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The end of Dennard scaling leads to new research directions that try to cope with the utilization wall in
modern chips, like the design of specialized architectures. Processor customization utilizes transistors more
efficiently, optimizing not only for performance, but also for power. However, hardware specialization for each
application is costly and impractical due to time-to-market constraints. Domain-specific specialization is an
alternative that can increase hardware reutilization across applications that share similar computations.
This paper explores the specialization of low-power processors with custom instructions (CIs) that run on a
specialized functional unit. We are the first, to our knowledge, to design CIs for an application domain and
across basic blocks, selecting CIs that maximize both performance and energy efficiency improvements.

We present MInGLE (Merged Instructions Generator for Large Efficiency), an automated framework that
identifies and selects CIs. Our framework analyzes large sequences of code (across basic blocks) to maximize
acceleration potential, while also performing partial matching across applications to optimize for reuse of
the specialized hardware. In order to do this, we convert the code into a new canonical representation, the
Merging Diagram, which represents the code’s functionality instead of its structure. This is key to being able
to find similarities across such large code sequences from different applications with different coding styles.
Groups of potential CIs are clustered depending on their similarity score to effectively reduce the search
space. Additionally, we create new CIs that cover not only whole-body loops, but also fragments of the code,
in order to optimize hardware reutilization further. For a set of eleven applications from the media domain,
our framework generates Cls that significantly improve the energy-delay product and performance speed-
up. CIs with the highest utilization opportunities achieve an average energy-delay product improvement of
3.8x compared to a baseline processor modeled after an Intel Atom. We demonstrate that we can efficiently
accelerate a domain with partially-matched Cls, and that their design time, from identification to selection,
stays within tractable bounds.

Categories and Subject Descriptors: Computer systems organization [Other architectures]: Special pur-
pose systems

General Terms: Design, Performance, Measurement, Experimentation

Additional Key Words and Phrases: Customization, Acceleration, Domain-specific, Canonical representa-
tion, Clustering

1. INTRODUCTION

Lately power efficiency has become a factor as important as performance in processor
design. Fixed power budgets and the end of Dennard scaling [Dennard et al. 1974] have
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challenged the sustainable growth in computer performance of the last decades, result-
ing in the utilization wall [Goulding-Hotta et al. 2011], which in turn has stimulated
the adoption of custom computing. Specialized co-processors and datapath accelerators
can take advantage of the under-utilized transistors of modern chips, implementing
energy-efficient acceleration hardware that complements the main processor.

Extensible processors, also known as Application-Specific Instruction Processors
(ASIPs) [Keutzer et al. 2002], are a solution that balances performance and flexibi-
lity and that still maintains the energy efficiency benefits of specialization. The de-
sign of ASIPs involves augmenting a general-purpose processor with instructions that
are customized for a particular application, and that execute on specialized functional
units. This design process can be simplified with automated techniques that imple-
ment those custom instructions (Cls). Using Cls is less complex than specializing a
complete processor and they are easier to program than bigger off-core accelerators.
However, if Cls are not frequently executed, the acceleration benefits will not compen-
sate for the overall energy consumption. Usually, the automated design of application-
specific Cls is divided into the identification of CI candidates, and the selection of the
best CI configuration. Additionally, we improve the design with optimizations.

In this paper, we explore the design space of potential Cls that accelerate sequences
of operations across a domain of applications. We target domain-specific acceleration
because applications often perform similar computations, and this can improve hard-
ware reusability and acceleration opportunities, as opposed to prior research that has
targeted isolated applications [Bauer et al. 2008; Govindaraju et al. 2012]. While pre-
vious work has also explored specializing hardware across a domain, they have ei-
ther been targeting a much larger accelerator [Gupta et al. 2011; Venkatesh et al.
2011], targeting hardware that is dynamically reconfigured while the application is
running [Bauer et al. 2008], or also targeting CIs that run on a specialized functional

unit [Clark et al. 2005; Gonzalez-Alvarez et al. 2013], but analyzing smaller sequences
of code (basic blocks) to accelerate. We instead find CIs across basic blocks, which has
the potential to accelerate larger sections of the applications; however, it is more chal-
lenging to reuse hardware as the larger code sequences analyzed are more likely to
differ across applications. To tackle this problem, we transform the code into a new
representation, called the Merging Diagram, that 1) is canonical, which represents
the functionality of the code instead of its structure, 2) supports predication, which
is necessary to cover loop bodies, and 3) facilitates finding partial matches of code se-
quences across Cls to make the most effective use of the hardware. We aim to share
common operations of sequences of instructions in order to cover more code while tak-
ing up less hardware area. For instance, the functions F'1 =a+b+cand F2 =axb+c
can be collapsed into a single instruction that shares the circuit of one addition, and
selects between an addition and a multiplication. We take this a step further by match-
ing selected parts of Cls (fragments) with fruitful full CIs, in order to accelerate even
more code while adding minimal additional area.

We implement our contributions within MInGLE (Merged Instructions Generator
for Large Efficiency), an automated methodological framework to design CIs that
execute on a Domain-Specific Functional Unit (DSFU) (Section 2). We adapted the
application-specific CI design process to suit an application domain. Our framework
has identification and selection steps (modified for our goals), and two optimization
steps for better use of the implementation area. Because we are solving the optimiza-
tion problem of maximizing performance speedup and minimizing hardware area and
energy usage for an entire domain of applications, designing our framework to gener-
ate the most fruitful CIs in a reasonable amount of time was a key goal. To identify
CIs, we first profile the applications to extract hot loops that are implemented as po-
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Fig. 1. Block diagram of a modified Intel Atom processor pipeline that includes a DSFU.

tential CIs using high-level synthesis. We also consider different implementations of
code sequences, such as with different loop unrolling factors. We transform the Cls
into a novel canonical Merging Diagram that facilitates similarity identification (Sec-
tion 3). Then, as an optimization, the framework clusters these candidates to match
not only Cls with exact functional similarity but also those with partial similarities
(Section 4). CIs with overlapping functionality are merged such that the overlapping
sections will be accelerated by the same DSFU pipeline, reducing specialization area
usage. While datapath merging is a known approach for area savings, our method is
suited for domain-specific CIs across basic blocks. We also introduce a new optimiza-
tion that matches fragments of ClIs with previously generated full CIs (Section 5).
Finally, our framework selects a set of Cls that fit into a particular hardware area,
maximizing energy efficiency and performance speedup across the applications (Sec-
tion 6). For the evaluation (Section 8), we compare the effectiveness of exact, partial
and fragment matching across and within basic blocks. We also evaluate different de-
sign parameters of the framework across a range of hardware areas. We demonstrate
the validity of the framework using 11 media benchmarks in the context of a simulated
superscalar in-order processor that is modeled after the Intel Atom. For the technique
with fragments, we report average speed-up improvements across applications of up
to 2.1x for performance and 3.8x for energy-delay product (EDP) improvement com-
pared to the baseline processor. To summarize, the main contribution of this paper is
an automated framework that:

—identifies Cls across basic blocks and across the domain, with different implementa-
tions of code sequences;

— selects the best CI configuration that is fair across the domain;

— optimizes using partial matching to create a reusable circuit;

— optimizes for both performance and energy efficiency at the smallest implementation
areas with CI fragments.

2. SYSTEM OVERVIEW

We aim to accelerate a domain of applications for the embedded market, where both
performance speedup and energy consumption are important. Thus, the baseline pro-
cessor is a low power Intel Atom [Halfhill 2008], described in Section 2.1. The frame-
work that we introduce in Section 2.2 extends the basic ISA with instructions that
accelerate the programs by executing a bundle of predicated operations.
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2.1. Target Architecture Model

We identify Cls that execute intermittently at different points of different programs.
We consider a loop body, made up of one or several basic blocks, to be the basic por-
tion of code that defines our CIs. ClIs are multi-cycle, have variable latency, and use
few inputs to produce few outputs. They access data through the processor’s register
files; therefore, input and output data sizes are always within some established lim-
its. Cls are calculation intensive, and if they support branches, their execution can be
predicated, computing if/else paths of branches in parallel. They exploit sub-word par-
allelism as SIMD instructions do, but they also exploit instruction-level parallelism,
executing different operations in parallel. We achieve performance speedup because of
this additional parallelism. Additionally, we can reduce resource contention in several
pipeline stages due to collapsing several instructions into one, due to a minimization
of branch penalty through predication, and to a reduction of cache instruction misses.

The target architecture is a low-power processor with a tightly coupled Domain-
Specific Functional Unit (DSFU) that executes the CIs. We assume a superscalar in-
order Intel Atom [Halfhill 2008] as our baseline processor, modified accordingly to the
model in Figure 1 with an embedded DSFU. The DSFU architecture template is recon-
figurable, and implements several Cls that share two fixed arrays of input and output
registers, which are directly connected to the processor’s register files. Those private
registers are disjoint in order to overlap load and store operations. If the number of
inputs or outputs of a CI exceeds the capacity of the register file’s read and write ports,
its execution requires pre/post execute stages for extra data transfers. We count on the
same data bandwidth as for other processor instructions using the processor’s memory
hierarchy. Despite the fact that there exist CIs with memory support [HaaBet al. 2014],
our Cls read and write data from and to the processor’s register file to simplify the de-
sign and to not greatly increase power consumption beyond the processor’s baseline.
We also do not consider parallel execution of the DSFU with the processor’s functional
units because the performance improvement is not significant enough [Carrillo and
Chow 2001]. Thus, when the DSFU executes, the rest of the pipeline stalls.

The config signal controls the CIs’ connections to those registers and selects the CI
datapath to execute. The reconfiguration manager is connected to memory, where it
can read a new configuration with a different implementation of CIs and modify the
whole reconfigurable area. Depending on the chosen reconfigurable hardware technol-
ogy, CIs on the DSFU execute at a different frequency than on the main processor. The
DSFU’s period should be a multiple of the core’s period to simplify changing the clock
domain and sharing data across both clock domains. For instance, there is a 1:4 ratio
between an Intel Atom core operating at 1.6 GHz and a DSFU operating at 400 MHz.

We extend the x86-64 based ISA with the following Atom-compatible instructions:

— DSFU_exec config, i/r: to execute the custom instruction specified by the config ar-
gument. The second operand may be used to transfer data to a determined input
register. Latency: 4 x C, with C the number of internal cycles that the CI takes in the
DSFTU, scaled to the core’s clock.

— RF2DSFU dsfu_in, r and DSFU2RF r, dsfu_out: to move data from/to the core register
file r to/from the DSFU input registers. Latency: 1 cycle.

— DSFU_config m, i: i number of bytes are read from m memory location to reconfigure
the CI implementation space of the DSFU. Latency: f(i), as it depends on the number
of bytes to read and the memory bandwidth.

2.2. MInGLE Framework

Figure 2 shows a high-level representation of our automated framework MInGLE,
composed of five modules. The section where each module is explained is annotated in
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Fig. 2. MInGLE automated framework for the implementation and generation of partially-merged Cls.

the figure. Starting with a set of applications from a domain, the Candidates Extrac-
tion module (at the top, Section 3.1) identifies and generates potential CI candidates
based on profile information. This paper’s core work is implemented in subsequent
modules, with the compound objective of generating energy-efficient Cls across a do-
main of applications, while making the exponential search space tractable. The Ca-
nonicalization module (Section 3.2) transforms Cls expressed in the compiler’s Inter-
mediate Representation (IR) into a new canonical representation: Merging Diagrams.
The next module, Merged CIs Generation, in Section 4, first calculates the pairwise
distances used in the identification of similarities between CIs (Section 4.2). Because
we use a canonical representation and create a global ordering of variables, that step
is computed quickly and efficiently. Then, the clustering (Section 4.3) allows the frame-
work to do both exact and partial matching of CIs, with the latter an optimization that
enhances the CIs’ reutilization across applications. The Merging Estimation, together
with the Performance and Energy models (Section 4.4), quantifies the advantages of
the generated Cls, estimating the new area, energy and speedup of each clustered
group of Cls. Afterwards, the CI Fragments Generation (Section 5) module imple-
ments a new optimization technique to obtain larger improvements in performance
and energy efficiency with very limited hardware area. Finally, module CI Selection
(Section 6) solves the optimization problem of fitting the best group of candidates that
save the most energy across the domain, into a limited area.

3. IDENTIFICATION OF DOMAIN-SPECIFIC CUSTOM INSTRUCTIONS
3.1. Candidates Extraction: From Application Code to Hardware Acceleration

In the Candidates Extraction module of MInGLE (upper side of Figure 2), we first
profile each of the input applications, identifying their hot loops in the Profiling step.
We extract those hot loops’ bodies as isolated code that we can execute as new Cls in
the Extraction/Slicing step. As our target Cls operate on data transferred from and
to the register file, memory operations are sliced and placed before and after the loop
body computation. Although we only consider inner-most loop bodies for acceleration,
if the number of iterations of the loop is known at compile time, then the inner loop is
completely unrolled. Then, the next inner-most loop may also be considered for accel-
eration. All function calls in a loop are inlined and considered for acceleration if their
functionality is known at compile time (i.e., mathematical functions such as pow()). In
the Simulation step, we simulate the applications with the identified high-level CIs to
measure cycles and energy consumption in the baseline processor. In the High Level
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Fig. 3. From an IR (a), polynomials are extracted (b), variables renamed (c), and an MD is created (d).

Synthesis (HLS) step, we implement CIs in hardware, obtaining their area occupancy,
communication and execution cycles and energy, and, in parallel, their Intermediate
Representation used in subsequent modules. At this step, we evaluate the performance
of every CI in hardware compared to its software version, discarding those with worse
performance in hardware. This could be the case with regions of code that have a
higher communication latency than execution latency. In the HLS transformation, we
apply different vectorization factors, and unroll the outer-most loop of the hot region.
Therefore, besides the implicit instruction-level parallelism of the CIs, we also have
potential data-level parallelism from the HLS optimizations. From now on, we talk
about a CI as the high-level representation of a loop body or inline function that can
be accelerated in hardware, and we talk about CI variants or only variants to spec-
ify distinct implementations of a CI. Different implementations include different un-
rolling factors and, potentially, also vectorization. Thus, depending on the compiler
optimizations applied, we obtain several application-specific variants with their im-
plementation details.

3.2. Canonicalization of Custom Instructions with Merging Diagrams

Identifying similarity between CI variants in a non-unified representation is difficult
due to the amount of unnecessary information a modern compiler’s Intermediate Rep-
resentation (IR) includes. Also, a representation such as a data-flow graph, which ex-
presses structural relations between operators, does not expose functional similarities,
since different coding styles among applications may hide them. Therefore, in the Ca-
nonicalization step in Figure 2, we transform the CI variants expressed initially in a
compiler IR, into an abstract, canonical representation: the Merging Diagram (MD).

The MD represents arithmetic and logic operations (within the basic block), and
predicate information (at the loop level), both with unrestricted number of inputs
and outputs. Its representation is partially based on Taylor Expansion Diagrams
(TEDs) [Ciesielski et al. 2006] and Binary Decision Diagrams (BDDs) [Bryant 1986].
We have successfully used TEDs for CI similarity detection within a basic block in our
previous work [Gonzélez-Alvarez et al. 20131, but extending CIs beyond the basic block
level needs a new representation that includes predication. Also, the codes we process
include operations that cannot be expressed as polynomial functions, which are the
base of the TED representation. The following definitions explain the details of our
new representation, which include both modified versions of TEDs and BDDs.

Definition 3.1. An Augmented TED (AugTED), is a directed acyclic graph based on
linearized and reduced TEDs. It is composed of a labeled set of nodes V', a weighted
set of edges F, and the terminal node 1. In normal TEDs, V represents variable names
and F are additions/subtractions or multiplications. AugTEDs expand TED nodes to
represent any kind of computation, using variable renaming. Here, labels in V' can be
integer, float or special. Integer and float labels represent variable types, and special
labels a function that cannot be represented by a Taylor expansion.
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Algorithm 1: Merging Diagrams construction

input : Array of CIs’ IR codes AllIRs
output: Merging Diagrams AllM Ds

Array AllPolynomials, Rewritten Polynomials <— ()
2D array RenamedMap <— ()
for IR € AllIRs do
PolyAugTED < ComputationPolynomials(IR)
PolyLinBDD < PredicationPolynomials(IR)
add (PolyAugT ED U PolyLinBDD) to All Polynomials
end
for p € AllPolynomials do
M + GetMonomials(p)
for m € M do
MonomialType < GetMonomialType(m)
VarNames < GetVariablesNames(m)
for vn € VarNames do
if vn ¢ RenamedMap then
vn' < renameVar(vn, MonomialType)
add < vn,vn’ > to RenamedM ap
end
end
end
p’ « replaceVars(p, RenamedMap)
add p’ to RewrittenPolynomials
end
VarsOccurrences < countOccurrencesV ars(Rewritten Polynomials)
OrderedV ars < ascendingOrderV ars(VarsOccurrences)
s < size of OrderedVars + 1
Array AlIMDs +— ()
for p’ € RewrittenPolynomials do
MD «+ < Diagram: s x s array, Link: 2D array>
MD.Link <+ linkToAugT EDV ars(p', RenamedMap)
diagramFEzpansions(p', M D.Diagram, OrderedVars) add M D to AlIM Ds
end
return AlIMDs
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Definition 3.2. A Linking BDD (LinBDD) is a directed acyclic graph based on re-
duced and ordered BDDs. It consists of a labeled set of nodes V', a set of edges F’,
and terminal nodes 0 and 1. LinBDDs nodes have BDDs’ 0-1 decision edges, and addi-
tionally a third edge Link that references an outside diagram, namely an AugTED. A
LinBDD is constructed with the Shannon expansion of boolean functions created with
the If-Then-Else (ITE) operator: ITE (I,T,E)=1-T+1-E.

Definition 3.3. A Merging Diagram is a data structure that provides a canonical
representation of a predicated code region. It consists of a set A of AugTEDs that
represent computation and a set L of LinBDDs that represent control flow execution.
Link edges from the nodes in each member of L references a member in A.

Figure 3(d) shows an example of an MD for a given code sequence. The left part of
the MD is a LinBDD and its nodes are linked to AugTEDs on the right via Link edges.
There is a special label (SA(sit)) that stands for a relational operator that cannot be ex-
pressed by Taylor expansions. Details on the construction of the MD, with explanation
of the example of Figure 3, follow.

3.2.1. Merging diagrams construction. To build all the canonical MDs of a group of CI
variants, we follow the steps of Algorithm 1. We start processing in lines 3 — 7 the set
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Fig. 4. Cumulative distribution of the similarity score obtained with Edit Distance and Merging Diagram,
for pairs of Cls that (a) accelerate one application, (b) accelerate several applications, (c) cover code inside
one basic block and (d) cover code across basic blocks.

of IRs of all the CI variants’ code regions. Figure 3(a) shows an extract of an IR exam-
ple with arithmetic, relational and conditional selection instructions. For each one of
the IRs, we extract the polynomial representation of the computations (PolyAugTED)
and the branch predication (PolyLinBDD) of the code, as illustrated in Figure 3(b).
With those base polynomials, we establish a precise variable renaming that unifies
the variable name space in lines 8 — 22, which facilitates fast similarity identification
in Section 4.2. To do so, we decompose each polynomial into its monomials (line 9),
and we rename each variable based on the type of monomial where it is found (lines
10 — 19). We find primarily adding and multiplying types of monomials, but also cover
floating-point and predicated types. For instance, in Figure 3(c), variables are renamed
as A (adding) and M (multiplying) preceded by P (predicated) or S (special).

Then, in lines 23 — 25 we define a strict variable ordering for the expansions. As we
have multiple polynomials that expand with the same group of variables, we first set
variables in ascending order based on the number of times they occur. This ensures
that we will have a minimum number of expansions, resulting in a more compacted
MD. For the same reason, in the case of a tie in the number of instances between
multiplying and adding variables, we prioritize the multiplying ones.

Finally, in lines 27 — 31, for each rewritten polynomial, we create an MD structure
with a condensed matrix Diagram that contains all the nodes and edges from the AugT-
EDs and LinBDD; it is thus of size s x s, with s the precalculated size of all the variables
involved. Link edges are though kept apart in a two-dimensional array. Following the
variable ordering, we build the MD expanding each term recursively as it is done regu-
larly with TEDs and BDDs. We show in Figure 3(d) the resulting representation, which
is still canonical for the variable order, as it is the case for regular TEDs and BDDs.

3.2.2. Global diagram of variants. In order to cut down computation costs in later steps,
it is required to have a diagram that represents the entire design space of CI variants.
To do so, we combine all the AugTED and LinBDD polynomials to obtain a global MD
unified representation. For each variant, we locally rename its polynomial variables,
saving the naming convention and number of instances in a global structure. Then,
based on that information, we produce a global variable ordering that is fixed for the
design space, and produced MDs for each variant with the global ordering.

4. OPTIMIZATION: MERGING DOMAIN-SPECIFIC CUSTOM INSTRUCTIONS
4.1. Motivation and Comparison with the State-of-the-art

To show how the canonical Merging Diagram is better at finding similarities, we com-
pare it to the structural graph-based techniques that state-of-the-art specialization
research has used [Clark et al. 2005; Govindaraju et al. 2012; Huang et al. 2014;
Venkatesh et al. 2011]. We quantitatively compare the ability of the different rep-
resentations, a Directed Acyclic Graph (DAG) versus our canonical MD, to facilitate
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partial merging of CIs. We present each technique’s ability to match CIs in the form of
similarity scores between different ClIs to assess how much hardware could be shared,
or alternatively, how much code could be accelerated.

Performing partial matching of different code graphs is a difficult problem. Partial
merging of CIs has been studied for small patterns of code, with a few inputs and
outputs and no control code (inside basic blocks) [Clark et al. 2005]. In that case, the
problem could be modeled as subgraph isomorphism detection, which means matching
predefined small patterns against a bigger graph. However, in our case, i.e., using the
Merging Diagram, the subgraphs to match are unknown, and enumerating them is
computationally unfeasible due to the sizes of the code across basic blocks that we try
to accelerate. A better model for our problem is maximum common subgraph identifica-
tion between two graphs, where we allow disconnected maximum common subgraphs.
Although this is an NP-complete problem, the distance calculation that we detail in
the next section can solve the matching identification in O(nlogn) for each pair of Cls,
with n being the number of AugTED and LinBDD nodes of the biggest CI MD.

We compare our MD’s similarity detection results against those of a state-of-the-
art method [Huang et al. 2014] that finds partial similarities using the Edit Distance
concept: the similarity is measured based on the edit operations to convert one graph
into the other one. The time complexity of this approach is O(|G1| x |Gz]), with |G| and
|G| the number of nodes of each graph. Although the original work does not cover code
across basic blocks, we have adapted it to the loop-body level, adjusting this Edit Dis-
tance to be comparable to our own similarity score. The score of both methods indicates
how similar two Cls are, with 0 being exactly similar, and 1 not similar at all.

We compare Edit Distance and Merging Diagram matching (EDM and MDM, re-
spectively) in Figure 4, where we show the cumulative distribution of the scores ob-
tained with both methods. The x-axis represents the distance, or dissimilarity score,
and the y-axis represents the actual frequency percentage of the distribution. On av-
erage, EDM has a score of 0.96 and MDM has a score of 0.57, which means that our
Merging Diagram is able to match many more code sequences than a regular DAG
approach. Figure 4 breaks down the results into (a) application-specific CIs and (b)
domain-specific CIs. While MDM finds many more similarities in both cases, EDM
sees its best results when matching application-specific CIs. This is the reason why
previous work that focuses on application-specific acceleration found DAG-matching
techniques to be sufficient; the code within an application has a similar coding style,
and thus can use traditional graph matching techniques. When analyzing code across
a domain, however, it is much more beneficial to first convert the code to a canonical
representation that encodes the functionality before matching. Figure 4 also compares
the matching of CIs (c) inside a basic block and (d) across basic blocks. In both cases,
MDM is able to find more similar CIs than EDM, especially with the matching across
basic blocks, which is a benefit of the new canonical representation.

Being able to find a high degree of similarities using our new Merging Diagram
means that more code sequences can be mapped into the same CI, shrinking the im-
plementation area while accelerating more code. We then have more space to imple-
ment other Cls of the domain, and thus can expect overall higher speedups and energy
savings than with an application-specific solution.

4.2. Distance Calculation

In the Distance Calculation step, we need to establish a concrete metric that mea-
sures similarities among CIs to guide the subsequent clustering step of the MInGLE
framework. Thus, we develop a new way to measure how different two variants are in
terms of their functionality, using the MD. We perform a distance calculation for pairs
of MDs of variants that do not implement the same loop body, CI x and CIy. We use
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Fig. 5. Distance between codes 1 and 2 in the left-most column, first with a graph-based representation in
the middle column, and then with Merging Diagrams in the right-most column.

the previously built global diagrams to speed up this calculation. If we would not have
the global, uniformed variable space that we obtained in Section 3.2.2, we would have
to compute a local variable ordering for each pair of Cls being compared, which would
be computationally very expensive. Thus, based on the pre-built global diagrams, we
obtain the number of AugTED-operations and LinBDD-branches in CIx that do not
match with those in CIy, namely nM x, and vice versa, nMy. We identify three types
of matches with MDs: perfect, hidden and with overhead. An MD subdiagram S with
nodes < vy,...,v, > and edges < eq,...,e, > has a perfect match with another MD
subdiagram S’ with nodes < v{,...,v], > and edges < ¢],...,e], > if their labels and
edges types match exactly. Afterwards, we identify a hidden match if the types of the
outgoing edges of nodes v, and v, match and are connected to subdiagrams with a
perfect match. Finally, a match with overhead identifies only nodes that represent the
same operations, but that do not share the same computational structure and would
need a multiplexer to be shared. Mox and Moy are then the number of nodes of CI x
and Cly, respectively, with the same operations but with that extra overhead. As those
matches with overhead incur in area costs, we count them also for the dissimilarity
metric. The matching information is kept for the merging step explained below in Sec-
tion 4.4. We also count the number of total AugTED and LinBDD nodes that each MD
variant has — Totx and Toty. Then, we compute the distance ¢ as:

0 (CIx, Cly) = average (Mox /2 4+ nMx)/ Totx, (Moy /2 + nMy)/ Toty) (@8]

One-to-one distances are saved in a condensed distance matrix.

Figure 5 shows a simple example of distance calculation using the graph-based Edit
Distance from the previous section, and our method. On the left are two pieces of code,
and the middle column shows their directed acyclic graph representations obtained
from the LLVM intermediate representation. Using the Edit Distance technique on
these graphs, we obtain a distance of 0.41 using a scale of 0 to 1, with 0 representing
the highest similarity degree. The last column shows the code’s MD representations,
with LinBDDs on the left and AugTEDs on the right. We show the variable renaming
to correlate MD nodes with the original variables, and denote the predicate nodes
(PMX) next to the high-level code on the left. In comparison with DAGs, MDs obtain
a higher matching degree (0.26). The Merging Diagrams are clearly very similar due
to their canonicalized form. For instance, the polynomial that expresses the control
flow of code 11is: P, = PM1 - PM2 - PM3 + PM1 - PM3, and the control flow of code 2:
Py = PMj - PM1 - PM2 + PMJ (PM1 - PM3 + (PM1 - PM3 - PM2 + PM3)). With a different
variable order, P, is written as: P, = PM1{(PM2 + PM2 - PM3 - PM4) + PM1 - PM3 -
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Fig. 6. Hierarchical clustering of CIs. Exact matching instructions are at the bottom, while nodes closer to
the root are increasingly less similar CIs. CIXX _vy: CI with identifier XX and implementation variant y.

PM/, which corresponds to the LinBDD of the second MD. Canonicalization enables
renaming variables to obtain a simplified polynomial which matches better with the
first code’s MD. Therefore, a canonical representation of the code’s functionality leads
to matching more code than with a structural representation, and therefore accelerates
more code while saving more energy.

4.3. Custom Instruction Variants Clustering

For domain-specific acceleration, merging Cls reduces energy consumption because
we need less implementation area, or alternatively improves performance since we
can allocate more CIs in the constrained area. We have to merge circuits of CIs that
have more in common to maximize area reduction, as well as minimize the implemen-
tation overhead due to circuit multiplexing. However, with the huge set of CI variants
that we obtain when we work with multiple applications, it is prohibitive to try all the
possible combinations of CIs that could be grouped together. Therefore, in the CI vari-
ants Clustering step, we group Cls based on a hierarchical clustering that organizes
groups by more to less functional similarity, cutting down the search space to avoid
those groups that are not similar enough to be worth implementing together.

Distances between variants help to quickly decide which ones are better to merge
together to reduce energy consumption. Using the distance matrix computed in the
previous step, we create clusters of CI variants. We perform hierarchical clustering of
CI variants, obtaining a dendrogram, a tree-like structure, as shown in Figure 6, where
tree leaves represent exact matches and internal nodes denote partial matches.
Starting from the baseline CI variants, we form exact-matching clusters based on the
distance matrix (leaves — level 0 in the figure). Then, distances between the newly
formed clusters use the complete method to determine the agglomerative distance,
that is, the maximum distance between any two variants in the cluster (levels 1 to 3,
to the root). From leaves to root, we find different versions of merged variants, ordered
from more to less similar.

Some of the obtained clusters may include variants that target the same CI. In Fig-
ure 6, level 0 includes two variants of the same CI: CI00_v! and CI00_v2; a variant of
CI01, and {CI01_v2, CI02_v1}, that is the exact matching of two different implemen-
tations of two different Cls. Level 1 has the cluster { CI00_v2, C101 _v1}, which has the
maximum similarity for partial matching. Variant CI00_v! from level 0 is clustered
at level 2 with {CI00_v2, CI01 _v1} from level 1. However, as a merged variant can-
not implement a concrete CI more than once, we produce different merged versions
that do not duplicate the code covered (CI00 or CI01) within the clusters where this
problem occurs. Thus, at level 2 we generate two solutions: {CI100_v1, CI01 v} and
{CI00_v2, CI01 _v1}. Since the latter already exists at level 1, we will eventually dis-
card it, although its information is still used to generate the cluster at level 3. Note
that this can induce an explosion in the number of solution clusters for a given level.
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In case of many cluster versions, we select a reduced group chosen heuristically based
on the expected EDP improvement, modeled using the equations in the next section.

4.4. Merging Estimation and Modeling

With the clustering formation, we obtain a bigger set of CI variants, some of which are
merged to save area. In the Merging Estimation step, we estimate the new hardware
area occupancy, performance and energy gains of merged variants to run the selection
step with accurate information.

Based on the information from the distance calculation (Section 4.2) of non-common
matches between each pair of variants, we obtain the area consumption of operators
that are shared (shared) and of those that are not (non_shared). For sharing logic, we
need to introduce multiplexers that will induce an extra area cost, overhead. Thus, we
calculate the area a; of a merged CI variant i as:

N
a; = overhead; + shared; + Z non_shared;. 2)
j=1

Then, in the Performance and Energy Model step, we first model the performance
of an accelerated application. We start by obtaining the cycles ¢_I_SW that a hot loop
iteration takes to execute in the baseline processor, excluding memory operations; this
is obtained through simulation. We also obtain the number of iterations N _it of that
loop for a given execution of the benchmark. From hardware synthesis, we get the
number of cycles c.HW that a CI variant takes, adjusted to the core’s clock frequency
domain. The cycles ¢ T to transfer data to the DSFU local memory are a function of
the input data size. Then, we obtain the cycles we save executing a variant as:

c_saved = (cl_SW — (c.cHW + ¢.T)) x N_it. (3)
We calculate the new number of application cycles as:
App_cycles = c_total _SW — c_saved, (4)

with c_total_SW as the application cycles without Cls.
Finally, the modeled energy consumption of an application with CIs is calculated as:

Eapp = Ebascline + EC’I, (5)

with Eygseiine the baseline processor’s energy model and E¢; the CI energy consump-
tion. The latter is modeled as the sum of its dynamic and static components:

ECI - denamic X TCI + Pstatic X Ttotal7 (6)

where Pgynamic and Psqic are, respectively, the dynamic and static power of the hard-
ware components that implement the CI variant, T is the time that the CI is active,
and Ty, 1s the execution time of the application calculated from App_cycles.

5. OPTIMIZATION: CUSTOM INSTRUCTIONS FRAGMENTS GENERATION

We call CI fragments a variation of partially matched Cls that will not include the full
original CI, but parts (fragments) of it. This kind of matching is aimed to improve re-
utilization of hardware at the most limited areas. With CI fragments we can partially
reuse an already merged CI cluster for CIs that were initially not included in that clus-
ter, with minimum additional overhead. We obtain CI fragments in the CI Fragments
Generation Module of the MInGLE framework.

Consider the clustering dendrogram of Figure 7 that organizes a hierarchy of CI
similarities. Baseline Cls are located at level 0, while merged CIs start from level 1
and go forward from more to less similarity degree. At each new level, two CIs from
lower levels are merged. In the merging process, the distance (dist) between Cls is
evaluated to determine which pair of CIs to merge in the next level. Each one of the
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Fig. 7. Example of partial merging with CI fragments.

merged Cls has an overhead from multiplexer switches represented as MUX, and a
number of saved cycles and new area placed in adjacent boxes.

Each one of the N baseline Cls is composed of one or several fragments, that we
define as computation blocks that can be separated from the CI without structural
problems. Although those computation blocks can overlap, in this example, the internal
CI operations covered by each fragment are fixed for illustrative purposes. Also, to
simplify the example, we consider that each CI has only one variant. For instance,
the only variant of CI_1, at level 0, is composed of fragments F71_A and FI_B. The
partial merging explained in previous sections merges whole Cls, based on increasing
distance. With that method, we first obtain a new merged CI_2 + 3 at level 1 and then
CI_1 + 2+ 3 at level 2. With each new merged CI, we obtain a speedup based on the
combined saved cycles, and a new area that includes non-common operations, merged
common computations, and the switching logic overhead (MUX).

However, consider CI_1 + 2 + 3 and its fragments at level 2, product of merging
CI_1 with CI_2 + 3. Fragment F1_B from CI_I is completely merged with CI_2 + 3,
avoiding a significant area increase. In contrast, fragment F'71_A, also from CI_1, is
fully incorporated at a substantial area increase. Consequently, we can argue that if
we merge only one of the fragments, we could obtain savings in cycles at a low area
cost. This is what CI_2 + 8 + F1_B on the right of the figure illustrates (Merged CI
with fragments). If we merge only fragment F1_B from CI_1 with CI_2 + 3, the area
increase from additional switching logic (extra) will be negligible, while performance
will improve due to being able to accelerate more code (F'1_B).

5.1. Generation of Custom Instruction Fragments
There are some conditions to specify how suitable CI fragments are found:

— The size of a CI fragment is at most the same as the CI that matches, which is gen-
erally much bigger. Therefore, for a given merged CI, we can have several fragments
from different applications matching.

— Operations included in a fragment do not depend on excluded ones, to avoid a convex-
ity violation [Karuri and Leupers 2011], or circular dependency between operations
that could result in wrong scheduling.

— CI fragments should not add logic to perform computations, but they can add some
additional overhead for switching circuits. They may also have extra cycles to trans-
fer data and the total number of saved cycles are probably less than if the full CI
was included. All this additional overhead and reduced gains are carefully weighed
to determine if a CI fragment is worth including.

— We can create CI fragments using Cls from any level of the dendrogram, either with
exact or with partial similarities.
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Algorithm 2: Fragment Matching

input : Merged Diagrams M Ds, merged clustering solutions M S, threshold
output: Solutions M SF

Array MSF +— MS

for Sol € MS do

Candidates <— ()

for md € M Ds do

if C1(md) ¢ Sol then

FM«+— 10

for WholeFragment € md do

| FM < FM U GetMatchesOneW ay(W holeFragment, Sol)

end

if matches(F M) > threshold then
EDPImprov < GetEDPImprovement(FM)
Candidates < Candidates U < FM, EDPImprov >

end

end

end

BestCandidates < FilterCIVariant(Candidates)

NewSols + CreateSolutions(BestCandidates)

MSF < MSF U NewSols

end

20 return MSF
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— Starting the fragment search from a CI configurationthat implements a set of CIs C,
we will only consider adding fragments from variants not included in C.

Under those conditions, note that fragments of a given CI differ depending on the
matching target, therefore their area coverage and saved cycles vary across solutions.

Algorithm 2 lists the pseudo-code that detects fruitful fragments to augment the ini-
tial set of solutions generated after the hierarchical clustering. We evaluate against
each solution the possible matches of any CI variant, represented as an MD, that is
not yet part of the solution. We start with the clustering solutions M S, that are the
base to the new solution set plus fragments (MSF'). For each MD evaluated, we obtain
the fragment matches (FM) evaluating separately the sequence of solutions that lead
to each output (lines 6 — 9). Then, we can easily limit the fragmented matches to the
boundaries of a certain output to control the convexity of the selected operations. With
the function GetMatchesOneWay we perform a matching similar to that of Section 4.2.
In this case, we are only interested in knowing the coverage of WholeFragment within
sol. In lines 10 — 13, we evaluate if the percentage of matches of the fragments found
reach a user-defined threshold. If they do, an estimation of the expected EDP improve-
ment is calculated, and the fragments of that CI variant are considered to be included
if that expected EDP is better than the baseline (no CIs). As several variants of the
same CI could be in the set of candidates, we filter them based on the best estimated
EDP improvement in line 16. Finally, in the next line, we create a new solution struc-
ture with updated information over the area and the CI fragments that it includes,
applying again the Performance and Energy Model step.

6. SELECTION OF DOMAIN-SPECIFIC CUSTOM INSTRUCTIONS

Implementation area is an expensive commodity in our low-power target that largely
influences the energy consumption of the final design. However, performance gains
also play an important role, because a faster running application would consume less
energy (assuming power consumption is constant). Therefore, in the last CI Selection
module, we address the performance and energy trade-off when choosing the best fit-
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ting set of CI variants for a given hardware area. We model this optimization as a
Knapsack problem, in which one tries to fit a subset S of a collection of objects C —
each object o; with an intrinsic value v; and weight w; — within limited mass M so that
the sum of the values of the final subset is maximized and the sum of the weights does
not exceed M. In our case, we try to fit the n CI variants, merged and not merged, with
fragments included and not included, within a limited hardware area A. Each ¢; candi-
date has a value v; that we describe later, and a hardware occupancy hw;. We have an
additional requirement in our problem: as each CI can be selected only once, though
it can be implemented by different variants — with distinct unrolling factors, merged
with other instructions, or partially added as a fragment — once we select one variant,
all other variants of the same CI are removed from the following selection steps.
The constraints of our Mixed Integer Linear Programming (MILP) problem are:

ZH:CZX}MULSA ; i:lblgl, (7)
— i—0

=0 =
with /b; a loop body that can be implemented by (n) CI variants. Therefore, for a given
loop body, only one of its CI variants will be selected. As our main goal is to accelerate
execution and save energy, our objective function tries to maximize the EDP improve-
ment. However, the total EDP value changes depending on the area occupancy, and
thus, it cannot be deterministically precomputed before the selection starts. Though,
for each potential CI we can calculate an approximated value of the EDP difference
with respect to the baseline processor without the CI. Also, the static energy compo-
nent of the EDP is subject to the known value of the maximum area A, which is an
approximation for the value that we want to maximize. Thus, we define the objective

function as: n
Zci x o_EDP; — maz. (8)

i=1
The metric o_EDP; of a concrete CI variant is the value v; in the original Knapsack
problem and we calculate it as follows: 5

o EDP; =Y ||l0_EDP|, 9)

J
where B is the number of applications that the current variant targets, and ||c_EDP ;||
is the original application j’s EDP minus the EDP with the variant, normalized to
the observed maximum for that application in order to introduce fairness across the
domain. We find that this metric selects more merged variants that help to save area
occupancy, and have lower overhead and lower static power than larger variants. From
experimentation, we confirm that this objective gives stable results and maximizes
EDP fairly among all applications, both for partial matching and with fragments.

7. COMPLEXITY

While the overall complexity of the framework varies in each step, processing all the
design possibilities would be impossible due to the exponentially growing search space.
In order to cope with this problem, our methodology simplifies the representation of the
search space, using the canonical Merging Diagram. This representation helps solving
the NP-complete problem of CI partial matching in quasilinear time, as explained in
Section 4.1. Selection is also a critical step that could be exponential in the worst
case. Therefore, our methodology also reduces the search space to keep the exploration
tractable and fast, by establishing bounds based on the number of total CI variants.
We try to always keep a reduced number of CI variant candidates, while maintaining
energy and performance efficiency, as explained below.

For each input application from the set of B benchmarks, we have a number of
ClIs C. Each CI is implemented as a variant numVariants times. The total num-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article XXXX, Publication date: December 2015.



XXXX:16 C. Gonzalez-Alvarez et al.

ber of variants C'V processed to build MDs by Algorithm 1 is determined as CV =
2?:1 Z]C:1 num Variants ;. Establishing the global variable order is subject to the max-

imum number of input variables among all variants, that is O(mazVars x CV). The
complexity to build all the diagrams is determined by the number of individual vari-
ables and the established ordering. Following the ordering rules of Section 3.2.1, we
can narrow the total number of expansions needed to build the diagram to 6( kC:Vl n?).
The complexity of calculating distances between pairs of MDs (Section 4.2) that con-
tain at most n nodes is O(nlogn). This calculation is performed (CV x (CV — C — 1))
times. The key design decision here is to have a global MD, which obviates the need
for a new variable ordering to be computed to compare each pair of variants, speeding
up the calculation. Finally, by performing the hierarchical clustering step explained in
Section 4.3, and using a heuristic to limit the number of cluster versions per level, the
final number of generated solutions that the selection of Section 6 processes is within
the bounds of O(CV). Although the number of original benchmarks and CI variants
influences the size of the final selection, the constant limit in the heuristic will al-
ways keep a non-exponential growth in generated solutions. We thus retain the most
promising CI candidates, in terms of area, performance and energy efficiency, while
making sure the selection step’s complexity does not explode exponentially.

8. EVALUATION
8.1. Experimental Setup

We now describe the setup and experimental evaluation of MInGLE.

The target architecture is an in-order Intel Atom with a tightly-coupled DSFU, as
described in Section 2.1. The DSFU has private registers: 16 128-bit for input data and
32 64-bit for output. We determine the size of the register files with the maximum size
needed among the benchmarks described later, which in this case is 2048 bits for both
input and output data. Before starting any CI computation, data is moved into the
input registers from the core’s register files, and once the computation is completed
the results are written back. Note that, for any CI, the extra cycles for reading and
writing data are considered as part of the total latency for calculating speedup values.

In the CI Identification step of the framework, we first identify hot regions of code
with the LLVM profiler [Lattner and Adve 2004] and extract the CI functionality in C
code. We synthesize high-level CI descriptions with Vivado HLS 2013.3 [Xilinx 2014]
to obtain the circuit design cycles and area consumption. We apply different unrolling
factors to the CIs: none, 2, 4, and 8. We also apply vectorization whenever possible. The
target FPGA is a Xilinx Virtex 7 (XC7VX690T) that runs at 400 MHz. DSFU power es-
timations are obtained with the Xilinx Power Estimator (XPE). We compile the target
applications with LLVM-Clang with an unrolling factor of 8, automatic vectorization,
and optimization —O2 as the baseline. Software cycles are measured with the Sniper
simulator [Carlson et al. 2014], configured to simulate an Intel Atom processor run-
ning at 1.6 GHz. Thus, the DSFU runs 4x slower than the baseline processor. Con-
sequently, we adjust execution cycles on the DSFU to the core’s clock domain. Power
measurements on Sniper are obtained with McPAT [Li et al. 2009a]. We run two dif-
ferent versions of the code on Sniper: the original application for baseline comparison,
and the application with the code accelerated by the CIs marked in assembly code for
functional simulation. Unrolled, non-vectorized code sequences in the LLVM IR are
analyzed to generate the polynomials for the Merging Diagrams, which are built with
the support of the symbolic algebra and calculus part of Sage [Stein et al. 2013]. In
step Optimization: Merged CIs, we use the Fastcluster library [Millner 2013] for hi-
erarchical clustering, and feed cycles and power data into the models of Section 4.4
to obtain results. The interface for the CPLEX optimizer [IBM 2014] in the Selection
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Table I. For each benchmark: suite where it can be found, number of Cls and Cl variants considered, the per-
centage of dynamic instructions covered by them, and the number of candidates found with partial matching and
matching with fragments for regions across basic blocks.

Benchmark Suite Num. CIs Num. variants % dyn.ins. Partial Fragments
cjpeg MediaBench II 4 16 81.6% 461 2890
djpeg MediaBench II 3 12 45.3% 434 1756
gsmdec MiBench 1 4 70.8% 399 2281
gsmenc MiBench 2 7 56.5% 406 1788
mpeg2enc MediaBench II 3 6 45.4% 364 2084
optflow OpenCV 2 7 49.5% 440 2130
rawcaudio MiBench 1 4 87.0% 402 2078
rawdaudio MiBench 1 4 85.2% 410 2841
susan MiBench 1 4 95.4% 427 2825
tmndec MediaBench II 3 4 87.2% 401 2282
tmnenc MediaBench II 2 6 50.6% 385 2632

step is OpenOpt [Kroshko 2015]. Although we use an FPGA as a testing platform, we
do not consider run-time reconfiguration in this work.

8.2. Benchmarks

We evaluate the framework with eleven applications from the media domain, listed in
Table I. The applications are extracted from the benchmark suites OpenCV [Bradski
2000], Mediabench II [Fritts et al. 2009] and MiBench [Guthaus et al. 2001], which
are listed in the second column. For each one of the benchmarks in the first column,
we show in the third column the number of critical CIs found across basic blocks. The
fourth column lists the number of CI variants or distinct implementations, for several
unrolling factors; only those implementations that yield some performance improve-
ment are considered. The fifth column shows the percentage of dynamic instructions
covered if all the CIs were selected, with all of them over 45%. Such a large code cov-
erage is key for performance improvement, and better achieved with CIs that cover
regions across basic blocks. Benchmark cjpeg has the highest number of CIs and vari-
ants; however, the highest coverage of dynamic instructions corresponds to susan. The
two rightmost columns list the number of merged Cls generated with partial match-
ing and matching with fragments, respectively. Note that both numbers include exact
matching, and partial matching is a subset of matching with fragments. The threshold
of matching with fragments is set at 50%, as discussed in detail in Section 8.3.2.

Although we evaluate our framework with only one domain, our technique can be
applied to other domains as well. Applications that are CPU-bound could achieve
significant speedup and energy efficiency improvements using our proposed acceler-
ation framework. Some applications that could benefit include scientific applications
with intensive use of algebra, machine learning applications that involve convolutions
and matrix operations, or applications in the embedded domain that are compute-
intensive, such as those in the fields of security or car electronics.

8.3. Results

We first compare different techniques implemented in the framework to identify Cls
across and inside basic blocks to be accelerated by a DSFU in hardware, measuring
both speedup and improvement in EDP across various area settings. We subsequently
evaluate the effect of different threshold values on fragment matching. Finally, we
present results of area characterization when we use different matching techniques.

8.3.1. Speedup and EDP Improvement. Figure 8 presents a comparison of different con-
figurations that the framework generates for the benchmarks in Table I, with DSFU
area on the x-axis expressed as a percentage of the Virtex 7’s area, and a) the aver-
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Fig. 9. EDP improvement for each benchmark, up to the 5% of the area, with CIs selected across basic
blocks with fragments, partial matching and exact matching.

age performance speedup and b) the average EDP improvement across the domain on
the y-axis. Speedup and EDP improvement are calculated with respect to the baseline
processor, and are the average across all benchmarks. Lines marked with 1 BB show
improvements achieved when we use Cls targeting code within basic blocks. At the
largest areas, performance improvement reaches a maximum of 1.48x and EDP im-
provement goes up to 1.74x the baseline. We compare this to the lines marked with Re-
gion in the figures, which target code regions across basic blocks. In this case, speedup
reaches a maximum of 2.09x and EDP improvement goes up to 3.84x. Considering re-
gions with multiple basic blocks gives us a significant boost in both performance and
energy efficiency, because we are able to accelerate 31% more statically counted body
loops than with one basic block. Also, CIs across basic blocks cover 41% more dynamic
instructions on average. CIs across basic blocks cover more code, expand the accelera-
tion opportunities, and thus achieve higher energy efficiency and speedup.

In the same figures, we analyze the efficacy of exact matching, partial matching and
matching with fragments by comparing those lines marked as Region. Note that par-
tial matching choices include all those CIs matched with exact, and then additional CIs
that could be partially matched. The same case applies for matching with fragments,
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with partial matching choices included among newly generated ones. In the case of par-
tial matching, we start seeing a difference around 0.5% of the area across basic blocks,
noting that partial matching achieves larger speedups and EDP improvements as com-
pared to exact matching, given the same area. For instance, with a limited area budget
(1.8%), we observe a speedup of 1.88x and an EDP improvement of 3.04x when using
partially matched Cls, while with exact matching we obtain a speedup of 1.73x and an
EDP improvement of 2.53x. At 2.2% of the area, the EDP improvement difference is
more noticeable, 2.57x against 3.25 x. Alternatively, for a given EDP improvement, par-
tial matching saves area. For instance, for an EDP improvement of 3 x, exact matching
takes 4% of the area, whereas partial matching takes only 1.8% of the area: a savings
of 55% of the chip’s reconfigurable area. Matching with fragments, though, outper-
forms previous techniques from the beginning, at very limited areas. With only 1% of
the Virtex 7, we have a speedup of 2x and EDP improvement of 3.65x%, clearly higher
than the same values for partial matching, 1.63x and 2.35x, respectively. Matching
with fragments for Cls across basic blocks helps to reach the best speedup and en-
ergy efficiency at larger areas. However, the most important feature of matching with
fragments is to enable maximum performance at smaller areas either within or across
basic blocks. Hence, matching with fragments uses area more effectively; a speedup of
1.96 x is achieved with fragments at 0.75% of the area, in contrast with the 2.5% needed
with partial matching. This is important as the area available for the reconfigurable
DSFU in a low-end processor like the one evaluated would be much less than the area
available in a Virtex 7. As a rule of thumb, an Atom implementation took about 85% of
the Virtex 5 LX330 that has roughly 25% of the capacity of the Virtex 7.

Figure 9 presents a graph for each benchmark with a range of area percentages ded-
icated to the CIs on the x-axis, and EDP improvement on the y-axis. Here, we only
include CIs across basic blocks. Each point on a graph represents a group of Cls se-
lected for all applications that uses that particular area. Furthermore, the group of
ClIs selected given a particular area is the same for all benchmarks. The graphs then
present the EDP improvement each benchmark achieves given that CI grouping. Note
that when a particular benchmark is not sped up by adding hardware area (because
the additional hardware targets other applications), its EDP remains the same (hori-
zontal dots). Results of the matching with fragments use a threshold of 50%, which we
discuss in the next section. Only some area values are displayed, with a stride of 0.5%.
Note that each benchmark has a different y-axis scale for legibility. The average of all
applications is shown in the top left graph.

As we pointed out before, matching with fragments is, on average, the most effec-
tive technique at finding domain-specific CIs. This technique achieves higher EDP im-
provement at smaller areas, always increasing the speedup faster than the other two
techniques. All but three benchmarks show the best efficiency with fragments regard-
less of the area. We can observe, though, that for djpeg, gsmenc and susan, between
0.5% and 1.5% of the area, solutions with fragments yield lower efficiency than with
partial matching. In the case of djpeg, even at higher areas, the EDP improvement of
the three methods overlaps. This is due to a great dependency of the benchmark on
application-specific Cls, with very low sharing rates in all the CIs generated. Regard-
ing gsmenc and susan, although the selected fragments at low area improve the EDP,
they cannot reach the gains of Cls that cover the full body loop, and not only parts
of it. However, for the other eight benchmarks, matching with fragments is clearly
the best choice, since we are able to cover more Cls with less area. For instance, CIs
that could give more than 10x EDP improvement to cjpeg are not selected with par-
tial matching because of unavailable area resources. With fragments, there is virtually
more area available from the low overhead costs of including a new fragment, hence
better performing CI variants can be selected.
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Fig. 10. Effects of the threshold parameter on the selection of matching with fragments.

8.3.2. Threshold Analysis. We recall the user-defined threshold for fragment matching
from Section 5 as the value that establishes the minimum percentage of matching
operations of a fragment with respect to the evaluated CI, in order to generate a new CI
that includes both the evaluated CI and the fragment. Figure 10 presents, on the left, a
comparison of solutions with different threshold values, with area percentage on the x-
axis up to 2% and the average EDP improvement across the domain on the y-axis. The
legend shows the thresholds that go from 90% to 10% of matching. A higher threshold
corresponds to a higher similarity. The CI candidates with a given threshold include
all those CIs from higher thresholds. For instance, a threshold of 70% also includes the
CIs of thresholds 80% and 90%. We observe that up to 0.8% of the area, a 10% threshold
obtains the highest EDP improvement. However, from that area onwards, thresholds
up to 50% yield the same EDP improvement and, from 1.3% of the area, the 60% and
70% thresholds join the efficiency ceiling. The EDP improvement with a threshold of
90% at 2% of the area equals the one achieved with partial matching (no fragments).
At larger areas, we can choose bigger variants that provide the full CI acceleration
instead of fragments that do not give the maximum efficiency. Also, fragments with
90% similarity matching are more difficult to find than those with lower thresholds.

The threshold level has a direct effect on the number of CI candidates in the selec-
tion pool and the runtime of the selection process, which is shown in the table on the
right of Figure 10. Data in the table refer to the selection step for 1% of the area. For
each threshold percentage (T), we list first the number of candidates considered for se-
lection with the percentage increase with respect to the previous row. We list also the
time in seconds to solve the selection problem with the pool of candidates and, again,
percentage increases. In the last column we list the EDP improvement achieved. Note
that, for different areas, the number of CI candidates varies because some Cls are
pre-filtered by area occupancy. Also note that, as the number of candidates of a given
threshold includes those of higher ones, the amount of candidates increases as the
threshold value decreases. The time to solve increments linearly with the number of
candidates; the largest difference in both the amount of CIs considered and seconds to
solve happens relaxing the threshold from 30% to 20%, showing that smaller fragments
are more frequent than larger ones. However, the EDP at those low thresholds is not
better than thresholds of 40 — 50% because larger fragments achieve better EDP, and
the threshold is related to the size of the fragment. Thus, the increase in the problem
complexity of the lowest thresholds weighed against the problem size and time to solve
of the 50% threshold has no advantage because similar CIs are chosen.
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Fig. 11. Characterization of shared FPGA hardware for different area utilizations.

8.3.3. Sharing Characterization. In this last analysis, we evaluate how area is shared
among CIs to understand the high gains that the matching with fragments provides.
Figure 11 shows two graphs that display the increasing percentage of the Virtex 7 oc-
cupancy (up to 5%) of different CI configurations on the x-axis versus the normalized
percentage of LUTSs on the y-axis, broken down by non-shared operators, shared oper-
ators and multiplexer overhead for circuit sharing. The CI configurations target all the
applications in Table I. The graph on the left a) shows the characterization for partial
matching, whereas the graph on the right b) shows that of matching with fragments.

First, we observe that, for partial matching, the CI configuration with the smallest
area (0.2%) does not share any of the CIs included. At that small area, the cost for
merging CI variants is too high to compete against lighter application-specific CIs. In
contrast, matching with fragments devotes 80% of the LUTs on the smallest config-
uration to shared resources. We find the maximum percentage of shared circuits at
the smallest areas, which explains why the configurations with CI fragments are more
efficient than those without. The percentage of overhead due to multiplexers is more
noticeable at lower areas also, correlated with the amount of shared resources. Al-
though at larger area utilizations the sharing levels decrease, they are steadily higher
than those for partial matching, with sharing percentages around 30% on average.

9. RELATED WORK

There are many datapath specialization techniques that target different objectives
and systems. A recent survey paper [Jowiak et al. 2010] presents a comprehensive
overview of specialization methods for embedded devices. In this paper, we focus on a
top-down approach for creating specialized hardware; we analyze a target application
to automatically create Cls, also known in the literature as instruction set extensions.
As early works established [Atasu et al. 2003; Yu and Mitra 2004], the design pro-
cess analyzes the code in directed acyclic graph (DAG) form, and is separated into the
identification and selection phases. First, the identification phase explores the appli-
cation’s bottlenecks and extracts subgraphs that preserve architectural constraints.
Then, the selection phase chooses the best set of CIs that fulfill some given objectives.
Additionally, optimization strategies try to make an efficient use of the available im-
plementation area. We review prior research’s approaches to these phases below.

Identification techniques. The scope of the code covered by an identified CI candidate
varies from very fine-grained — inside a basic block — to across basic blocks. There
are two types of very fine-grained CIs: MISO (Multiple Input Single Output) and
MIMO (Multiple Input Multiple Output) CIs [Middha et al. 2002]. Several previous
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works [Atasu et al. 2003; Yu and Mitra 2004; Pozzi et al. 2006] extract these kinds of
Cls, which are DAG subgraphs always found within a basic block. Also within a ba-
sic block, some authors attempt to extend the code coverage with the identification of
maximal convex subgraphs [Atasu et al. 2008; Li et al. 2009b]. These subgraphs cover
the maximum amount of code that we can get in a basic block without violating any
constraint, such as the maximum number of inputs and outputs. The main problem
with the identification inside a basic block is the limited performance improvement
we can obtain. Therefore, other works focus on Cls that cover several basic blocks.
DySER [Govindaraju et al. 2012] extracts ClIs with basic control flow from hot regions
following a slicing strategy similar to the one we present in Section 3.1. However, as
they aim to specialize for a single application, their identified CIs are directly imple-
mented to run on an accelerating functional unit network, tightly coupled with the
processor of choice, such as OpenSPARC [Benson et al. 2012]. In contrast with these
application-specific works, after the DAG-based identification, we transform our Cls
to a functional representation that unifies coding styles across applications. Other au-
thors [Arora et al. 2010] also propose a normalized representation of code functionality
by applying a predefined set of rules, but they are limited to single-output code pat-
terns (MISO). Another closely related work identified that a canonical representation,
that captures the code’s functionality, is better than a DAG for finding CIs across a do-

main, especially at limited areas [Gonzalez-Alvarez et al. 2013]. This work is limited to
accelerating maximal convex subraphs within a basic block, and matching Cls exactly.
We, on the other hand, use a new canonical representation to facilitate generating Cls
across basic blocks unified for a whole domain.

Selection techniques. Reducing the algorithmic complexity of the design method is
a priority to make the CI selection process tractable. Some works rely on heuris-
tics [Cong et al. 2004] to predict a CI's gain as a function of the instruction’s frequency
of execution and latency, while relying on dynamic programming to optimize area us-
age. Other authors [Pozzi et al. 2006] couple the identification and selection phases,
which results in relaxed constraints such as an unlimited number of inputs and out-
puts. This opens up the possibility of approximate techniques and genetic algorithms
that are computationally less expensive. Others [Verma et al. 2007] assume that the
core processor must be a RISC, which implies a limited number of inputs and outputs.
Consequently, the search space is pruned to minimize the number of registers that
the CIs use. In this paper, we initially consider an unlimited number of inputs and
outputs, although they are later pruned by architectural constraints due to the con-
nections to memory. Other approaches to solve the selection problem include applying
integer linear programming [Murray et al. 2009; Atasu et al. 2012] or constraint pro-
gramming [Martin et al. 2012]. However, all these previous methods select application-
specific CIs. In contrast, although we also use linear programming methods, our selec-
tion focuses on accelerating an application domain. There are also works that aim to
select domain-specific CIs [Clark et al. 2005], but their heuristics do not reflect the
potential reusability across the domain, focusing only on individual application perfor-
mance gain. We define an objective function that optimizes for performance speedup
and energy, that is fair across all the applications within a domain, and produces a set
of CIs within a tractable time.

Optimization: area reduction. Implementation area is an expensive commodity when
specializing hardware, especially for accelerators integrated into the processor core.
This problem is notoriously more difficult when the accelerating hardware targets sev-
eral applications. As Cls from multiple applications compete for limited space, circuit
reusability becomes a key research topic. Beret [Gupta et al. 2011] presents a general-
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purpose specialized co-processor that extracts execution pipelines from the loop body
based on application trace analysis. As they focus on reducing energy consumption in
general-purpose computing, they try to fuse MISO/MIMO patterns within their accel-
erating engine. To do so, they match exact graphs of those small DAG patterns, using
the implementation area for only the most repeated ones. Many works focus on accel-
erating several applications from a domain. One prior technique uses a DAG repre-
sentation to identify small patterns of partially-matching subgraphs using heuristics
to optimize performance speedup [Clark et al. 2005]. However, they work on small
MISO/MIMO sequences (within a basic block), and are limited in that they identify
CIs for one application and try to reuse those in only one other application. While
this work notes that matching subgraphs is NP-complete [Clark et al. 2005], several
other works also discuss the challenges of merging the data-flow graph representation
of a CI [Huang et al. 2014; Zuluaga and Topham 2009; Stojilovic et al. 2013]. Qs-
Cores [Venkatesh et al. 2011] create coarser acceleration units than previous works by
partially merging similar code patterns. Their code representation is based on a kind
of structural DAG, in contrast with our matching that takes advantage of a canoni-
cal representation across applications. Furthermore, they merge full Cls, while we are
able to merge full CIs with small or medium-sized CI fragments, resulting in a better
use of the available area.

Other optimizations. Although we do not consider runtime configuration issues, it is
worth mentioning other works that focus on a dynamically reconfigurable specializa-
tion substrate. RISPP [Bauer et al. 2008; 2011] is an adaptable ASIP where instruc-
tions compete for area resources, with the goal of minimizing an application’s total
time. This work focuses more on how to efficiently schedule sections of code of a run-
ning application to specialized functional units while minimizing reconfiguration over-
head. Another work to manage reconfigurable Cls at run time [Shafique et al. 2014]
proposes a full energy model to choose the best set of Cls for the reconfigurable spe-
cialized area, and that is able to power gate an unused set of CIs.

10. CONCLUSIONS

Processor customization has gained attention over the last years due to the urgency of
dealing with the increasing utilization wall in modern chips. Designing custom instruc-
tions (CIs) that are executed on specialized functional units is a relatively fast way of
modestly extending a general-purpose processor with the potential to accelerate code
sequences. If we can identify many code sequences that can reuse the same specialized
hardware, we can reduce energy consumption while speeding up applications.

This paper presents MInGLE, an automated framework that identifies Cls at the
loop body level from a domain of applications that are then executed on a domain-
specific functional unit. We aim to select CIs that improve performance and energy effi-
ciency fairly across all the target applications. The framework converts code sequences
across basic blocks into CIs, considering several implementations for each of them. Cls
are transformed into our new canonical representation, the Merging Diagram, which
facilitates an optimization to reduce hardware area, namely partial matching of Cls
based on their similarity. We have novelly added another optimization step that de-
tects fragments of CIs that can use the existing merged clusters of CIs with minimal
extra overhead. Our experimental results with eleven media benchmarks show that
the new matching technique with fragments achieves a speedup of 2.1x and an EDP
improvement of 3.8 x, on average, across basic blocks, while within a basic block we ob-
tain a speedup of 1.5x and EDP improvement of 1.7x. Compared to partially matched
Cls, Cls with fragments are key for achieving larger performance (2x versus 1.6x)
and EDP improvements (3.6x versus 2.4x) for a limited hardware area (1%). We also
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can achieve a particular energy efficiency with a greatly reduced specialized area. The
presented work shows the applicability of introducing configurable accelerators with
limited area inside simple in-order processors to accelerate a large number of applica-
tions from a domain, improving the system’s performance and energy efficiency.
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