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Abstract—Understanding the reasons why multi-threaded ap-
plications do not achieve perfect scaling on modern multicore
hardware is challenging. Furthermore, more and more modern
programs are written in managed languages, which have extra
service threads (e.g., to perform memory management), which
may retard scalability and complicate performance analysis. In
this paper, we extend speedup stacks, a previously-presented
visualization tool to analyze multi-threaded program scalability,
to managed applications. Speedup stacks are comprehensive bar
graphs that break down an application’s execution to explain the
main causes of sublinear speedup, i.e., when some threads are
not allowing the application to progress, and thus increasing the
execution time.

We not only expand speedup stacks to analyze how the
managed language’s service threads affect overall scalability, but
also implement speedup stacks while running on native hardware.
We monitor the application and service threads’ scheduling
behavior using light-weight OS kernel modules, incurring under
1% overhead running unmodified Java benchmarks. We add two
performance delimiters targeting managed applications: garbage
collection and main initialization activities. We analyze the scal-
ability limitations of these benchmarks and the impact of using
both a stop-the-world and a concurrent garbage collector with
speedup stacks. Our visualization tool facilitates the identification
of scalability bottlenecks both between application threads and
of service threads, pointing developers to whether optimization
should be focused on the language runtime or the application.
Speedup stacks provide better program understanding for both
program and system designers, which can help optimize multicore
processor performance.

I. INTRODUCTION

Analyzing the performance of multi-threaded applications
on today’s multicore hardware is challenging. A software
developer needs analysis tools to identify the scalability bot-
tlenecks; likewise, computer architects need analysis tools to
understand the behavioral characteristics of workloads to de-
sign and optimize future computing systems. While processors
have advanced in terms of providing performance counters
and other tools to help analyze performance, the reasons
scalability is limited are hard to tease apart. In particular, the
interaction between threads in multi-threaded applications is
complex: some threads perform sequentially for a period of
time, others are stalled with no work to do, synchronization
behavior makes some threads wait on locks or barriers, and
threads can interfere with each other in their use of shared
resources, such as the memory subsystem. Many papers have
demonstrated the inability of multi-threaded programs to scale
well, but studying the root causes of scalability bottlenecks
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Fig. 1. A speedup stack for the lusearch DaCapo benchmark with 4
application threads and one garbage collection thread running on Jikes RVM.

is challenging. Analyzing managed languages is even more
challenging, because in addition to the application threads,
there are many service threads. Because the application runs
on top of a managed runtime environment, additional threads
exist to perform dynamic compilation, profiling, and automatic
memory management. Teasing apart their effect on the applica-
tion’s performance is also an important part of understanding
the scalability of modern multi-threaded programs.

We build on previous work that introduced the speedup
stack [1], a visualization tool to quantify components that
limit scalability in multi-threaded applications. Speedup stacks
give insight to programmers on why their multi-threaded
program’s speedup, over its single-threaded version, is not
actually proportional to the number of cores or threads. It
breaks the ideal speedup up into the actual speedup achieved
and the contributions of various performance delimiters.

In this paper, we extend the speedup stack to analyze multi-
threaded managed language application scalability on na-
tive multicore hardware. Our performance delimiters include
some used in the original speedup stacks: thread imbalance,
synchronization, and other overheads (including hardware in-
terference); we also integrate two new components specific
to managed applications: automatic memory management (or
garbage collection) and the main initialization thread, which
performs managed runtime setup and shutdown activities. By
integrating new performance delimiters, we can provide a
more fine-grained and accurate performance characterization



of managed programs, including service threads’ impact on
scalability. Moreover, while previous work [1] required hard-
ware modifications, in this work we instead use light-weight
OS modules to compute speedup stacks at negligible overhead
on existing multicore hardware.

Our new speedup stacks are a powerful tool to guide opti-
mization of managed applications. Figure 1 shows an example
speedup stack for a 4-threaded application, lusearch. The
achieved (or measured) speedup of multi-threaded lusearch
versus single-threaded execution is only 2 (the bottom box).
The components that inhibit scalability the most, i.e., the
largest performance delimiters, in relation to an ideal speedup
of 4, are garbage collection (GC) and other overheads, which
mainly consist of hardware interference (shared cache, bus,
main memory, etc.). Other components that limit scalability
are synchronization, the initialization of the runtime, and
thread imbalance. This visualization tool guides programmers
to the component(s) that is/are limiting scalability, whether
the bottleneck is in the language runtime or the application,
which when fixed will boost application performance. In this
example, we would recommend running with more than one
collector thread, which would likely reduce the GC component
and improve overall performance. Because this benchmark
also has a large other-overhead portion, the programmer might
look closely at how threads are sharing data.

To illustrate the practical use of speedups stacks, we present
an analysis of multi-threaded Java benchmarks with both a
stop-the-world and a concurrent garbage collector on Jikes
Research Virtual Machine (RVM) [2]. Our analysis reveals
that the concurrent collector limits scalability more than a
stop-the-world collector using a small heap size, but has better
scalability with a larger, less-constrained heap size.

The overarching contribution of this paper is an intuitive,
powerful visualization tool for analyzing the scalability of
ubiquitous managed language applications running on native
modern multicore systems. Speedup stacks point software
developers to focus either on improving the parallelization
of the language runtime, or on the parallel activities between
application threads, to improve overall performance. This tool
is important for achieving a better understanding of modern
workloads on current multicore machines.

II. SPEEDUP STACKS: BACKGROUND

This paper presents speedup stacks that comprehensively
visualize what retards performance at both the application and
the language-runtime level, or the causes of imperfect scaling
for managed applications. We build a visualization of what
limits scalability for managed applications running on native
hardware, using kernel modules to measure what is causing
threads to pause. Before introducing our new speedup stacks,
we first give background on previous work that introduced the
concept of a speedup stack.

Speedup stacks [1] compare the achieved speedup of a
multi-threaded application to the ideal speedup and attribute
the gap between them to different possible performance delim-
iters. The total bar in a speedup stack has height N, which is

the number of cores or threads. The actual speedup of a multi-
threaded application (over a single-threaded version) was
originally marked as the base component of the bar. The rest
of the bar is broken up into the causes of sublinear speedup,
such as interference in the memory subsystem, synchronization
overhead, work imbalance, etc. Each of these components
represents a performance deficiency, and their relative con-
tributions in the speedup stack provide intuition as to what to
optimize for the largest improvement in performance.

T, is defined as the execution time of the single-threaded
program. The execution time of the same program during
multi-threaded execution, T},, will (most likely) be shorter. The
total execution time is identical for all threads. Speedup is then
defined as the single-threaded execution time divided by the
multi-threaded execution time:

S = % (1)
P

The idealized multi-threaded execution time, assuming per-
fect parallelization, equals Ts/N with N as the number of
threads or cores. The idealized time, T/N, is often not
achieved in practice, hence multi-threaded execution time
is typically larger. Or in other words, the single-threaded
execution time is usually smaller than the sum of the execution
times of all threads, because the threads have some overhead

(synchronization, work imbalance, etc.). Formally,

N
To=> |T,-> 0y (2)
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with O;; the overhead caused by component j for thread i.
The original work included positive memory interference in
this equation, but we omit that here because it is not relevant
to our new speedup stacks (as explained in Section III).
By dividing this equation by T, we get speedup:
T, >N, 0
T = S=N - — T
P P

This formula immediately leads to a speedup stack by
showing the different overhead components j, aggregated over
all threads, in a stacked bar. The intuition behind a speedup
stack is that it shows the reasons for sublinear scaling and
hints towards the expected performance benefit from reducing
a specific scaling bottleneck, i.e., the speedup gain if this
component is reduced to zero. This can guide programmers
to tackle those bottlenecks that have the largest impact on
multi-threaded application performance.

The original speedup stacks [1] include the following
components: work imbalance, spinning, yielding, and posi-
tive and negative last-level cache and memory interference.
Constructing speedup stacks previously relied on dedicated
hardware support built on top of a per-thread cycle-accounting
architecture [3]. Because existing hardware does not provide
such support, we cannot compute these speedup stacks on
existing hardware. To create the original speedup stacks, they
ran the multi-threaded application and then estimated the
single-threaded performance from that execution.

3)



III. SPEEDUP STACKS FOR MANAGED APPLICATIONS

We extend the original speedup stacks in this paper to
analyze the scalability of multi-threaded managed language
applications, whereas previous work had only applied speedup
stacks to native applications. We also use a light-weight
infrastructure to measure thread behavior on existing hardware
(see Section IV). We newly incorporate the managed runtime
service threads that affect scalability into the speedup stack,
including the sequential parts that do initialization and clean-
up, for which our Java virtual machine uses a service thread
called the MainThread, and the automatic memory manager
or garbage collector (GC), which interferes with application
progress. Thus, if these components of the speedup stack are
large, this gives hints to the managed runtime developers to
better parallelize the garbage collector or minimize the run-
time’s initialization and shutdown activities. Additionally, the
following performance delimiters are also included in our new
speedup stacks: synchronization activities between threads,
or when the operating system yields the processor to another
thread because it is blocked on a barrier or lock; thread im-
balance, or when certain threads have exited and other threads
are still running; and other overhead components which can
include parallelization overhead and shared hardware resource
interference, such as in caches and memory. Below, we build
up equations for quantifying these performance deficiencies,
or delimiter components, in the bar graph.

Because we measure the performance delimiters of our
speedup stacks in system software, we estimate the cache and
memory interference component that the original work could
precisely measure with hardware. Our tool does not currently
take into account busy waiting in spin loops. However, thread-
ing libraries are designed to avoid long active spinning loops
and yield threads if the expected waiting time is more than a
few cycles, so we expect this to have no measurable impact
in practice.

To build a speedup stack, we first run the single-threaded
version of the application to have a baseline. We then profile
a multi-threaded execution of the application, computing the
different overhead components for each thread. We measure
the actions that cause some threads not to run, which will result
in less-than-perfect speedup. We denote the actual speedup
achieved by the multi-threaded application as the measured
component in our speedup stack.

In the next sections we discuss the different overhead
components that O;; is comprised of, and how they are
integrated in Formula 3. We consider garbage collection, the
sequential initialization of the runtime, synchronization, thread
imbalance, and additional overheads (including hardware in-
terference) as components in our speedup stacks.

A. Garbage Collection

A new contribution of this work is that we consider the
overhead of the garbage collector in our construction of
speedup stacks. Garbage collection is an integral component of
many managed languages. Programmers benefit from the fact
that the managed runtime environment automatically manages
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Fig. 2. Illustration of a single-threaded and multi-threaded managed language
application execution, with a stop-the-world garbage collector.

and collects memory. However, this benefit comes with a
cost; garbage collection does incur some space and time
overhead. Previous work estimates that a well-performing
stop-the-world generational garbage collector takes on average
10% of an application’s execution time [4]. With this collector,
the application is stopped while the collector traces the heap
and reclaims memory. There are also collectors that reclaim
memory while running concurrently with the application;
however, they commonly require the application to stop so
that the collector can identify a consistent set of roots to trace
from (including stack variables, statics and globals), and, after
tracing, to finally reclaim memory back to a free list. When
GC threads are run concurrently with the application, they are
not directly limiting scalability (however, there may be other
effects such as hardware interference in shared resources).
Thus in our speedup stacks, we only take into account when
GC pauses the application because it is then directly affecting
the application’s ability to make progress.

Figure 2 shows the single-threaded version of a managed
language program on the left, with Ty = 1.2. Note that
overall execution time includes both application and garbage
collection phases; the time during which the stop-the-world
GC is running (and the application is stopped) is shown
with a dashed line. The execution time of running with four
application threads, 7}, is 0.6 on the right side of Figure 2.
The ideal speedup, T5/N, in Figure 2’s example would be
1.2/4 = 0.3. Note that the number of GC threads does not
have to equal the number of application threads.

In the previous definition of speedup stacks [1], the garbage
collection component would have been a part of the yielding
component. Application threads have to yield to let GC run,
and are thus scheduled out by the OS during that time. This
version of speedup stacks more precisely divides up the yield
component into GC scalability and a synchronization compo-
nent that represents only synchronization between application
threads, as explained below.

Because the application threads are halted during their exe-
cution in order to perform garbage collection, we account for



these pauses as an overhead component that can possibly limit
speedup. Because the actual speedup of the multi-threaded
application over the single-threaded version already takes
garbage collection time into account, our overhead component
needs to only consider the scalability of garbage collection. We
thus compare the amount of time spent on GC in the multi-
threaded execution, multiplied by the number of threads, to
the time for GC in the single-threaded execution. Integrating
garbage collection into Formula 3 leads to:

N xTgomr —Teest

S=N 7,

N T
Z > ; O1; @
i T

where T s and Tge, v is the time needed to do garbage
collection for the single-threaded and multi-threaded exe-
cution, respectively, and O1}; are the remaining overhead
components j for thread i. Tgc pmr is the same for all
threads, i.e., we assume all GC threads are active from the
start of a collection to the end. We subtract Tgc s from
the garbage collection overhead because the single-threaded
execution also has a garbage collection component, and the
speedup is measured over the whole program.

It is clear that if the stop-the-world phase of garbage
collection is perfectly scalable (i.e, Taomr = %), this
overhead component of speedup stacks would reduce to zero.
Thus this performance delimiter suggests the effect of limited
GC scalability on achieved program speedup.

B. Managed Runtime Initialization

We consider other service threads that stop the managed
language application’s progress and thus limit its scalability.
In Jikes RVM, there is a service thread called the MainThread
that initializes the Java virtual machine (JVM), does initial
compilation, spawns the application threads, and later per-
forms shutdown activities. Because we explore multi-threaded
applications, the MainThread limits scalability because its
work is not parallelized. The speedup of a program is limited
by the amount of sequential execution in the application [5].
We integrate this component into our speedup formula, which
is very similar to the garbage collection component, be-
cause application threads are, in essence, stopped while the
MainThread is running:

N xTgemr —Tae,st

S=N
TP
ENC
_ N x Tseq,JWT - Tseq,ST . i Zj 0213 ( )
Tp i Tp

where Tieq 7 is the execution time of the MainThread
during multi-threaded execution, and 7.4 g7 during single-
threaded execution.

This initialization component of the speedup stack thus
estimates the scalability of the sequential MainThread and
its impact on program speedup. Our JVM does not have a
parallelized version of these initialization activities; however,
if these activities were perfectly parallelizable, this component

could be reduced to zero, improving overall program perfor-
mance and scalability.

C. Synchronization

We now consider synchronization between application
threads, or between garbage collection threads, as opposed to
interactions between service and application threads. Threads
synchronize with each other when working on shared data or
because they have to wait on each other. This synchronization
leads to an extended execution time — or in other words, time
when all threads are not concurrently running — and therefore
should be accounted for as an overhead component that limits
scalability. These components were included in the original
speedup stacks, but we measure them differently because
we do not require hardware support. In our implementation,
we intercept futex system calls that cause a thread to wait.
We thus compute this overhead as the sum of all times a
thread is waiting due to synchronization, summed over threads.
Integrating this into Formula 5 leads to:
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where Sync; is the waiting time due to synchronization for
thread ¢. Thus, if all threads’ waiting time due to synchro-
nization with other threads would go to zero, this speedup
stack component would disappear, thus resulting in a higher
achieved speedup.

D. Thread Imbalance

Thread imbalance happens when one or a few application
threads need (substantially) more time to execute than the
other threads, which puts a limit on the achieved speedup or
scalability of the program. To account for this we measure the
waiting time of an application thread inside an exit system
call until all application threads finish their execution (see
Section IV). Integrating this into the formula leads to:
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where E'zit; is the waiting time of thread ¢ after exiting while
other threads are still running. This overhead component in the
speedup stack represents the proportion of idealized speedup
that could be gained if all application threads exit at the same
time, or are well-balanced in their work.



E. Remaining Overhead Components

The speedup S in Formula 7 has an additional component
O4;;. The remaining overhead is due to other factors that
limit scalability and performance when moving from single-
threaded to multi-threaded execution on modern hardware. For
example, parallelizing a program typically incurs overhead
due to additional instructions being executed. Second, resource
sharing on modern multicore processors leads to interference
between (all service and application) threads [3], which can
manifest with cache coherence overhead, cache misses, and
the overhead of going to off-chip memory [1]. We include
a final component in our speedup stacks that we call other
overhead, which estimates O4§j, accounting for hardware
interference and parallelization overheads and showing their
impact on speedup. Though we cannot precisely measure this
overhead in system software, we present this component as
the difference between the measured speedup and the ideal
speedup, minus all of the other components. Because we have
the advantage of running unmodified managed applications
on current hardware, we can quickly and accurately gather
statistics on real program behavior. Thus, if this other-overhead
component of the speedup stack is large, we recommend that
users use performance counters to analyze if the problem is
extra instructions, or shared cache or memory traffic. Alterna-
tively, programmers could use tools such as ScaAnalyzer [6]
to identify scalability bottlenecks due to contention in caches
or memory. Then programmers, runtime engine developers,
or architects know what to focus their efforts on to optimize
modern multi-threaded applications for improved scalability.

IV. DESIGNING THE APPLICATION PROFILING TOOL

We measure the inputs to calculate speedup stacks for ap-
plications running on real hardware through operating system
(OS) support using light-weight Linux kernel modules. There
are several advantages to using kernel modules: the programs
require no modifications or re-compilation; the kernel does
not need to be re-compiled because the modules are loaded
dynamically; we can use a nanosecond-resolution timer; and
despite having very limited overhead (on average 0.78% for
our benchmarks), our tool continuously monitors all threads’
scheduling activities without loss of information.

To measure the values needed to construct speedup stacks,
we need to detect/have:

1) The number and IDs of active threads.
2) Events that cause a thread to activate and deactivate.
3) A timer to measure overhead.

The operating system naturally provides what we need. We
built a tool that gathers the necessary information to construct
speedup stacks using kernel modules with Linux versions 2.6
and 3.0. The kernel modules are loaded using a script that re-
quires root privileges. Communication with the modules (e.g.,
communicating the ID of the process that should be monitored)
is done using writes and reads in the /proc directory. Kernel
modules intercept system calls that perform thread creation
and destruction (sys_exit), that schedule threads in and out,

and that do synchronization with futex (which implements
thread yielding).

Our modules have a counter to accumulate the execution
time of (a) the MainThread, (b) garbage collection threads,
and (c) application threads. Furthermore, the tool also keeps
track of the per-thread waiting time due to futex system calls
(synchronization) and exit system calls (thread imbalance)
in two additional counters. In our JVM, application threads
are stopped to start a stop-the-world garbage collection phase
using futex system calls. In order to get the synchronization
overhead time without the GC time, we therefore subtract the
collector’s execution time from the futex waiting time in a
post-processing step.

Our tool keeps track of the IDs of active threads and
timestamps of interval boundaries, i.e., when any thread is
scheduled in or out. Upon detection of an interval boundary,
the module obtains the current timestamp, and by subtracting
the previous timestamp from it, determines the execution time
of the interval that just ended. It adds that time to the running
time counter of the threads that were running in the past
interval. If a thread is halted, it records the corresponding
system call (futex or exit) and the current time, and if a
thread is woken, the waiting time is added to the corresponding
counter. Subsequently, the module changes the set of running
threads according to the interval boundary information, and
records the current timestamp as the beginning of the next
interval. When the OS receives a signal from software, the
counters are written out, and this information is read by a
script that generates the graphs.

To gather our results, we read out our cumulative thread
statistics at the end of the program run, and thus our speedup
stacks represent the entire application execution. However, our
tool can be given a signal at any time to output, and optionally
reset, thread counters. Thus, speedup stacks can be constructed
at any time during the program run, and can be used to analyze
particular phases or sections of code for scalability bottlenecks.

Discussion of design decisions: In the design of our
tool and experiments, we have made some methodological
decisions, which do not limit the expressiveness of speedup
stacks. When a thread performs I/O, the OS schedules that
thread out. We choose not to track I/O system calls separately
in our kernel modules because most I/O behavior is already
accounted for as inactive and we found this component to be
very small in our setup. Furthermore, we provide sufficient
hardware contexts in our hardware setup, i.e., at least as many
as the maximum number of runnable threads. We thus ensure
that threads are only scheduled in and out due to synchroniza-
tion events, and factor out the impact of scheduling due to time
sharing a hardware context. We thus also implicitly support
SMT environments. Our modules can be easily updated to
also account for I/O overhead and over-subscription overhead
(i.e., more threads than hardware contexts) if needed. These
overheads can be visualized in a speedup stack, similar to
synchronization and imbalance overheads.

While other OS activities besides system calls could affect
the execution time of a particular run of an application, such
as page faults, the OS would schedule those threads out and



thus our system would count that time as inactive. However,
the user is encouraged to repeat runs multiple times and use
the most consistent (non-outlier) runs for comparison with the
corresponding single or multi-threaded executions.

V. EXPERIMENTAL METHODOLOGY

We perform experiments on unmodified applications run-
ning on real hardware to demonstrate the usefulness of our
analysis tool. We analyze both application and service thread
performance and scalability using speedup stacks.

We evaluate four multi-threaded Java benchmarks from the
DaCapo 2009 benchmark suite [7]. Although eclipse spawns
multiple threads, we found that only one thread is running for
the majority of the execution, so we categorize it as a single-
threaded application and exclude it from this study. We also
leave out avrora and pseudoJBB from our analysis because
it is impossible to change these benchmarks’ thread count
without changing the input set. Thus, we analyze lusearch,
which incurs 1.15% measurement overhead with our tool, pmd
(0.53%), sunflow (1.04%) and xalan (0.40%). The average
overhead from the kernel module is just 0.78% across our
benchmarks because the kernel modules only have to do small
calculations when threads are scheduled in or out.

For our experiments, we vary the number of application
threads (1, 2, 4 and 8), but set the number of garbage collector
threads to two, following recommendations that Jikes performs
best with this number [8]. We experiment with different
heap sizes (as multiples from the minimum size that each
benchmark can run with on the stop-the-world collector). We
run the benchmarks for 15 iterations, and present results from
the 13th iteration to show stable behavior.

We perform our experiments on an Intel Xeon E5-2650L
server, consisting of 2 sockets, each with 8 cores, running a
64-bit 3.2.37 Linux kernel. Each socket has a 20 MB LLC,
shared by the 8 cores. For our setup, we found that the number
of concurrent threads rarely exceeds 8, with a maximum of
9 (due to a dynamic compilation thread). Therefore, we use
only one socket in our experiments with HyperThreading
enabled, which leads to 16 available hardware contexts. This
setup avoids data traversing socket boundaries, which can have
a large impact on performance [9]. The availability of 16
hardware contexts does not trigger the OS to schedule out
threads other than for synchronization or I/O.

We run all of our benchmarks on Jikes Research Virtual
Machine version 3.1.2 [2]. We use the default best-performing
garbage collector (GC), the stop-the-world parallel genera-
tional Immix collector [10]. We also perform experiments
with Jikes’ concurrent collector. Jikes RVM uses a mark-
sweep snapshot-at-the-beginning concurrent GC algorithm.
The concurrent collector initiates a new collection cycle with
a trigger: after a particular percentage of total memory is
allocated, a new concurrent collection cycle is triggered. We
use Jikes’ default trigger value.

Jikes’ concurrent collector requires a small pause of the
application to first identify a consistent root set, and later to
actually free memory. Between these two actions, the collector
threads run concurrently with the application threads in order

to trace the object graph. The concurrent collector in Jikes
spawns different sets of threads to perform the stop-the-world
activities and the concurrent activities. If the application is
rapidly allocating while the concurrent GC is running such
that the garbage collector cannot free up memory fast enough
to accommodate new memory requests, the GC forces the
application threads to stop and finishes collection in a stop-the-
world mode [11]. As previously explained, the GC scalability
component of speedup stacks represents only the stop-the-
world portion of the concurrent collector, as the concurrent GC
activity does not inherently limit application thread scalability.

VI. ANALYZING SCALING BEHAVIOR WITH
STOP-THE-WORLD GARBAGE COLLECTION

For understanding how managed applications scale and the
relative contributions of various multi-threaded performance
deficiencies, we present speedup stacks as explained in Sec-
tion III. In this section, we perform experiments with the stop-
the-world garbage collector using two threads and a heap size
of 2x the minimum.

Figure 3 shows speedup stacks for our benchmarks with
2, 4 and 8 application threads as compared to their single-
threaded versions. The total height of the bar is equal to
the ideal speedup, or the number of application threads.
The orange component at the bottom of each stack shows
the measured speedup between a single-threaded and multi-
threaded execution and the colored boxes on top of it show
the various scalability delimiters and their impact on speedup.

From the stacks we can see that most of our applications
do not scale very well: no 8-threaded application achieves a
speedup much more than 4. Applications sunflow and xalan
show comparable measured speedup results, but the reason
why their speedup is limited is different. While sunflow
mostly suffers from other parallelization overheads, xalan
mostly suffers from the limited garbage collector scalability.
Pmd is the application that scales the worst because of one
thread running longer than the others. Pmd is limited by one
large input file [8], that if broken up, could significantly reduce
the thread imbalance component. The reason why lusearch
does not scale well is a combination of all components in the
speedup stack. The GC'’s limited scalability is the main reason,
together with other overheads. For lusearch and pmd, if the
language runtime could improve both the parallelization of
the garbage collector and of the MainThread’s initialization
activities, multi-threaded speedup could improve significantly.

To understand the other-overheads component better, we
present hardware performance counter data in Figure 4, nor-
malized to the single application thread execution. The per-
formance counters reveal that the total number of instructions
stays almost constant for all benchmarks when increasing the
number of application threads, meaning that speedup is not
limited because of additional instructions, or parallelization
overhead. This suggests that the other overhead is mostly due
to hardware interference in the memory subsystem.

For sunflow, with the largest other-overheads component,
the number of last-level cache (LLC) loads goes up steeply
when going to 4 and 8 application threads, which is expected
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Fig. 4. Data from hardware performance counters running with a stop-the-world garbage collector (2xmin heap size), normalized to one application thread.

as the GC and cache coherence activity increase. However, the
number of LLC load misses does not increase significantly,
and 2 application threads experience fewer misses than one
application thread. This suggests that sunflow has a lot of
shared data between threads. For other benchmarks, other-
overhead translates into a combination of an increased number
of LLC loads and LLC load misses, particularly for lusearch.
Lusearch allocates a lot of memory at a high rate [9], and
thus the extra GC activity could contribute to this increased
LLC traffic and its large synchronization component.

VII. ANALYZING SCALING BEHAVIOR WITH
CONCURRENT GARBAGE COLLECTION

In this section, we explore the scalability of multi-threaded
Java applications running with a concurrent collector using
speedup stacks. As previously explained in Section III-A, the
GC component of speedup stacks only measures the limited

scalability of the stop-the-world phases of garbage collection,
because they directly inhibit the progress of the application.

Figure 5 shows speedup stacks for the same applications
as in Figure 3, but now running with a concurrent garbage
collector. In this experiment we use the same heap sizes for
the applications as in the previous section. The speedup stacks
reveal that for all benchmarks the impact of GC on speedup
has become larger compared to using a stop-the-world garbage
collector. In fact, for three benchmarks, the measured speedup
is reduced when going from 4 to 8 application threads. The
application that suffers the most from the garbage collector’s
limited scalability is lusearch, because of its high allocation
rate [9]. Because of the excessive allocation, the concurrent
collector is not able to free up memory fast enough [11], and
transitions to stop-the-world mode, which retards the appli-
cation’s scalability. We conclude that the concurrent garbage
collector in Jikes RVM does not scale well, especially with
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small heap sizes, and if fixed by developers, could improve
application scalability significantly.

To explore the scalability of the concurrent garbage collector
when the heap size is not constrained, we also ran our appli-
cations with a larger heap size (10x the minimum heap size
used with the stop-the-world collector). The speedup stacks are
shown in Figure 6. We see that the impact of GC’s scalability
on speedup is significantly reduced and the measured speedup
is improved, compared to Figure 5 (except for pmd that
suffers from a large thread imbalance). For sunflow and
xalan, the main speedup delimiter now is other overhead, as
expected because of the many threads concurrently running
and interfering with each other, while for lusearch it is a
combination of different components.

For comparison, we also performed an experiment using
the stop-the-world collector and the larger heap size, and
found no noticeable difference between the generated speedup

ds |2 threads‘4 threads‘s threads |2 threads ‘4 threads‘8 threads

concurrent garbage collector (10xmin heap size).

=

sunflow xalan

stacks for the larger and smaller heap sizes. However, the
measured component of the speedup stacks is slightly higher
when using the concurrent (versus stop-the-world) collector
at the larger heap size, because the application threads are
not stopped from making progress as much because of GC.
Furthermore, all benchmarks (except pmd) seem to have a
reduced synchronization component in the speedup stacks with
a concurrent collector, probably due to the stop-the-world
collector running more frequently, and thus issuing more futex
operations. Also, pmd and xalan have much reduced garbage
collector scalability components when using Jikes’ concurrent
GC, while sunflow has a reduced other-overheads component.

For explaining the other-overhead component, particularly
the hardware interference, we measured hardware performance
counters when running with a concurrent collector and a large
heap (omitted due to space constraints). Lusearch suffers
from an increased number of LLC loads as the application



thread count increases, and LLC load misses increase from
2 to 4 application threads, but go down for 8 threads. This
suggests that with a larger number of application threads, there
is more data sharing (between application and GC threads) in
the LLC. This was not the case when using a stop-the-world
collector (see Figure 4), which can disrupt the LLC and incur
more LLC load misses for the application, especially at high
thread counts.

Sunflow has an increasing number of L1 cache loads,
misses and LLC loads, which are the main causes of the
hardware interference. This behavior is different than when
sunflow runs with a stop-the-world garbage collector, which
does not have an increasing number of L1 loads as the
application thread count increases, but has a larger increase
in LLC loads. With the concurrent GC, the increase in L1
loads are due to the garbage collector accessing the L1 cache
more often at the same time as the application. However, the
application does not suffer much because the data is kept in the
upper levels of cache. Xalan and pmd show similar behavior
with a concurrent collector as with a stop-the-world collector:
an increasing number of L1 load misses that result in more
LLC load accesses and LLC load misses.

We have shown that speedup stacks facilitate the visual-
ization of performance and scalability bottlenecks in multi-
threaded managed language applications. They reveal the
impact of the limited scalability of the garbage collector,
initialization activities, synchronization activities between ap-
plication threads, imbalance of application threads, and the
effect of other overheads — particularly hardware interference
in the memory subsystem — which can also be explained by
performance counter data. Thus, the speedup stack directly
reveals whether time should be spent on improving the paral-
lelization of the managed runtime, looking at the application
threads’ interactions, or trying to minimize shared memory
system interference.

VIII. RELATED WORK

We now describe related work in performance visualization
and Java parallelism analysis.

A. Performance Visualization

Software developers heavily rely on tools for guiding where
to optimize code. Commercial offerings, such as Intel VTune
Amplifier XE [12], Sun Studio Performance Analyzer [13],
Rogue Wave/Acumem ThreadSpotter! (which targets memory
problems) and PGPROF from the Portland Group [14] use
hardware performance counters and sampling to derive where
time is spent, and point the software developer to places in the
source code to focus optimization. These tools provide fairly
detailed analysis at a fine granularity in small functions and
individual lines of code. They do not automatically analyze
managed language service threads separately from application
threads, and they do not give a broader view on the scalability
of the application or what to focus on to improve it.

Thttp://docs.roguewave.com/threadspotter/2011.1/manual/

Recent work focused on minimizing parallel overhead by
enabling the analysis of very small code regions, such as
critical sections [15], [16]. Other related work [17] proposes a
simple and intuitive representation, called Parallel Block Vec-
tors (PBV), which map serial and parallel phases to static code.
Other research proposes the Kremlin tool, which analyzes
sequential programs to recommend sections of code that would
get the most speedup from parallelization [18]. All of these
approaches strive at providing fine-grained performance in-
sight. However, none of these approaches provide a simple and
intuitive visualization and understanding of gross performance
scalability bottlenecks in managed multi-threaded applications,
as our work does and which is needed by software developers
to guide optimization.

Recent work presented criticality stacks [19], and then bottle
graphs [8], which display per-thread contributions to total
program performance and parallelism. This work points out
thread imbalances, but it does not suggest how much total
application performance could be improved by removing a
particular scalability bottleneck.

IBM WAIT? [20] is a visualization tool for diagnosing
performance and scalability bottlenecks in Java programs,
particularly server workloads. It uses a light-weight profiler
that regularly samples information about each thread. WAIT
can be applied only to Java application threads, not to parallel
programs written in other languages or to Java virtual machine
service threads, both of which can be analyzed easily with
speedup stacks because we use OS modules. WAIT also col-
lects a snapshot of information only at specific program points,
with increasing overhead with finer-granularity sampling. In
contrast, speedup stacks contain more information with lower
overhead. Our OS modules are continually monitoring every
thread status change, and aggregating our metrics at all times.

B. Java Parallelism Analysis

Analyzing Java performance and parallelism has become
an active area of research recently. Most of these studies
use custom-built analyzers to measure specific characteristics
of interest. For example, Kalibera et al. [21] analyze the
concurrency, memory sharing and synchronization behavior
of the DaCapo benchmark suite. They provide concurrency
metrics and analyze the applications in depth, focusing on
inherent application characteristics. They do not provide a
visual analysis tool to measure and quantify performance and
scalability, and reveal bottlenecks on real hardware as we do.

Researchers recently analyzed the scalability problems of
the garbage collector in the OpenJDK JVM [22]. They did
follow-on work to optimize scalability at large thread-counts
for the parallel stop-the-world garbage collector in Open-
JDK [23]. Similarly, Chen et al. [24] analyzed scalability
issues in the OpenJDK JVM, and provided explanations at
the hardware level by measuring cache misses, DTLB misses,
pipeline misses, and cache-to-cache transfers. They did not,
however, quantify the speedup lost because of the parallel

Zhttps://wait.ibm.com/



collector, or analyze how it interacts with the application, as
we do in this paper.

IX. CONCLUSION

This paper extends speedup stacks to visualize the scala-
bility bottlenecks of managed language workloads on native
multicore hardware. Speedup stacks have always provided a
comprehensive breakdown of the causes of limited scalability
in programs, revealing the causes of sublinear scaling. Our
new speedup stacks show the relative contributions of not
only previously-proposed components: synchronization, thread
imbalance, and hardware interference (within other overhead),
but also two new performance delimiters specific to managed
languages: the garbage collector, and the managed runtime
initialization and shut-down activities. Our speedup stacks
enable users to immediately see whether the parallelization
of the language runtime service threads needs to improve, or
if the application code itself needs to be re-written to increase
multi-threaded speedup.

To construct speedup stacks on real hardware, we pro-
pose a light-weight and low-overhead approach for measuring
scheduling behavior using OS kernel modules with no changes
required to software or hardware. We present the speedup
stacks of several multi-threaded Java benchmarks to explore
not only the application’s scalability, but also the performance
of the JVM’s service threads. We reveal several insights that
we have gathered about Jikes RVM’s garbage collectors; in
particular, we find that the concurrent collector scales worse
than the stop-the-world collector at small heap sizes, but at
larger heap sizes, the opposite is true.

Overall, we demonstrate that speedup stacks are particularly
effective at visualizing the performance bottlenecks of multi-
threaded managed language applications. Speedup stacks of-
fer programmers and computer architects a comprehensive
understanding of modern managed applications running on
current multicore hardware, and guide them to the scalability
bottlenecks that, when fixed, can optimize performance.
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