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Abstract
Emerging Non-Volatile Memory (NVM) technologies offer
high capacity and energy efficiency compared to DRAM, but
suffer from limited write endurance and longer latencies.
Prior work seeks the best of both technologies by combin-
ing DRAM and NVM in hybrid memories to attain low la-
tency, high capacity, energy efficiency, and durability. Coarse-
grained hardware and OS optimizations then spread writes
out (wear-leveling) and place highly mutated pages in DRAM
to extend NVM lifetimes. Unfortunately even with these
coarse-grained methods, popular Java applications exact im-
practical NVM lifetimes of 4 years or less.

This paper shows how to make hybrid memories practical,
without changing the programming model, by enhancing
garbage collection in managed language runtimes. We find
object write behaviors offer two opportunities: (1) 70% of
writes occur to newly allocated objects, and (2) 2% of objects
capture 81% of writes to mature objects. We introduce write-
rationing garbage collectors that exploit these fine-grained
behaviors. They extend NVM lifetimes by placing highly mu-
tated objects in DRAM and read-mostly objects in NVM. We
implement two such systems. (1) Kingsguard-nursery places
new allocation in DRAM and survivors in NVM, reducing
NVM writes by 5× versus NVM only with wear-leveling. (2)
Kingsguard-writers (KG-W) places nursery objects in DRAM
and survivors in a DRAM observer space. It monitors all ma-
ture object writes and moves unwritten mature objects from
DRAM to NVM. Because most mature objects are unwrit-
ten, KG-W exploits NVM capacity while increasing NVM
lifetimes by 11×. It reduces the energy-delay product by 32%
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over DRAM-only and 29% over NVM-only. This work opens
up new avenues for making hybrid memories practical.

CCSConcepts • Information systems→Phase change
memory; • Computer systems organization → Archi-
tectures; • Hardware → Non-volatile memory; • Soft-
ware and its engineering→ Garbage collection;
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1 Introduction
Increasing hardware core counts and working-set sizes of
applications places large demands on main memory capacity.
At the same time, DRAM scaling has slowed [32, 34], moti-
vating researchers to explore Non-Volatile Memory (NVM)
technologies [26, 27, 42]. Our work focuses on Phase Change
Memory (PCM) [24, 26, 27, 42], which offers five advantages:
byte-addressability, high density, scalability (capacity), low
standby power, and non-volatility, but four shortcomings:
high access latency, write latencies exceed read latencies,
high write energy, and low write endurance. Although im-
provements in PCM manufacturing technology are reducing
latency [21, 36], it comes at the expense of write energy
and endurance (lifetime). Endurance is the biggest challenge
because each write changes the material form [12] and has
thus far prevented NVM uptake.
Prototype PCM hardware has an endurance of 1 million

(M) to 100M writes [5, 26]. This wide range results from:
(1) the tradeoff between write speed and endurance, and (2)
the properties of PCM materials. Prior architecture, operat-
ing system (OS), and programming language optimizations
redirect and eliminate writes to improve lifetimes [11, 17,
26, 27, 42, 43, 50]. In particular, hybrid memories combine
DRAM and PCM technology, seeking the best of both ap-
proaches [26, 27, 42]: (1) DRAM hides the high access la-
tency of PCM by buffering frequently accessed pages, and (2)
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hardware and OS diffuse PCM writes with wear-leveling and
reduce writes with page migration [11, 26, 27, 29, 42, 43, 50].
Wear-leveling moves pages and lines in pages to distribute
writes uniformly. Page migration reactively places highly
mutated pages in DRAM and read-mostly pages in PCM.

An open question for NVM memory systems is if modern
applications can use NVM directly or if they require changes
to runtimes and their programming models. Figure 1 ex-
plores this question with measurements of PCM lifetimes
when executing Java applications. (Section 5 describes our
experimental methodology.) These lifetimes motivate hybrid
memories and some software support. The figure presents
average lifetimes of a 32 GB PCM-only system for three
different PCM endurance levels reported and used in prior
work [12, 26, 29, 38, 38, 39, 42]. A 32-core PCM-only system
with 32GB of main memory and an endurance of 30Mwrites
per cell would wear out in 4 years, even with line write-back
and wear-leveling [38, 39, 42]. Because lifetime is a linear
function of writes, increasing endurance to 100M per cell
would improve lifetime to 13 years. However, running the
Java application with the highest write rate would wear out
a 32 GB PCM memory in less than 5 years. With current
PCM endurance levels, a pure PCM memory system is thus
impractical. For a 32 GB PCM-only system to last 15 years
across a range of applications and endurance levels, write
rates need to reduce by at least an order of magnitude.
This paper shows that specializing the Java runtime sys-

tem results in a promising and practical approach for using
hybrid memories. Limiting changes to the runtime system,
rather than requiring changes to programming models and
applications, will ease adoption of hybrid memories.
We introduce the design and implementation of a new

class of write-rationing garbage collectors that reorganize ob-
jects to limit writes to PCM in hybrid main memories, while
still utilizing PCM capacity. We exploit the managed runtime
implementation for languages such as Java, C#, JavaScript,
and Python. Prior work either manages coarse-grained pages
or allocation sites in C++ programs [50, 55] or profiles alloca-
tion sites ahead-of-time in a Java managed runtime, optimiz-
ing performance, but not liftetime in hybrid memories [49].
In contrast, write-rationing collectors move and monitor
individual objects in managed runtimes.

A detailed analysis of write behaviors in Java applications
motivates our work. Figure 2 presents writes in an instru-
mented generational collector as a function of object age:
young (nursery) versus mature space objects. 26% to 99% of
writes occur to nursery objects, averaging 70%. The results
are consistent with prior measurements [44, 56] and exhibit
a wide range of behaviors. 2% of mature objects capture 81%
mature object writes. 94% of all writes fall in one of these
two categories. Our designs exploit the correlation between
writes and object demographics (age) and detect the small
fraction of mature objects that incurs most writes.
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Figure 1. PCM-only is impractical. 32 GB lasts only 4 years
on average with 30M writes per cell and hardware line wear-
leveling in simulation. The proposed KG-N and KG-W write-
rationing garbage collectors manage DRAM and PCM, ex-
tending PCM’s lifetime to practical levels.
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Figure 2. Nursery objects incur 70% of writes and mature
objects incur 30% on average. The top 10% of written mature
objects incur 93% of mature writes and the top 2% incur 81%.

We introduce two write-rationing collectors that guard
(i.e., Kingsguard) PCM fromwrites. They organize heapmem-
ory in DRAM and PCM virtual memory, directing the OS
explicitly. The Kingsguard-nursery (KG-N) collector allocates
new objects in a DRAM nursery, since they incur between
25% and 98% of writes, and then promotes all nursery sur-
vivors to a PCM mature space.

Kingsguard-writers (KG-W) adds fine-grained monitoring
and per-object placement of mature objects. It also uses a
DRAM nursery, but promotes nursery survivors to a DRAM
observer space. The Java Virtual Machine (JVM) tracks all
mature object writes with a write-barrier [14, 16, 46, 52].
Observer space collections copy objects with zero writes
from the observer space to the PCM mature space and copy
any written objects to the DRAM mature space, using past
writes to predict future writes. Kingsguard-writers promotes
most observer space survivors (90%) to PCM memory, thus
exploiting its capacity. When it detects written objects in
PCM, it moves them back to DRAM. KG-W also includes
optimizations for large objects.
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Because hybrid memory systems are not available, we
use cycle-level multicore simulation and hardware measure-
ments for evaluation.We find KG-N and KG-W improve PCM
lifetime by 5× and 11×, respectively on our simulated Java ap-
plications. KG-W needs 16 MB of DRAM to achieve these life-
times. We compare to state-of-the-art OS write partitioning
(WP) [55]. WP consumes about the same amount of DRAM,
but has 3× more writes to PCM than KG-W. Even though
memory accesses to PCM are slower, Kingsguard-nursery
reduces the energy-delay product by 36% over a DRAM-only
system and 33% over a PCM-only system. Kingsguard-writers
adds 5% average overhead to monitor nursery survivors
in the observer space and to copy objects between spaces.
Kingsguard-writers reduces the energy-delay product by
32% on average over DRAM-only and by 29% over a PCM-
only system. Compared to Kingsguard-nursery, Kingsguard-
writers thus trades some overhead andDRAM to significantly
improve PCM lifetime.
In summary, the contributions of this paper are:
• an empirical characterization of Java applications that mo-
tivates hybrid memories and fine-grained object place-
ment;

• the design and implementation of write-rationing garbage
collectors that manage hybrid memories, minimizing PCM
writes while maximizing the use of their capacity;

• Kingsguard collectors that explicitly allocate and move
objects into DRAM and PCM heap spaces based on their
demographics and write behavior;

• execution and simulation results that show these collectors
exploit PCM capacity while substantially improving PCM
lifetimes and energy by reducing writes as compared to
prior OS and hardware approaches; and

• a practical approach to exploiting hybrid memories that
requires no new OS or hardware support.

2 Related Work
This section discusses related work for PCM memory hard-
ware, OS, and memory management.

Hardware and OS support for PCM. The two predomi-
nant approaches for improving PCM lifetime are making
writes more uniform over the PCM capacity, called wear-
leveling, and reducing the number of writes. Wear-leveling
of pages allocates and moves pages to distribute writes uni-
formly through memory. Wear-leveling of lines within a
page remaps lines to distribute writes uniformly on each
page. Prior work proposes a number of wear-leveling ap-
proaches [40, 41, 45]. We use line wear-leveling fromQureshi
et al. [42] as our baseline hardware.

Prior work proposes hardware and OS techniques for hy-
brid DRAM-PCM memories that monitor and move pages to
reduce PCM writes [11, 17, 26, 27, 29, 42, 43, 50]. Their two
main drawbacks are (1) they are reactive, and (2) they work
at the page granularity. None of these systems considers

reorganizing objects on pages to create pages of read-mostly
objects and pages of mutated objects, as we do.

We implement OSWrite Partition (WP) by Zhang et al. [29,
43, 55] and find that our write-rationing garbage collectors
decrease writes by 3 ×more than WP (see Section 6.1.3). WP
treats DRAM as a partition for highly mutated pages, which
it identifies using a ranking scheme. The ranking scheme
is a variation of the widely used Multi Queue algorithm for
managing OS buffer caches [57]. The OS places a new page
in PCM first. The memory controller then counts writes to
each physical page and tracks pages in queues ordered by
power of 2 writes. When a page incurs a threshold number
of writes, the memory controller promotes that page to a
higher ranked queue: at 2n writes, the OS promotes the page
to the queue with rank n. The OS periodically migrates pages
in the highest-ranked queues to DRAM. Subsequent work
builds uponWP, adding performance optimizations, but does
not change lifetime [29, 43]. Since write-rationing collectors
optimize lifetime, we compare to WP and find our approach
incurs substantially few PCM writes.

Memory management and garbage collection. The clos-
est related work also uses the managed runtime, but opti-
mizes for performance in hybrid memories, as opposed to
lifetime [49]. It performs an offline profiling phase to identify
object allocation sites for cold (rarely read or written) and
hot old objects. It places all nursery objects in DRAM. It pro-
motes nursery survivors according to their tag, moving hot
objects to DRAM and cold ones to PCM. Our work optimizes
for a different goal — PCM lifetime. Our work requires no
ahead of time profiling, which suffers when inputs do not
match the profile. It dynamically monitors individual object
writes in the observer space to manage writes to PCM.

A similar offline-profiling approach for C programs finds
allocation sites that produce highly mutated memory and
ones that produce read-mostly memory, modifying alloca-
tions sites to specify PCM or DRAM [50]. C semantics limit
this approach because objects cannot move. Our work ex-
ploits managed language semantics to monitor and move
objects, making fine-grained per-object decisions and cor-
recting them if need be, regardless of allocation site.
To tolerate PCM line failures in a page in managed lan-

guages, Gao et al. introduce newhardware andOS approaches
to mask defective lines, but when lines fail, they expose defec-
tive lines in page maps to the garbage collector [17]. The OS
provides this map to the runtime and copies of data during
a runtime failure, which prevents using or losing failed lines
by the collector. They did not consider hybrid memories.

Prior work observes that nursery collections leave behind
written cache lines full of dead objects and propose cache
scrubbing instructions that mark these lines as dead after
a nursery collection, preventing writes to DRAM [44]. Our
approach is complementary. It exploits this observation to
protect PCM from writes of highly mutated nursery objects.
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Complementary approaches also include dividing the heap
into hot and cold regions to better manage DRAM energy
consumption [22], and data structure-aware heap partition-
ing to improve lifetimes, locality, and region-based memory
management [35].

3 Background
This section provides background on the Immix mark-region
generational garbage collector (GenImmix) [10] on which
we build, and how large objects and metadata are managed.

Immix: a generationalmark-region collector. Wemodify
GenImmix, the default best-performing collector in Jikes [10],
to create Kingsguard collectors. GenImmix uses a copying
nursery and a mark-region mature space. The mark-region
mature space consists of a hierarchy of two regions: blocks
and lines. Blocks are multiples of page sizes and consist of
multiple lines. Lines are multiples of cache line sizes. Ob-
jects may cross lines, but not blocks. Bump pointer object
allocation is contiguous in the nursery, in lines, and blocks.
(Contiguous allocation is known to outperform free-list al-
locators due to its locality benefits [6, 10, 20].) Filling the
nursery triggers a collection, which copies nursery survivors
contiguously into free lines within blocks in themature space.
Filling the mature space triggers a full heap collection. Immix
reclaims the mature space at a line and block granularity
by marking lines and blocks live as it traces and marks live
objects. Subsequent mature allocation bump-point allocates
first into contiguous free lines in partially free blocks and
then into completely free blocks. Allocation and reclamation
use per-thread allocators and work queues to deliver con-
currency and scalability. The per-thread allocators obtain
blocks (partially and completely free) from a global allocator.

We use the default settings for Immix, including the maxi-
mum object size (8 KB), line size (256 bytes), and block size
(32 KB). These settings match the Immix line size to the PCM
line size. Immix tailors the heap representation to match
the hardware memory system for performance, but it also
matches the needs of PCM memory management for detect-
ing and tolerating line failures, as Gao et al. [17] show.

Large objects. Jikes RVM manages objects larger than the
8 KB threshold separately, allocating them directly into a
non-copying large object space, and uses a treadmill to avoid
copying them [19, 23]. A treadmill consists of two doubly-
linked lists that store all references to large objects. Dur-
ing collection, live traced references are removed from one
doubly-linked list and snapped to another. The collector then
reclaims the large objects reachable from any unsnapped ref-
erences. The cost of using a treadmill is high due to storing
all the references to each large object which is only justified
because it eliminates marking large objects.

Objectmetadata. In addition to application writes, the JVM
and collector also generate writes. In particular, they write

nursery mature metadatalarge

mutator mutator runtimeGC

DRAM

(a) Homogeneous DRAM-only system

DRAM PCM

nursery mature large

mutator mutator runtimeGC

metadata

(b) Kingsguard-nursery hybrid memory

nursery mature large

DRAM

observer

PCM

mature metadatalarge

GC

copy w/o header check

copy with header check

GC

mutator GCGC

mutator

runtime

metadata

(c) Kingsguard-writers hybrid memory

Figure 3. Main memory heap organizations (not to scale).

object metadata during allocation and collection. Object
metadata includes an object’s type, layout, and liveness. The
liveness information is often stored in a header word next to
the object. Garbage collectors write to metadata when they
mark objects live and they write to objects directly when
they update their references after copying objects. When
GenImmix marks an object live, it also writes block and
line bits, stored separately from the object. Because marking
live mature objects in PCM generates a lot of PCM writes
when liveness is stored in the object header, the KG-W write-
rationing collector includes an optimization that eliminates
these writes by storing object liveness metadata in DRAM
space separate from the objects.

4 Write-Rationing Garbage Collection
This section presents the design of write-rationing garbage
collectors that seek (1) all the performance advantages of
high-performance garbage collection, (2) to maximize the use
of PCM for its scalability properties, and (3) to limit writes
to PCM to extend its lifetime. These collectors limit write
traffic to PCM significantly compared to PCM-only memory
by judiciously placing highly mutated objects in DRAM.
Our baseline memory systems contain DRAM-only or

PCM-only memory with generational Immix (GenImmix)
collector (see Section 3). Figure 3(a) illustrates this baseline
generational heap organization with DRAM-only (and PCM-
only) memory The mutator allocates objects into the nursery
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and large object space. The collector copies surviving nursery
objects to the mark-region mature space. The JVM uses a
metadata space. Mature and large object space collection is
non-moving (not shown).
4.1 Kingsguard-nursery for Hybrid Memory
As motivated by the data in Figure 2, a promising strategy
for limiting writes to PCM in hybrid memories is placing
nursery objects in DRAM and all other objects in PCM. We
call this collector Kingsguard-nursery (KG-N). It also puts
nursery survivors (mature), large objects, and JVM metadata
in PCM memory. Figure 3(b) illustrates how Kingsguard-
nursery maps the baseline heap organization onto hybrid
memory. The system requests DRAM memory from the OS
for the nursery, where objects are freshly allocated, and
requests PCM memory from the OS for everything else. Re-
quests to the OS are at the page granularity (4 KB). This heap
organization is appealing because it maximizes the number
of objects that reside in PCM and it requires minimal changes
to the VM and garbage collector.
Compared to a PCM-only system, Kingsguard-nursery

eliminates the nursery writes to PCM (70% of all writes),
saves energy, and increases PCM’s lifetime. Because appli-
cations also write to mature objects, many applications will
still wear out PCM with this approach.
4.2 Kingsguard-writers for Hybrid Memory
Kingsguard-writers (KG-W) adds newheap regions andmech-
anisms to further limit writes to PCM by monitoring and
placing individual objects in DRAM or PCM. Kingsguard-
writers also allocates all new objects in a DRAM nursery. In
addition, it creates a new DRAM observer region for nurs-
ery survivor objects where it monitors their writes. It then
chooses on an individual object basis to put mutated objects
in a mature DRAM space and unwritten objects in a ma-
ture PCM memory space. Of course these objects can have
subsequent writes, so we call them read-mostly objects. KG-
W has two large object spaces: one in DRAM and one in
PCM. KG-W initially places large objects in the nursery if
space is available, since a surprising number die quickly, or
otherwise allocates them directly to PCM memory. KG-W
monitors small and large objects in PCM, and when it detects
written objects, it moves them to their corresponding space
in DRAM during the next collection. Figure 3(c) illustrates
Kingsguard-writers’ heap organization.
4.2.1 The Observer Space
Rather than monitoring all objects for writes, we restrict
object monitoring to mature objects that survive at least
one nursery collection. Because nursery objects are rapidly
mutated, monitoring them would incur high overhead. Even
whenmany survive, zeroing, initialization, and data structure
creation produce a flurry of writes. Table 4 reports nursery
survival rates of 17 % on average, as low as 0.001 %, and as
high as 66%.

KG-W adds a new DRAM generation for all nursery sur-
vivors, called the observer space. While objects reside in the
observer space, KG-W monitors all writes and marks a bit
when objects are written. The observer space is a contigu-
ous region and uses bump-pointer allocation. We make the
observer space twice as large as the nursery and trigger an ob-
server space collection when it is full. An observer collection
thus results in pause times longer than nursery collections,
but shorter than full heap collections. An observer collection
moves live unwritten objects to the PCM mature space and
live written objects to the DRAM mature space.

The observer space achieves two goals. (1) It gives objects
more time to die, so fewer objects are even candidates for
PCM memory. (2) If the system detects a write to an object
while it resides in the observer space, the collector never
moves it to PCM, because it uses writes to objects in the
observer space as a predictor of future writes.

KG-W copies all surviving nursery objects to the observer
space instead of the mature space and collects the observer
space more frequently than the mature space in the base-
line system. KG-W reserves a small amount of room in
the observer space into which it copies surviving nursery
objects during an observer space collection. It sizes this
room using recent nursery survival rates. Some surviving
objects will therefore die soon afterward in the observer
space. Kingsguard-nursery would copy these objects to the
PCM mature space, which creates dirty dead cache lines that
are likely to be written back once the mutator resumes ex-
ecution. Kingsguard-writers avoids these useless writes to
PCM by using the observer space to avoid tenuring garbage.
In Hotspot [14, 37], a survivor space in the young gener-

ation serves a similar purpose of giving objects more time
to die, but objects reside in this space only until the next
nursery collection. Other collection strategies also seek to
avoid tenured garbage [47, 48, 51]. All these approaches are
orthogonal to our work.
4.2.2 Monitoring and Write Barriers
An observer collection includes the nursery and observer
space, in isolation of other spaces, to make timely promotions
from the observer space to PCM. To ease the recording of
references into the nursery and observer space required to
collect them independently of the mature space, we colocate
the nursery and observer space on the same side of a virtual
address space boundary.We thus can and do use the same fast
boundary write-barrier as used by a standard generational
collector. Figure 4 shows ourmodified referencewrite-barrier
in Jikes RVM.

In generational collections, pointers from outside the nurs-
ery into the nursery are added to the root set for nursery
collections. Similarly in KG-W, pointers from outside the
nursery and observer spaces into those spaces are added to
the root set for observer collections. Lines 7 to 12 in Figure 4
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shows the code KG-W executes for remembering the point-
ers from outside the nursery and observer spaces. This part
of the write-barrier is the same as a standard generational
write-barrier. The later part of the barrier monitors reference
and primitive writes to objects.

The main benefit of the observer space is to monitor writes
to objects and use their behavior to determine on a fine-
grained object level whether to put an object in the DRAM
or in the PCM mature space. Our analysis shows that 81%
of writes to non-nursery objects happen to 2% of objects, as
shown in Figure 2. Objects written a number of times are,
therefore, likely to be written again.

1 @Inline
2 public final void objectReferenceWrite(
3 ObjectReference src,
4 Address slot,
5 ObjectReference tgt)
6 {
7 if(!inNursery(slot) && inNursery(tgt)) {
8 remset.insert(slot);
9 }
10 if(!inNurseryOrObservers(slot) &&

inNurseryOrObservers(tgt)) {
11 remset_observers.insert(slot);
12 }
13 if(!inNursery(src)) {
14 Object o = ObjectReference.fromObject(src);
15 Address a = o.toAddress();
16 a.store(Word.one(), EXTRA_WORD_OFFSET);
17 }
18 Magic.setObjectAtOffset(src, slot, target);
19 }

Figure 4.Our modified reference write-barrier. Lines 10 to
17 show the extra code KG-W executes on each reference
write.

Tomonitor observer spacewrites, we use thewrite-barriers
on (1) references and (2) primitives that are provided by
MMTk [6]. All of our systemsmustmonitor references (point-
ers) to collect the nursery and observer spaces independently,
so additionally monitoring writes to references in the ob-
server space incurs little additional overhead. On the other
hand, monitoring primitives, writes to all other values, has
higher overhead because primitive writes are more common
than reference writes and are not necessary for collecting in-
dependent regions correctly. Reference writes, often, but not
always, predict primitive writes. We show the performance-
accuracy tradeoff of using the two types of barriers in Sec-
tion 6.2.

Wemodify the generational write-barrier tomonitorwrites
to references and primitive fields outside the nursery space.
To remember written objects, we add a write word in each
object header. When the program writes an object in the
observer space, the write-barrier sets a bit in this header

word as shown in lines 13 to 17 in Figure 4. We add a header
word because GenImmix uses all the existing object header
bits [10]. A careful re-design or disabling some Immix fea-
tures, such as pinning, could steal a bit instead. Since we
have an entire word, the barrier could record the number of
writes. We leave reducing this extra header space and count-
ing writes for future work. We use one of the remaining
extra header bits for the metadata optimization presented
below.
4.2.3 Mature DRAM and Mature PCM Spaces
During an observer collection, Kingsguard-writers checks
the write bit and then copies all written objects from the
observer space into themature DRAM space, and the remain-
ing objects to the mature PCM space. Figure 3(c) shows this
selective copying with dotted lines.

KG-Wmonitors all writes in themature DRAMandmature
PCM spaces. During whole-heap collections, KG-W moves
objects in the mature DRAM space whose write bit is zero,
and we therefore predict will not be written, to the mature
PCM space. This step adds copyingwork tomore fully exploit
the capacity of PCM. Similarly, when KG-W detects a written
object in mature PCM, it copies the object to the mature
DRAM space, and resets its write bit to zero. This step adds
copying work to limit future writes (predicted by the past
writes) to PCM by this object.

We trigger a full heap collection when the combined ma-
ture DRAM and mature PCM spaces run out of space, based
on the heap size used. Kingsguard-writers does not limit
the amount of DRAM space. However, because of the high
mortality rates in both the nursery and observer spaces, very
few objects are put into the mature DRAM space, which is
between 26 MB and 40 MB for our applications. By design,
the PCM portion of the mature generation contains objects
that are likely long-lived and infrequently written. For ap-
plications that mostly create small objects, mature PCM is
the largest portion of the heap. We discuss the amount of
DRAM and PCM used per benchmark in Section 6.
4.2.4 Large Object Optimization (LOO)
Most collectors manage large objects separately because they
are costly to copy. In hybrid memories, if they are frequently
written, they are also costly in writes, degrading PCM life-
time. We achieve the best of both worlds by creating a large
object space in DRAM and in PCM. To exploit the capacity
of PCM, KG-W initially puts large objects directly in the
large PCM space. If the mutator writes to large objects when
they are in the large PCM space, we move them to the large
DRAM space during the next major collection. We modify
the non-moving treadmill data structure used for large ob-
jects to handle moving objects. When copying from large
PCM to large DRAM, objects are unsnapped from the former
treadmill’s linked list and snapped on to the latter space’s
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treadmill. Because copying large objects incurs a high over-
head, once a large object is copied to DRAM, we never move
it back to PCM.
We find empirically that large objects often follow the

weak-generational hypothesis, i.e., they die quickly. There-
fore we perform a dynamic optimization (LOO) to place some
large objects in the nursery first to give them a chance to
die and to avoid allocating large objects that die quickly in
PCM. If a large object survives a nursery collection, we copy
it to the observer space. If it survives an observer collection,
KG-W copies it directly to the large PCM space, without
consulting the write bit, to leverage the capacity of PCM.

Allocating large objects in the nursery should be donewith
caution, to ensure space for small objects. KG-W dynamically
monitors the allocation rate to choose whether to devote
part of the nursery to large objects or not. If at the end of
a nursery collection, the allocation rate in the large PCM
space is faster than the nursery’s allocation rate, then we
enable this optimization. The allocator allocates large objects
less than half of the remaining nursery size in the nursery,
and otherwise allocates them in the large PCM space. This
technique gives large objects time to die and for arrays of
references, gives any referent objects time to die as well.
Section 6 shows this optimization saves a lot of allocation and
writes to PCM, thus improving its lifetime. This optimization
trades some copying overhead to limit writes to the large
PCM space.
4.2.5 Metadata Optimization (MDO)
As mentioned in Section 3, garbage collectors require meta-
data to track object liveness. GenImmix stores the mark state
of objects in their headers, which would result in writes to
all live mature objects in PCM memory when collecting the
whole heap. Updating a single byte in the header of each
live object in PCM would result in writing back one cache
line for every live object in PCM on every major collection.
KG-W thus performs an optimization (MDO) to decouple the
mark state metadata from the PCM object.

KG-W stores the mark states of objects in mature PCM in
a separate metadata region in DRAM (shown in Figure 3(c)).
Using the Immix allocator, the PCM mature space reserves
new space 4 MB at a time. When this happens, KG-W allo-
cates a table in DRAM for the mark state of objects in that
4 MB region. The table size depends on the number of objects
that fit in 4 MB. Object sizes vary from 4 bytes (a header with
no payload) to 8 KB (the biggest small object). Accounting
for the smallest object would incur a 25% DRAM overhead.
We empirically find that most objects are larger than 16 bytes.
We therefore reserve 262 KB for the mark state table for each
4 MB region of PCM, incurring a 6.25% overhead for storing
the mark states separately. We use this table for all objects
over 16 bytes. For objects 16 bytes and smaller, we mark
them small in the write word in the object’s header and use
the normal mark bit in the header instead of the mark state

Table 1. Collector configurations. Large Object nursery al-
location (LOO) and PCM metadata in DRAM (MDO) are
dropped in two configurations.

monitor metadata LOO
Configurations writes in DRAM in nursery

KG-N: Kingsguard-nursery % % %

KG-W: Kingsguard-writers ✔ ✔ ✔

KG-W–LOO ✔ ✔ %

KG-W–LOO–MDO ✔ % %

table. For fast access, we store the address of the mark state
table at the beginning of each 4 MB PCM region. To calculate
the mark state address of a PCM object, we add the object
offset in the 4 MB region to the starting address of the table.
When the collector frees a 4 MB region in PCM, it also frees
the DRAM space reserved for the mark state table. Section 6
shows that this optimization reduces the collector’s writes
to PCM for highly allocating applications.

5 Experimental Methodology
This section describes our experimental methodology, includ-
ing our JVM, applications, collector configurations, hardware,
architectural simulator, and memory models.
5.1 Software
Java Virtual Machine. We implement our collectors in
Jikes RVM 3.1.2 [2, 3] which combines good performance and
software engineering that make it easy to modify [2, 3, 7, 16].
Jikes RVM is a Java-in-Java VM with a baseline compiler
(no interpreter), just-in-time optimizing compiler of hot
code, and a large number of state-of-the art garbage col-
lectors [6, 10, 46]. It offers a wide range of easy-to-change
reference-barriers [52], and a clean interface between the
compiler and collector [16], which defines object layout, ref-
erences, interior references, and object metadata in a few
places.
We follow best practices for Java performance evalua-

tion [18, 20]. We use replay compilation to eliminate non-
determinism introduced by just-in-time compilation. During
profiling runs, the VM records a plan with the optimization
level of each method for runs with the shortest execution
time. We then run each benchmark for two iterations. In
the first unmeasured iteration, the JIT compiler applies the
pre-recorded optimization plan to each method. We then
measure the second iteration, which excludes compile time
and represents application steady-state behavior. We report
the averages of 8 runs for our real hardware experiments and
4 for our simulation experiments. We compute detailed statis-
tics in separate experiments, different from the performance
runs.

Garbage collectors and configurations. We compare to
Jikes RVM’s default stop-the-world generational Immix col-
lector [10], with DRAM-only and PCM-only heaps. We use
the default settings for maximum object size (8 KB), line size
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Table 2. Simulated system parameters.
Component Parameters

Processor 1 socket, 4 cores
Core 4-way issue, 4.0 GHz, 128-entry ROB
Branch predictor hybrid local/global predictor
Max. outstanding 48 loads, 32 stores, 10 L1-D misses
L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache shared 4 MB, 16 way, 30 cycle
Coherence protocol MESI
Memory controller FR-FCFS scheduling, line-interleaved

mapping, closed-page policy
Memory bandwidth 12 GB/s
Memory systems 32 GB DRAM-only

32 GB PCM-only
Hybrid 1 GB DRAM + 32 GB PCM

Organization 8 1 Gb chips per rank
1-8 ranks per DIMM, 1-4 DIMMs

DRAM parameters 45 ns read/write
0.678 Watts read, 0.825 Watts write

PCM parameters 180 ns read, 450 ns write
0.617 Watts read, 3.0 Watts write
30.0 million writes per cell
Fine-grained wear-leveling [42]

DRAM device Micron DDR3 [33]

(256 bytes), and block size (32 KB). We explore four write-
rationing garbage collectors shown in Table 1: Kingsguard-
nursery, Kingsguard-writers, and two variants that exclude
the Large Object Optimization (LOO) and the Metadata Op-
timization (MDO) to tease apart their impact.

Nursery size impacts performance, pause time, and space
efficiency [4, 6, 48, 56]. Our default configurations use a 4 MB
nursery and a fixed-size maximum heap size of 2×minimum
live size for each application, following prior work [1, 10, 35,
44, 56]. Fixing the heap size fairly controls the space-time
tradeoffs that different collectors make. We set the default
observer space size at 8 MB. We empirically find that sizing
the observer space to be twice that of the nursery is the
best compromise between tenured garbage and pause time.
We explore other configurations, including larger nursery
sizes (Section 6.2.1). Large nurseries reduce writes to mature
objects, but are not sufficient to manage hybrid memories.

Java applications. Weuse 16 Java applications: 12DaCapo [8],
pseudojbb2005 (pjbb) [9], and 3 graphchi [25]. The graphchi
applications are disk-based graph processing of (1) page rank
(PR), (2) connected components (CC), and (3) ALS matrix
factorization (ALS). For PR and CC, we use the LiveJournal
online social network [30] as the input dataset. For ALS, we
use the training set of the Netflix Challenge. We process 1 M
edges using PR and CC, and 1 M ratings using ALS. We use
the default datasets for DaCapo and pjbb2005. In addition
to the original versions of lusearch and pmd in DaCapo, we
use an updated version of lusearch, called lu.Fix (described
in [53]), that eliminates useless allocation, and an updated
version of pmd, called pmd.S (described in [15]) that elimi-
nates a scaling bottleneck due to a large input file.

5.2 Hardware and Simulation
Our evaluation uses both simulation of hybrid memories and
execution on real hardware with DRAMmemory because we
lack access to systems with hybrid memories. Simulation has
the advantage that it models PCM properties accurately and
captures many details better than execution on DRAM. It
has the disadvantage that multicore simulation is extremely
time consuming, which limits the number of hardware con-
figurations such as the number of cores we can practically
explore. Due to limitations in the simulator, it unfortunately
executes only a subset of the benchmarks. Fortunately, these
benchmarks cover the extremes and thus a wide range of
write of behaviors. All our applications execute on real hard-
ware. We furthermore configure the real hardware in various
ways to match and validate many of the simulation results.

5.2.1 Hardware Platform
We use the Intel Nehalem-based IBM x3650 M2 with two
Intel Xeon X5570 processors for hardware execution time
measurements. Each Xeon processor has 4 cores. Although
there are two sockets, we use one to limit non-determinism
and to match the multicore simulator, which is only practical
to run with at most 4 cores. Each core has a private L1 with
32 KB for data and 32 KB for instructions. The unified 256 KB
L2 cache is private, and the 8 MB L3 cache is shared across all
four cores on each socket. The machine has a main memory
capacity of 14 GB.

5.2.2 Simulator
Because PCM is not commercially available, we modify a
simulator to model hybrid memories. We use Sniper [13]
v6.0, an x86 simulator because it is cycle-level, parallel, high-
speed andmodels multicore systems.We use its most detailed
cycle-level and hardware-validated core model. Prior work
extended Sniper for managed language runtimes, including
dynamic compilation, and emulation of frequently used sys-
tem calls [44]. Because Sniper is a user-level simulator, we
are only able to execute ten of the Java applications. We
eliminate fop, luindex, and avrora from simulation results
because of their low allocation rates (see Table 4). These
limitations motivate the use of additional results on actual
hardware.

Memory system and processor architectures. We com-
pare three main memory systems in the simulator: (1) a
32 GBDRAM-only system, (2) a 32 GB PCM-only system, and
(3) a hybrid system with 1 GB DRAM plus 32 GB PCM. We
model PCMwith a base read latency of 4× the DRAM latency,
and a write latency of 12× the DRAM latency [21, 26, 36].
Table 2 presents other key architecture, DRAM, PCM, and
cache memory parameters, which we hold constant. We
model a quad-core processor configuration similar to the
Intel Haswell processor i7-4770K. Each core is a superscalar
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out-of-order core with private L1 and L2, and shared L3
caches.

Power and energy estimation. We use McPAT v1.0 [31]
to model processor power consumption. We model DRAM
power according toMicron’s DDR3 device specifications [33].
PCM uses a 1 KB row buffer similar to DRAM. The remaining
peripheral circuitry is also similar with one important dis-
tinction.Whenwriting data from a row buffer to a PCM array,
only the modified line is written back. PCM read operations
do not require pre-charging due to their non-destructive na-
ture and consume less energy than DRAM. The static power
of PCM prototypes are negligible compared to DRAM [27].
Using latency and energy estimations of PCM prototypes
from Lee et al. [26], we compute average power to write
a cache line to a PCM array as 3 Watts. When estimating
PCM latency and power consumption, we assume the same
technology node for DRAM and PCM, and the scaling model
from Lee et al. [26].

PCM lifetime modeling. We estimate PCM lifetime using
an optimistic analytical model from the literature [21, 36, 42].
Prior work demonstrates wear-leveling mechanisms for fu-
ture non-volatile memories [11, 17, 26, 27, 42, 43, 50]. There-
fore, we assume writes can be made uniform over the entire
capacity of PCM. PCM memory lifetime in terms of years
before failing is estimated as follows:

Y =
S × E

B × 225
(1)

The size (S) of PCM main memory is 32 GB. We consider
the PCM endurance (E) level used in prior work [38, 39]:
30 M writes per PCM cell. Finally, B is the write rate of an
application during execution. Next, we describe our method-
ology for estimating the write rates of our applications on a
32-core machine.

Write rate estimation. Due to limitations in simulator scal-
ability, we are unfortunately only able to simulate a 4-core
system. To extend our simulation results to write rates for a
32-core machine, we first obtain write rates for the 4-core
system in Table 3. We then measure on a real hardware plat-
form how write rates scale as we increase the number of
cores from 4 to 32. We multiply the observed scaling behav-
ior by our simulated write rates to estimate the write rates
on a 32-core system. Our 32-core system has two Intel E5-
2650L processors. Each processor has 8 cores and each core
is 2-way SMT. Each processor has a 20 MB last level cache.
The machine has 132 GB of main memory.

To measure write rates on real hardware, we use the Pro-
cessor Counter Monitor from Intel. To fully utilize the 32
cores on our system, we run 32 instances of the same single-
threaded benchmark, and 8 instances of the multithreaded
benchmarks. Table 3 shows the scaling factor and write rates
with multiple instances of each benchmark normalized to

Table 3. Measured scaling of and estimated write rates.
Benchmark Normalized scaling factor Write rate in GB/s

(measured) (estimated)

Xalan 7.3× 8.5
Pmd 7.7× 3.1
Pmd.Scale 10.0× 7.0
Lusearch 5.0× 9.3
Lu.Fix 5.2× 7.0
Antlr 52.0× 19.0
Bloat 63.0× 24.0

running a single instance of the benchmark. A few bench-
marks scale linearly with the increase in core counts, but for
others, such as antlr and bloat, the write rates increase by
more than an order of magnitude. These applications expe-
rience increased contention in the last level cache. Table 3
shows estimated write rates vary from 3.1 GB/s to 24 GB/s.

6 Results
Section 6.1 presents our simulation results which evaluate
PCM lifetimes, write behavior, energy, and overhead. We
compare DRAM-only, PCM-only, and hybrid systems with
Kingsguard collectors. Our cycle-level simulator faithfully
models the cache hierarchy found in real systems and wear-
leveling hardware. Modeling caches is important because
they absorb writes, and are thus the first line of defense
in protecting PCM from writes. Modeling wear-leveling is
important because by spreading writes to lines and pages
evenly, it makes write rate the only necessary target for
optimization.

Section 6.2 presents performance results on real hardware
of all Kingsguard configurations. It includes statistics on how
Kingsguard collectors organize the heap to influence PCM
write traffic for 16 Java applications and write traffic to PCM
measured in an architecture-independent manner.
Both sets of results show significant improvements in

PCM lifetimes in hybrid memories using our write-rationing
garbage collectors. The hardware results confirm the simu-
lation results and explore overheads and optimizations in
more detail.
6.1 Simulation Results
6.1.1 Lifetime
Figure 5 presents PCM lifetime improvements normalized
to PCM-only using lifetime estimates from the models in
Section 5. On a 32 GB PCM-only system with an endurance
of 30M writes, line-level write back and wear-leveling, ap-
plication lifetimes average 4 years, but are sometimes as low
as 15 months, e.g., lusearch. Kingsguard collectors execut-
ing on a hybrid memory system deliver substantial lifetime
improvements over PCM-only systems. KG-N improves life-
time on average 5×. Individual benchmarks improve by 1.9×
for xalan and up to 11× for lu.Fix. KG-W improves lifetime
even more: 11× longer than a PCM-only system on average.
Individual benchmarks improve by 6× for lusearch and up
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Figure 5. Kingsguard-nursery (KG-N) and Kingsguard-
writers (KG-W) increase PCM lifetime.
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Figure 6.All Kingsguard configurations substantially reduce
writes compared to the PCM-only baseline (1.0).

to 17× for lu.Fix. KG-W achieves these long lifetimes by min-
imizing writes to PCM memory, while using an average of
only 16 MB of DRAM and at most 24 MB of DRAM for these
applications (see Table 4 and Section 6.2.3).
6.1.2 Write Analysis
Figure 6 plots writes to PCM using the Kingsguard configu-
rations from Table 1 normalized to PCM-only. While KG-N
reduces writes to PCM by 81% on average, KG-W reduces
writes by 91% compared to a PCM-only system. Leaving out
the large object optimization (KG-W–LOO) and metadata
optimization (KG-W–LOO–MDO) has a small overall impact,
except for xalan. In xalan, the large object optimization re-
duces writes to large objects and, more surprisingly, writes
to small objects to which the large objects point. While the
effect on total writes is small with MDO, it does eliminate a
lot of writes to PCM during major collections: 50% and 12%
respectively for xalan and lusearch.
6.1.3 Comparison to Write Partitioning (WP)
We now compare Write Partitioning (WP), the state-of-the-
art OS technique for reducing writes to PCM [55, 57]. Our
implementation, as described in Section 2, uses the recom-
mended eight queues, OS mapping time quantum of 10 ms,
migrates pages in the four highest ranked queues to DRAM,
and demotes all pages in DRAM to a lower ranked queue
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Figure 7. OS-managed write partitioning (WP) results in
more writes to PCM than KG-N and KG-W.
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Figure 8. Kingsguard reduces the energy-delay product
(EDP) compared to DRAM-only and PCM-only.

every 50 ms to optimize for phase behavior. We explore other
configurations, but these parameters perform best for our
workloads. Figure 7 plots PCM write reductions by KG-N,
KG-W, and WP, normalized to PCM-only. Writebacks in-
clude writes by the application and collector. Migrations
show writes due to WP migrating pages from DRAM to
PCM. WP’s reactive policy does eventually detect nursery
pages as highly written, but this detection takes time. WP
is effective at reducing application writes to PCM, but its
migration policy moves pages from PCM to DRAM and back
to PCM. For example, WP observes lots of writes when the
default collector copies nursery objects to the mature space,
which triggers WP to migrate pages from PCM to DRAM.
Many of these pages incur few subsequent writes, so WP
migrates them back to PCM. WP reduces writes to PCM by
69%, whereas KG-N and KG-W reduce writes by 81% and 91%,
respectively. By using object demographics and fine-grained
per-object monitoring, KG-W has over 3× fewer writes than
WP.
6.1.4 Energy
To quantify the energy efficiency of KG-W, KG-N, and a
PCM-only system, Figure 8 shows the energy-delay product
(EDP) normalized to a DRAM-only system. EDP is energy
multiplied by execution time, so it takes the higher laten-
cies of PCM into account. The EDP is sometimes worse on
a PCM-only system compared to DRAM-only, particularly
for lusearch. Using KG-N reduces the average energy-delay
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Figure 9. PCM access time overheads dominate collector
and monitor overheads in KG-W.

product by 36% over the DRAM-only system, and also signif-
icantly improves over a PCM-only system. Because of KG-
W’s additional overhead, its energy-delay product is slightly
higher, saving 32% over a DRAM-only system. In addition
to reducing the EDP, both KG-N and KGW reduce the total
energy consumption by 47% on average.
6.1.5 Breakdown of Overheads
A PCM-only system adds 70% to the execution time of a
DRAM-only system on average. Our simulator results show
that KG-N reduces overheads by over 50% compared to PCM-
only, but still adds 31% to execution time on average over
DRAM-only. KG-W adds overhead (40% on average) because
it monitors individual objects and copies long-lived objects
at least one more time than KG-N, since it first copies them
to the observer space and then to a mature space.

We break downKG-Woverheads into: (a)Remsets—write-
barriers to remember pointers to the observer space; (b) GC
— KG-W adds collections of the observer space, which often
adds overhead; however, collection time sometimes reduces
because objects die in the observer space, reducing full heap
collections; (c)Monitoring — KG-W’s write-barrier records
more information about all writes to non-nursery objects;
and (d) PCM— PCM has longer read and write latencies than
DRAM. Other effects, such as cache locality, are unmeasured
in this experiment and we report them in (e) Other. We
configure the simulator and the VM in a variety of different
ways to measure all these overheads.

Figure 9 presents this breakdown relative to DRAM-only.
The largest overhead is the longer PCM access latencies
(PCM), which add 25% to total time on average. The overhead
of collecting KG-W’s extra spaces (GC), and of monitoring
writes to non-nursery spaces (Monitoring) are each a little
under 5% on average. Keeping track of more remembered
sets to collect the observer space in isolation (Remsets) adds
around 3% overhead. Other overhead (Other) accounts for
another 3% of extra execution time. Pmd has a high Other
overhead because it has a high nursery survival rate (see Ta-
ble 4) which triggers more observer collections and has cache
effects. Our real system performance results in Section 6.2.2
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Figure 10.Where writes to PCM originate. KG-W reduces
application and collector writes to PCM.

confirm that the Kingsguard mechanisms themselves add lit-
tle to total time. Using a hybrid DRAM-PCMmemory system
for its scalability properties inevitably adds latency to exe-
cution times. KG-W mitigates these latencies by redirecting
some reads and writes to a small amount of DRAM.
6.1.6 The Origin of Writes
Figure 10 classifies where writes to PCM originate: the ap-
plication, nursery collection, observer collection, or major
collection. Wemodify the simulator to track which phase last
wrote each cache line, since LRU policies evict lines to PCM
or DRAM well after their last access. KG-W reduces PCM
application writes for most benchmarks compared to KG-N.
This reduction corresponds to an increase in DRAM writes
(not shown), as designed. The average increase in writes to
both DRAM and PCM together (not shown) with KG-W over
KG-N is 12% and the worst case is pmd at 25%. This increase
stems from additional collection work. Figure 10 shows only
the writes to PCM.
The collector induces writes when it initially places an

object in PCM and when it updates PCM references to other
objects. When analyzing the writes performed by the collec-
tor, we note that: (1) KG-N incurs writes to PCM during a
nursery collection both due to copying survivors into the
PCM mature space and due to updating the references in
PCM that point to them; (2) KG-W eliminates major collec-
tions for lu.fix and bloat by reclaiming objects in the observer
space; (3) writes to PCM during a nursery collection with
KG-W are solely due to updating references in PCM spaces
that point to surviving nursery objects copied to the observer
space. These results suggest further PCM write reductions
are possible by avoiding pointer updates in PCM and deploy-
ing better predictors of application writes.
6.2 Real Hardware Results
We now evaluate Kingsguard on real hardware. We analyze
write behavior, performance, and memory characteristics.
Lacking PCM hardware, all latencies are to DRAM.
6.2.1 Write Analysis
Figure 11 presents writes to the PCM heap using KG-N and
KG-W as reported by write-barriers. These results are thus
architecture-independent since they do not consider cache
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Figure 11. Application writes to PCM. Giving KG-N a larger nursery (KG-N-12) saves a small portion of PCM writes. KG-W
saves 80% of PCM writes compared to KG-N. Excluding primitive monitoring of writes (KG-W–PM) increases writes to PCM.

effects that filter out some writes to both DRAM and PCM.
We normalize to KG-N with a 4MB nursery and compare
to KG-N with a larger 12MB nursery, and to KG-W with
a 4MB nursery with and without primitive write-barriers.
Using a larger nursery reduces the writes to PCM by 24% on
average compared to KG-N. A larger nursery is not effective
at reducing PCM writes for four out of the five applications
with more writes in the mature space than the nursery (the
five left-most applications in this figure and in Figure 2). KG-
W is much more effective than simply using a larger nursery,
reducing writes to PCM by 80% on average.
For sunflow, KG-W eliminates 99.7% of writes to PCM

by copying the written objects to mature DRAM during ob-
server collections. For pjbb and hsqldb, we similarly observe
many writes to the few mature DRAM objects. On the other
hand, KG-W eliminates 97% of writes to PCM for lusearch
by moving primitive arrays from PCM to DRAM during ma-
ture collections. KG-W reduces writes for all the GraphChi
benchmarks, which all need very large heaps, by over 50% as
compared to KG-N. For luindex andCC, large objects in PCM
incur a lot of writes, and are only moved to DRAM during a
mature collection. Interestingly, luindex with KG-W requires
no mature space collections because so many objects die in
the observer space. For CC, writes happen before a mature
collection is triggered. These behaviors motivate additional
policies for mature collection to be triggered by writes to
PCM. We leave this exploration to future work.

Primitive versus reference monitoring. We observe that
excluding primitive monitoring (KG-W–PM) in Figure 11
significantly reduces writes compared to KG-N for several
applications. For instance, in the case of pmd, eclipse, and
bloat, reference writes capture most of the highly mutated
objects. On the other hand, for seven applications, PCM
writes increase quite a bit over KG-W. On average, KG-W-PM
eliminates 65% of PCM writes compared to 80% for KG-W.
6.2.2 Performance
Figure 12 presents the performance of KG-W configurations
normalized to KG-N. The results in Figure 12 understate the
performance advantage of KG-W over KG-N. On a system
with PCM, the large reduction in writes to PCM reduces exe-
cution time due to latency savings.With respect to KG-W, the
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Figure 12. KG-N performs best. KG-W adds 7% overhead to
execution time on average.

large object (KG-W–LOO) and metadata space optimizations
(KG-W–LOO–MDO) are performance-neutral on average.
KG-W increases the execution time on average by 7%, and
hsqldb by 25% over KG-N. This overhead is mostly due to
the additional observer collections. During each observer
collection, some highly mutated objects are placed in ma-
ture DRAM, which results in a large reduction in writes to
PCM, as shown in Figure 11. KG-W reduces execution time
for a few benchmarks: sunflow, eclipse, and bloat, due to
fewer full-heap collections. This result is a feature of KG-W.
Observer collections are cheaper than full-heap collections
because (1) they operate over smaller regions and (2) when
they reclaim objects, they prevent mature DRAM and PCM
from filling up. Finally, we observe that eliminating primitive
monitoring (KG-W–PM) has the highest impact on lusearch:
a 7% reduction in execution time.
6.2.3 Memory and Demographic Analysis
Table 4 shows allocation and survival rates, and heap space
occupancy per benchmark for our collectors. Applications
allocate frequently, between 56 MB and 14 GB of memory
(column 1), especially the GraphChi benchmarks. We gray
out those applications with less than 100 MB of allocation
and exclude them from the averages. Our applications have
an average nursery survival rate of 17% and a maximum of
66% (columns 3 and 4).
A 4 MB DRAM nursery maximizes the use of PCM for

97% of the KG-N heap, averaging between 21 and 280 MB,
and up to 502 MB of PCM, for the GraphChi benchmarks
(columns 5 and 6). KG-W uses more DRAM: 6 to 86 MB of
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Table 4. Object demographics. KG-N maximizes the use of PCM, whereas KG-W more selectively uses PCM since (1) many
objects die before promotion and (2) KG-W retains a small fraction of objects in DRAM. Columns 12 and 13 show the DRAM
consumed by WP for the simulated benchmarks.

allocation	 Heap	
%	nursery	
survival	

KG-N		
PCM	MB	

KG-W		
PCM	MB	

KG-W	
DRAM	MB	

WP	
DRAM	MB	

KG-W		
%	mature	

KG-W	
metadata	MB	

KG-W	%	
observer	

KG-W		%	held	
	in	DRAM	

MB	
(1)	

MB	
(2)	

KG-N	
(3)	

KG-W	
(4)	

avg	
(5)	

max	
(6)	

avg	
(7)	

max	
(8)	

avg	
(9)	

max	
(10)	

avg	
(11)	

max	
(12)	

in	DRAM	
(13)	

avg	
(14)	

max	
(15)	

survival	
(16)	

MB	
(17)	

Obj	
(18)	

Lusearch	 4294	 68	 4%	 4%	 49	 64	 41	 63	 6	 7	 31	 38	 0%	 1.8	 2.8	 29%	 6%	 9%	
Pjbb	 2314	 400	 20%	 20%	 280	 386	 252	 310	 40	 52	 5%	 16	 20	 84%	 7%	 6%	
Lu.Fix	 848	 68	 2%	 2%	 22	 24	 16	 16	 15	 15	 7	 8	 8%	 1.6	 1.9	 25%	 3%	 4%	
Avrora	 64	 98	 15%	 15%	 24	 25	 20	 20	 15	 16	 0%	 3	 4	 0%	 0%	 0%	
Luindex	 37	 44	 22%	 22%	 21	 22	 21	 21	 13	 13	 0%	 1	 1	 0%	 0%	 0%	
Hsqldb	 165	 254	 66%	 60%	 85	 137	 70	 120	 19	 21	 1%	 6	 8	 88%	 0.2%	 0.02%	
Xalan	 980	 108	 17%	 14%	 73	 104	 52	 92	 18	 18	 51	 60	 7%	 1.8	 1.9	 9%	 8%	 1%	
Sunflow	 1920	 108	 2%	 2%	 31	 45	 21	 22	 18	 18	 15%	 2	 2	 13%	 35%	 30%	
Pmd	 364	 98	 23%	 23%	 73	 94	 94	 47	 20	 24	 13	 25	 8%	 4.3	 7.9	 68%	 5%	 7%	
Jython	 1150	 80	 0.001%	 0.2%	 73	 80	 68	 64	 21	 26	 6%	 5	 10	 12%	 30%	 25%	
PR	 6946	 512	 36%	 36%	 254	 502	 263	 490	 32	 60	 3%	 13	 6	 99%	 0.3%	 0.1%	
Pmd.S	 202	 98	 27%	 27%	 55	 77	 33	 40	 19	 20	 17	 24	 11%	 2.6	 3.5	 47%	 6%	 9%	
CC	 5507	 512	 24%	 24%	 242	 502	 240	 484	 35	 75	 5%	 10	 22	 97%	 2%	 1%	
ALS	 14245	 512	 9%	 10%	 254	 502	 215	 430	 86	 224	 25%	 4	 22	 63%	 50%	 41%	
Fop	 56	 80	 20%	 20%	 26	 28	 24	 24	 17	 17	 8%	 3	 3	 82%	 14%	 7%	
Antlr	 246	 48	 15%	 15%	 27	 36	 19	 20	 15	 15	 7	 9	 10%	 1.1	 1.1	 0.16%	 17%	 5%	
Bloat	 1246	 66	 4%	 4%	 34	 46	 27	 27	 16	 16	 7	 27	 7%	 1.9	 2.1	 19%	 13%	 12%	
Eclipse	 3082	 160	 15%	 14%	 114	 155	 110	 145	 23	 25	 5%	 6	 7	 37%	 1%	 1%	

Avg	(All)	 2900	 206	 17%	 17%	 111	 184	 98	 140	 26	 40	 8%	 5	 8	 46%	 12%	 10%	
Heap	%	 97%	 98%	 80%	 80%	 20%	 20%	 8%	 2%	 4%							
Avg	(Sim)	 1169	 79	 13%	 13%	 48	 64	 34	 47	 16	 16	 19	 27	 4%	 2.2	 3.0	 28%	 8%	 7%	
Heap	%	 92%	 94%	 68%	 88%	 32%	 22%	 39%	 36%	 4%	 4%	 5%							
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Figure 13.MB in PCM (left-hand y-axis label) versus MB in DRAM (right-hand y-axis label) as a function of time for Page
Rank and Eclipse. KG-W uses large amounts of PCM and small amounts of DRAM.

DRAM on average and up to 224 MB (columns 9 and 10), and
16 MB to 263 MB of PCM and up to 484 MB for CC (columns
7 and 8). KG-W trades higher utilization of DRAM (10%) for
disproportionate increases in PCM liftetimes.
Columns 11 and 12 show the DRAM consumed by WP.

The average DRAM consumption is 7% more than KG-W.
Individual benchmarks behave differently. For instance, for
lusearch and xalan, WP consumes 3× and 5×more DRAM on
average. Both these benchmarks allocate many large objects
directly in PCM. WP’s reactive algorithm keeps these pages
in DRAM. For the remaining benchmarks, WP consumes less
or similar DRAM memory compared to KG-W.
Column 13 reports the percent of the total heap (column

1) occupied by KG-W’s mature DRAM space, which ranges

from 1.3 MB to 186 MB, only 8% of the heap on average.
Columns 14 and 15 show that the DRAM metadata space
consumes a small fraction of the KG-W heap. Overall, KG-W
stores 80% of the heap in PCM versus KG-N’s 98%.
Column 16 shows that the observer-space survival rate

ranges from 0.2% to 99%. Benchmarks with large observer
survival rates, such as hsqldb, PR, pmd, pmd.S, and CC have
correspondingly higher overheads in Figure 12 due to having
to copy objects twice before they reach the mature space. In
contrast, the benchmarks with low observer space survival
rates have lower overheads. The last columns shows KG-W
copies most objects to PCM: it retains only between 0.2%
and 41% of surviving observer objects in DRAM. KG-W uses
less PCM memory than KG-N for two reasons: objects die in
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the observer space and KG-W keeps a few written objects in
mature DRAM. Furthermore, even though these applications
exhibit a wide range of diverse behaviors with respect to
object demographics and writes, KG-W is extremely effective
at limiting writes to PCM by managing object placement and
migration in hybrid DRAM-PCM memories.
6.2.4 Heap Composition
This section explores the way KG-W uses DRAM and PCM
using heap composition graphs. Figure 13 plots the usage of
PCM versus DRAM in MB over time for PR and eclipse. For
both applications, full heap collections cause the amount of
PCM memory used to decrease drastically, mostly because
many objects die, but also because some are copied to DRAM.

For PR, while the amount of PCM used grows to close to
500 MB, the maximum amount of DRAM used (right axis) is
around 40 MB. Visually, DRAM occupancy increases at the
same time as PCM shrinks due to a full heap collection that
moves objects from PCM to DRAM. For instance at around
10 seconds into execution, DRAM occupancy increases due
to a full heap collection that copies written mature objects
out of PCM. As Table 4 shows, Page Rank has a high observer
survival rate, yet KG-W promotes very few of these surviv-
ing observer objects to mature DRAM. The graph shows
how these observer collections quickly populate PCM and
consequently trigger full heap collections.
We observe that eclipse uses up to 145 MB of PCM, but

the DRAM usage maxes out around 2.5 MB. Highly mutated
objects in DRAM also have long lifetimes for eclipse. Dur-
ing mature collections (around the 5 second and 14 second
marks), whereas the PCM usage drops by almost half, much
of mature DRAM stays alive. Table 4 shows that observer
collections copy only 1% of surviving objects on average to
mature DRAM. Fortunately, these DRAM objects are highly
written, which protects PCM from writes.
6.3 Discussion
Researchers are still developing non-volatile memory tech-
nologies, so endurance levels, access latency, and energy
characteristics may improve. Regardless, PCM cell endurance
is very unlikely to reach DRAM levels because of material
properties. Other technologies, such as resistive random-
access memory prototypes, have higher, but still finite en-
durance, e.g., one trillion writes per cell [28].
Faster write operations require higher temperatures in

many non-volatile memory technologies, i.e., the switching
speed depends on the temperature. Recent studies trade off
the speed of write operations for improved lifetimes [54].
Slower writes stall the processor pipeline, thus hurting per-
formance. On the system side, as the number of cores on a
processor increases, write rates to memory will also increase.
These trends argue for software approaches, such as write-
rationing garbage collection, to reduce memory writes and
optimize energy consumption.

Our KG-W collector copies objects at least twice, from the
nursery to the observer space and then from the observer
space to either DRAM or PCM. This copying induces PCM
writes for PCM object references to copied objects. The orig-
inal Immix paper describes non-moving variants of Immix,
which would eliminate these writes [10]. These collectors
trade the locality of contiguous allocation for increased heap
occupancy and fragmentation. This tradeoff is good for PCM
lifetimes and merits but may increase DRAM requirements.

The default Immix collector defragments blocks based on
a threshold that indicates fragmentation is preventing the
collector from using some fraction of the memory in partially
filled blocks in the mature space. Immix defragmentation
combines marking with copying based on occupancy statis-
tics of the partially filled blocks, seeking to move the fewest
numbers of objects and to create the maximum number of
completely free blocks. It thus trades increased numbers of
writes to reducememory consumption. PCMmemory prefers
exactly the opposite tradeoff – PCMmemory is write-limited
coupled with plentiful capacity. For the heap sizes this pa-
per explores, Immix defragmentation was never triggered.
However in the limit, the collector should monitor and limit
extreme fragmentation. We leave the exploration of non-
moving collectors and defragmentation for future work.
7 Conclusions
This paper introduces write-rationing garbage collectors,
which seek to maximize the use of PCM while improving
its lifetime in hybrid memory systems. Our Kingsguard col-
lectors exploit object demographics and individual object
write behaviors in Java applications. Kingsguard-nursery
(KG-N) places nursery objects in DRAM and all other objects
in PCM. Kingsguard-writers (KG-W) adds monitoring of ma-
ture object writes and moves objects between DRAM and
PCM based on their individual write history. KG-N places
92% of heap objects on average in PCM, but still removes
over 80% of writes to PCM compared to PCM-only with hard-
ware wear-leveling, leading to a 5× improvement in PCM
lifetime. KG-W places 68% of the heap in PCM to remove
over 90% of all writes, thus greatly extending PCM lifetime
by 11×. Both KG-N and KG-W improve over WP, the state-
of-the-art OS approach [43, 55]; WP writes to PCM 3× more
than KG-W. This work demonstrates that managed runtimes
have a significant advantage over hardware and OS-only
approaches because they can exploit, observe, and react to
coarse-grained object demographics and to fine-grained ob-
ject behaviors, opening up a new and promising direction
for managing hybrid DRAM-PCM memory systems.
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