slowdown threshold. However, this and many other
works on DVFS power management do not consider multithreaded
applications.

In this work, we investigate predicting the performance impact
of chip-wide DVFS settings. Prior work investigates the potential
of per-core DVFS to manage the energy consumption of multi-
threaded applications [24], [30]. However, we leave this for future
work.
7.2 Scheduling Multithreaded Applications
Recently, there is increased interest in scheduling multithreaded
applications on multicore hardware to optimize performance and
energy. The main focus to date is in identifying and accelerat-
ing bottlenecks in multithreaded code, such as serial sections,
critical sections, and lagging threads [4], [16], [27], [28], [44].
Accelerated Critical Sections (ACS) is a technique that leverages
support from the ISA, compiler, and the large cores on a single-
ISA heterogeneous multicore to accelerate critical sections [44].
Unlike accelerating only critical sections, Bottleneck Identification
and Scheduling (BIS) also targets other bottlenecks that occur
during the execution of a multithreaded application such as serial
sections, lagging threads, and slow pipeline stages [27]. The above
works use ISA and compiler support to delimit bottlenecks in
software, and use this information during execution to accelerate
bottlenecks. On the other hand, Criticality Stacks, proposed by
Du Bois et al. [16], identify critical threads in multithreaded
applications by monitoring synchronization behavior.

Finally, when running multithreaded applications on heteroge-
neous multicore processors, an important goal is to prevent one or
more threads from lagging behind other threads. To this end, Van
Craeynest et al. [45] propose a fair scheduler for multithreaded
applications that provides a fair share of the big, out-of-order cores
to each thread in a heterogeneous multicore processor. Akram
et al. [1] propose a GC-criticality-aware scheduler for managed
language applications on heterogeneous multicores.
7.3 Energy Management
Prior work has proposed frameworks to manage power, energy and
thermals through DVFS, hardware adaptation and heterogeneity
for multithreaded applications [16], [33], [36]. Although managed
code is now ubiquitous and used in many application domains
and run on a variety of hardware substrates, relatively few works
have looked into the energy management of managed applications.
Sartor et al. [39] explored the potential of DVFS for managed
applications, teasing apart the performance impact of scaling the
frequency of application and service threads in isolation. However,
their work does not propose an analytical model to quantify the
performance impact. Other works that shed light on different
aspects of managed applications relating to energy consumption
include [9], [18], [40].

8 CONCLUSIONS AND FUTURE WORK

Accurate performance predictors are key to making effective use
of dynamic voltage and frequency scaling (DVFS) to reduce en-
ergy consumption in modern processors. Multithreaded managed

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 13

applications are ubiquitous yet prior work lacks accurate DVFS
performance predictors for these applications. In this work, we
propose DEP+BURST, a novel performance prediction model to
accurately predict the performance impact of DVFS for multi-
threaded managed applications. DEP decomposes execution time
into epochs based on synchronization activity. This allows DEP to
accurately capture inter-thread dependencies, and take the critical
threads into account across epochs. BURST identifies critical store
bursts and predicts their impact on overall performance as the
frequency is scaled.

Our experimental results with multithreaded Java applications
on a simulated quad-core processor report an average absolute
error of 6% when predicting from 1 GHz to 4 GHz, and 8%
when predicting from 4 GHz to 1 GHz using DEP+BURST, which
is a substantial improvement over prior work. We demonstrate
the usefulness of DEP+BURST by integrating it into an energy
manager that 1) reduces the processor’s energy by sacrificing
a user-specified amount of performance, and 2) optimizes total
system energy. For 1), with a user-specified slowdown of 5% and
10%, the energy manager is able to reduce energy consumption
by 13% and 19% on average for a number of memory-intensive
benchmarks. We show that our energy manager is robust to
coarser frequency step settings, and incurs negligible execution
time overhead. Finally, for 2), our energy manager demonstrates
15.6% total system energy consumption reduction on average.

This work is the first to propose a DVFS performance predictor
for managed multithreaded applications. Several directions for
future work are possible. Fine-grained dependencies between
threads, such as those resulting from shared critical sections, could
change at the target frequency. When this happens, DEP mispre-
dicts the execution time at the target frequency. Efficiently dealing
with mispredictions could improve the accuracy in meeting the
user-specified slowdown thresholds, further reducing energy con-
sumption. Another avenue for future work would be to explore
per-core DVFS, as opposed to our current implementation that
changes the frequency setting of all cores running a multithreaded
application. DEP needs modifications to predict the performance
impact of per-core DVFS. What is even more challenging is
identifying the threads whose frequency change would result in
the largest reduction in energy consumption. Finally, investigating
the performance impact of DVFS when there is contention for
either bandwidth or shared cache capacity, is a direction for future
work.

REFERENCES

[1] S. Akram, J. B. Sartor, K. V. Craeynest, W. Heirman, and L. Eeckhout,
“Boosting the priority of garbage: Scheduling collection on heteroge-
neous multicore processors,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 13, no. 1, pp. 4:1–4:25, Mar. 2016.

[2] S. Akram, J. B. Sartor, and L. Eeckhout, “DVFS performance prediction
for managed multithreaded applications,” in Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Soft-
ware, ISPASS, 2016, pp. 12–23.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley,
“The Jalapeño virtual machine,” IBM Systems Journal, vol. 39, no. 1, pp.
211–238, 2000.

[4] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors for
dynamic performance, power, and resource management in chip multi-
processors,” in Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), 2009, pp. 290–301.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, F. D., S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: Java benchmarking development and analysis,”
in Proceedings of the ACM Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2006, pp. 169–190.

[6] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffman, A. M.
Khan, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“Wake Up and Smell the Coffee: Evaluation Methodology for the 21st
Century,” Communications of the ACM, vol. 51, no. 8, pp. 83–89, 2008.

[7] S. M. Blackburn and K. S. McKinley, “Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator performance,”
in Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2008, pp. 22–32.

[8] J. Butts and G. Sohi, “A static power model for architects,” in Pro-
ceedings of the 33rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2000, pp. 191–201.

[9] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley, “The yin and
yang of power and performance for asymmetric hardware and managed
software,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2012, pp. 225–236.

[10] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 11, no. 3, pp. 28:1–
28:25, 2014.

[11] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and
frequency scaling for precise energy and performance trade-off based on
the ratio of off-chip access to on-chip computation times,” in Proceedings
of the Design, Automation and Test in Europe (DATE), 2004, pp. 4–9
Vol.1.

[12] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
de Supinski, and M. Schulz, “Prediction models for multi-dimensional
power-performance optimization on many cores,” in Proceedings of the
17th International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2008, pp. 250–259.

[13] K. Czechowski, V. W. Lee, and J. Choi, “Measuring the
power/energy of modern hardware,” in Tutorial at the 47th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), ser.
http://www.prism.gatech.edu/ gtg417r/micro47/, 2014.

[14] J. Demme and S. Sethumadhavan, “Rapid identification of architectural
bottlenecks via precise event counting,” in Proceedings of the 38th An-
nual International Symposium on Computer Architecture (ISCA), 2011,
pp. 353–364.

[15] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini,
“CoScale: Coordinating CPU and memory system DVFS in server
systems,” in Proceedings of the 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2012, pp. 143–154.

[16] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality stacks:
Identifying critical threads in parallel programs using synchronization
behavior,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2013, pp. 511–522.

[17] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout, “Bottle graphs:
Visualizing scalability bottlenecks in multi-threaded applications,” in
Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA),
2013, pp. 355–372.

[18] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S. McKinley,
“Looking back on the language and hardware revolutions: Measured
power, performance, and scaling,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2011, pp. 319–332.

[19] S. Eyerman and L. Eeckhout, “A counter architecture for online DVFS
profitability estimation,” IEEE Transactions on Computers (TC), vol. 59,
no. 11, pp. 1576–1583, Nov. 2010.

[20] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A performance
counter architecture for computing accurate CPI components,” in Pro-
ceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2006, pp.
175–184.

[21] H. Franke, R. Russell, and M. Kirkwood, “Fuss, futexes and furwocks:
Fast userlevel locking in linux,” in Ottawa Linux Symposium, 2002, pp.
479–495.

[22] J. Ha, M. Gustafsson, S. Blackburn, and K. S. McKinley, “Microarchitec-
tural characterization of production JVMs and Java workloads,” in IBM
CAS Workshop, 2008.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, FEBRUARY 2016 14

[23] W. Heirman, S. Sarkar, T. E. Carlson, I. Hur, and L. Eeckhout, “Power-
aware multi-core simulation for early design stage hardware/software
co-optimization,” in International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2012, pp. 3–12.

[24] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,” in Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED), 2007, pp.
38–43.

[25] A. Hoban, “Designing realtime solutions on embedded intel architecture
processors,” 2010.

[26] X. Huang, Z. Wang, S. Blackburn, K. S. McKinley, J. E. B. Moss,
and P. Cheng, “The garbage collection advantage: Improving mutator
locality.” in Proceedings of the ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA), 2004, pp. 69–80.

[27] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck identi-
fication and scheduling in multithreaded applications,” in Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012, pp. 223–234.

[28] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Utility-based
acceleration of multithreaded applications on asymmetric cmps,” in
Proceedings of the Annual International Symposium on Computer Ar-
chitecture (ISCA), 2013, pp. 154–165.

[29] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-based models
for run-time DVFS orchestration in superscalar processors,” in Proceed-
ings of the 7th ACM International Conference on Computing Frontiers
(CF), 2010, pp. 287–296.

[30] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core DVFS using on-chip switching regulators,” in Proceed-
ings of the 14th IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2008, pp. 123–134.

[31] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling
for microarchitectural performance and power prediction,” in Proceed-
ings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2006, pp.
185–194.

[32] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2009, pp. 469–480.

[33] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for many-
core architectures running multi-threaded applications,” in Proceedings
of the 38th Annual International Symposium on Computer Architecture
(ISCA), 2011, pp. 449–460.

[34] Micron, “Tn-41-01: Calculating memory system power for ddr3,” 2007.
[35] R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt, “Predicting performance

impact of DVFS for realistic memory systems,” in Proceedings of the
45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2012, pp. 155–165.

[36] S. Park, W. Jiang, Y. Zhou, and S. Adve, “Managing energy-performance
tradeoffs for multithreaded applications on multiprocessor architectures,”
in Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), 2007,
pp. 169–180.

[37] R. Radhakrishnan, N. Vijaykrishnan, L. John, and A. Sivasubramaniam,
“Architectural issues in Java runtime systems,” in Proceedings of the
Sixth International Symposium on High-Performance Computer Archi-
tecture (HPCA), 2000, pp. 387–398.

[38] B. Rountree, D. Lowenthal, M. Schulz, and B. de Supinski, “Practical
performance prediction under dynamic voltage frequency scaling,” in
Proceedings of the International Green Computing Conference and
Workshops (IGCC), 2011, pp. 1–8.

[39] J. B. Sartor and L. Eeckhout, “Exploring multi-threaded Java application
performance on multicore hardware,” in Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA), 2012, pp. 281–296.

[40] J. B. Sartor, W. Heirman, S. M. Blackburn, L. Eeckhout, and K. S.
McKinley, “Cooperative cache scrubbing,” in Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2014, pp. 15–26.

[41] V. Spiliopoulos, S. Kaxiras, and G. Keramidas, “Green governors: A
framework for continuously adaptive DVFS,” in Proceedings of the

International Green Computing Conference and Workshops (IGCC),
2011, pp. 1–8.

[42] B. Su, J. L. Greathouse, J. Gu, M. Boyer, L. Shen, and Z. Wang,
“Implementing a leading loads performance predictor on commodity
processors,” in Proceedings of the USENIX Annual Technical Conference
(ATC), 2014, pp. 205–210.

[43] B. Su, J. Gu, L. Shen, W. Huang, J. Greathouse, and Z. Wang, “PPEP:
Online performance, power, and energy prediction framework and DVFS
space exploration,” in Proceedings of the 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 2014, pp. 445–457.

[44] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating
critical section execution with asymmetric multi-core architectures,” in
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2009,
pp. 253–264.

[45] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout,
“Fairness-aware scheduling on single-ISA heterogeneous multi-cores,”
in Proceedings of the international conference on Parallel architectures
and compilation techniques (PACT), 2013, pp. 177–188.

[46] Q. Wu, V. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks, M. Martonosi,
and D. Clark, “A dynamic compilation framework for controlling micro-
processor energy and performance,” in Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2005, pp. 282–293.

[47] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and K. S. McKinley,
“Why nothing matters: The impact of zeroing,” in Proceedings of the
ACM Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2011, pp. 307–324.

Shoaib Akram is a fourth year PhD student
at Ghent University, Belgium. He received his
M.S. in Electrical and Computer Engineering
from the University of Illinois at Urbana Cham-
paign in 2009. His research interests include
performance modeling and evaluation, run-time
scheduling, and energy-efficient computer sys-
tems in general.

Jennifer B. Sartor is a professor at Vrije Univer-
siteit Brussel, Belgium. She also has research
collaborations with Ghent University. She re-
ceived her PhD in Computer Science from The
University of Texas at Austin in 2010. Her re-
search interests are in managed languages, op-
timizing performance with the language runtime
environment, memory management and mem-
ory efficiency.

Lieven Eeckhout is Professor at Ghent Univer-
sity, Belgium. He received his PhD in Computer
Science and Engineering from Ghent University
in 2002. His research interests are in the area of
computer architecture, with a specific interest in
performance analysis, evaluation and modeling.
He is the current editor-in-chief of IEEE Micro.
His research is funded by the European Re-
search Council under the European Communi-
tys Seventh Framework Programme (FP7/2007-
2013) / ERC Grant agreement no. 259295, as

well as by the European Commission under the Seventh Framework
Programme, Grant Agreement no. 610490.

