
Z-Rays: Divide Arrays and Conquer Speed and Flexibility ∗

Jennifer B. Sartor† Stephen M. Blackburn‡ Daniel Frampton‡ Martin Hirzel§ Kathryn S. McKinley†

†University of Texas at Austin ‡Australian National University §IBM Watson Research Center
{jbsartor,mckinley}@cs.utexas.edu {Steve.Blackburn,Daniel.Frampton}@anu.edu.au hirzel@us.ibm.com

Abstract
Arrays are the ubiquitous organization for indexed data. Through-
out programming language evolution, implementations have laid
out arrays contiguously in memory. This layout is problematic
in space and time. It causes heap fragmentation, garbage collec-
tion pauses in proportion to array size, and wasted memory for
sparse and over-provisioned arrays. Because of array virtualization
in managed languages, an array layout that consists of indirection
pointers to fixed-size discontiguous memory blocks can mitigate
these problems transparently. This design however incurs signifi-
cant overhead, but is justified when real-time deadlines and space
constraints trump performance.

This paper proposes z-rays, a discontiguous array design with
flexibility and efficiency. A z-ray has a spine with indirection point-
ers to fixed-size memory blocks called arraylets, and uses five opti-
mizations: (1) inlining the first N array bytes into the spine, (2) lazy
allocation, (3) zero compression, (4) fast array copy, and (5) ar-
raylet copy-on-write. Whereas discontiguous arrays in prior work
improve responsiveness and space efficiency, z-rays combine time
efficiency and flexibility. On average, the best z-ray configuration
performs within 12.7% of an unmodified Java Virtual Machine on
19 benchmarks, whereas previous designs have two to three times
higher overheads. Furthermore, language implementers can config-
ure z-ray optimizations for various design goals. This combination
of performance and flexibility creates a better building block for
past and future array optimization.

Categories and Subject Descriptors D3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
Optimization; Run-time environments

General Terms Performance, Measurement, Experimentation

Keywords Heap, Compression, Arrays, Arraylets, Z-rays

1. Introduction
Konrad Zuse invented arrays in 1946; Fortran first implemented ar-
rays; and every modern language includes arrays. Traditional im-
plementations use contiguous storage, which often wastes space
and leads to unpredictable performance. For example, large arrays
cause fragmentation, which can trigger premature out-of-memory
errors and make it impossible for real-time collectors to offer prov-
able time and space bounds. Over-provisioning and redundancy

∗ This work is supported by ARC DP0666059, NSF SHF0910818, NSF
CSR0917191, NSF CCF0811524, NSF CNS0719966, Intel, and Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

in arrays wastes space. Prior work shows that just eliminating
zero bytes from arrays reduces program footprints by 41% in Java
benchmarks [27]. In managed languages, garbage collection uses
copying to coalesce free space and reduce fragmentation. Copying
and scanning arrays incur large unpredictable collector pause times,
and make it impossible to guarantee real-time deadlines.

Managed languages, such as Java and C#, give programmers
a high-level contiguous array abstraction that hides implementa-
tion details and offers virtual machines (VMs) an opportunity to
ameliorate the above problems. To meet space efficiency and time
predictability, researchers proposed discontiguous arrays, which di-
vide arrays into indexed chunks [5, 12, 28]. Siebert’s design orga-
nizes array memory in trees to reduce fragmentation, but requires
an expensive tree traversal for every array access [28]. Bacon et al.
and Pizlo et al. use a single level of indirection to fixed-size ar-
raylets [5, 25]. Chen et al. contemporaneously invented arraylets
to aggressively compress arrays during collection and decompress
on demand for memory-constrained embedded systems [12]. They
use lazy allocation to materialize arraylets upon the first non-zero
store. All prior work introduces substantial overheads. Regardless,
three production Java Virtual Machines (JVMs) already use discon-
tiguous arrays to achieve real-time bounds: IBM WebSphere Real
Time [5, 19], AICAS Jamaica VM [1, 28], and Fiji VM [14, 25].
Thus, although discontiguous arrays are needed for their flexibil-
ity, which achieves space and time predictability, so far they have
sacrificed throughput and time efficiency.

This paper presents z-rays, a discontiguous array design and
JVM implementation that combines flexibility, memory efficiency,
and performance. Z-rays store indirection pointers to arraylets in
a spine. Z-rays optimizations include: a novel first-N optimization,
lazy allocation, zero compression, fast array copy, and copy-on-
write. Our novel first-N optimization inlines the first N bytes of the
array into the spine, for direct access. First-N eliminates the major-
ity of pointer indirections because many arrays are small and most
array accesses, even to large arrays, fall within the first 4KB. These
properties are similar to file access properties exploited by Unix
indexed files, which inline small files and the beginning of large
files in i-nodes [26]. First-N is our most effective optimization. Be-
sides making indirections rare, it makes other optimizations more
effective. For example, with lazy allocation, the allocator lazily cre-
ates arraylet upon the first non-zero write. This additional indirec-
tion logic degrades performance in prior work, but improves per-
formance when used together with first-N.

The collector performs zero-compression at the granularity of
arraylets by eliminating arraylets that are entirely zero. When the
program copies arrays, our fast array copy implementation copies
contiguous chunks of memory, instead of copying element-by-
element. Our copy-on-write optimization always initially shares
whole arraylets that are copied and only copies later if and when
the program subsequently writes to a copied arraylet. To our knowl-
edge, this study is the first to implement array copy-on-write, show
that it is does not significantly hurt performance, and show that it
saves significant amounts of space. This study is also the first to rig-
orously evaluate and report Java array properties and their impact

1

on discontiguous array optimization choices. Our experimental re-
sults on 19 SPEC and DaCapo Java benchmarks show that our best
z-ray configuration adds an average of 12.7% overhead, including a
reduction in garbage collection cost of 11.3% due to reduced space
consumption. In contrast, we show that previously proposed de-
signs have overheads two to three times higher than z-rays.

Z-rays are thus immediately applicable to discontiguous arrays
in embedded and real-time systems, since they improve flexibility,
space efficiency, and add time efficiency. Since the largest object
size determines heap fragmentation and pause times, and first-N
increases it by N, some system-specific tuning may be necessary
to achieve particular space and time design goals. We believe z-
rays may also help to ameliorate challenges in general-purpose
multicore hardware trends. For example, multicore hardware is
becoming more memory-bandwidth limited because the number
of processors is growing much faster than memory size. Lazy
allocation and copy-on-write eliminate unnecessary, voluminous,
and bursty write traffic that would otherwise slow the entire system
down. Z-rays not only make discontiguous arrays more appealing
for real-time virtual machines, but also make them feasible for
general-purpose systems.

Our results demonstrate that z-rays achieve both performance
and flexibility, making them an attractive building block for lan-
guage implementation on current and future architectures.

2. Related Work
This section surveys work on implementations of discontiguous
arrays, describes work on optimizing read and write barriers, and
establishes how array representations relate to space consumption.

Implementing discontiguous arrays. Siebert’s tree representa-
tion for arrays limits fragmentation in a non-moving garbage col-
lector for a real-time virtual machine [1, 28]. Both Siebert’s and
our work break arrays into parts, but Siebert requires a loop for
each array access, whereas we require at most one indirection.

Discontiguous arrays provide a foundation for achieving real-
time guarantees in the Metronome garbage collector [4, 5]. Metro-
nome uses a two-level layout, where a spine contains indirection
pointers to fixed-size arraylets and inlined remainder elements.
The authors state that Metronome arraylets are “not yet highly
optimized” [5]. Metronome is used in IBM’s WebSphere Real Time
product [19] to quantize the garbage collector’s work to meet real-
time deadlines. Our performance optimizations are immediately
and directly applicable to their system. Similar to the Metronome
collector, Fiji VM [14, 25] also uses arraylets to meet real-time
system demands, but the arraylet implementation is not currently
optimized for throughput [24].

The use of discontiguous arrays in many production Java virtual
machines establishes that arraylets are required in real-time Java
systems to bound pause-times and fragmentation [1, 14, 19]. Appli-
cations that use these JVMs include control systems and high fre-
quency stock trading. To provide real-time guarantees, these VMs
sacrifice throughput. Z-rays provide the same benefits, but greatly
reduce the sacrifice.

Chen et al. use discontiguous arrays for compression in em-
bedded systems, independently developing a spine-with-arraylets
design [12]. If the system exhausts memory, their collector com-
presses arraylets into non-uniform sizes by eliding zero bytes and
storing a separate bit-map to indicate the elided bytes. They also
perform lazy allocation of arraylets. In contrast to our work, their
implementation does not support multi-threading, and is not opti-
mized for efficiency. They require object handles, which introduce
space overhead as well as time overhead due to the indirection on
every object access.

Read and write barriers. A key element of our design is efficient
read and write barriers. Read and write barriers are actions per-
formed upon every load or store. Hosking et al. were the first to em-
pirically compare the performance of write barriers [18]. Optimiza-
tions and hardware features such as instruction level parallelism
and out-of-order processors have reduced barrier overheads over
the years [7, 8, 15]. If needed, special hardware can further reduce
their overheads [13, 17]. We borrow Blackburn and McKinley’s
fast path barrier inlining optimization and Blackburn and Hosking’s
evaluation methodology. Section 5.1 discusses the potential added
performance benefit of compiler optimizations such as strip-mining
in barriers. In summary, we exploit recent progress in barrier opti-
mization to make z-rays efficient.

Heap object compression. High-level languages abstract mem-
ory management and object layout to improve programmer produc-
tivity, usability, and security, but abstraction usually costs. Mitchell
and Sevitsky study bloat, spurious memory consumption caused by
careless programming [22]. A shocking fraction of the Java heap is
bloat, motivating the need for space savings. Sartor et al.’s limit
study of Java estimates the effect of compression, and finds that ar-
ray compression is likely to yield the most benefit [27]. Ananian
and Rinard propose using offline profiling and an ahead-of-time
compiler to perform compression techniques such as bit-width re-
duction [3]. Zilles reduces the bit-width of unicode character arrays
from 16 bits to 8 bits [31]. Chen et al. compress arraylets [12]. All
these techniques trade time for space, incurring time overheads to
reduce space consumption in embedded systems. This paper pri-
marily studies ways to improve discontiguous array performance
and is complementary to using them for compression. Z-rays of-
fer a much better building block for compression and future array
optimization needs.

3. Background
This section briefly discusses our implementation context for dis-
contiguous arrays in Java. We implement z-rays in Jikes RVM [2], a
high performance Java-in-Java virtual machine, but our use of Jikes
RVM is not integral to our approach.

Java Arrays. All arrays in Java are one-dimensional; multi-
dimensional arrays are implemented as arrays of references to ar-
rays. Hence, Java explicitly exposes its discontiguous implementa-
tion of array dimensions greater than one. Accesses to these arrays
require an indirection for each dimension greater than one, whereas
languages like C and Fortran compute array offsets from bounds
and index expressions, without indirection. Java directly supports
nine array types: arrays of each of Java’s eight primitive types
(boolean, byte, float, etc.), and arrays of references. Java en-
forces array bounds with bounds checks, and enforces co-variance
on reference arrays by cast checks on stores to reference arrays.
The programmer cannot directly access the underlying implemen-
tation of an array because (1) Java does not have pointers (unlike
C), and (2) native code accesses to Java must use the Java Native
Interface (JNI). These factors combine to make discontiguous array
representations feasible in managed languages such as Java.

Allocation. Java memory managers conventionally use either a
bump-pointer allocator or a free list, and may copy objects dur-
ing garbage collection. The contents of objects are zero-initialized.
Because copying large objects is expensive and typically size and
lifetime are correlated, large objects are usually allocated into a dis-
tinct non-moving space that is managed at the page granularity us-
ing operating system support. One of the primary motivations for
discontiguous arrays in prior work is that they reduce fragmenta-
tion, since large arrays are implemented in terms of discontiguous
fixed-size chunks of storage. The base version of Jikes RVM we

2

use has a single non-moving large-object space for objects 8KB
and larger.

Garbage Collection. The garbage collector must be aware of the
underlying structure of arrays when it scans pointers to find live ob-
jects, possibly copies arrays, and frees memory. Discontiguous ar-
rays in general and z-rays in particular are independent of any spe-
cific garbage collection algorithm. We chose to evaluate our imple-
mentation in the context of a generational garbage collector, which
is used by most production JVMs. A generational garbage collec-
tor leverages the weak generational hypothesis that most objects die
young [21, 30]. It allocates objects into a nursery. When the nursery
fills up, the collector copies surviving objects into a mature space,
but most objects do not survive. To avoid scanning the mature space
for a nursery collection, a generational write barrier records point-
ers from the mature space to the nursery space and the collector
treats these pointers as roots [21, 30]. Once frequent nursery col-
lections fill the mature space, a full heap collection scavenges the
entire heap.

Read and Write Barriers. Java has barriers for bounds checks
on every array read and write (shown in Figure 3(a)), cast checks
on every reference array write, and the generational write barrier
described above. Java optimizing compilers eliminate provably re-
dundant checks [11, 20]. Jikes RVM implements a rich set of read
and write barriers on arrays of references. Z-rays require additional
barriers for arrays of primitives, which presented a significant en-
gineering challenge (See Section 5.3).

4. Z-rays: Efficient Discontiguous Arrays
This section first describes a basic discontiguous array design with
a spine and arraylets. The basic design heavily uses indirection and
performs poorly, but it does address fragmentation, responsiveness,
and space efficiency [4, 12]. Next, this section presents the z-ray
memory management strategy and the five z-ray optimizations.

4.1 Basic Arraylets
Similar to previous work, we divide each array into exactly one
spine and zero or more fixed-size arraylets, as shown in Figure 1(a).
The spine has three parts. (1) It encapsulates the object’s identity
through its header, including the array’s type, the length, its collec-
tor state, lock, and dispatch table. (2) It includes indirection point-
ers to arraylets which store actual elements of the array. (3) It may
include inlined data elements. Spines are variable-sized, depending
on the number of arraylet indirection pointers and the number of
inlined data elements. Arraylets themselves have no header, con-
tain only data elements, and are fixed-sized. Because arrays may
not fit into an exact number of arraylets, there may, in general, be a
remainder. Similar to Metronome [4], we inline the remainder into
the spine directly after indirection pointers (see Figure 1(a)), which
avoids managing variable-sized arraylets or wasting any arraylet
space. We include an indirection pointer to the remainder in the
spine, which ensures elements are uniformly accessed via one level
of indirection, as in Metronome. We found that the remainder indi-
rection is cheaper than adding special case code to the barrier. For
an array access in this design, the compiler generates a load of the
appropriate indirection pointer from the spine based on the arraylet
size, and then loads the array element at the proper arraylet offset
(or the remainder offset), as shown in lines 5-10 of Figure 3(b). The
arraylet size is a global constant, and we explore different values in
Section 7.

4.2 Memory Management of Z-rays
Because all arraylets have the same size, we manage them with a
special-purpose memory manager that is simple and efficient. Fig-
ure 1(b) shows the arraylet space. The arraylet space uses a non-
copying collector with fixed-sized blocks equal to the arraylet size.

Array spine

Regular Heap

Header

Indirection
Pointers

 Remainder
 Elements

Arraylet

Arraylet

Arraylet

Arraylet

Arraylet

(a) Basic Discontiguous Arrays

…

Array spine

Arraylet Space Regular Heap

Header

First-N
Elements

Indirection
Pointers

 Remainder
 Elements

Zero
Arraylet

Arraylet

Arraylet

Arraylet

Arraylet

…

(b) Z-rays

Figure 1. Discontiguous reference arrays divided into a spine
pointing to arraylets for prior work and optimized Z-rays.

The liveness of each arraylet is strictly determined by its parent
spine. The collector requires one liveness bit per arraylet that we
maintain in a side data structure. The arraylet allocator simply in-
spects liveness bits to find free blocks as needed. The arraylets as-
sociated with a given z-ray may be distributeed across the arraylet
space and interleaved with those from other z-rays according to
where space is available at the time each arraylet is allocated. When
the arraylet size is an integer multiple of the page size, OS virtual
memory policies avoid fragmentation of physical memory. For ar-
raylet sizes less than the page size, the live arraylets may fragment
physical memory if they sparsely occupy pages. In principle the ar-
raylet space can easily be defragmented since all arraylets are the
same size (see Metronome’s size-class defragmentation [4]), but
we did not implemented this optimization.

Z-rays help us side-step a standard problem faced when manag-
ing large objects within a copying garbage collector. While on the
one hand it is preferable to avoid copying large objects, on the other
hand it is convenient to define age in terms of object location. His-
torically, generational copying collectors either: (a) allocate large
objects into the nursery and live with the overhead of copying them
if they happen to be long-lived, (b) pretenure all large objects into a

3

0!

10!

20!

30!

40!

50!

60!

70!

80!

90!

100!

2! 6! 10! 14! 18!

C
u

m
u

la
ti

v
e

 A
c

c
e

s
s

e
s

 (
%

)!

Access Position (log2 bytes)!

bloat!

hsqldb!

pjbb2005!

chart!

antlr!

pmd!

Figure 2. Cumulative distribution of array access positions, faint
lines show 12 representative benchmarks (of 19) and solid line is
overall average.

non-moving space and live with the memory overhead of untimely
reclamation if they happen to be short-lived, or (c) separate the
header and the payload of large arrays, via an indirection on ev-
ery access, and use the header to reflect the array’s age [18]. Jikes
RVM currently adopts the first policy, and in the past has adopted
the second. We adopt a modified version of the third approach for
z-rays, avoiding untimely reclamation and expensive copying. We
allocate spines into the nursery and arraylets into their own non-
moving space. Nursery collections trace and promote spines to the
old space if they survive, just like any other object. If a spine dies,
its corresponding arraylets’ liveness bits are cleared and the ar-
raylets are immediately available for reuse. This approach limits
the memory cost of short-lived and sparsely-populated arrays.

4.3 First-N Optimization
The basic arraylet design above does not perform well. While try-
ing to optimize arraylets, we speculated that array access patterns
may tend to be biased toward low indices and that this bias may
provide an opportunity for optimization.

We instrumented Jikes RVM to gather array size and access
characteristics. Figure 2 shows the cumulative distribution plots for
all array accesses for 12 (DaCapo and pjbb2005) benchmarks (faint)
and the geometric mean (dark). We plot 12 of 19 benchmarks to
improve readability; the remaining 7 have the same trend. Each
curve shows the cumulative percentage of accesses as a function
of access position, expressed in bytes (since types have different
sizes). These statistics show that the majority of array accesses are
to low access positions. Not surprisingly, Java programs tend to use
many small arrays, in part because Java represents strings, which
are common, and multi-dimensional arrays as nested 1-D arrays.
Even for large arrays, many accesses bias towards the beginning
due to common patterns such as search, lexicographic comparison,
over-provisioning arrays, and using arrays to implement priority
queues. Nearly 90% of all array accesses occur at access positions
less than 212 bytes (4KB). These results motivate an optimization
that provides fast access to the leading elements in the array.

To eliminate the indirection overhead on leading elements, the
first-N optimization for z-rays inlines the first N bytes of each array
into the spine, as shown in Figure 1(b). By placing the first N
bytes immediately after the header, the program directly accesses
the first E = N

elementSize elements as if the array were a regular
contiguous array. We modify the compiler to generate conditional
access barrier code that performs a single indexed load instruction
for the first E elements and an indirection for the later elements
(lines 7 and 9 respectively of Figure 3(c)). Arrays with fewer
than E elements are not arrayletized at all. Compared to the basic

discontiguous design, using a 4KB first-N saves an indirection on
90% of all array accesses. N is a global compile time constant, and
Section 7 explores varying N. The first-N optimization significantly
reduces z-ray overhead on every benchmark. With N = 212, this
optimization reduces the average total overhead by almost half,
from 26.3% to 14.5%.

4.4 Lazy Allocation
A key motivation for discontiguous arrays is that they offer con-
siderable flexibility over contiguous representations. Others ex-
ploit this flexibility to perform space optimizations. For example,
Chen et al. observe that arrays are sometimes over-provisioned and
sparsely populated, so they perform lazy allocation and zero-byte
compression [12]. We borrow and modify these ideas.

Because accesses to arraylets go through a level of indirection,
it is relatively straightforward to allocate an arraylet lazily, upon
the first attempt to write it. Unused portions of an over-provisioned
or sparsely populated array need never be backed with arraylets,
saving space and time. A more aggressive optimization is possible
in a language like Java that specifies that all objects are zero-
initialized. We create a single immutable global zero arraylet, and
all arraylet pointers initially point to the zero arraylet. Any non-
zero arraylets are only instantiated after the first non-zero write
to their index range. The zero arraylet is depicted in Figure 1(b).
Lazy allocation introduces a potential race condition when multiple
threads compete to instantiate an arraylet. Whereas Chen et al. do
not describe a thread-safe implementation [12], we implement lazy
allocation atomically to ensure safety. Section 7.1.3 shows that lazy
allocation greatly improves space efficiency for some benchmarks,
thereby reducing collector time and improving performance.

4.5 Zero Compression
Chen et al. perform aggressive compression of arraylets at the
byte granularity, focusing only on space efficiency [12]. Their
collection-time compression and application-time decompression
on demand add considerable overhead, and make arraylets variable-
sized. We employ a simpler approach to zero compression for z-
rays. When the garbage collector scans an arraylet, if it is entirely
zero, the collector frees it and redirects the referent indirection
pointer to the zero arraylet. As with lazy allocation, any subse-
quent writes cause the allocator to instantiate a new arraylet.

Whereas standard collectors already scan reference arrays, zero-
compression additionally needs to scan primitive arrays. Scanning
for all zeros, however, is cheap, because it has good spatial locality
and because the code sequence for scanning power-of-two aligned
data is simple and quickly short-circuited when it hits the first
non-zero byte. Our results show that the extra time the collector
spends scanning primitives is compensated for by the reduction
in the live memory footprint. Section 7.1.3 shows that this space
saving optimization improves overall garbage collection time and
thus total time.

4.6 Fast Array Copy
The Java language includes an explicit arraycopy API to sup-
port efficient copying of arrays. The API is general: programs may
copy subarrays at arbitrary source and target offsets. When arrays
or copy ranges are non-overlapping, as is common, the standard
implementation of arraycopy uses fast, low-level byte copy in-
structions. In other cases, correctness requires that the copy be
performed with simple element-by-element assignments. Further-
more, arraycopy must notify the garbage collector when refer-
ence arrays are copied since the copy may generate new inter-space
pointers (such as old-to-young) that the garbage collector must be
aware of.

Discontiguous arrays complicate the optimization of arraycopy
because copying must respect arraylet boundaries. In practice, fast

4

contiguous copying is limited by the alignment of the source and
destination indices, the arraylet size, and the first-N size. Our de-
fault arraycopy implementation performs simple element-by-
element assignments using the general form of the arraylet read
and write barriers. We also implement a fast arraycopy which
strip-mines for both the first-N (direct access) and for each over-
lapping portion of source and target arraylets, hoisting the barriers
out of the loop and performing bulk copies wherever possible.
Since arraycopy is widely used in Java applications, optimizing
for z-rays is crucial to attaining high performance, as we show in
Section 7.1.3.

4.7 Copy-on-Write
Z-rays introduce a copy-on-write (COW) optimization for arrays.
In the special case during an arraycopy where the range of both
the source and the destination are aligned to arraylet boundaries,
we elide the copy and share the arraylet by setting both indirection
pointers to the source arraylet’s address. Figure 1(b) shows the
topmost arraylet being shared by three arrays. To indicate sharing,
we taint all shared indirection pointers by setting their lowest bit
to 1. When the mutator or collector reads an array element beyond
N, they mask out the lowest bit of the indirection pointer. If a write
accesses a shared arraylet, our barrier lazily allocates a copy and
atomically installs the new pointer in the spine before modifying
the arraylet. COW is a generalization of lazy allocation and zero
compression techniques to non-zero arraylets. We find that COW
reduces performance slightly, but improves space usage.

5. Implementation
We now describe key details of our efficient z-ray implementation.

5.1 Run-time Modifications
Z-rays affect three key aspects of a runtime implementation: allo-
cation, garbage collection, and array loads and stores. Static config-
uration parameters turn on and off our five optimizations, and set
the size of arraylets and first N bytes.

Array Allocation. For z-rays, we modify the standard allocation
sequence. If the array size is less than the first-N size, then the allo-
cation sequence allocates a regular contiguous array. Otherwise, the
allocator establishes the size of the spine and number of arraylets
based on array length, arraylet size, and the first-N size. It allocates
the spine into the nursery and initializes the indirection pointers to
the zero arraylet. The allocator points the last indirection pointer
to the first remainder element within the spine. The spine header
records the length of the entire array, not the length of the spine,
thus array bounds checks proceed unchanged.

Garbage Collection. We organize the heap into a copying nurs-
ery, an arraylet space, and a standard free-list mature space for
all other objects [9]. Spines initially reside in the copying nursery
space. A nursery collection reclaims or promotes spines just like
any other object, copying surviving spines to the mature space. The
only special action for the spine is to update the indirection pointer
to the remainder such that it correctly reflects its new memory lo-
cation (recall that the remainder resides within the spine). The scan
of z-rays traces through the indirection pointers, ignoring pointers
to the zero arraylet. The collector performs zero compression, as
discussed in Section 4.5. For each non-zero arraylet, the collector
marks the liveness bit. During lazy allocation, we mark the liveness
bit of arraylets whose spines are mature so that they will not be
collected during the next nursery collection. Full heap collections
clear all arraylet mark bits before tracing. Our arraylet space man-
ager avoids an explicit free list and instead lazily sweeps through
the arraylet mark bits at allocation time, reusing unmarked arraylets
on demand.

1 void arrayStore(Address array, int index, int value) {
2 int len = array.length;
3 if (index >= len)
4 throw new ArrayBoundsException();
5 int offset = len * BYTES_IN_INT;
6 array.store(offset, value);
7 }

(a) Array store (contiguous array).

1 void arrayStore(Address array, int index, int value) {
2 int len = array.length;
3 if (index >= len)
4 throw new ArrayBoundsException();
5 int offset = len * BYTES_IN_INT;
6 int arrayletNum = index / INTS_IN_ARRAYLET;
7 int spineOffset = arrayletNum * BYTES_IN_ADDRESS;
8 Address arraylet = array.loadAddress(spineOffset);
9 offset = offset % ARRAYLET_BYTES;

10 arraylet.store(offset, value);
11 }

(b) Array store (conventional arraylet).

1 void arrayStore(Address array, int index, int value) {
2 int len = array.length;
3 if (index >= len)
4 throw new ArrayBoundsException();
5 int offset = len * BYTES_IN_INT;
6 if (offset < FIRST_N_BYTES)
7 array.store(offset, value);
8 else
9 arrayletStore(array, offset, value);

10 }
(c) Array store fast path (z-rays)

1 @NoInline // force this code out of line
2 void arrayletStore(Address spine,int offset,int value){
3 int arrayletNum =
4 (offset - FIRST_N_BYTES) / BYTES_IN_ARRAYLET;
5 int spineOffset =
6 FIRST_N_BYTES + arrayletNum * BYTES_IN_ADDRESS;
7 Address arraylet = spine.loadAddress(spineOffset);
8 if (arraylet & SHARING_TAINT_BIT != 0)
9 ... // atomic copy on write

10 else if (arraylet == ZERO_ARRAYLET)
11 if (value == 0)
12 return; // nothing to do
13 else
14 ... // lazy allocation and atomic update
15 offset = (offset - FIRST_N_BYTES) % BYTES_IN_ARRAYLET;
16 arraylet.store(offset, value);
17 }

(d) Array store slow path (z-rays)

Figure 3. Storing a value to a Java int array.

Read and Write Barriers. We modify the implementation of ar-
ray loads and stores to perform an indirection to an arraylet and
remainder when necessary. With the first-N optimization, accesses
to byte positions less than or equal to N proceed unmodified, using
a standard indexed load or store (line 7 of Figure 3(c)). Otherwise,
basic arithmetic (shown in lines 5–9 of Figure 3(b)) identifies the
relevant indirection pointer and offset within the arraylet. Lazy al-
location and zero compression do not affect reads, except that the
read barrier returns zero instead of loading from the zero arraylet.
Copy-on-write requires read barriers that traverse indirection point-
ers to mask out the lowest bit in case the pointer is tainted. If the
write barrier finds an arraylet indirection pointer tainted by COW,
it lazily allocates an arraylet, copies the original, and atomically
installs the indirection pointer in the spine. If the write barrier in-
tercepts a non-zero write to the zero arraylet, it lazily allocates an
arraylet filled with zeros and installs the indirection pointer atomi-
cally. Both of these write barriers then proceed with the write. Fig-
ures 3(c) and 3(d) show pseudocode for the fast and slow paths
of a z-ray store with the first-N optimization, lazy allocation, zero
compression, and copy-on-write.

5

Adding complexity to barriers does increase the code size; we
found on average we added 20% extra code space to our bench-
marks for our z-rays implementation. To measure the extra code,
we did experiments using Jikes RVM’s compilation replay mech-
anism to avoid the problem of non-determinism from adaptive op-
timization. It generates a fixed deterministic optimization plan for
each benchmark via profiling [10].

With a generational collector, an object’s age is often defined by
the heap space in which it is currently located. To find mature-to-
nursery pointers, a typical generational write barrier tests the loca-
tion of the source reference against the location of the destination
object [7]. Since the source reference in our case could reside in the
arraylet space, which does not indicate age, our generational array
write barrier instead tests the location of the source spine, which
defines the arraylets’ age, against the destination object.

Further Barrier Optimization. Prior work notes that classic com-
piler optimizations have the potential to reduce the overhead of
discontiguous arrays [5]. Although they do not implement it, Ba-
con et al. advocated loop strip-mining, which hoists loop invari-
ant barrier code when arrays access elements sequentially. Instead
of performing n indirection loads for n sequential arraylet element
accesses, where n is the number of elements in an arraylet, this
optimization performs only one indirection load for n consecutive
accesses. Our fast array-copy performs this optimization, and it is
very effective for benchmarks that make heavy use of arraycopy
(see Section 7.1.3). Although we do not implement this optimiza-
tion more generally in the compiler, we performed a microbench-
mark study to determine its potential benefit. For a simple test ap-
plication sequentially iterating over a large array, a custom-coded
strip-mining implementation showed zero overhead and actually
ran slightly faster than the original system compared to the imple-
mentation without strip-mining, which demonstrated a 37% slow-
down on this microbenchmark. Strip-mining has the potential to re-
duce the overhead of discontiguous arrays further, particularly for
programs that perform a large percentage of array accesses beyond
the first-N threshold.

5.2 Jikes RVM-Specific Details
Our z-ray implementation has a few details specific to Jikes RVM.
Jikes RVM is a Java-in-Java VM, and as a consequence, the VM
itself is compiled ahead of time, and the resulting code and data
necessary for bootstrap are stored in a boot image. At startup, the
VM bootstraps itself by mapping the boot image into memory. The
process of allocating and initializing objects in the boot image is
entirely different from application allocation. Since there is no sep-
arate arraylet space at boot image building time, boot image ar-
raylets are part of the immortal Jikes RVM boot image. For sim-
plicity we allocate each z-ray by laying out the spine followed by
each of the arraylets (which must be eagerly allocated). Indirection
pointers are implemented just as for regular heap arraylets, so our
runtime code can be oblivious as to whether an arraylet resides in
the boot image or the regular heap.

5.3 Implementation Lessons
The abstraction of contiguous arrays provided by high-level lan-
guages enables the implementation of discontiguous arrays. Al-
though the language guarantees that user code will observe these
abstractions, unfortunately, under the hood, modern high perfor-
mance VMs routinely subvert them in three scenarios. (1) User-
provided native code accesses Java objects via the Java Native
Interface. (2) The VM accesses Java objects via its own high-
performance native interfaces, for example, for performance crit-
ical native VM operations such as IO. (3) The VM interacts with
internals of Java objects, for example, the VM may directly access
various metadata which is ostensibly pure Java. Note that none of

these issues are particular to Jikes RVM; they are issues for all
JVMs. Implementing discontiguous arrays is a substantial engi-
neering challenge because the implementer has to identify every
instance where the VM subverts the contiguous array abstraction
and then engineer an efficient alternative.

We found all explicit calls to native interfaces (scenarios 1 and
2). At each call, we marshal array data into and out of discontiguous
form. In general, marshaling incurs overhead but it is relatively
small because VMs already copy such data out of the regular Java
heap to prevent the garbage collector from moving it while native
code is accessing it. Another alternative is excluding certain arrays
from arrayletization entirely, and pinning them in the heap. We
chose to arrayletize all Java arrays.

A more insidious problem is when the VM subverts the array
abstraction by directly accessing metadata, such as compiled ma-
chine code, stacks, and dispatch tables (3). The problem arises be-
cause Jikes RVM accesses this metadata both as raw bytes of mem-
ory and as Java arrays. We establish an invariant that forbids the
implementation from alternating between raw bytes and Java arrays
on the same memory. Instead, all access to this metadata now use
a magic array type that is not arrayletizable [16]. We thus exploit
strong typing to statically enforce the differentiation of Java arrays
from low-level, non-arrayletized objects, and access each properly.

To debug our discontiguous array implementation, we imple-
mented a tool based on Valgrind [23] that performs fine-grained
memory protection, cooperating with the VM to find illegal array
accesses. Jikes RVM runs on top of Valgrind, which we modified
to protect memory at the byte-granularity. We use Valgrind to ‘pro-
tect’ each array and implement a thread-safe barrier that permits
reads and writes to protected arrays. Accesses to protected arrays
that do not go through the barrier cause an immediate segmentation
fault (instead of corrupting the heap and manifesting much later),
and generate an exception that we can use to track down offend-
ing array accesses. We plan to make this valuable debugging tool
available with our z-ray implementation.

6. Benchmarks and Methodology

Benchmarks. We use the DaCapo benchmark suite, version
2006-10-MR2 [10], the SPECjvm98 suite, and pjbb2005, which
is a variant of SPECjbb2005 [29] that holds the workload, in-
stead of time, constant. We configure pjbb2005 with 8 warehouses
and 10,000 transactions per warehouse. Of these 19 benchmarks,
pjbb2005, hsqldb, lusearch, xalan, and mtrt are multi-threaded.

Experimental Platforms. Our primary experimental machine is a
2.4GHz Core 2 Duo with 4MB of L2 cache and 2GB of memory.
To ensure our approach is applicable across architectures, we also
measure it on a 1.6GHz Intel Atom two-way SMT in-order proces-
sor with 512KB of L2 cache and 2GB of memory. The Intel Atom is
a cheap, low power in-order processor targeted at portable devices,
and so more closely approximates architectures found in embedded
processors. All machines run Ubuntu 8.10 with a 2.6.24 Linux ker-
nel. All experiments were conducted using two processors. We use
two hardware threads for the Atom.

JVM Configurations and Experimental Design. We made our
z-ray changes to the 3.0.1 release of the Jikes Research Virtual Ma-
chine. All results on z-rays are presented as a percentage overhead
over the vanilla Jikes RVM 3.0.1 that uses a contiguous array im-
plementation. We use the Jikes RVM’s default high-performance
configuration (‘production’), which uses adaptive optimizing com-
pilation and a generational mark-sweep garbage collector. To max-
imize performance, we use profiled Jikes RVM builds, where the
build system gathers a profile of only the VM (not the application)
and uses it to build a highly-optimized Jikes RVM boot image. We

6

Allocation Heap Accesses Array Copy
MB/ Array % Composition per write % read % byte %

Benchmark µsec all prim. MB % µsec fast slow fast slow µsec >N

antlr 72 83 80 12 52 157 9.3 7.6 73.5 9.6 52 23
bloat 77 65 60 18 51 264 1.0 0.4 97.8 0.8 52 0
chart 23 49 48 18 49 320 5.3 7.1 49.8 37.8 44 76

eclipse 57 75 55 38 57 373 4.6 1.4 89.4 4.7 30 25
fop 11 34 26 19 47 94 1.7 0.1 97.3 0.9 5 0

hsqldb 29 38 21 67 31 463 0.7 0.3 98.1 0.9 5 16
jython 125 77 66 24 51 584 1.2 0.3 98.0 0.6 132 3

luindex 32 40 36 12 52 186 28.6 0.2 70.7 0.5 21 0
lusearch 201 87 82 15 57 699 14.5 0.5 84.1 1.0 31 8

pmd 156 33 1 23 45 419 0.9 1.01 96.2 1.9 7 69
xalan 766 88 52 31 73 342 7.5 0.24 91.5 0.7 41 0

compress 24 100 100 4 57 191 12.9 22.5 25.3 39.3 0 0
db 4 64 9 11 56 48 0.8 8.9 65.8 24.4 15 99

jack 28 32 26 6 51 92 4.8 0.2 94.3 0.7 49 0
javac 22 49 42 12 41 106 7.3 0.4 90.9 1.4 6 4
jess 75 47 0 7 54 197 1.9 0.2 97.1 0.8 66 0

mpegaudio 0.2 15 6 3 52 669 14.3 0.1 85.5 0.1 35 0
mtrt 30 25 18 9 42 267 4.3 0.2 95.2 0.3 0 0

pjbb2005 70 63 42 193 64 1109 2.4 0.3 96.5 0.8 271 0

min 0.2 15 0 3 31 48 0.7 0.1 25.3 0.1 0 0
max 766 100 100 193 73 1109 28.6 22.5 98.1 39.3 271 99

mean 47 56 40 - 52 338 6.4 2.6 84.6 6.4 45 17

Table 1. Allocation, heap composition, and array access characteristics of each benchmark.

use a heap size of 2× the minimum required for each individual
benchmark as our default. This heap size reflects moderate heap
pressure, providing a reasonable garbage collector load on most
benchmarks. We also perform experiments with z-rays over a range
of heap sizes.

As recommended by Blackburn et al., we use the adaptive ex-
perimental compilation methodology [10]. Our z-ray implemen-
tation changes the barriers in the application code, and therefore
interacts with the adaptive optimizer. We run each benchmark 20
times to account for non-determinism introduced through adaptive
optimization, and in each of the 20 executions, we measure the
10th iteration to sufficiently warm up the JVM. We calculate and
plot 95% confidence intervals. Despite this methodology, some re-
sults remain noisy. For total time, only hsqldb is noisy. Garbage
collection time is chaotic because of varying allocation load un-
der the adaptive methodology, even without z-rays. Many of the
garbage collection results are therefore too noisy to be relied upon
for detailed analysis. We gray out noisy results in Table 3 and ex-
clude them from the reported minimums, maximums and geometric
means.

Benchmark Characterization. Table 1 characterizes the alloca-
tion, heap composition, array access, and array copy patterns for
each of the benchmarks. This table shows the intensity of array
operations for our benchmarks. Note that array accesses, and not
allocation, primarily determine discontiguous array performance.
The table shows allocation rate (total MB per µsec allocated), the
percent of allocation due to all arrays and to just primitive (non-
reference) arrays. On average, 56% of all allocation in these stan-
dard benchmarks is due to arrays, and 40% of all allocation is
primitive arrays, which motivates optimizing arrays. By contrast,
columns five and six measure heap composition by sampling the
heap every 1MB of allocation, then averaging over those samples.
For example, chart has 18MB live in the heap on average, of which
49% is arrays. Column 7 shows array access rate, measured in
accesses per µsec. For instance, compress is a simple benchmark
that iterates over arrays and might even be considered an array mi-
crobenchmark, but it has a much lower array access rate than many
of the more complex benchmarks, such as pjbb2005. In summary,

arrays constitute a large portion of the heap and are frequently ac-
cessed.

Columns 8 through 12 show the distribution of array read and
write accesses over the fast and slow paths of barriers (recall Fig-
ures 3(c) and 3(d)). Fast path accesses are to elements within first-
N, which we set to 212 bytes. These statistics show the potential
of first-N to reduce overhead. The vast majority of array accesses
(84.6% on average) are reads and only exercise the fast path. There
are a few outliers: chart, compress, and db exercise slow paths fre-
quently and luindex, lusearch, and compress have a large percent-
age of write accesses. Note that although lusearch, mpegaudio, and
pjbb2005 are the most array-intensive (699, 669, and 1,109 accesses
per µsec respectively), they rarely exercise the slow paths. Overall
91% of all accesses go through the fast path, thereby enabling the
first-N optimization to greatly reduce overhead by avoiding indi-
rection on each of those accesses. The last two columns measure
arraycopy(): (1) the number of bytes array copied per unit exe-
cution (measured in bytes copied per µsec), and (2) the percentage
of array bytes copied that correspond to array indices beyond first-
N. Some benchmarks use array copy intensively, including jython,
jess and pjbb2005, but they rarely copy past first-N. Other bench-
marks, such as chart copy a moderate amount and the majority of
bytes are beyond first-N.

7. Evaluation
This section explores the effect of z-rays with respect to time
efficiency and space consumption.

7.1 Efficiency
We first show that z-rays perform well in comparison to previously
described optimizations for discontiguous arrays. We break down
performance into key contributing factors. We tease apart the ex-
tent to which individual optimizations contribute to overall perfor-
mance, showing that first-N is the most effective optimization, and
that first-N improves the effect of other optimizations. We go into
detail about certain outlier results and describe performance mod-
els we create to explain them. We then show that z-ray performance
is robust to variation in key configuration parameters.

7

N
ai

ve

N
ai

ve
A

[1
2]

N
ai

ve
B

[4
]

Z-
ra

y

P
er

fZ
-r

ay

Arraylet Bytes 210 210 211 210 210

First-N 212 212

Lazy Alloc 4 4 4
Zero Compress 4 4

Array Copy 4 4
Copy-on-Write 4

Overhead

27.4%
31.9%

27.5%

14.5% 12.7%

Table 2. Overview of arraylet configurations and their overhead.

7.1.1 Z-ray Summary Performance Results
This section summarizes the performance overhead of z-rays and
compares to previously published optimizations. Table 2 shows the
optimizations and key parameters used in each of the five systems
we compare. The Naive configuration includes no optimizations and
a 210 byte arraylet size. The Naive A and Naive B configurations are
based on Naive, but reflect the configurations and optimizations de-
scribed by Chen et al. [12] and Bacon et al. [4] respectively. These
configurations are not a direct comparison to prior work, because,
for example, we do not implement the same compression scheme
as Chen et al. However, this comparison does allow us to directly
compare the efficacy of previously described optimizations for dis-
contiguous arrays within a single system. The Naive A configuration
adds lazy allocation [12] while Naive B raises the arraylet size [4].
The Z-ray configuration includes all optimizations. The Perf Z-ray
configuration is the best performing configuration, and differs from
the Z-ray configuration only by its omission of the copy-on-write
(COW) optimization.

Table 2 summarizes our results in terms of average time over-
heads relative to an unmodified Jikes RVM 3.0.1 system. These
numbers demonstrate that both Z-ray and Perf Z-ray comprehensively
outperform prior work. The configurations based on the optimiza-
tions used by Chen et al. [12] (Naive A) and Bacon et al. [4] (Naive B)
have average overheads of 32% and 27% respectively on the Core
2 Duo whereas Perf Z-ray reduces overhead to 12.7%. Notice that
Naive (27%) performs better than Naive A (Naive with lazy alloca-
tion), showing that lazy allocation by itself slows programs down.
Our Z-ray configuration, with all optimizations turned on including
COW, has an average overhead of 14.5%, slightly slower than our
best-performing system, Perf Z-ray at 12.7%.

Per-benchmark Configuration Comparison. Figure 4 compares
the performance of Z-ray and Perf Z-ray against previously published
optimizations for all benchmarks. Perf Z-ray outperforms prior work
(Naive A and Naive B) on every benchmark. The configurations
Naive A and Naive B at best have overheads of 7% and 10% respec-
tively, while Perf Z-ray at best improves performance by 5.5%. While
our system sees a worst case overhead of 57% on chart, Naive A
and Naive B slow down chart by 74% and 62%, and suffer worst
case slowdowns across all benchmarks of 107% and 76% respec-
tively. On jython, Naive A and Naive B suffer overheads of 88% and
76% respectively, which we reduce to just 5.7%. In general, Naive,
our system without any optimizations, matches the performance of
Naive B, although it uses a smaller arraylet size. In 17 of 19 bench-

Total Overhead (%) C2D Overhead Breakdown (%)
Benchmark C2D Atom Ref. Prim. Mutator GC

antlr 22.0 ±8.2 37.7±12.3 -3.2 14.4 17.9 98.2
bloat 15.9 ±2.0 28.7 ±8.6 4.3 11.4 14.2 73.9
chart 57.2 ±0.4 54.9 ±0.3 0.2 57.0 61.4 -6.9

eclipse 14.2 ±1.2 24.9 ±7.3 1.9 10.3 15.7 -28.1
fop 5.1 ±3.7 19.0 ±9.0 8.9 14.2 4.4 33.6

hsqldb 23.8±24.5 7.5 ±1.8 2.2 33.9 26.9 12.9
jython 5.7 ±1.1 12.6 ±3.2 2.6 2.8 5.0 60.9

lusearch 22.4 ±1.3 24.0 ±0.9 4.2 23.9 22.6 18.3
luindex 10.1 ±0.9 14.9 ±1.0 1.3 10.4 9.6 26.8

pmd 6.0 ±1.3 7.2 ±1.2 5.5 0.8 7.9 -19.4
xalan -5.5 ±1.3 11.1 ±2.7 -4.8 -0.7 2.0 -56.0

compress 20.2 ±0.3 51.2 ±0.4 0.4 20.3 21.9 -82.9
db 3.7 ±0.1 14.0 ±0.1 3.4 -0.4 3.8 -4.0

jack 5.9 ±1.6 7.6 ±1.1 0.3 4.7 6.6 -15.6
javac 8.0 ±0.6 11.5 ±1.2 2.2 5.9 8.3 4.2
jess 12.2 ±1.0 17.0 ±2.8 10.3 1.4 12.0 29.0

mpegaudio 31.4 ±0.4 44.1 ±0.6 2.3 14.4 31.2 358.0
mtrt 4.2 ±1.7 6.8 ±1.6 1.4 3.4 4.4 1.7

pjbb2005 3.4 ±0.5 5.1 ±2.5 -0.1 0.6 3.6 0.6

min -5.5 5.1 -4.8 -0.7 2.0 -56.0
max 57.2 54.9 10.3 57.0 61.4 4.2

geomean 12.7 20.2 2.2 10.1 13.3 -11.3

Table 3. Time overhead of Perf Z-ray compared to base system on
the Core 2 Duo and Atom (95% confidence intervals in small type).
Breakdown of overheads on Core 2 Duo for reference, primitive,
mutator, and garbage collector are shown at right. Noisy results are
in gray and are excluded from min, max, and geomean.

marks (excluding antlr and fop) the Z-ray configuration improves
over prior work optimizations, but as mentioned, on the whole, the
copy-on-write optimization does add overhead as compared with
Perf Z-ray. In summary, compared to previously published optimiza-
tions, Perf Z-ray improves every benchmark, some enormously, and
reduces the average total overhead by more than half.

7.1.2 Performance Breakdown and Architecture Variations
We now examine the z-ray overheads in more detail. We break
down contributions to the overhead from the collector, mutator,
reference arrays, and primitive arrays. We also assess sensitivity
to heap size variation and different micro-architectures.

Throughout the remainder of our performance evaluation, un-
less otherwise specified, our primary point of comparison is the
best-performing z-ray configuration, Perf Z-ray, which disables
copy-on-write. Table 3 shows total time overheads for the Perf Z-ray
configuration for the Core 2 Duo and Atom processors relative to an
unmodified Jikes RVM 3.0.1. The table includes 95% confidence
intervals in small type next to each total overhead percentage. The
confidence intervals are calculated using the student’s t-test, and
each reflects the interval for which there is a 95% probability that
the true ‘result’ (the mean performance of the system being mea-
sured) is within that interval. Noisy results, which are those with a
95% confidence interval greater than 20% of the mean performance
(±10%), are grayed out and excluded from geometric means. The
total overhead on the Core 2 Duo is 12.7% on average.

Many benchmarks have low overhead, with xalan as the best,
speeding up execution by 5.5% due to greatly reduced collection
time. Despite some high overheads, z-rays perform well on xalan,
db, mtrt, and pjbb2005. Because eclipse, xalan, and compress have
many arrays larger than first-N, lazy allocation is particularly ef-
fective at reducing space consumption which, in turn, improves
garbage collection time. The benchmarks antlr, chart, lusearch, com-
press, and mpegaudio use primitive arrays intensively which is the
main source of their overheads. Table 3 shows that benchmark over-

8

-20

 0

 20

 40

 60

 80

100

antlr
bloat

chart
eclipse

fop jython
lusearch

luindex
pmd

xalan
compress

db jack
javac

jess
mpegaudio

mtrt
pjbb2005

geomean

%
 O

ve
rh

ea
d

(v
. "

3.
0.

1"
) Naive (210)

Naive A (210 + Lazy)
Naive B (211)
Z-ray (210)
Perf Z-ray (No CoW)

Figure 4. Percentage overhead of Z-ray and Perf Z-ray configurations over a JVM with contiguous arrays, compared to previous optimizations.

-10

 0

 10

 20

 30

 40

antlr
bloat

chart
eclipse

fop jython
lusearch

luindex
pmd

xalan
compress

db jack javac
jess mpegaudio

mtrt
pjbb2005

geomean

%
 O

ve
rh

ea
d

(v
. "

Z-
ra

y
")

Z-ray - FirstN
Z-ray - Lazy
Z-ray - Zero
Z-ray - Fast AC
Z-ray - CoW (Perf)

71.2

Figure 5. Overhead taking away each optimization from our Z-ray configuration.

-10

 0

 10

 20

 30

 40

 50

 60

antlr
bloat

chart
eclipse

fop jython
lusearch

luindex
pmd

xalan
compress

db jack
javac

jess
mpegaudio

mtrt
pjbb2005

geomean

%
 O

ve
rh

ea
d

(v
. "

3.
0.

1"
) 28 Arraylets

Perf Z-ray (210)
212 Arraylets

Figure 6. Overhead of Perf Z-ray configuration, varying the number of arraylet bytes.

-10

 0

 10

 20

 30

 40

 50

 60

 70

antlr
bloat

chart
eclipse

fop jython
lusearch

luindex
pmd

xalan
compress

db jack
javac

jess
mpegaudio

mtrt
pjbb2005

geomean

%
 O

ve
rh

ea
d

(v
. "

3.
0.

1"
) FirstN 26

FirstN 29

Perf Z-ray (212)
FirstN 215

FirstN 218

Figure 7. Overhead of Perf Z-ray configuration, varying the number of inlined first N bytes.

head comes primarily from primitive (‘Prim.’) discontiguous ar-
rays, and we find in particular that byte and char arrays are the
main contributors to overhead (each adding on average over 3%),
because they are used extensively for I/O and file processing using
numerous large arrays. By contrast, when arraylets are selectively
applied only to reference arrays, both average and worst case over-
heads are reduced by about a factor of six to just 2.2% and 10.3%
respectively.

Mutator Performance. Following standard garbage collection
terminology, we use the terms mutator to refer to application activ-
ity, and collector to refer to garbage collection (GC) activity. The
‘Mutator’ column of Table 3 shows that most of the overhead of the
Perf Z-ray configuration is due to the mutator. Mutator performance

is directly affected through the allocation of discontiguous arrays
and the execution of array access barriers. We see that chart—which
according to our earlier analysis performs a large number of array
accesses beyond the inlined first N bytes—suffers a significant mu-
tator performance hit of 61.4%. On the other hand, xalan suffers
only 2% mutator overhead.

Collector Performance. Z-rays affect the collector performance
both directly, through the cost of processing spines and arraylets
during collection, and indirectly, by changing how often the VM
requires garbage collection due to changes in space efficiency. The
‘GC’ column of Table 3 shows that collector performance for our
Perf Z-ray configuration varies significantly. Note that garbage col-
lection exhibits chaotic performance characteristics because per-

9

turbations in the mutator can affect the volume of data allocated
and the timing of collections, inducing large fluctuations in collec-
tor performance [10]. Many of the garbage collection results are
consequently noisy. Among the more significant results, xalan im-
proves collection time by 56% and javac degrades by 4%. Across
those benchmarks reporting reliable garbage collection results, z-
rays showed an average reduction in collection time of 11.3%.

Heap Sizes. We evaluated z-rays against a range of heap sizes
to measure time-space trade-offs of garbage collection. We do not
show the graph here, but we find that z-ray overhead is robust
across heap sizes, tracking the performance of unmodified Jikes
RVM from very tight to large heaps. Because most program time
and overheads are in the mutator, and collector improvements are
modest, this result is not unexpected.

Architectural Sensitivity. To assess the architectural sensitivity
of our approach, we performed experiments on two very different
Intel x86 architectures (Core 2 Duo and Atom). On the Atom, the
Perf Z-ray overhead increases to 20.2% (from Core 2 Duo’s 12.7%).
In comparison, average overheads for previous designs, Naive A and
Naive B, on Atom increase to 39% and 33% respectively (not shown
in tabular form). The Atom is an in-order processor, so it is less able
to mask overheads with instruction level parallelism.

In summary, z-ray performance varies significantly across bench-
marks; overheads are overwhelmingly due to the mutator; primi-
tive array types account for almost all of the z-ray overhead; and
arraylet overheads are more exposed on an in-order processor.

7.1.3 Efficacy of Individual Optimizations
Figure 5 explores the effect of each of the optimizations. In this
graph, overheads are expressed with respect to Z-ray, our configu-
ration with all optimizations enabled. Arraylet size and the num-
ber of inlined first N bytes are held constant. We evaluate the ef-
fect of removing from Z-ray each of: the first-N optimization (Z-
ray−FirstN), lazy arraylet allocation (Z-ray−Lazy), zero compres-
sion (Z-ray−Zero), fast array copy (Z-ray−Fast AC), and copy-on-
write (Z-ray−COW≡ Perf Z-ray). A slowdown, or positive overhead,
in Figure 5 indicates the utility of a given optimization (without the
optimization, z-rays are slower).

Omitting first-N comes at the most significant performance cost
across the board, as expected, increasing the overhead by up to 71%
in the worst case and 10% on average. Inlining the first-N bytes is
key to reducing the overhead of discontiguous arrays and central to
our approach. For mpegaudio in particular, as well as luindex, luse-
arch, jython, and jess, the first-N optimization significantly reduces
the overhead of discontiguous arrays, particularly for primitive ar-
rays. Furthermore, because first-N moves arraylet accesses off the
critical path (Figures 3(c) and 3(d)), other optimizations (such as
lazy allocation) that add overhead to each arraylet access become
profitable. As already noted, lazy allocation adds an additional 4%
of overhead to a naive system on average (compare Naive A and
Naive in Figure 4). By contrast, lazy allocation adds no overhead to
z-rays, on average (see Z-ray−Lazy, Figure 5).

Omitting lazy allocation (Z-ray−Lazy) has slightly more of an
impact on efficiency than omitting zero compression (Z-ray−Zero),
but on average both achieve performance very similar to the Z-
ray configuration. Some benchmarks, in particular xalan, perform
significantly better when enabling these optimizations.

Omitting fast array copy degrades performance of z-rays by on
average 2.8%. Fast array copy significantly benefits chart, jython
and jess, all of which frequently copy arrays. Since our array copy
optimization strip-mines both the first-N test and the arraylet access
logic, benchmarks that perform a lot of array copies benefit even
when copying many small arrays. Improvements from strip-mining

the first-N test explain the substantial benefit to jython, which copies
a lot, though only 3% of copied bytes are beyond first-N (see
Table 1).

Figure 5 shows that copy-on-write adds a small amount of
overhead (on average 1.8%) due to extra checks in barriers for
tainted arraylet pointers. However, Section 7.2.1 shows that copy-
on-write is effective at reducing space in the heap.

In summary, first-N is by far the most important optimization
overall, and a fast array copy implementation is critical to a number
of benchmarks.

7.1.4 Understanding and Modeling Performance Overhead
We now discuss our use of microbenchmarks and a simple analyti-
cal model to further understand z-ray performance overheads.

Table 3 shows that a small number of benchmarks suffer sig-
nificant overheads, and Figure 4 shows that z-rays only improve
modestly over prior work on chart. Since most of our improvement
over previous designs comes from first-N, our difficulty in improv-
ing chart is unsurprising given the array access statistics seen in
Figure 2 and Table 1, which show that chart is an outlier, with 80%
of array accesses indexing beyond the first 212 bytes, and 45% of
array accesses taking the slow path. Figure 5 confirms that chart is
one of the only benchmarks that does not significantly benefit from
the first-N optimization.

To better understand the nature of this overhead, we construct a
simple analytical model using a set of microbenchmarks. We wrote
microbenchmarks to measure the performance of a tight loop of
array access operations under controlled circumstances, generating
results across the following dimensions:

• fast vs. slow-path access
• read vs. write
• array element type
• random vs. sequential access

By measuring performance for each microbenchmark in both the
Z-ray-modified and base VMs, we calculate an approximate over-
head in terms of milliseconds per million array operations for each
point in the cross product of the dimensions above. We then use
these overheads to model and estimate the overhead incurred by
Z-rays for each benchmark using access statistics (Table 1). We
found analyzing the machine code of each simple microbenchmark
more tenable than inspecting all benchmark machine code to ex-
plain results. For chart, the model estimates an overhead of between
51% and 100%, with sequential and random access patterns, re-
spectively, which explains our measured overhead of 57%. These
results confirm that it would be necessary to leverage additional
optimization techniques such as strip-mining to further reduce the
overhead of chart.

Table 3 shows that compress suffers an overhead of 20%, which
is in part because 99.9% of array bytes allocated are in arrays that
are larger than first-N. Similarly, we see in Table 1 that compress
has a high percentage of both reads and writes on the slow path,
which are to primitive arrays. Even so, Figure 4 shows that z-
rays outperform prior work on compress and Figure 5 shows that
it is lazy allocation and the first-N optimization that help z-ray
performance on compress. In Section 7.2.1 we show that compress
has significant space savings.

These experiments serve to validate our observed performance
overheads and suggest that strip-mining might be particularly ef-
fective in reducing our most significant overheads.

7.1.5 Sensitivity to Configuration Parameters
We now explore how performance is affected by varying our two
key configuration parameters: the number of first N bytes inlined
and the arraylet size.

10

% Total Heap Footprint
Alloc % Savings % Array- %

Benchmark Large Lazy Zero COW letizable Saved

antlr 55.4 26.0 17.6 10.5 6.4 3.4
bloat 1.2 17.2 16.1 32.2 4.7 1.6
chart 39.4 16.1 14.3 22.9 7.1 2.6

eclipse 37.9 30.7 15.6 11.4 6.9 2.9
fop 6.5 8.9 15.0 60.1 0.9 -1.7

hsqldb 10.0 0.7 4.2 100.0 5.0 0.9
jython 4.2 1.2 13.2 5.7 3.8 1.0

luindex 1.6 1.9 18.2 30.7 5.5 2.5
lusearch 1.0 0.1 7.2 16.8 10.8 0.0

pmd 70.9 24.1 4.9 48.6 10.6 4.0
xalan 64.5 75.6 1.4 7.1 27.0 25.0

compress 99.9 26.2 3.3 0.0 60.4 49.1
db 87.5 0.1 12.6 0.2 8.1 4.1

jack 1.5 78.3 23.4 0.0 9.4 6.2
javac 1.4 1.9 20.2 0.8 5.4 2.9
jess 0.0 20.7 22.3 0.0 8.1 5.0

mpegaudio 2.7 8.6 39.2 0.0 1.8 -1.3
mtrt 0.7 5.1 18.2 0.0 8.7 4.6

pjbb2005 0.3 39.7 3.5 0.0 1.4 0.6

min 0.0 78.3 39.2 0.0 0.9 -1.7
max 99.9 0.1 1.4 100.0 60.4 49.1

mean 25.6 20.1 14.2 18.2 10.1 5.9

Table 4. Effect of space saving optimizations.

Figure 7 shows the effect of altering the number of bytes inlined
with the first-N optimization across the range 26 to 218 with the ar-
raylet size held constant at 210 bytes. While extremely large values
of N (such as those greater than 212) deliver slightly better perfor-
mance on average, such high values for N may be unrealistic. In the
case of chart, setting first-N to 218 roughly halves the overhead. For
such large values of N, the system approaches a contiguous array
system since very few arrays are large enough to have an arrayle-
tized component, eroding any utility offered by arraylets, including
the ability to bound collection time and space. Setting N to 212 pro-
vides good performance, while also providing reasonable bounds.
It is worth noting that the smaller values for N still deliver config-
urations with reasonably low performance overheads, and may be
good choices for some system designs.

Figure 6 shows the effect of varying arraylet size from 28 to
212 bytes, with the number of inlined first N bytes constant at
212. We see that changing the arraylet size overall does not affect
performance much. However, in terms of space, initial tests show
that when the arraylet size is lowered from 210 to 28, our zero
compression, lazy allocation, and COW optimizations are more
effective, reducing the heap size further (see Section 7.2.1).

These results show that it is possible to significantly vary both
the number of inlined first N bytes and the arraylet size while main-
taining overheads at reasonable levels. While the values used in our
Z-ray configuration are a good choice in our setting, language im-
plementers should tune these parameters to satisfy their particular
design criteria.

7.2 Flexibility
Previous work has demonstrated the flexibility of discontiguous ar-
rays. While we primarily target improving the running-time perfor-
mance of a general-purpose system in our evaluation, we show here
how z-ray optimizations can improve space efficiency. We then dis-
cuss the impact of discontiguous arrays on heap fragmentation.

7.2.1 Space Efficiency
One motivation for discontiguous arrays is that they offer additional
flexibility that can be used to implement space saving optimizations
such as lazy allocation, zero compression, and arraylet copy-on-

write. Table 4 presents space savings statistics gathered using the
Z-ray configuration, showing the effect of each of the space saving
optimizations. While Chen et al. [12] explore byte-grained com-
pression, each of the optimizations we evaluate here operate at the
granularity of entire arraylets: 210 bytes.

The ‘% Alloc Large’ column in Table 4 shows the fraction
of allocated bytes that are due to large arrays (where large is >
212). The benchmarks with high overhead (antlr, chart, eclipse, and
compress), all have a high percentage of large arrays. For example,
99.9% of compress’s allocated bytes are due to large arrays.

The three ‘% Savings’ columns demonstrate the efficacy of
each of the individual space savings optimizations: lazy allocation,
zero compression, and arraylet copy-on-write. The ‘Lazy’ column
shows that on average, lazy allocation avoids allocating 20% of
the space consumed by large arrays, meaning that 20% of large ar-
ray bytes fall within arraylets to which the program never writes.
Lazy allocation saves memory in all benchmarks, and in many
cases yields substantial savings (75.6% in xalan). The ‘Zero‘ col-
umn gives the proportion of allocated arraylets that hold only zero
values, as measured by taking snapshots of the heap after every
1MB of allocation. These results demonstrate that, on average, zero
compression may reduce the volume of live arraylets in the heap by
14.2%. The ‘COW’ column shows that by sharing arraylets, copy-
on-write avoids actually copying 18.2% of those bytes beyond first-
N that are copied via arraycopy, and is extremely effective for
hsqldb. Copy-on-write offers a trade-off: it costs around 1–2% in
total performance but saves space.

The final two columns of Table 4 show the total reduction
in heap footprint, also measured by taking heap snapshots after
every 1MB of allocation. The ‘% Arrayletizable’ column shows
the percentage of the live heap consumed by arrayletizable bytes
(beyond first-N) when no space saving optimizations are employed,
which is on average 10.1%. The ‘% Saved’ shows the combined
effect of our three optimizations, and is expressed as a percentage
of total heap footprint. In two benchmarks, the optimized system
takes up slightly more heap space. However, xalan and compress
save 25% and 49% of the heap, respectively, due to compression
and sharing, which is 92% and 81% of arrayletized bytes. Results
for compress agree with prior work [3]: about 50% of compress’s
heap is zero. The rest of the benchmarks save space modestly.
Overall z-rays save about 6% of the heap, which as column 6
indicates, is about 60% of arrayletized bytes.

In summary, we find that each of our coarse-grained space sav-
ing optimizations yields savings, and that for some benchmarks
(notably xalan and compress), these savings are substantial. Com-
pression at a finer granularity could realize even more space sav-
ings.

7.2.2 Fragmentation
We now briefly discuss how discontiguous arrays and our z-ray
implementation affect fragmentation. Fragmentation is defined as
memory that will be wasted because it is not available for arbi-
trary allocation. Prior work notes that quantifying fragmentation is
‘problematic’ [4], because it is a function not only of live data at a
given point in time, but also of what memory can and will be used
next by the application. Because garbage collection is periodic,
there is only a precise measurement of live data and fragmentation
after a whole heap collection, whereas in languages with explicit
memory management, such as C, fragmentation can be measured
instantaneously on every allocation. Consequently, this section of-
fers a qualitative discussion of fragmentation.

Discontiguous arrays in general have benefits for fragmentation,
which are well understood in the literature. Fragmentation is in part
a function of the largest object size. With contiguous arrays, the
largest object is bounded by size of the largest array. With discon-

11

tiguous arrays it is bounded by the largest spine or arraylet. By re-
ducing the size of the largest object, discontiguous arrays increase
the likelihood of finding a chunk of memory large enough to satisfy
an allocation request, and hence the system is less likely to suffer
from fragmentation and premature out-of-memory errors. The lit-
erature also discusses fragmentation ramifications on generational
mark-sweep heaps which we use in our experiments [4, 6].

Our z-ray implementation’s arraylet space and first-N optimiza-
tion affect fragmentation differently than previous implementa-
tions.

Effect of arraylet space. All arraylets are fixed-size, thus, there
is no fragmentation within the arraylet space, because the allo-
cator can fill any open slot for any arraylet allocation request.
The arraylet space eliminates the need for the ‘large object space’
(discussed in Section 3 and 4.2), which is otherwise common in
garbage-collected systems. There might be external fragmentation
between different heap spaces, but our page manager prevents this
case by returning whole free pages to a global pool.

Effect of first-N optimization. The first-N optimization increases
the maximum object size compared to naive discontiguous arrays,
because the inlined first-N elements increase the spine size. We did
not observe any problems caused by the larger spine size, but if it
is a concern, the system can disable the optimization or reduce N.
Our set of optimizations offer flexibility, because the developer can
tune them to trade between overhead and fragmentation bounds.

To summarize, one of the primary motivations for discontiguous ar-
rays is that they can help control memory fragmentation by bound-
ing the largest unit of allocation. Z-rays include these benefits,
although the first-N optimization has the effect of increasing the
bound on the largest unit of allocation by N.

8. Conclusions
We introduce z-rays, a new time-efficient and flexible design of dis-
contiguous arrays. Z-rays use a spine with indirection pointers to
fixed-sized arraylets, and five tunable optimizations: a novel first-
N optimization, lazy allocation, zero compression, fast array copy,
and copy-on-write. This paper introduces inlining the first N bytes
of the array into the spine so that they can be directly accessed,
greatly contributing to efficient z-ray performance. We show that
fast array copy, lazy allocation, and zero compression each help
reduce discontiguous array overhead significantly. Our space sav-
ings optimizations, including the novel copy-on-write optimiza-
tion, reduce the heap size on average by 6%. The experimental re-
sults show that z-rays perform within 12.7% on average compared
with contiguous arrays on 19 Java benchmarks. Z-rays decrease the
overhead as compared to previous discontiguous designs by a fac-
tor of two to three. We perform a microbenchmark study that indi-
cates strip-mining and hoisting invariant indirection references out
of loops could reduce overhead further for sequentially accessed
arrays. Previous work uses arraylets to meet space and predictabil-
ity demands of real-time and embedded systems, but suffers high
overheads. Z-rays bridge this performance gap with an efficient,
configurable, and flexible array optimization framework.

References
[1] AICAS. Jamaica VM. http://www.aicas.com/.
[2] B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi, A. Coc-

chi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. Mer-
gen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd, S. Smith, V. C.
Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño virtual machine. IBM
Systems Journal, 39(1):211–238, 2000.

[3] C. S. Ananian and M. Rinard. Data size optimizations for Java programs. In
Languages, Compiler, and Tool Support for Embedded Systems (LCTES), pages
59–68, 2003.

[4] D. Bacon, P. Cheng, and V. T. Rajan. Controlling fragmentation and space
consumption in the Metronome, a real-time garbage collector for Java. In
Languages, Compiler, and Tool Support for Embedded Systems (LCTES), pages
81–92, 2003.

[5] D. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector with low
overhead and consistent utilization. In Principles of Programming Languages
(POPL), pages 285–298, 2003.

[6] E. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard: A scalable memory
allocator for multithreaded applications. In Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 117–128, 2000.

[7] S. M. Blackburn and A. L. Hosking. Barriers: Friend or foe? In International
Symposium on Memory Management (ISMM), pages 143–151, 2004.

[8] S. M. Blackburn and K. S. McKinley. In or out? Putting write barriers in their
place. In International Symposium on Memory Management (ISMM), pages 175–
184, 2002.

[9] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and Realities: The
Performance Impact of Garbage Collection. In Measurement and Modeling of
Computer Systems (SIGMETRICS), pages 25–36, 2004.

[10] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 169–190, 2006.

[11] R. Bodı́k, R. Gupta, and V. Sarkar. ABCD: eliminating array bounds checks on
demand. In Programming Language Design and Implementation (PLDI), pages
321–333, 2000.

[12] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske, and M. Wol-
czko. Heap compression for memory-constrained Java environments. In
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 282–301, 2003.

[13] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm. In Virtual
Execution Environments (VEE), pages 46–56, 2005.

[14] Fiji Systems LLC. Fiji VM. http://www.fiji-systems.com/.
[15] R. Fitzgerald and D. Tarditi. The case for profile-directed selection of garbage

collectors. In International Symposium on Memory Management (ISMM), pages
111–120, 2000.

[16] D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner, D. Grove, J. E. B. Moss,
and S. I. Salishev. Demystifying magic: High-level low-level programming. In
Virtual Execution Environments (VEE), pages 81–90, 2009.

[17] T. Harris, S. Tomic, A. Cristal, and O. Unsal. Dynamic filtering: Multi-purpose
architecture support for language runtime systems. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 39–52, 2010.

[18] A. L. Hosking, J. E. B. Moss, and D. Stefanovic. A comparative performance
evaluation of write barrier implementations. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 92–109, 1992.

[19] IBM. Websphere real time. http://www-01.ibm.com/software/web-
servers/realtime/.

[20] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma,
T. Onodera, H. Komatsu, and T. Nakatani. Design, implementation, and evalua-
tion of optimizations in a just-in-time compiler. In Java Grande, pages 119–128,
1999.

[21] H. Lieberman and C. E. Hewitt. A real time garbage collector based on the
lifetimes of objects. Communications of the ACM (CACM), 26(6):419–429,
1983.

[22] N. Mitchell and G. Sevitsky. The causes of bloat, the limits of health. In
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 245–260, 2007.

[23] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In Programming Language Design and Implementation
(PLDI), pages 89–100, 2007.

[24] F. Pizlo. Private communication, 2010.
[25] F. Pizlo, L. Ziarek, P. Maj, A. Hosking, E. Blanton, and J. Vitek. Schism:

Fragmentaton-tolerant real-time garbage collection. In Programming Language
Design and Implementation (PLDI), 2010.

[26] J. S. Quarterman, A. Silberschatz, and J. L. Peterson. 4.2BSD and 4.3BSD as
examples of the UNIX system. ACM Computing Surveys, 17(4):379–418, 1985.

[27] J. B. Sartor, M. Hirzel, and K. S. McKinley. No bit left behind: The limits of
heap data compression. In International Symposium on Memory Management
(ISMM), pages 111–120, 2008.

[28] F. Siebert. Eliminating external fragmentation in a non-moving garbage collector
for Java. In Compilers, Architectures, and Synthesis for Embedded Systems
(CASES), pages 9–17, 2000.

[29] SPEC corporation. SPECjbb2005 Java server benchmark, 2005. ftp://ftp.spec.-
org/jbb2005/.

[30] D. Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Software Engineering Symposium on Practical Soft-
ware Development Environments (SESPSDE), pages 157–167, 1984.

[31] C. Zilles. Accordion arrays: Selective compression of unicode arrays in Java. In
International Symposium on Memory Management (ISMM), pages 55–66, 2007.

12

