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Abstract
Dataflow models are a promising platform for programming
language implementation due to their ability to extract the la-
tent parallelism present in a given program. In spite of this,
no modern-day language has emerged which leverages this
property of implicit parallelism. As a first step towards the
creation of such a language, we introduce a virtual machine
design which is based on the tagged-token dataflow model.
Notably, this design offers the fundamental concepts of the
underlying model as first-class entities, which makes it pos-
sible to support various high-level language features without
the need for any additional runtime support.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Run-time environments

Keywords Dataflow, Extensible Virtual Machine design

1. Introduction
The dataflow model (Johnston et al. 2004) is an attractive
model for the expression and execution of highly parallel
programs due to its lack of global memory and its data-
driven style of execution. In spite of these attractive proper-
ties, there are no modern high-level programming languages
currently in use which leverage this model and its implicitly
parallel style of execution.

We investigate the creation of a virtual machine (VM)
which can serve as an execution platform for these implic-
itly parallel languages. Our VM uses the tagged-token data-
flow (Arvind and Nikhil 1990) model of execution in order
to support concurrent code reentry and recursion. This model
uses tags to differentiate between tokens with a different ex-
ecution context. Our VM can leverage these tags to enable
the implementation of high-level language features such as
exceptions and closures without the need for any additional
runtime components.

In this paper, we provide a brief introduction to the data-
flow model (Section 2) and the tagged-token style of ex-
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ecution (Section 3). Afterwards, we use these concepts to
present the design of our VM (Section 4).

2. The Dataflow Model
In the dataflow model, every program can be represented as
a graph. Every operation in the program is represented by a
node, while the edges between the nodes represent data de-
pendencies between these operations. For instance, the fol-
lowing function, which calculates the distance between two
coordinates, is represented by the graph shown in Figure 1.

( d e f i n e ( d i s t a n c e x1 y1 x2 y2 )
( s q r t ( + ( square (− x2 x1 ) ) ( square (− y2 y1 ) ) ) ) )

Figure 1. Dataflow representation of the distance function.

While evaluating this function, an operation can be exe-
cuted when all of its input data (represented as a token) is
available. When an operation is executed, it consumes all of
its input tokens, and potentially produces a new token which
contains the value which results from applying the opera-
tion to its input tokens. This data is sent to the next node in
the program graph. For example, when calling the distance
function with four inputs, both of the ‘-’ nodes could be ex-
ecuted. Executing any of these nodes would result in a new
token, which would get sent to the ‘square’ node connected
to this particular ‘-’ node. Note that the dataflow model al-
lows both of these ‘-’ (or ‘square’) operations to be exe-
cuted in parallel: the dataflow model only imposes execution
order based on data dependencies present in a program.

This model does not cover what happens when code is
reentrant, i.e. when multiple instances of the same part of
the program are executed concurrently (e.g. when two invo-
cations of the same function are active at the same time). To
solve this, multiple practical versions of the dataflow model
have been created (Veen 1986). We focus exclusively on the
tagged-token dataflow model (Arvind and Nikhil 1990).
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3. Tagged-token Dataflow
The tagged-token dataflow model tackles the reentrancy
problem by using tags to differentiate between tokens from
different execution contexts. Tags are added to every token
and contain an address, a port and a context. Program data
encapsulated by a token is called a datum. The address iden-
tifies the destination (i.e. operation) of a token, while the
port determines which input of an operation a token goes to.
Finally, the context uniquely identifies the execution context
(e.g. a particular function invocation) of a token.

Traditionally, a tagged-token processing pipeline consists
of a token queue, which contains the tokens that are ready to
be processed, a matching memory, which stores the partial
input of each operation for each context, an execution unit,
which executes operations by applying the operations to the
data of its input tokens, and a tokenizer which wraps the
results of these operations in a tagged token.

In these pipelines, features such as function calls are typ-
ically implemented by a dedicated set of special operations,
which may have access to their own memory. The issue with
this design is that language features which are not explicitly
supported by the VM can only be built by expressing them
in terms of existing features, at the cost of using extra op-
erations, or by adding new ‘special’ operations to the VM,
which is a tedious and difficult process.

4. Tagged-token Operation Design
To address this issue, our VM explicitly offers the core
components of the tagged-token dataflow model as first-
class entities which can be manipulated during the execution
of operations. This is done in such a way that it is impossible
to access data from different contexts, which ensures that
the semantics of the tagged-token dataflow model are not
violated. In turn, this guarantees that the parallel properties
of the dataflow model can still be exploited.

The design of our runtime is similar to a traditional
tagged-token runtime engine, with the key difference that
operations do not operate on token data. Instead, they oper-
ate on their set of tagged input tokens, a part of the matching
memory, a context manager and a context-specific key-value
store. The following paragraphs describe these entities and
how they can be leveraged to build arbitrary new operations.

First and foremost, operations get to read all of the data
encapsulated in input tokens and their tags. They also have
the ability to create tokens with arbitrary addresses, ports
and contexts. Operations can use this feature to dynamically
determine the destination and execution context of any to-
ken, which can be used to create conditional statements or
to pass arguments to a function invocation. Furthermore, a
datum may consist of arbitrary addresses, ports, or contexts,
enabling operations to modify tags based on the value of a
datum (i.e. program data). Since operations are directly re-
sponsible for the creation of tagged-tokens, the tokenizer,
which is present in traditional tagged-token architectures, is

no longer required in our VM. Instead, tokens produced by
operations are automatically added to the token queue.

Second, operations get read-only access to the current
state of the matching memory for the context with which it
is being executed. This feature makes it possible to dynam-
ically capture the environment of an execution context (e.g.
to implement features such as closures).

Furthermore, operations can spawn new execution con-
texts, enabling operations to make any piece of a program
reentrant, which is required to implement fundamental lan-
guage features such as (recursive) function calls and loops.

Finally, operations get access to a key-value store shared
with any operation that is executed with the same context.
This store generalizes the memory which ‘special’ opera-
tions need to function in a traditional tagged-token dataflow
VM. Operations can use this memory to store execution in-
formation such as the return address of a function call.

Combining the ability of operations to arbitrarily read and
produce tagged-tokens with the set of runtime components
we presented above enables the expression of various high-
level language features in terms of tagged-token operations,
without the need to modify the internals of the VM. For
instance, if one wishes to add support for calling functions to
our VM, it suffices to spawn a new context, send the data to
the first operation of this function with this new context, and
to store the return address and original context in the context-
specific key-value store. Returning from this function can be
done by retrieving the return address and original context
from the store, after which the result token can be sent to
the return address with the original context. Other features,
such as exception handling, higher-order function calls or
closures can be implemented in similar ways.

5. Conclusion
We have shown how our VM leverages the building blocks
of the tagged-token dataflow model to allow language de-
signers to express various constructs in terms of operations.
This removes the need to modify the internals of the VM.
This allows us to build implicitly parallel languages on top
of a flexible dataflow virtual machine.
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