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Abstract—Making modern computer systems energy-efficient
is of paramount importance. Dynamic Voltage and Frequency
Scaling (DVFS) is widely used to manage the energy and power
consumption in modern processors; however, for DVFS to be
effective, we need the ability to accurately predict the performance
impact of scaling a processor’s voltage and frequency. No accurate
performance predictors exist for multithreaded applications, let
alone managed language applications.

In this work, we propose DEP+BURST, a new performance
predictor for managed multithreaded applications that takes into
account synchronization, inter-thread dependencies, and store
bursts, which frequently occur in managed language workloads.
Our predictor lowers the performance estimation error from
27% for a state-of-the-art predictor to 6% on average, for a
set of multithreaded Java applications when the frequency is
scaled from 1 to 4 GHz. We also novelly propose an energy
management framework that uses DEP+BURST to save energy
while meeting performance goals within a user-specified bound.
Our proposed energy manager delivers average energy savings
of 13% and 19% for a user-specified slowdown of 5% and 10%
for memory-intensive Java benchmarks. Accurate performance
predictors are key to achieving high performance while keeping
energy consumption low for managed language applications using
DVFS.

I. INTRODUCTION

Today, more than ever before, improving the energy-
efficiency of computer systems is of prime importance. In
particular, we want our devices to deliver high performance
without needlessly wasting energy. For this reason, in recent
times, a number of power and energy management techniques,
including Dynamic Voltage and Frequency Scaling (DVFS),
have made their way into modern devices. DVFS enables
simultaneously changing a processor’s voltage and frequency
to manage power and energy. The effective use of DVFS
requires accurate performance prediction models. During the
last decade, significant progress has been made in under-
standing and predicting the performance impact of DVFS for
native sequential applications written in C and C++, see for
example [9], [16], [26], [31], [34], [42].

Existing DVFS predictors for sequential applications view
a processor core as either executing instructions or waiting
for memory accesses to return. The time spent executing
instructions scales with frequency, whereas the time spent
waiting for memory does not. Although this view suffices for
sequential applications, it is not sufficient for multithreaded
applications. Figure 1 illustrates this quantitatively for a set
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Fig. 1: Average absolute error for state-of-the-art DVFS pre-
diction compared to our predictor DEP+BURST.

of multithreaded Java applications from the DaCapo suite [4],
for which we predict performance at a target frequency (shown
on the horizontal axis) based on a run at the baseline frequency
of 1 GHz. M+CRIT, which is a multithreaded extension of
the state-of-the-art CRIT [31], leads to high inaccuracy with
an average absolute prediction error of 27% at the 4 GHz
target frequency. M+CRIT uses CRIT to predict each thread’s
performance at the target frequency, and then predicts the total
execution time as the execution time of the slowest, most
critical thread. Unfortunately, this naive algorithm leads to
severe inaccuracies with managed multithreaded applications.

The reason for this inaccuracy is multifold. For one, synchro-
nization activity in multithreaded applications leads to inter-
thread dependencies. Consequently, speeding up or slowing
down one thread using DVFS impacts the execution of de-
pendent threads, leading to complex interactions which affect
overall application performance. A DVFS predictor for mul-
tithreaded applications therefore needs to take into account
synchronization when predicting total execution time at the
target frequency.

Managed applications, which run on top of a virtual machine,
exhibit even more inter-thread dependencies as compared to
native applications. Service threads, such as those that perform
garbage collection and just-in-time compilation, run along-
side the application threads [7], [33]. Application and service
threads need to synchronize from time to time, leading to
increased synchronization activity, which further complicates
DVFS performance prediction.

An additional complication for managed applications results



from bursts of store operations. These occur for two reasons:
due to garbage collection activities that move memory around,
and due to the zero-initialization upon fresh allocation that
many managed languages, such as Java, require to provide
memory safety. Current predictors ignore store operations as-
suming they are not on the critical path. We find that ignoring
store operations leads to incorrect DVFS performance predic-
tion for managed applications.

In this paper, we propose DEP+BURST, a novel DVFS
performance predictor for managed multithreaded applications.
DEP+BURST consists of two key components, DEP and
BURST. DEP handles synchronization and inter-thread depen-
dencies by decomposing the execution time of a multithreaded
application into epochs based on the synchronization activity of
the application. We predict the duration of epochs at a different
frequency, and aggregate the predicted epochs while taking into
account inter-thread dependencies to predict the total execution
time at the target frequency. A crucial component of DEP is
the ability to predict critical threads across epochs. BURST
identifies store operations that are on the application’s critical
path, and predicts their impact on performance across frequency
settings.

Figure 1 summarizes the key results. DEP+BURST is sub-
stantially more accurate than M+CRIT. At the 4 GHz target
frequency, DEP+BURST achieves an average absolute error of
6% whereas M+CRIT experiences a 27% error. We observe
a similarly low prediction error when predicting performance
at 1 GHz based on a baseline run at 4 GHz, with an average
absolute error of 8% (not shown in Figure 1).

We integrate DEP+BURST into an energy management
framework for managed applications. We use the energy man-
ager to explore potential energy savings when a slack in
performance is tolerable compared to running at the highest
frequency. We demonstrate that using DEP+BURST as a DVFS
predictor, our energy manager is able to dynamically select
DVFS settings that result in energy savings in return for a
slowdown of the application (compared to the highest frequency
setting) close to a user’s expectations. On average, for a
slowdown threshold of 5% and 10%, our energy management
framework delivers energy savings of 13% and 19% for our
set of memory-intensive applications. Having an accurate per-
formance predictor for DVFS is key to maintaining good per-
formance, especially for multithreaded managed applications,
while reducing energy consumption.

II. BACKGROUND AND MOTIVATION

In this section, we first provide background on existing
DVFS performance predictors for sequential applications. We
then describe the challenges introduced by multithreading and
managed languages. Finally, we discuss naive extensions of an
existing state-of-the-art DVFS predictor to predict the perfor-
mance of multithreaded managed applications.

A. DVFS Performance Predictors for Sequential Applications

The impact of changing the frequency on application per-
formance is easily understood by dividing execution time into

‘scaling’ and ‘non-scaling’ components. The scaling component
scales in proportion to frequency; the non-scaling component
remains constant when changing frequency. This simple divi-
sion of execution time into scaling and non-scaling components
works because changing the processor’s frequency does not
alter DRAM service time, whereas an increase or decrease
in processor frequency has a proportional impact on the rate
at which instructions execute in the core pipeline. The key
challenge for accurately predicting the performance impact of
DVFS is due to the out-of-order nature of modern processor
pipelines in which memory requests are resolved while execut-
ing and retiring other instructions. Three DVFS performance
predictors have been proposed over the past few years for
sequential applications, with progressively improved accuracy.
We now briefly discuss these three predictors.

Stall Time. The simplest, and least accurate, of the three
models is the stall time model [16], [26], which estimates the
non-scaling component by measuring the time the pipeline is
unable to commit instructions. The non-scaling component is
underestimated because it does not account for the fact that
instructions may commit underneath a memory access. The
simplicity of this model implies that it is easy to deploy on
real hardware using existing hardware performance counters.

Leading Loads. Proposed by three different groups around the
same time [16], [26], [34], the leading loads model computes
the non-scaling component by accounting for the full latency of
the leading load miss in a burst of load misses. Modern out-of-
order pipelines are able to exploit memory-level parallelism and
handle independent long-latency load misses simultaneously.
The leading loads model assumes that each long-latency load
miss incurs roughly the same latency, and hence, for a cluster
of long-latency load misses, the miss latency of the leading load
is a good approximation for the non-scaling component. Recent
work shows that the leading loads model can be deployed
on real hardware by using performance counters available on
modern processors [39].

CRIT. A fundamental limitation of the leading loads model is
that it does not take into account that long-latency load misses
may incur variable latency, for a variety of reasons, including
memory scheduling, bank conflicts, open page policy, etc. This
leads to prediction inaccuracy for the leading loads model,
which is overcome by CRIT, the state-of-the-art DVFS pre-
dictor proposed by Miftakhutdinov et al. [31]. CRIT identifies
the critical path through a cluster of long-latency load misses
to model a realistic, variable-latency memory system. CRIT
includes an algorithm to identify dependent long-latency load
misses and uses their accumulated latency as an approximation
for the non-scaling component. We will use CRIT as our DVFS
performance predictor for an individual thread.

To the best of our knowledge, there exists no prior work
that proposes a DVFS performance predictor for multithreaded
applications, let alone managed language workloads.



B. Challenges in DVFS Performance Prediction for Managed
Multithreaded Applications

There are three major challenges for predicting the perfor-
mance impact of DVFS for multithreaded managed applica-
tions.
Inter-thread dependencies due to multithreading. Different
threads of a multithreaded application use synchronization
primitives to coordinate access to shared variables. The most
common examples of synchronization include critical sections
and barriers. Synchronization leads to inter-thread dependen-
cies. For example, with a barrier, no thread is allowed to
continue past the barrier as long as all threads have not yet
reached the barrier. The slowest, most critical thread will
therefore determine the barrier execution time at the target
frequency. Similarly, with of a critical section, the progress
of a thread waiting for a lock will depend on how fast the
thread currently holding the lock is progressing at the target
frequency. In other words, scaling the frequency of one thread
impacts the execution of other dependent threads, affecting
overall performance in a non-trivial way.
Interaction between application and service threads. A
managed language execution engine, such as the Java Virtual
Machine (JVM), consists of application threads and service
threads. The most important service threads include garbage
collection and just-in-time compilation. Application and service
threads interact with each other. For instance, a stop-the-world
garbage collector suspends the application for a short duration
to traverse the heap, and reclaim memory being used by objects
that are no longer referenced. To estimate the total execution
time at a different frequency, a DVFS predictor thus needs to
take the interaction between application threads and service
threads into account.
Store bursts. To provide memory safety, the Java programming
language requires that a region of memory is zero-initialized
upon fresh allocation. The process of zero-initialization leads to
a burst of store operations that fill up the processor’s pipeline.
Another source of store bursts is the copying of objects during
garbage collection. Ignoring store operations completely, as
prior DVFS predictors do, leads to incorrect predictions for
managed language workloads.

C. Straightforward Extensions of Prior Work

Before presenting our DVFS performance predictor for man-
aged multithreaded applications in the next section, we first
present two straightforward extensions of prior work to deal
with multiple threads and, in the second case, service threads.
We will quantitatively compare DEP+BURST against these
naive extensions in the results section, and detail why these
models are insufficient.
M+CRIT. We call the first predictor M+CRIT (short for
multithreaded CRIT), which is generally applicable to any
multithreaded application. M+CRIT uses the intuition that the
execution time of a multithreaded application is determined
by the critical (slowest) thread. We first use CRIT to identify
each thread’s scaling and non-scaling components at the base

frequency. We then predict each thread’s execution time at
the target frequency. The thread with the longest predicted
execution time is the critical thread. The execution time of the
critical thread is also the total execution time of the application
at the target frequency.
COOP. We term the second predictor COOP (short for co-
operative), which is specific to Java applications. A typical
Java application with a stop-the-world garbage collector goes
through an ‘application’ phase, followed by a ‘collector’ phase.
COOP intercepts the communication between the application
and collector threads using signals from the JVM. Using these
signals, COOP is able to distinguish application and collector
phases. Once these individual phases are identified, COOP then
uses M+CRIT to predict the execution time of the individual
phases and aggregates the predictions to obtain a prediction for
the total execution time.

III. THE DEP+BURST MODEL

We now discuss our new DVFS performance predictor for
managed multithreaded applications in detail.

A. Overview

Our proposed DVFS predictor estimates the performance
of a managed multithreaded application in two steps. In the
first step, the predictor decomposes execution time into epochs
based on synchronization activity in the application to account
for inter-thread dependencies and the interaction between the
application and service threads. In the second step, the predictor
estimates the execution time of each active thread at a target
frequency, taking into account which thread is critical and
adjusting for dependencies with other epochs. Our model,
which we call DEP, estimates the epoch execution time at the
target frequency, and aggregates epochs to predict the total
application execution time. To additionally take into account
store bursts, we modify the second step to adjust the calculation
of the scaling and non-scaling portions per thread within an
epoch. When accounting for store bursts, we call our full model
DEP+BURST. In the following sections, we first describe DEP,
and then show how we deal with store bursts.

B. Identifying Synchronization Epochs

First, we describe how DEP decomposes execution time
into synchronization epochs. A synchronization epoch consists
of a variable number of threads running in parallel. Two
events mark the beginning of a new synchronization epoch:
a thread is scheduled out by the OS and put to sleep, or a
sleeping (or newly spawned) thread is scheduled onto a core. In
multithreaded applications, threads typically go to sleep when
access to a critical section is not available, or threads sleep
while waiting at a barrier for other threads to join.

We identify synchronization epochs by intercepting the fu-
tex_wait and futex_wake system calls. Multithreading libraries
such as pthreads use futexes, or fast kernel space mutexes [18]
for handling locking. In the uncontended case, the application
acquires the lock using atomic instructions without entering the
kernel. Only in the contended case does the application invoke
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Fig. 2: Showing how DEP breaks up a multithreaded application (a) into synchronization epochs (b) while running at the base
frequency. DEP then estimates per-thread epoch durations at the target frequency, calculates the critical thread per epoch (c),
and accounts for changes in the critical thread across epochs (d).

the kernel spin locks using the futex interface. Intercepting
futex calls incurs limited overhead (less than 1%) [14].

To understand why futex-based decomposition is necessary,
consider the example of a multithreaded execution in Fig-
ure 2(a). Two threads t0 and t1 from the same application
are running in parallel. When t1 attempts to enter a critical
section, t0 is already executing the critical section, which leads
to t1 being scheduled out and made to wait for t0 to finish
executing the critical section. When t0 is done executing the
critical section, t1 is woken up.

An intuitive way to estimate the execution time of the
example in Figure 2(a) is to first identify the non-scaling
component of t0 and t1 when running at the base frequency,
and subtract those from the total execution time to obtain the
scaling components. This is what M+CRIT does. Using these
per-thread components, it is straightforward to estimate the
execution time of individual threads at the target frequency (see
Section II). Then the estimated execution time of the slowest
thread serves as an estimate of total execution time. However,
this leads to an incorrect estimation of execution time because
the time t1 is waiting gets incorrectly attributed to the scaling
component. Accurately estimating the execution time requires
taking the dependency between t0 and t1 into account.

Figure 2(b) shows how our predictor decomposes the ex-
ecution shown in Figure 2(a) into three epochs. a and x
represent the duration of the first epoch, for threads t0 and
t1, respectively. While these values are equal at the base
frequency, we label them differently per thread because these
values could be different when estimating time at the target
frequency. b represents the duration of time that t0 is active
during the second epoch when running at the base frequency.
Similarly, c and z represent the duration of the third epoch.
By decomposing execution time into epochs, DEP is able to
model the dependency between t0 and t1 by analyzing b and
predicting the new duration of b at a different frequency, which
affects when both threads begin the third epoch at the new
frequency.

It should be noted that by breaking down execution into
epochs, we not only cover inter-thread dependencies between
application threads. The synchronization incurred by service
threads, namely between garbage collection threads, and the co-
ordination between application and garbage collection threads
is also communicated through futex calls. Therefore, DEP auto-
matically accounts for the extra interactions between managed
language application and service threads.

C. Predicting Performance at a Target Frequency

We now discuss how DEP estimates the duration of an epoch
at a target frequency. During an epoch, DEP uses CRIT to
accumulate the non-scaling component of each active thread
in a counter. At the end of an epoch, both the scaling and
non-scaling components are known. This provides DEP with a
prediction of the duration of each thread at the target frequency.
This is shown in Figure 2(c) and Figure 2(d) where a’, b’ and c’
represents the estimated duration of t0’s first, second and third
epoch, respectively, at the target frequency. Similarly, x’ and
z’ is the estimated duration of t1’s first and third epoch at the
target frequency. The next goal is to predict the execution time
of an epoch from these individual estimates of all the active
threads.
Per-epoch Critical Thread Prediction (CTP). An intuitive
approach is to take the duration of the thread that runs the
longest in the epoch, i.e., the critical thread, as the duration of
the epoch at the target frequency. This approach is shown in
Figure 2(c). This approach is simple to implement and does
not require any bookkeeping across epochs. This technique
does model the dependency between threads t0 and t1 in our
running example and predicts when the third epoch would begin
for both threads in the target frequency. However, using per-
epoch critical thread prediction does not result in an accurate
estimation of total execution time.
Across-epoch Critical Thread Prediction (CTP). We add
across-epoch critical thread prediction to our DEP model to
make it more accurate. This is shown in Figure 2(d). In the



Algorithm 1: Algorithm for across-epoch CTP.
input : A synchronization epoch S (I time units)
input : Initial delta-counters (δt ) of all threads
input : Identity of the stalled thread if any (stall_tid)
output: Estimated duration (I’ time units) of S at target

frequency
1 for each active thread t in S do
2 αt = computeEstimatedTimeUsingCRIT()
3 et = αt - δt
4 end
5 I’ = Largest et
6 for each active thread t in S do
7 δt = (I’ - αt ) + δt
8 end
9 δstall−tid = 0

figure, a’ is estimated to be shorter than x’. But if x’ is taken
as the duration of the first epoch, this leads to an incorrect
estimation of the duration of the three epochs i.e., x’ + b’ +
max(c’,z’). The correct duration is a’ + b’ + max(c’,z’), because
thread t0 would just continue running after a’ time units. In
effect, part of x’ gets overlapped with b’ at the target frequency.
Therefore, during each epoch, we need to store extra state to be
able to identify the identity and duration of the critical thread
to take that into account across epochs. Following the current
example, we store the delta, x’ - a’, in a separate counter at the
end of the first epoch. We also speculatively estimate the total
execution time at the end of first epoch to be x’. In the second
epoch, we subtract the contents of the delta-counter from b’.
This way, at the end of the second epoch, we correctly estimate
the total execution time to be a’ + b’.
Algorithm. Our algorithm for performing across-epoch critical
thread prediction is shown in Algorithm 1. First, we introduce
the terminology used in Algorithm 1. αt represents the esti-
mated duration of a thread t at the target frequency. δt is the
difference between the estimated duration of thread t and the
estimated duration of the critical thread; δt of the critical thread
is zero. The first step in Algorithm 1 is to compute the estimated
duration, αt , of each thread using CRIT (line 2). Next, we
calculate the ‘effective’ execution time (et ) of each thread by
subtracting δt from αt (line 3). The thread with the largest et
is the critical thread, and the corresponding et is the duration
of the epoch (I′) (line 5). Note that δt is accumulated across
epochs, with a term representing the difference between I′ and
αt added during each epoch until the thread stalls (line 7). We
reset δt of a stalling thread to zero (line 9).

D. Modeling Store Bursts

Store bursts occur more frequently in managed language
workloads than in native applications. In Java in particular, store
bursts originate from two main sources: (1) zero-initialization
to provide memory safety, and (2) copying of objects during
garbage collection. A DVFS model for Java applications should
incorporate the impact of store bursts.

CRIT assumes that store instructions are not on the applica-
tion’s critical path. This is true for a few isolated store requests
that miss in the L1 cache because the store queue provides
modern processors with the ability to execute loads in the
presence of outstanding stores (through load bypassing and
store-to-load-forwarding). Furthermore, it caches committed
stores until they are retired by the memory hierarchy, freeing
up space in the ROB or active list. Normally, the work done
underneath a store miss scales with frequency. However, a fully-
occupied store queue stalls the processor pipeline. Store bursts
fill up the store queue before eventually stalling the pipeline.

In typical out-of-order pipelines, an entry is allocated in the
ROB and the store queue at the time the store instruction is
issued. When a store commits from the head of ROB, the
entry is no longer maintained in the ROB. But the entry is
maintained in the store queue until the outstanding request is
finally retired. Commit stalls when the store queue is full and
the next instruction to commit is a store.

To account for store bursts, we accumulate the amount of
time the store queue is full in a counter when running at the
base frequency. For each active thread during an epoch, we add
the counter’s contents to the non-scaling component measured
by CRIT. When modeling the impact of store bursts, we add
BURST next to the model name. Thus, our proposed model
that takes both inter-thread dependencies and store bursts into
account is called DEP+BURST.

E. Implementation Details

Now, we discuss implementation issues when porting
DEP+BURST to real hardware. First, the OS is the best place
to identify synchronization epochs, for instance, as a kernel
module. The OS is aware of thread creation, deletion, and other
events regarding thread scheduling including the futex_wait
and futex_wake system calls. Importantly, our proposal re-
quires no changes to the managed runtime or the JVM.

We also require some extra counters and state to accurately
perform DVFS performance prediction with DEP+BURST. We
use CRIT [31] within an epoch to divide a thread’s execution
into scaling and non-scaling portions, so our model requires the
same bookkeeping information as CRIT. Note that as of today,
no implementation of CRIT exists on real hardware.

In order to additionally track store bursts, we introduce a new
performance counter per core in hardware. This performance
counter tracks the time the store queue is full. The additional
logic required to track the time the store queue is full is simple,
and requires no changes to the design of the store queue. Once
all the entries in the store queue are occupied, a signal is
generated. This signal is monitored by the performance counter
hardware to account for the time the store queue is full.

Finally, to account for critical threads across epochs, we
require one counter per thread. However, this counter can be
maintained in software inside the kernel module that intercepts
the futex calls.



Benchmark Type Heap size Execution GC time
[M/C] [MB] time (ms) (ms)

xalan M 108 1,400 270
pmd M 98 1,345 230
pmd.scale M 98 500 80
lusearch M 68 2,600 285
lusearch.fix C 68 1,249 42
avrora C 98 1,782 5
sunflow C 108 4,900 82

TABLE I: Our benchmarks from the DaCapo suite, including
a classification of their type, heap size, execution time and GC
time at 1 GHz. M represents a memory-intensive benchmark,
and C represents a compute-intensive benchmark.

IV. EXPERIMENTAL METHODOLOGY

Before evaluating the accuracy of DEP+BURST, we first
describe our experimental setup.
Simulator. We use Sniper [8] version 6.0, a parallel, high-
speed and cycle-level x86 simulator for multicore systems; we
use the most detailed cycle-level core model available. Sniper
was further extended [36] to run a managed language runtime
environment including dynamic compilation, and emulation of
frequently used system calls.
Java Virtual Machine and benchmarks. We use Jikes RVM
3.1.2 [2] to evaluate the seven multithreaded Java benchmarks
from the DaCapo suite [4] that we can get to work on our
infrastructure. We use five benchmarks from the DaCapo-
9.12-bach benchmark suite (avrora, lusearch, pmd, sunflow,
xalan). We also use an updated version of lusearch, called
lusearch-fix (described in [43]), that eliminates needless allo-
cation. Finally, we use an updated version of pmd, called pmd-
scale (described in [14]) that eliminates the scaling bottleneck
due to a large input file. All benchmarks we use in this work are
multithreaded. The avrora benchmark uses a fixed number (six)
of application threads, but has limited parallelism [14]. For the
remaining multithreaded benchmarks, we perform evaluation
with four application threads. Table I lists our benchmarks, a
classification of whether they are memory or compute-intensive,
the heap size we use in our experiments (reflecting moderate,
reasonable heap pressure [36]), and their running time when
using Sniper with each core running at 1 GHz. We classify
the benchmarks based on the intensity of garbage collection.
An application that spends more than 10% of its execution
time in garbage collection is considered a memory-intensive
benchmark. lusearch.fix, avrora, and sunflow are compute-
intensive, and the remaining five benchmarks are memory-
intensive.

We follow common practice in Java performance evalua-
tion by using replay compilation [6], [19] to eliminate non-
determinism introduced by the just-in-time compiler. During
profiling runs, the optimization level of each method is recorded
for the run with the lowest execution time. The JIT compiler
then uses this optimization plan in our measured runs, optimiz-
ing to the correct level the first time it sees each method [6],
[22]. To eliminate the perturbation of the compiler, we measure

Component Parameters
Processor 4 cores, 1.0 GHz to 4.0 GHz

4-issue, out-of-order, 128-entry ROB
Outstanding loads/stores = 48/32

Cache hierarchy L1-I/L1-D/L2, Shared L3 (1.5 GHz)
Capacity: 32 KB / 32 KB / 256 KB / 4 MB
Latency : 2 / 2 / 11 / 40 cycles
Set-associativity: 4 / 8 / 16
64 B lines, LRU replacement

Coherence protocol MESI
DRAM FR-FCFS, 12 GB/s, 45 ns latency
DVFS states (1, 0.737); (1.5, 0.791); (2, 0.845);
(GHz,Vdd) (2.5, 0.899); (3, 0.958); (3.5, 1.012);

(4, 1.07)
TABLE II: Simulated system parameters.

results during the second invocation, which represents applica-
tion steady-state behavior. We run each application four times,
and report averages in the graphs. We use the default stop-the-
world generational Immix garbage collector in JikesRVM [5]
along with the default nursery settings.
Processor architecture. We consider a quad-core processor
configured after the Intel Haswell processor i7-4770K, see
Table II. Each core is a superscalar out-of-order core with
private L1 and L2 caches, while sharing the L3 cache. We
vary the cores’ frequency between 1 and 4 GHz.
Power and energy modeling. We use McPAT version 1.0 [29]
for modeling power consumed by the processor. For DVFS
support, we use the Sniper/McPAT integration described in [20]
while considering a 22 nm technology node. We use a fre-
quency step setting of 125 MHz when dynamically adjusting
the frequency to save energy (Section VI). We use the voltage
settings similar to Intel’s i7-4770K (22 nm Haswell) [11];
see Table II for a subset of settings. When reporting power
numbers, we include both static and dynamic power. We model
the DVFS transition latency as a fixed cost of 2 µs.

V. MODEL EVALUATION

We now evaluate the accuracy of DEP+BURST and compare
against M+CRIT and COOP. For all models we evaluate with
and without BURST, teasing apart the contribution of taking
store bursts into account.

A. Prediction Accuracy

Evaluating the accuracy of a DVFS performance predictor is
done as follows. We run the application at both the baseline
and target frequency. We predict the execution time at the
target frequency based on the run at the baseline frequency, and
we compare the predicted execution time against the measured
execution time. We quantify prediction accuracy as the relative
prediction error (estimated - actual) / actual. A negative error
thus implies an underestimation of the execution time or a
performance overestimation. The reverse applies for a positive
error.

Evaluating a DVFS performance predictor requires choosing
a baseline and target frequency. When used as part of an energy
management framework — as we will explore in our case study



-70
-60
-50
-40
-30
-20
-10

0
10
20
30

M
+C

R
IT

M
+C

R
IT

+B
U

R
ST

C
O

O
P

C
O

O
P

+B
U

R
ST

D
EP

D
EP

+B
U

R
ST

M
+C

R
IT

M
+C

R
IT

+
B

U
R

ST

C
O

O
P

C
O

O
P

+B
U

R
ST

D
EP

D
EP

+B
U

R
ST

M
+C

R
IT

M
+C

R
IT

+
B

U
R

ST

C
O

O
P

C
O

O
P

+B
U

R
ST

D
EP

D
EP

+B
U

R
ST

2.0 GHz 3.0 GHz 4.0 GHz

%
 E

rr
o

r 

Target Frequency 

xalan pmd pmd.scale lusearch lusearch.fix avrora sunflow avg abs error

(a) Low-to-high prediction from a baseline at 1.0 GHz

-10
0

10
20
30
40
50
60
70
80

M
+C

R
IT

M
+C

R
IT

+B
U

R
ST

C
O

O
P

C
O

O
P

+B
U

R
ST

D
EP

D
EP

+B
U

R
ST

M
+C

R
IT

M
+C

R
IT

+B
U

R
ST

C
O

O
P

C
O

O
P

+B
U

R
ST

D
EP

D
EP

+B
U

R
ST

M
+C

R
IT

M
+C

R
IT

+B
U

R
ST

C
O

O
P

C
O

O
P

+B
U

R
ST

D
EP

D
EP

+B
U

R
ST

3.0 GHz 2.0 GHz 1.0 GHz

%
 E

rr
o

r 

Target Frequency 

xalan pmd pmd.scale lusearch lusearch.fix avrora sunflow avg abs error
~180% ~180% ~180% ~180% 

(b) High-to-low prediction from a baseline at 4.0 GHz

Fig. 3: Per-benchmark prediction errors for M+CRIT, COOP and DEP, both with and without BURST: (a) prediction at higher
frequency from a baseline of 1 GHz, and (b) prediction at lower frequency from a baseline of 4 GHz. DEP+BURST outperforms
all other predictors with an average absolute estimation error of below 10%, both when predicting from 1 GHz to 4 GHz and
vice-versa.

— it is important that we are able to accurately predict perfor-
mance both at higher and lower frequencies. We hence consider
two scenarios: one in which we consider a low base frequency
and predict performance at higher frequencies, and one in which
we consider a high base frequency and predict performance at
lower frequencies. Figure 3(a) quantifies the prediction error for
all benchmarks (including the average absolute error) for three
target frequencies when the base frequency is set at 1 GHz, i.e.,
predicting performance at a higher frequency than the baseline

frequency. Figure 3(b) shows similar data for target frequencies
smaller than the base frequency set to 4 GHz.

M+CRIT has the worst prediction error of all models. The
average absolute error is 27% when predicting from 1 GHz
to 4 GHz, and 70% when predicting from 4 GHz to 1 GHz.
Clearly, not taking into account synchronization, inter-thread
dependencies and store bursts leads to highly inaccurate DVFS
performance prediction for managed multithreaded applica-
tions.



Taking into account the interaction of application and man-
aged language service threads, as COOP does, slightly improves
accuracy over M+CRIT. However, the prediction error is still
significant with average absolute prediction errors for COOP of
22% and 63% for the base 1 and 4 GHz scenarios, respectively.

Taking all synchronization activity into account, as DEP
does, further improves accuracy, with an average absolute
error of 19% and 57% for the base 1 and 4 GHz scenarios,
respectively. The conclusion from this result is that managed
multithreaded applications require accurate modeling of inter-
thread dependencies both through coarse-grained synchroniza-
tion between application phases and garbage collection phases,
as well as through fine-grained synchronization between appli-
cation threads and between garbage collection threads. Unfor-
tunately, although the prediction error is decreased compared
to M+CRIT and COOP, DEP’s error is still high.

Modeling store bursts brings the error down substantially,
especially for the memory-intensive benchmarks. In fact, all
three models, M+CRIT, COOP and DEP, benefit from BURST
modeling. It is interesting to note that DEP benefits most from
BURST, and COOP benefits more than M+CRIT. Because DEP
more accurately identifies critical threads, adding modeling of
store bursts, which affect the critical thread, improves accuracy
more substantially. Likewise, COOP identifies critical threads
more accurately than M+CRIT, and hence benefits more from
store burst modeling than M+CRIT.

This leads to the overall conclusion that DEP+BURST is the
most accurate DVFS performance predictor, with an average ab-
solute error of 6% when predicting from 1 GHz to 4 GHz, and
an average absolute error of 8% when predicting from 4 GHz to
1 GHz. This result shows that modeling both synchronization
and inter-thread dependencies as well as store bursts is critical
for DVFS performance prediction of managed multithreaded
applications.

Prediction errors tend to increase for target frequencies that
are ‘further away’ from the base frequency, due to accumulating
errors, which is especially noticeable for memory-intensive
applications. Further, when predicting the execution time in the
high-to-low scenario, an error in incorrectly estimating the scal-
ing component multiplies as the target frequency increases. This
leads to increased inaccuracy in identifying the critical thread in
an epoch. When predicting low-to-high, the scaling component
is divided by a factor, making the error less prominent.

B. Per-Epoch vs. Across-Epochs Critical Thread Prediction

As argued in Section III, it is important to accurately predict
the critical thread at each point during the execution. We
described two approaches to this problem, namely per-epoch
critical thread prediction (CTP) and across-epoch CTP. We
now quantify the importance of across-epoch CTP. Figure 4
reports the prediction error for DEP+BURST with across-epoch
CTP versus per-epoch CTP. Across-epoch CTP brings down the
average absolute error by a significant margin compared to per-
epoch CTP: by 4% (from 10% to 6% average absolute error)
at 4 GHz with a 1 GHz base frequency, and by 6% (from 14%
to 8% average absolute error) at 1 GHz with a 4 GHz base
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Fig. 4: Comparing per-epoch versus across-epoch critical thread
prediction. Across-epoch CTP decreases the average absolute
error by 4% when predicting from 1 GHz to 4 GHz, and by 6%
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Fig. 5: Example illustrating how the energy manager works
using DVFS performance prediction. The input parameters of
the energy manager are shown in italics.

frequency. This result confirms that being able to accurately
predict the critical thread at all points during the execution time,
and carry this dependence across epochs, is a key component
of DEP+BURST.

VI. CASE STUDY: ENERGY MINIMIZATION WITH
PERFORMANCE GUARANTEES

Having described and evaluated the DEP+BURST DVFS
performance predictor, we now use it in a case study involving
an energy manager that leverages a performance predictor to
save energy without slowing down the application more than a
user-specified threshold.

It is well-known that it is possible to reduce processor energy
consumption by lowering the frequency. The intuition is that
lowering the frequency reduces power consumption, leading
to a more energy-efficient execution. Lowering the frequency
reduces energy consumption as long as the reduction in power
consumption is not offset by an increase in execution time.
This is typically the case for memory-intensive applications
for which lowering the frequency incurs a small performance
degradation. For compute-intensive applications on the other
hand, the reduction in power consumption may be offset by
an increase in execution time, leading to a (close to) net
energy-neutral operation. In other words, different applications
exhibit different sensitivities to scaling the processor’s fre-
quency. Moreover, compute- and memory-intensive phases may
occur within a single application; this is especially the case
for managed language workloads for which garbage collection
is typically memory-intensive [7], [33]. Hence, this calls for
an energy management approach that dynamically determines



when and to what extent to scale the frequency to minimize
energy consumption while not exceeding a user-specified slack
in performance.

A. Energy Management

To demonstrate the importance of having an accurate DVFS
performance predictor for multithreaded managed applications,
we design an energy manager that minimizes energy consump-
tion while guaranteeing performance within a user-specified
threshold compared to running at the highest frequency. The
high-level design is shown in Figure 5. The figure shows
how the manager works for the first four intervals of the
application. We always start the application at the highest
frequency (4 GHz for our modeled processor). During this
interval, the performance predictor computes the DVFS-related
performance counters as described in Section III. At the end of
the first interval, the manager estimates performance at all of
the DVFS states. The Tolerable-Slowdown is a user-specified
parameter that the manager uses to identify all of the DVFS
states that satisfy the performance constraint, i.e., performance
is slowed down by no more than Tolerable-Slowdown, as
a percentage compared to running at the highest frequency.
Of all the states that satisfy the performance constraint, the
manager then chooses the state with the minimum energy
consumption (lowest frequency) for the next quantum. The
Hold-Off parameter represents the number of intervals to wait
before changing the frequency again. In the example shown in
the figure, Hold-Off is set to two. Therefore, the third interval
also runs at the same frequency as the second interval. In case
the application has no phase behavior, using a large Hold-Off
prevents needless profiling. The scheduling Quantum is also
an adjustable parameter, and is set to 5 ms in our experiments.
We use a Hold-Off of one in our experiments.

The key idea we use to guarantee that the application does
not experience a slowdown more than the specified threshold
compared to running at the highest frequency is that, if each
interval experiences a slowdown of x%, then the entire ap-
plication experiences a slowdown of x% compared to always
running the application at the highest frequency. To fulfill this
requirement during each interval, we need to estimate the slow-
down that the application experiences compared to running at
the highest frequency, even when running at a slower frequency.
We solve this problem in two steps. The energy manager first
estimates the execution time at the highest frequency, before
predicting execution time at the target frequency in the second
step and its relative slowdown compared to running at the
highest frequency. The manager finally chooses the minimum
frequency setting that does not slow down the interval more
than the user-specified threshold.

B. Evaluation

Figure 6 reports the slowdown experienced by each bench-
mark and the corresponding reduction in energy for user-
specified slowdown thresholds of 5% and 10%. We observe
substantial energy savings for the memory-intensive bench-
marks, by 13% on average (and up to 15%) for the 5%
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Fig. 7: Energy savings achieved by our energy manager com-
pared to the static optimal (Static-Opt). Our energy manager
provides 2% more energy savings compared to Static-Opt for
the memory-intensive benchmarks.

threshold, and by 19% on average (and up to 22%) for the 10%
threshold. As expected, the energy savings are not as significant
for the compute-intensive workloads.

It is interesting to note that the obtained performance is
close to the user-specified performance target, i.e., the execution
slowdown is around 5% and 10% for most benchmarks for
the 5% and 10% thresholds, respectively. The benchmarks for
which we observe an exception are avrora and lusearch, with
a slight overshoot for avrora at the 5% threshold, and an un-
dershoot for lusearch at both the 5% and 10% thresholds. The
reason is the inaccuracy of the DVFS performance predictor:
lusearch and avrora experience the largest prediction errors,
as shown in Figure 3. This result re-emphasizes the impor-
tance of accurate DVFS performance prediction for effectively
managing energy consumption and performance when running
managed multithreaded applications.

Finally, to further analyze the robustness and importance
of dynamically adjusting frequency, we compare our dynamic
energy manager (using DEP+BURST) against a static-optimal
frequency setting. Static-optimal is determined by running the
application multiple times and selecting the optimal frequency
that minimizes energy consumption across the entire run;
because this static frequency is obtained while using the same
input data set, we can consider the static-optimal frequency as
an oracle setting. Figure 7 compares the energy saved by our
dynamic energy manager to the savings achieved by the static-
optimal method. The energy savings achieved by our manager
are on par with static-optimal for the compute-intensive appli-
cations, while being slightly higher for the memory-intensive
applications (by 2.1% on average for the 10% threshold). The
reason why our energy manager outperforms static-optimal
for the memory-intensive applications is because it is able
to dynamically adjust the frequency in response to varying
execution phase behavior, which static-optimal, by definition,
is unable to do.

VII. RELATED WORK

This work is the first, to the best of our knowledge, to
propose a DVFS performance predictor for multithreaded man-
aged applications. In Section II, we discussed existing DVFS
predictors for sequential applications. Here, we discuss three
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areas of related work: performance and power prediction,
scheduling of multithreaded applications in power-constrained
environments, and energy management of multithreaded appli-
cations on multicore hardware.

A. DVFS Performance and Power Prediction

Performance and power prediction is either done using
analytical models or using regression models. Section II already
discussed previously proposed analytical DVFS performance
predictors in great detail [9], [17], [26], [31], [34], [37], [42].
These papers introduce new hardware performance counters
specifically for the purpose of predicting the performance
impact of DVFS. Su et al. [38] have recently shown how to
implement the Leading Loads DVFS predictor on real AMD
CPUs.

In contrast, other works propose regression models that are
built by offline training to predict the power and performance
impact of frequency and architectural changes [10], [28], [39].
To build a regression model, these works leverage existing
hardware performance counters to measure various microarchi-
tectural events.

Deng el al. [12] propose an algorithm to manage DVFS
for both the processor and the memory while honoring a
user-specified slowdown threshold. However, this and many
other works on DVFS power management do not consider
multithreaded applications.

In this work, we investigate predicting the performance
impact of chip-wide DVFS settings. Prior work investigates the
potential of per-core DVFS in managing the energy consump-
tion of multithreaded applications [21], [27]. However, we leave
this for future work.

B. Scheduling Multithreaded Applications

Recently, there is increased interest in scheduling multi-
threaded applications on multicore hardware to optimize perfor-
mance and energy. The main focus to date is in identifying and
accelerating bottlenecks in multithreaded code, such as serial
sections, critical sections, and lagging threads [3], [13], [23],
[24], [40]. Accelerated Critical Sections (ACS) is a technique
that leverages support from the ISA, compiler, and the large

cores on a single-ISA heterogeneous multicore to accelerate
critical sections [40]. Unlike accelerating only critical sections,
Bottleneck Identification and Scheduling (BIS) also targets
other bottlenecks that occur during the execution of a multi-
threaded application such as serial sections, lagging threads,
and slow pipeline stages [23]. The above works use ISA and
compiler support to delimit bottlenecks in software, and use
this information during execution to accelerate bottlenecks. On
the other hand, Criticality Stacks, proposed by Du Bois et
al. [13], identify critical threads in multithreaded applications
by monitoring synchronization behavior.

Finally, when running multithreaded applications on hetero-
geneous multicore processors, an important goal is to prevent
one or more threads from lagging behind other threads. Van
Craeynest et al. [41] propose a fair scheduler for multithreaded
applications that provides a fair share of the big, out-of-order
cores in a heterogeneous multicore processor to each thread.
Akram et al. [1] propose a GC-criticality-aware scheduler for
managed language applications on heterogeneous multicores.

C. Energy Management

Prior work has proposed frameworks to manage power,
energy and thermals through DVFS, hardware adaptation and
heterogeneity for multithreaded applications [13], [30], [32].
Although managed code is now ubiquitous and used in many
application domains and run on a variety of hardware sub-
strates, relatively few works have looked into the energy man-
agement of managed applications. Sartor et al. [35] explored the
potential of DVFS for managed applications, teasing apart the
performance impact of scaling the frequency of application and
service threads in isolation. However, their work does not pro-
pose an analytical model to quantify the performance impact.
Other works that shed light on different aspects of managed
applications relating to energy consumption include [7], [15],
[25], [36].

VIII. CONCLUSIONS

Accurate performance predictors are key to making effective
use of dynamic voltage and frequency scaling (DVFS) to re-
duce energy consumption in modern processors. Multithreaded



managed applications are ubiquitous yet prior work lacks
accurate DVFS performance predictors for these applications.
In this work, we propose DEP+BURST, a novel performance
prediction model to accurately predict the performance impact
of DVFS for multithreaded managed applications. DEP decom-
poses execution time into epochs based on synchronization
activity. This allows DEP to accurately capture inter-thread
dependencies, and take the critical threads into account across
epochs. BURST identifies critical store bursts and predicts their
impact on overall performance as the frequency is scaled.

Our experimental results considering multithreaded Java
applications on a simulated quad-core processor report an
average absolute error of 6% when predicting from 1 GHz to
4 GHz, and 8% when predicting from 4 GHz to 1 GHz using
DEP+BURST, which is a substantial improvement over prior
work. Our comprehensive analysis illustrates the importance of
identifying synchronization epochs, predicting critical threads
across epochs, and modeling store bursts. We demonstrate the
usefulness of DEP+BURST by integrating it into an energy
manager that achieves significant energy savings for memory-
intensive applications within user-specified performance con-
straints. In particular, for a user-specified slowdown of 5%
and 10%, the energy manager is able to save 13% and 19%
in energy consumption on average for a number of memory-
intensive benchmarks. Accurate performance prediction for
multithreaded applications is critical to effectively use DVFS
and achieve good performance while minimizing energy con-
sumption.

IX. ACKNOWLEDGEMENTS

This research is funded through the European Research
Council under the European Community’s Seventh Frame-
work Programme (FP7/2007-2013)/ERC grant agreement no.
259295, as well as EU FP7 Adept project number 610490.
The experiments were run on computing infrastructure at the
ExaScience Lab, Leuven, Belgium.

REFERENCES

[1] S. Akram, J. B. Sartor, K. Van Craeynest, W. Heirman, and L. Eeckhout.
Boosting the priority of garbage: Scheduling collection on heterogeneous
multicore processors. ACM Transactions on Architecture and Code
Optimization (TACO).

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
The Jalapeño virtual machine. IBM Systems Journal, 39(1):211–238,
2000.

[3] A. Bhattacharjee and M. Martonosi. Thread criticality predictors for
dynamic performance, power, and resource management in chip mul-
tiprocessors. In Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), pages 290–301, 2009.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, F. D., S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The
DaCapo benchmarks: Java benchmarking development and analysis. In
Proceedings of the ACM Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 169–190, 2006.

[5] S. M. Blackburn and K. S. McKinley. Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator performance.
In Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 22–32, 2008.

[6] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffman, A. M.
Khan, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
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