
Criticality Stacks: Identifying Critical Threads in Parallel
Programs using Synchronization Behavior∗

Kristof Du Bois Stijn Eyerman Jennifer B. Sartor Lieven Eeckhout
ELIS Department, Ghent University, Belgium

{kristof.dubois,stijn.eyerman,jennifer.sartor,leeckhou}@elis.UGent.be

ABSTRACT
Analyzing multi-threaded programs is quite challenging, but
is necessary to obtain good multicore performance while sav-
ing energy. Due to synchronization, certain threads make
others wait, because they hold a lock or have yet to reach
a barrier. We call these critical threads, i.e., threads whose
performance is determinative of program performance as a
whole. Identifying these threads can reveal numerous opti-
mization opportunities, for the software developer and for
hardware.

In this paper, we propose a new metric for assessing thread
criticality, which combines both how much time a thread is
performing useful work and how many co-running threads
are waiting. We show how thread criticality can be calcu-
lated online with modest hardware additions and with low
overhead. We use our metric to create criticality stacks that
break total execution time into each thread’s criticality com-
ponent, allowing for easy visual analysis of parallel imbal-
ance.

To validate our criticality metric, and demonstrate it is
better than previous metrics, we scale the frequency of the
most critical thread and show it achieves the largest per-
formance improvement. We then demonstrate the broad
applicability of criticality stacks by using them to perform
three types of optimizations: (1) program analysis to remove
parallel bottlenecks, (2) dynamically identifying the most
critical thread and accelerating it using frequency scaling
to improve performance, and (3) showing that accelerating
only the most critical thread allows for targeted energy re-
duction.

∗
Stijn Eyerman is supported through a postdoctoral fellowship by

the Research Foundation – Flanders (FWO). Additional support is
provided by the FWO project G.0179.10N, the UGent-BOF project
01Z04109, the ICT Department of Ghent University, and the Eu-
ropean Research Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant agreement no.
259295.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

1. INTRODUCTION
In order to take advantage of today’s ubiquitous multi-

core processors, software has to provide enough parallel work
to make use of the available resources in order to continue
the trend of ever-improving performance. Multi-threaded
programs that try to use these resources inherently intro-
duce synchronization to ensure correct execution. Typical
synchronization examples are barriers (a thread cannot go
beyond a certain point in the code until all threads have
reached that point), critical sections (only one thread can
execute a certain critical section, to prevent hazardous par-
allel updates of data), and consumer-producer synchroniza-
tion in pipelined programs (a thread can only proceed with
its calculation after the needed data is produced by another
thread). While synchronization is necessary, it results in
threads waiting for each other, stalling program progress,
limiting performance, and wasting energy.

Identifying critical threads in a parallel program is impor-
tant, because these threads cause others to wait (by holding
a lock or not yet reaching a barrier, etc.), and largely deter-
mine overall performance. Threads identified as critical can
be targeted for performance optimization, through software
re-design or through hardware techniques. Speeding up crit-
ical threads can speed up the whole program. Or inversely,
slowing down non-critical threads has almost no impact on
performance, which enables a more energy-efficient execu-
tion. Speeding up a thread can be done by migrating it to a
faster core in a heterogeneous multicore [28], by temporarily
boosting the frequency of the core it executes on [2], by rais-
ing the fetch priority of that thread in an SMT context [7],
by allowing more task stealing from this thread in a task
stealing context [3], etc. All of these examples allow for
only one or a few threads to be sped up, so it is important
to identify the most critical thread(s).

Key contribution: Criticality stack. In this paper, we
propose a novel metric to measure thread criticality in paral-
lel programs using synchronization behavior, and we present
a hardware implementation for dynamically measuring thread
criticality at low overhead. Our criticality metric measures
how much time a thread is performing useful work and how
many threads are concurrently waiting. The metric gath-
ers information for program execution intervals delineated
by synchronization behavior (critical sections, barriers and
pipes). A thread has a larger criticality component when
more threads wait concurrently on it, and thus it is more
determinative of program running time.

Combining different threads’ components into a critical-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Thread 0 Other
threads

S
p
e

e
d
u

p

Figure 1: BFS’s criticality stack and total program
speedups from accelerating the identified critical
and non-critical threads.

ity stack facilitates easy comparison of parallel (im)balance.
The criticality stack is a stacked bar graph that divides the
program’s execution time (100%) into each thread’s critical-
ity component. If all threads have approximately the same
criticality, then no one thread is critical, and no performance
gain can be obtained by speeding up a thread. If, however,
certain threads have larger criticality than other threads,
they reveal themselves as parallel bottlenecks.

We validate criticality stacks by experimentally showing
that speeding up the most critical thread (if one exists) re-
sults in significant performance speedups; accelerating iden-
tified non-critical threads on the other hand does not affect
performance. Figure 1 illustrates this for the BFS bench-
mark: the criticality stack at the left shows that thread 0 is
much more critical than all other threads. The graph at the
right shows the program speedup when each of the threads
is accelerated individually, running at twice the clock fre-
quency. We present results for thread 0 and the maximum of
all other threads (as they all result in no program speedup).

Comparison to prior work. Previous closely related work
on detecting thread criticality tries to address load imbal-
ance caused by barriers [3]. We reimplement their technique
that predicts thread criticality based on cache misses, and
find that our criticality metric more accurately identifies the
thread most critical to running time. Bottleneck Identifica-
tion and Scheduling (BIS) [15] tries to identify parallel bot-
tlenecks, and migrates threads executing these bottlenecks
to a big core in a heterogeneous multicore. While they accel-
erate bottlenecks that limit parallel performance, we instead
find the thread(s) most critical to overall performance. A
bottleneck could be on the critical path for one thread, but
not for others. Therefore, accelerating bottlenecks does not
necessarily improve performance, and could even needlessly
accelerate threads, reducing energy efficiency. We reimple-
ment their technique, scaling the frequency of the identified
bottleneck instead of migrating it, and show that our met-
ric achieves higher performance by accelerating the critical
thread.

Optimization applications. Using the information from
dynamically calculated criticality stacks, we present three
optimization use cases. (1) We demonstrate how criticality
stacks can help programmers address performance problems,

and present how a simple software optimization derived from
the criticality stack for one of our benchmarks (BFS), yields
a 1.67× and 2.16× speedup for 8 and 16 cores, respectively.
(2) We speed up the most critical thread (if any) per time
slice from 2 to 2.5 GHz with per-core frequency scaling, re-
acting to phase behavior. This approach improves overall
parallel performance by on average 4.6% for 8 threads and
4.2% for 16 threads, and up to 17%. Our dynamic algo-
rithm almost doubles BIS’s [15] performance improvement.
(3) We demonstrate that criticality stacks enable targeting
parallel optimization to reduce energy consumption. Our
dynamic algorithm which speeds up only one thread at a
time, reduces energy consumption by on average 3.2% for
16 threads and 2.8% for 8 threads, and up to 12.6%.

Significance and impact. Overall, criticality stacks are a
novel, insightful and intuitive performance metric for paral-
lel programs, enabling a multitude of applications, ranging
from program analysis, to software optimization, to dynamic
optimization for performance and power.

2. DEFINING THREAD CRITICALITY
A thread’s criticality depends on both if it is doing useful

work1, and if other threads are waiting for it. We say a
thread is critical if its progress at a certain point determines
the progress of the whole program. One example is when all
threads but one have reached a barrier. Because all other
threads are waiting, the progress of the one thread that is
still executing equals the progress of the whole program, and
therefore this thread is critical.

In general, identifying the most critical thread in par-
allel programs is non-trivial. Figure 2 shows an example
program with 4 threads that has both barrier (horizontal
line across all threads) and critical section (darker vertical
bar) synchronization. Thread 3 has the largest running time
(t0+t1+t2+t3+t4+t5+t6=17) and therefore performs most
useful work; thread 0 on the other hand waits the longest
for acquiring the critical section and keeps all other threads
waiting at the barrier. It is not obvious which thread is most
critical to overall performance.

To comprehensively compute thread criticality, we pro-
pose our criticality metric that takes into account both run-
ning time and number of waiting threads. Execution time
is divided into a number of intervals. A new interval begins
whenever any thread changes state, from active to inactive
or vice versa, as a result of synchronization behavior. (Sec-
tion 3 defines how we identify running threads.) Each active
thread’s criticality number gets a portion of interval time t.
In other words, time t is divided by the number of threads
doing useful work, and this is added to each thread’s crit-
icality sum (see Figure 2). This metric essentially weights
time, adding more to active threads for which many threads
wait, and less to active threads when no threads are waiting.

We formalize the criticality metric in the following way.
Suppose that for a time interval t, r out of n threads are run-
ning. For the r threads that are running we add t

r
to their

respective criticality counter. For the other n − r threads,
we add nothing. In each interval, the set of running threads

1When a thread is spinning or busy waiting, we assume that
it is not performing useful work. In the remainder of the
paper, we will denote a thread that is performing useful work
as ‘running’, ‘active’, or ‘executing’, excluding spinning.

critical

section

barrier

0

5

10

15

20

t0

t1

t2

t3

t4

t5

t6

t7

t0 /4 t0 /4 t0 /4 t0 /4

t1 /3 t1 /3 t1 /3

t2 /2 t2 /2

t3 /3 t3 /3 t3 /3

t4 /2 t4 /2

t5 /3 t5 /3 t5 /3

t6 /4 t6 /4 t6 /4t6 /4

t7

+ + + +
C0=6.5 C1=5.0 C2=5.0 C3=5.5

time

thread 0 thread 1 thread 2 thread 3

Figure 2: Criticality calculation example.

is fixed. Assume there are N such intervals over the whole
program (or a phase of the program), ti is the duration of in-
terval i, ri is the number of running threads in that interval
and Ri is the set containing the thread IDs of the running
threads (therefore |Ri| = ri). Then the total criticality of
thread j equals

Cj =

N−1∑
i=0

{
ti
ri
, if j ∈ Ri

0, if j /∈ Ri

(1)

Figure 2 shows an example of how the criticality metric is
calculated. Thread 0 has a total criticality of t0/4 + t6/4 +
t7=6.5. Threads 1, 2, and 3 all have lower criticality sums at
5, 5, and 5.5, respectively. Therefore, thread 0 is determined
to be the most critical thread in this example. This might
seem counter-intuitive because it has the smallest total run-
ning time (t0 + t6 + t7=11) compared to all other threads
(thread 1 = 16, thread 2 = 16, and thread 3 = 17). Ac-
celerating thread 3 would reduce the execution time of the
critical section, and as a result, threads 0, 1 and 2 would
enter their critical sections sooner, however, thread 0 would
still reach the barrier much later than the other threads, re-
sulting in only a small speedup. Speeding up thread 0 on
the other hand results in a much larger speedup, because it
is guaranteed to reduce the barrier waiting time of all other
threads, so thread 0 is indeed more critical as detected by
the criticality metric. By taking into account the number of
active threads, our metric illustrates differences in criticality
between threads clearly.

An important characteristic of this metric is that the sum
of all threads’ criticalities equals the total execution time.
Formally, if T is the total execution time of the parallel

program (or a phase), then

n−1∑
j=0

Cj = T. (2)

This is intuitive, as for every interval r times ti
r

is accounted,

which gives a total of ti over all threads, and
∑N−1

i=0 ti = T .
This property allows us to divide each criticality sum by
T to obtain each thread’s normalized criticality component.
We represent these components in a stacked bar, yielding the
criticality stack, which breaks up a program’s total execution
time into each thread’s criticality percentage.

3. COMPUTING THREAD CRITICALITY
In order to dynamically measure thread criticality, we

need to determine at every moment in time how many threads
are performing useful work. We now first detail how to iden-
tify which threads are active, which also delineates time in-
tervals. We then describe our dedicated hardware imple-
mentation for calculating thread criticality in an efficient
manner using very little energy and without interfering with
the running program.

3.1 Identifying running threads
There are two main causes why a thread is not perform-

ing useful work: either it is scheduled out by the operating
system, or it is spinning (using a waiting loop, constantly
checking the synchronization variable). The operating sys-
tem can easily communicate when it schedules threads in
and out. Spinning is more difficult to detect, since the thread
is executing instructions, albeit useless ones.

Either software or hardware can detect spinning. Soft-
ware solutions involve adding extra instructions that denote
spinning threads. These extra instructions are typically in-
serted in threading libraries (e.g., Pthreads) so that pro-
grammers do not have to explicitly add them. Hardware so-
lutions use tables in the processor to keep track of backward
branches [20], which possibly belong to a spinning loop, or
repetitive loads [30], which are possibly loading a condition
variable. Spinning is detected if specific conditions are met,
i.e., no architectural state changes since the last branch or
an update from another core to the repetitive load’s address.

Both approaches have their advantages and disadvantages.
A hardware solution can detect all types of spinning, includ-
ing user-level spinning. On the other hand, a hardware solu-
tion detects spinning later (e.g., only after a certain thresh-
old is reached), which can have an impact on the effective-
ness of the technique that needs spinning information, and
there is a chance to have false positives (e.g., a non-captured
architectural state change) or false negatives (e.g., when the
number of spinning iterations is under a certain threshold).

Software solutions on the other hand use semantic infor-
mation from the program itself, and will only detect true
spinning loops. Of course, user-level spinning that is not
instrumented cannot be detected. However, if correctly in-
strumented, software accurately detects the start of the spin-
ning, and can immediately indicate the end of the spinning.

For this study we use a software solution, since software
detects spinning in a more timely manner and is easier to im-
plement. The benchmarks we evaluate only use threading li-
braries to perform synchronization (Pthreads and OpenMP).
We instrument all Pthread and OpenMP primitives that
involve spinning (locks, barriers and condition variables).

criticality A criticality A criticality A criticality A

timer

thread 0 thread 1 thread 2 thread 3

active threads counter

÷

+
0

+
0

+
0

+
0

Figure 3: Hardware device for online criticality cal-
culation (’A’ is the active bit per thread).

When the program enters and exits a spinning loop, we in-
sert a call-down to notify hardware that the thread becomes
inactive or active, respectively. The next section explains
how hardware performs an online calculation of criticality
based on these call-downs.

3.2 Calculating criticality
To calculate the criticality as defined in Equation 1, we

need to know for each time interval which threads are per-
forming useful work. To that end, we propose a small hard-
ware component that keeps track of the running threads
and the criticality of each thread. There is one criticality
counter per thread (64 bit) and an ‘active’ bit that indi-
cates whether the thread is running or not (see Figure 3).
Each thread’s criticality active bit is set or reset through the
thread (de)activate calls that are sent from software. The
cores or hardware contexts receive the calls from software,
and send a signal to update the criticality state. These sig-
nals coming from the cores can either be transmitted over
dedicated lines (a single line is sufficient for setting one bit),
or through the existing interconnection network. In both
cases, they do not incur much overhead, because the signal
is only one bit and is sent relatively infrequently (we discuss
frequency later in this section).

In addition to the per-thread counters and active bits,
there is a counter that holds the number of active threads
and a timer (see the bottom of Figure 3). The active thread
counter is simply incremented when an activate call is re-
ceived, and is decremented when a thread deactivates. The
timer keeps track of absolute time (hence it is independent of
a core’s frequency) since the previous synchronization event
and is reset whenever an activate or deactivate call is re-
ceived. Initially when a software call is received, the timer
holds the duration of the past interval. Thus, before up-
dating state, we add the result of the timer divided by the
active thread counter to each thread’s criticality counter for
which the active bit is set. Then, the active bits and counter
are updated and the timer is reset, indicating the start of a
new time interval.

While conceptually we need a counter per thread, we
can implement one counter per core or hardware context
in reality (even when there are more threads than hard-
ware contexts). Only while threads are running do their
criticality counters need to be updated (inactive threads do
not receive criticality anyway); thus, keeping one hardware
counter plus active bit per core or hardware context allows
running threads to update their criticality state. Upon a
context switch, the operating system saves the criticality
state for the thread being scheduled out, and initializes the

no. of cores 8, 16
core type 4-wide out-of-order
base frequency 2 GHz
L1 D-cache 64 KB, private, 2 cycles
L1 I-cache 64 KB, private, 2 cycles
L2 cache 512 KB, private, 10 cycles
L3 cache 8 MB, shared, 10 ns
memory bus 32 GB/s
memory access 100 ns

Table 1: Simulated processor configurations.

core or context’s criticality state to that of the thread be-
coming active. Thus, our implementation works with more
threads than cores.

The advantage of using a dedicated hardware component
is that it has negligible impact on the performance of a
running application. The application just sends the (asyn-
chronous) activate/deactivate calls and can continue its exe-
cution without waiting for an answer. In terms of hardware
overhead, we need 65 bits per thread (a 64-bit timer plus
the ‘active’ bit). For sixteen threads, this amounts to a to-
tal of 1,108 bits. Additionally, we need one integer divider
(the interval duration is usually much larger than the num-
ber of threads, so the fraction after the decimal point can
easily be ignored), and one 64-bit adder per thread. (Note
the divider and adders can be low-performance, low-power
units because they are off the processor’s critical path.) In
other words, the hardware overhead for computing critical-
ity stacks is limited.

To calculate the power overhead, we recorded the num-
ber of updates per 10 ms time slice. For 16 threads, there
are 1,920 updates per time slice on average, with a maxi-
mum of 31,776 updates. On every update, we need to per-
form an integer division and at most 16 additions (assuming
16 threads). According to Wattch [6], an integer division
consumes approximately 0.65 nJ and an addition consumes
0.2 nJ in a 100 nm chip technology; energy consumption is
likely to be (much) lower in more recent chip technologies,
hence these estimates are conservative. This implies a max-
imum of 3.85 nJ per update, and by taking into account the
number of updates per unit of time, this leads to an average
7.39 µW power consumption, and 0.12 mW at most, which is
very small compared to the power consumed by modern-day
high-end processors (around 100+ W).

4. EXPERIMENTAL SETUP
We conduct full-system simulations using gem5 [5]. Ta-

ble 1 shows the configurations of the simulated multicore
processors. We consider eight- and sixteen-core processors,
running eight- and sixteen-threaded versions of the parallel
benchmarks, respectively. Each core is a four-wide super-
scalar out-of-order core, with private L1 and L2 caches, and
a last-level L3 cache that is shared among cores. The OS
that we run is Linux version 2.6.27; a thread is pinned onto
a core to improve data locality and reduce the impact of
context switching.

We consider benchmarks from the SPLASH-2 [32], PAR-
SEC [4] and Rodinia [8] benchmark suites, see Table 2. We
evaluate those benchmarks from the suites that correctly ex-
ecute on our simulator for both eight and sixteen threads,
and for which thread-to-core pinning could be done reliably
(i.e., there is a unique thread-to-core mapping). The bench-

Suite Benchmark Input
SPLASH-2 Cholesky tk29.O

FFT 4,194,304 points
FMM 32,768 particles
Lu cont. 1024×1024 matrix
Lu non-cont. 1024×1024 matrix
Ocean cont. 1026×1026 ocean
Ocean non-cont. 1026×1026 ocean

PARSEC Canneal Simmedium
Facesim Simmedium
Fluidanimate Simmedium
Streamcluster Simmedium

Rodinia BFS 1,000,000 nodes
Srad 2048×2048 matrix
Lud omp 512×512 matrix
Needle 4096×4096 matrix

Table 2: Evaluated benchmarks.

marks were compiled using gcc 4.3.2 and glibc 2.6.1. Our
experimental results are gathered from the parallel part of
the benchmarks. Profiling starts in the main thread just be-
fore threads are spawned and ends just after the threads join
(however, there is the possibility of sequential parts of code
within this region). This approach factors out the impact of
the trivial case of speeding up the sequential initialization
and postprocessing parts of the program, and allows us to
use criticality information to analyze the challenging parallel
part of the program.

While our evaluation is limited to these programs, which
have both critical sections and barriers, criticality stacks
could also be useful for analyzing heterogeneous applica-
tions. The criticality stack for pipelined parallel programs
can reveal the thread or pipeline stage that most dominates
running time. Similarly, our criticality metric could reveal
imbalances in a task stealing context as well. In addition,
the criticality metric can be calculated for setups with more
threads than cores.

5. THREAD CRITICALITY VALIDATION
AND ANALYSIS

We now present criticality stacks for our parallel applica-
tions. We computed criticality for each thread for all bench-
marks with 8 and 16 thread configurations, and present
stacks that summarize thread criticality. We validate our
criticality metric in the next section using frequency scaling
of individual threads. We then compare our speedups to
those achieved by scaling a thread identified to be critical
by previous work that is based on cache misses. Finally, we
show the variance when scaling over a range of frequencies.

5.1 Validation of criticality stacks
Figure 4(a) shows the criticality stacks for all benchmarks

when executed on 8 cores (we omit 16-core stacks for space
and readability considerations), with 100% of the execution
time broken up into each thread’s criticality percentage. For
some benchmarks, all criticality components are approxi-
mately equal-sized (Cholesky, FFT, Lu cont., Ocean cont.,
Ocean non-cont., Canneal, and Srad). There is no critical
thread in these cases, and thus we expect speeding up any
single thread will yield no performance gain. For the other
benchmarks, one thread has a significantly larger fraction
of criticality compared to the others: thread 2 for FMM,
Lu non-cont. and Streamcluster; thread 0 for Facesim, BFS,

Lud-omp and Needle; and thread 5 for Fluidanimate. This
is the most critical thread, and it is expected that speeding
it up will result in a considerable performance gain, while
speeding up other threads will have no significant perfor-
mance impact. If an application’s stack revealed more than
one most critical thread, we would expect speeding up each
of those would improve performance.

We evaluate the validity of criticality stacks by check-
ing that accelerating the most critical thread (if one exists)
results in program speedups. Each simulation speeds up
one thread by raising the core’s frequency from 2 GHz to
4 GHz2, and we present speedup results versus a baseline of
all threads at 2 GHz in Figure 4(b) for 8 threads. For each
benchmark we present the speedup obtained by accelerating
each of the three threads that have the largest components
in the criticality stack. For the other threads, the speedup
was equal to or lower than the speedup of the third largest
component.

Figure 4(b) shows that for the benchmarks that have equal-
sized components in the criticality stack (see Figure 4(a)),
there is no single thread that when accelerated results in
a significant program speedup, which is in line with ex-
pectations. For the other benchmarks, speeding up the
thread that has a significantly larger criticality than the
other threads results in a considerable speedup for the whole
program (e.g., Lu non-cont. and BFS have speedups over
20% and over 30%, respectively). Moreover, speeding up
the thread with the largest component results in the largest
speedup, while speeding up threads with smaller, roughly-
equal components yields little or no speedup. One inter-
esting phenomenon is Streamcluster, which has a few other
threads besides thread 2 that have slightly larger criticality
percentages, and thus each of the three threads show some
speedup after being scaled up. This validates that criticality
stacks provide useful and accurate information that can be
used to guide optimizations.

FMM is an exception to the rule because the criticality
stack reveals that thread 2 is more critical than the others,
but there is no speedup when this thread is accelerated. In
fact, speeding up any single thread for this program never
yields a significant speedup. Looking at the criticality stack
after speeding up thread 2 revealed that that thread’s com-
ponent was reduced, but thread 7’s component had grown
significantly. FMM is an anomaly; for other benchmarks,
speeding up the most critical thread resulted in a critical-
ity stack with more equal-sized components. The criticality
of the second thread for FMM is hidden, or overlapped, by
the criticality of the first thread. Accelerating one thread
just makes the other become more critical. However, we
will show in Section 7.1 that by dynamically alternating the
accelerated thread per time slice, we get a larger speedup
for this benchmark. For the rest of the results, we focus on
the benchmarks that have a most-critical thread, and thus
parallel imbalance, that can be targeted for acceleration.

5.2 Comparison to prior criticality metric
We compare the performance improvement of speeding

up one thread that is identified as most critical for vari-
ous ways of identifying the critical thread in Figure 5. We

2This frequency raise is not intended to resemble a practical
situation, it serves only as a way to validate the criticality
stacks. We present a more realistic frequency scaling policy
in Section 7.

(a) Criticality stacks (b) Speedups

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
h
o
le

s
k
y

F
F

T

F
M

M

L
u
 c

o
n
t.

L
u
 n

o
n
-c

o
n
t.

O
c
e
a

n
 c

o
n
t.

O
c
e
a

n
 n

o
n
-c

o
n
t.

C
a
n
n

e
a
l

F
a
c
e
s
im

F
lu

id
a
n
im

a
te

S
tr

e
a

m
c
lu

s
te

r

B
F

S

S
ra

d

L
u
d

_
o
m

p

N
e
e
d

le

Thread 0 Thread 1 Thread 2 Thread 3

Thread 4 Thread 5 Thread 6 Thread 7

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

C
h

o
le

s
k
y

F
F

T

F
M

M

L
u

 c
o
n

t.

L
u

 n
o

n
-c

o
n

t.

O
c
e
a

n
 c

o
n

t.

O
c
e

a
n

 n
o

n
-c

o
n

t.

C
a

n
n

e
a

l

F
a

c
e

s
im

F
lu

id
a

n
im

a
te

S
tr

e
a

m
c
lu

s
te

r

B
F

S

S
ra

d

L
u
d

_
o
m

p

N
e

e
d

le

S
p

e
e

d
u

p

Largest component Second largest component

Third largest component

Figure 4: Criticality stacks for all benchmarks for 8 threads and corresponding speedups by accelerating one
thread.

(a) 8 threads (b) 16 threads

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

L
u

 n
o
n
-c

o
n

t.

F
a

c
e

s
im

F
lu

id
a
n

im
a

te

S
tr

e
a

m
c
lu

s
te

r

B
F

S

L
u

d
_

o
m

p

N
e

e
d

le

S
p

e
e

d
u

p

Maximum

Criticality metric

Cache misses metric

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

L
u

 n
o
n
-c

o
n

t.

F
a

c
e

s
im

F
lu

id
a
n

im
a

te

S
tr

e
a

m
c
lu

s
te

r

B
F

S

L
u

d
_

o
m

p

N
e

e
d

le

S
p

e
e

d
u

p

Maximum

Criticality metric

Cache misses metric

Figure 5: Comparison between our and a prior metric, and the maximum achievable speedup by accelerating
one thread.

limit ourselves to accelerating one thread here because most
of our benchmarks have only one most critical thread, but
if more were detected, more threads could be accelerated.
We present speedup results for the benchmarks that have a
critical thread, i.e., speeding up a single thread results in a
speedup of at least 3%. We present the results using a the-
oretical technique that takes the maximum speedup gained
when accelerating each thread individually. We compare
this with our criticality metric as defined in Section 2 and
with previous work that uses cache misses to define critical-
ity [3]. The cache miss metric takes a weighted average of
the number of L1, L2 and L3 cache misses3, with the relative
latency as a weighting factor.

Our newly proposed criticality metric achieves the same
speedup as the maximum achievable speedup in all cases but
one. For the 16-threaded version of Lu non-cont., there are
two criticality stack components that are significantly larger
than the others (thread 0 and thread 2). The maximum

3We adapted the original formula in [3] to three levels of
cache for our configuration.

speedup is achieved by accelerating the second largest com-
ponent (thread 2). A detailed analysis reveals that in the
beginning of the program, thread 0 is executing alone for a
while, spawning threads and distributing data, resulting in
a large criticality component. However, this process is very
memory-intensive and results in many cache misses. Since
the access time to memory is constant, raising the frequency
of that core does not yield a significant speedup. After ini-
tialization, thread 2 becomes more critical, but its critical-
ity does not exceed the accumulated criticality of thread
0. Although it is not the largest component, accelerating
thread 2 yields the largest overall speedup. We will show
in Section 7.1 that by dynamically changing the accelerated
core, Lu non-cont. achieves a slightly higher speedup than
accelerating only the one most critical thread for the entire
program.

Figure 5 reveals that using cache misses to identify criti-
cal threads is less accurate at identifying critical threads and
does not lead to any performance gains for three benchmarks
in the 8-thread configuration, and for two benchmarks with

(a) Fluidanimate (b) BFS (c) Lud omp

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

2
 G

H
z

2
.2

5
 G

h
z

2
.5

 G
H

z

2
.7

5
 G

H
z

3
 G

H
z

3
.2

5
 G

H
z

3
.5

 G
H

z

3
.7

5
 G

H
z

4
 G

H
z

S
p

e
e

d
u

p

8 threads 16 threads

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2
 G

H
z

2
.2

5
 G

h
z

2
.5

 G
H

z

2
.7

5
 G

H
z

3
 G

H
z

3
.2

5
 G

H
z

3
.5

 G
H

z

3
.7

5
 G

H
z

4
 G

H
z

S
p

e
e
d

u
p

8 threads 16 threads

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

2
 G

H
z

2
.2

5
 G

h
z

2
.5

 G
H

z

2
.7

5
 G

H
z

3
 G

H
z

3
.2

5
 G

H
z

3
.5

 G
H

z

3
.7

5
 G

H
z

4
 G

H
z

S
p
e
e

d
u
p

8 threads 16 threads

Figure 6: Impact of frequency scaling on achieved speedup.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 GHz 2.5 GHz 2 GHz 3 GHz 4 GHz

Fluidanimate BFS

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Figure 7: Impact of frequency scaling on criticality
stacks.

16 threads, while our criticality metric always improves per-
formance. The cache miss metric has been proven effective in
barrier-synchronized parallel programs, while our new met-
ric covers all types of synchronization. We conclude that
our newly proposed metric is most effective at finding the
thread most critical to performance.

5.3 Varying the amount of frequency scaling
In the previous experiments, we raised the frequency of

one thread from 2 GHz to 4 GHz, and now we explore more
realistic frequencies between 2 GHz and 4 GHz, at incre-
ments of 0.25 GHz. We use our metric to find the most
critical thread to speed up, and evaluate the impact of fre-
quency scaling on the total program speedup, which reveals
interesting insights about the applications. Figure 6 shows
the resulting speedups for three representative benchmarks,
and Figure 7 shows the criticality stacks for a subset of these
frequencies.

These three benchmarks show different behavior as we
scale frequency up. For Fluidanimate, Figure 6(a) shows that
program speedup increases from 2 to 2.25 GHz, but remains
constant when the frequency is raised further. This is a
typical case of inter-thread synchronization criticality. Once
the thread that other threads are waiting for is sped up
enough such that the other threads do not have to wait
anymore, no further speedup can be attained despite a faster
core. This is also reflected in the change between the two
criticality stacks on the left of Figure 7: after speeding up
the most critical thread (thread 5), its criticality component

shrinks, making the thread non-critical, and thus no further
speedup can be obtained.

For BFS in Figure 6(b), the performance continues to im-
prove as the frequency increases. BFS includes an inherently
sequential part where only one thread is running, which con-
tinues to see performance improvements when sped up to
higher and higher frequencies. When looking at the three
criticality stacks for BFS on the right side of Figure 7, we see
that after accelerating the most critical thread, this thread’s
component decreases, but remains the largest component.

In Figure 6(c), Lud omp displays a mix of the behavior of
the two previous cases: in the beginning the speedup raises
considerably, while after a certain frequency (2.5 GHz), speed-
up goes up at a slower pace. This benchmark’s critical
thread shows both inter-thread synchronization criticality
and sequential criticality. For applications such as this, set-
ting the frequency of the critical thread to the place where
speedup slows, yields the best performance and energy con-
sumption balance.

6. USE CASE #1:
SOFTWARE OPTIMIZATION

Having validated criticality stacks, we now consider three
use cases in order to illustrate the broad applicability of criti-
cality stacks, ranging from software optimization, to dynam-
ically accelerating critical threads and saving energy. We
consider software analysis and optimization in this section,
and the other two applications in two subsequent sections.

To illustrate the use case of criticality stacks for facilitat-
ing program analysis and optimization, we refer to the right
side of Figure 7 which shows that BFS suffers from exces-
sive critical imbalance, even when the most critical thread is
sped up to a high frequency. We investigated this benchmark
further to determine whether, as predicted, there is some se-
quential part of the program that slows down progress. The
main work of BFS, which does breadth-first search of a tree
data structure, is performed in a do-while loop. Inside the
loop are two for loops that loop over all of the nodes in the
tree. Only the first is parallelized. The first loop visits the
edges of each node, potentially updating data. The second,
unparallelized loop goes over each node of the tree, checking
if it was updated. If there were updates, it sets the do-while
flag to loop again, otherwise the do-while loop can termi-
nate. We surmise that the most critical thread identified
with our stacks, thread 0, is responsible for performing the
second for-loop, which runs sequentially.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Original Optimized Original Optimized

8 threads 16 threads

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Figure 8: Example of using criticality stacks as a
guide for software optimization (BFS benchmark).

We analyzed the second loop, determined it has no depen-
dencies between iterations, and optimized it by parallelizing
the loop. After this small program change, Figure 8 presents
the comparison between the unoptimized and optimized BFS
criticality stacks, for both 8 and 16 threads. While Figure 7
shows that scaling to even large frequencies did not remove
the criticality bottleneck, with software analysis and editing,
we achieve balanced criticality stacks, as seen on the right
in Figure 8. After this code change, BFS achieves a 1.67×
and 2.16× speedup for 8 and 16 cores, respectively. These
improvements are significantly better than the 31% and 45%
speedups that are achieved through frequency scaling alone
to 4 GHz (in Figure 6(b)). This use case illustrates that criti-
cality stacks are a useful tool to assist software programmers
in analyzing and fixing parallel imbalance.

7. USE CASE #2:
CRITICAL THREAD ACCELERATION

Our second use case dynamically accelerates a critical
thread during execution using frequency scaling. We eval-
uate an algorithm that dynamically measures thread criti-
cality over a time interval, and scales up the identified most
critical thread in the next interval. While we evaluate fre-
quency scaling on only one thread, scaling multiple threads
could be an option if criticality stacks reveal that this could
be worth the energy cost. This dynamic optimization re-
quires no offline analysis, reacts to phase behavior, and im-
proves parallel program execution time.

We first detail our dynamic algorithm, then compare re-
sults of our dynamic approach with those gathered for our
offline approach in Section 5.2. We compare our dynamic ap-
proach with prior work called BIS, showing we almost double
their performance improvements. In Section 8, we will show
that this dynamic algorithm leads to a more energy-efficient
execution of our parallel applications.

Exploring a large frequency range in Section 5.3 showed
that using a 2.5 GHz frequency achieves the largest speedups
relative to the amount of scaling, while not overly consuming
energy. In these experiments, we raise a critical thread’s fre-
quency to 2.5 GHz. We assume a multicore processor with
a base frequency of 2 GHz, where the processor’s Thermal

if f = ∅ then
if max(Ci)/min(Ci) > α then

f :=maxindex(Ci)
end

else
if max(Ci)/mini 6=f (Ci) > α then

f :=maxindex(Ci)
else

if Cf/max(Ci) < β then
f := ∅

end

end

end
Algorithm 1: Dynamic frequency scaling algorithm. f
is the currently accelerated core; Ci is the criticality for
each thread; ’maxindex’ finds the index of the core with
maximum criticality.

Design Power (TDP) allows one and only one core’s fre-
quency to be increased. We use a time interval of 10 ms for
our dynamic algorithm. At the start of a new time inter-
val, we reset criticality counters. Over the time interval, the
hardware calculates each thread’s criticality sum using the
method described in Section 3.2. Algorithm 1 details how
these criticality numbers are used to decide which (if any)
core to scale up in the next time interval.

Algorithm description. Initially, we check if there is cur-
rently an accelerated core, tracked with f . Calculated crit-
icality numbers are stored in Ci for each thread. If no core
is accelerated (f = ∅), we calculate the ratio between the
largest and the smallest criticality. If the result is larger
than a certain threshold α (the base value is 1.2), then the
frequency of the core running the thread with the largest
criticality component is raised (by setting f to the index of
the core with maximum Ci).

If a core was accelerated in the previous interval, we check
the ratio of the largest criticality to the smallest critical-
ity that is not the currently accelerated core (taking the
second-smallest criticality if the smallest is for the acceler-
ated thread). We perform this check to prevent constantly
scaling up and down a core, since speeding up a thread will
usually result in a smaller criticality component. If this ratio
is above our α threshold, we raise the frequency of the core
running the most critical thread (slowing down the previ-
ously accelerated thread if it is different). If the ratio is not
larger than the threshold, the algorithm calculates the ratio
of the criticality of the thread running on the accelerated
core to the largest criticality. If this ratio is smaller than
a β threshold (with a base value of 0.8), then the acceler-
ated thread is slowed down again. This check prevents con-
tinuously accelerating a core without seeing a performance
benefit, as a thread that was initially critical can eventually
become non-critical. We performed experiments in which
we vary time interval duration, and the α and β parame-
ters, but found little performance difference as compared to
using the base values.

In addition to this proactive algorithm, we implemented
two straightforward reactive mechanisms to further reduce
energy consumption and improve performance. First, when
an accelerated thread is scheduled out, we reduce the fre-
quency of that core to the base frequency, as speeding up

(a) 8 threads (b) 16 threads

0.95

1

1.05

1.1

1.15

1.2

F
M

M

L
u

 n
o
n

-c
o

n
t.

F
a

c
e

s
im

F
lu

id
a
n

im
a
te

S
tr

e
a
m

c
lu

s
te

r

B
F

S

L
u
d
_

o
m

p

N
e

e
d

le

S
p

e
e

d
u

p
Offline approach

Dynamic approach

BIS

0.95

1

1.05

1.1

1.15

1.2

F
M

M

L
u
 n

o
n
-c

o
n

t.

F
a

c
e
s
im

F
lu

id
a
n

im
a

te

S
tr

e
a
m

c
lu

s
te

r

B
F

S

L
u
d
_

o
m

p

N
e

e
d
le

S
p
e

e
d

u
p

Offline approach

Dynamic approach

BIS

Figure 9: Results for the dynamic frequency scaling policy.

that thread has no performance benefit. Secondly, when
there is only one thread active, and that thread is currently
not accelerated, we scale up the frequency of the core run-
ning that thread. In this case, the running thread is by
definition the most critical thread, and should be acceler-
ated. Our dynamic optimization algorithm reacts to chang-
ing circumstances and variation in thread criticality over a
program run.

7.1 Effectiveness of dynamic optimization
Figure 9 shows the performance results of our dynamic

frequency scaling technique for both 8 and 16-threaded con-
figurations4. Because FMM’s total program criticality stack
did reveal a most critical thread, we include it again in our
dynamic results, despite the fact that speeding up one thread
over the whole execution did not improve performance. Each
benchmark has three bars. The first bar is the speedup ob-
tained by the offline approach, i.e., profiling the program
and running the program again while speeding up the most
critical thread over the whole program execution. The next
bar shows the speedup obtained by our dynamic approach.
The last bar shows the results for BIS, which we discuss in
the next section.

For both 8 and 16-threaded runs, FMM achieves larger
speedups with our dynamic approach than the offline ap-
proach. Although the offline approach could not improve
FMM’s performance, our dynamic approach deals better with
the overlapping criticality, and improved performance by
about 3%. Also, as discussed in Section 5.2, the offline
approach could not solve 16-threaded Lu non-cont.’s prob-
lem that one thread was most critical initially and another
was critical later in the program. The dynamic approach
slightly improves upon the performance of Lu non-cont. with
16 threads, adapting to the most critical thread during each
program phase.

For the other benchmarks, the speedups of the dynamic
approach are slightly smaller than those of the offline ap-
proach. This is due to the reactiveness of the dynamic algo-
rithm: frequency is only scaled up after a critical thread
is detected in the previous time interval. However, the
dynamic approach achieves similar program speedups with

4We do account for the (small) overhead incurred when scal-
ing frequency in our simulation experiments.

more energy-efficiency run by not always scaling up the fre-
quency. On average, the dynamic approach adapts to phase
behavior, obtaining a speedup of 4.4%, compared to 4.8%
for the offline approach, while speeding up one thread from
2 GHz to 2.5 GHz for 71% of the time on average.

7.2 Comparison to BIS
We compare the results of our dynamic frequency scaling

algorithm to the best-performing previous work which accel-
erates synchronization bottlenecks instead of threads, called
Bottleneck Identification and Scheduling (BIS) [15]. They
focus on accelerating the most critical bottleneck, e.g., a crit-
ical section that is heavily contended or a barrier with many
threads waiting for a significant amount of time. When a
thread encounters such a bottleneck, it is temporarily mi-
grated to a faster core in a heterogeneous system. We reim-
plemented their technique but instead of thread migration,
we use core frequency scaling (to 2.5 GHz) in our experi-
mental setup.

Figure 9 presents the speedup for each benchmark using
our dynamic algorithm against those obtained using the BIS
technique. For 8-threaded benchmarks, in Figure 9(a), we
see our criticality metric outperforms BIS in all but one
benchmark, significantly outperforming BIS for Lu non-cont.
by speeding up the benchmark 17% compared to 3% for
BIS. Similarly, our dynamic algorithm improves upon BIS’s
speedup in all 16-threaded benchmarks except for Stream-
cluster. We found that our technique is more effective at
speeding up programs that have many barriers, because we
speed up more of the whole thread’s execution instead of
only when a single thread that has yet to reach the barrier.
For programs with many heavily contending critical sections,
BIS might achieve better performance. Overall, our dynamic
scheme achieves an average of 4.6% speedup in comparison
with BIS’s 2.4% for 8 threads. For 16 threads, we speed up
on average by 4.2%, almost doubling BIS’s improvement of
2.7%.

8. USE CASE #3:
ENERGY OPTIMIZATION

While we have shown that criticality stacks are useful for
identifying parallel thread imbalance, and accelerating the
most critical thread achieves program speedups, we now also

(a) 8 threads (b) 16 threads

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

F
M

M

L
u
 n

o
n
-c

o
n
t.

F
a
c
e
s
im

F
lu

id
a
n

im
a
te

S
tr

e
a
m

c
lu

s
te

r

B
F

S

L
u
d

_
o
m

p

N
e

e
d
le

E
n
e
rg

y
 n

o
rm

a
liz

e
d
 t
o

ru
n
n
in

g
 a

ll
th

re
a
d
s
 a

t
2
 G

H
z

All threads at 2.5 GHz

Only critical thread at 2.5 GHz

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

F
M

M

L
u
 n

o
n
-c

o
n
t.

F
a
c
e
s
im

F
lu

id
a
n

im
a
te

S
tr

e
a
m

c
lu

s
te

r

B
F

S

L
u
d

_
o
m

p

N
e

e
d
le

E
n
e
rg

y
n
o
rm

a
liz

e
d
 t
o

ru
n
n
in

g
 a

ll
th

re
a
d
s
 a

t
2
 G

H
z

All threads at 2.5 GHz

Only critical thread at 2.5 GHz

Figure 10: Comparison of energy consumed when running all threads at 2.5 GHz and only the most critical
at 2.5 GHz using our dynamic scheme, compared to running all threads at 2 GHz.

demonstrate that criticality stacks are good for targeting op-
timization towards saving energy. While we want to achieve
maximum performance for parallel programs, power and en-
ergy are first-order concerns in modern systems, including
the embedded and server domains.

We perform an experiment to compare the energy con-
sumed when running our multi-threaded benchmarks at var-
ious frequencies. We run once with all threads at 2 GHz,
once with all threads at 2.5 GHz, and once using our dy-
namic technique to accelerate only the most critical thread
to 2.5 GHz. Obviously, running all threads at the higher
frequency will result in a larger power output. Figure 10
presents the energy consumed, which is power multiplied by
execution time, for our benchmarks with 8 and 16 threads.
We present energy numbers for all threads at 2.5 GHz, and
only the critical thread at 2.5 GHz, normalized to the en-
ergy consumption for all threads at 2 GHz. We estimate
power consumption using McPAT [18] (assuming a 32 nm
technology).

Figure 10 shows that accelerating all threads to the higher
frequency consumes more energy than accelerating only one
thread for all of our benchmarks. For both Lu non-cont. and
Fluidanimate, running with all threads at 2.5 GHz consumes
slightly less energy than with all threads at 2 GHz, because
it results in large program speedups. However, if energy is
of prime concern, we see the best result comes from target-
ing acceleration only at the most critical thread. For almost
all benchmarks, using our dynamic algorithm reduces the
energy consumed from all threads at 2 GHz. Particularly
for BFS with 16 threads, and Lu non-cont. with 8 threads,
we reduce the energy consumed by 11% and 12.6%, respec-
tively. Also, targeting acceleration to the thread identified
as most critical by our metric particularly benefits Facesim,
which consumes about 10% more energy when all threads
are accelerated. Overall, when all threads are executed at
2.5 GHz, the total energy consumption increases by 1.3%
for 16 threads and 2.5% for 8 threads. In comparison, by
accelerating only the critical thread, the total energy con-
sumption is reduced by 3.2% on average for 16 threads and
2.8% for 8 threads.

In summary, through this use case, we have demonstrated
that our criticality stacks are good at not only informing
dynamic optimization to improve parallel program perfor-
mance, but also at targeting this optimization to minimize

the critical resource of energy.

9. RELATED WORK
A significant amount of prior work exists that tries to

understand and optimize criticality. However, prior work
focuses on other forms of criticality or aims at optimizing
thread waiting time in parallel programs. We instead pro-
pose an intuitive metric for thread criticality in parallel,
shared-memory programs that is a useful tool to optimize
performance.

9.1 Criticality analysis
Understanding program criticality is challenging because

of various interaction and overlap effects across concurrent
events, be it instructions or threads. Fields et al. [12] and
Tune et al. [31] proposed offline techniques to analyze in-
struction criticality and slack based on data and resource de-
pendencies in sequential programs. Li et al. [19] extended of-
fline approach to shared-memory programs. Hollingsworth [14]
proposed an online mechanism to compute the critical path
of a message-passing parallel program. Saidi et al. [27] use
critical path analysis to detect bottlenecks in networking ap-
plications. More recently, Cheng and Stenström [9] propose
an offline analysis to detect critical sections on the critical
path. None of this prior work addressed thread criticality
in parallel, shared-memory programs with general synchro-
nization primitives (including critical section, barrier and
pipelined synchronization). Thread criticality stacks as pro-
posed in this paper can be computed both offline and online.

9.2 Parallel program analysis
Tallent et al. [29] use an online profiling tool to measure

idle time and attribute it to the specific locks that caused
this idle time. As discussed in [9], idle time does not al-
ways point to the most critical locks. Speedup stacks [10]
present an analysis of the causes of why an application does
not achieve perfect scalability. Speedup stacks measure the
impact of synchronization and interference in shared hard-
ware resources, and attribute the gap between achieved and
ideal speedup to the different possible performance delim-
iters. However, speedup stacks present no data on which
thread could be the cause, and do not suggest how to over-
come the scalability limitations they identify. Criticality
stacks point to the threads that are most critical and should

be targeted for optimization.

9.3 Reducing thread waiting time
Improving parallel performance by reducing thread wait-

ing time is a well-known optimization paradigm. Many pre-
viously proposed mechanisms apply this conventional wis-
dom for specific performance idioms. Our novel criticality
stack can steer optimizations in an energy-efficient way to
only the most critical threads.

Threads wait for several reasons. The most obvious case is
serial execution parts of a parallel program [1]. When there
is only one thread active doing useful work, optimizing its
performance is likely to yield substantial performance bene-
fits. Annavaram et al. [2] optimize serial code by running at
a higher clock frequency; Morad et al. [24] run serial code
on a big core in a heterogeneous multicore.

Critical sections guarantee mutual exclusion and lead to
serialization, which puts a fundamental limit on parallel
performance [11]. Removing or alleviating serialization be-
cause of critical sections has been a topic of wide inter-
est for many years. Transactional Memory (TM) aims to
overlap the execution of critical sections as long as they do
not modify shared data [13]. Speculative Lock Elision [25],
Transactional Lock Removal [26] and Speculative Synchro-
nization [22] apply similar principles to traditional lock-
synchronized programs. Suleman et al. [28] use the big core
in a heterogeneous multicore to accelerate critical sections.

Several techniques have been proposed to improve perfor-
mance and/or reduce energy consumption of barriers, which
all threads have to reach before the program proceeds. In
thrifty barriers [17], a core is put into a low-power mode
when it reaches a barrier with a predicted long stall time.
Liu et al. [21] improve on that by reducing the frequency
of cores running threads that are predicted to reach a bar-
rier much sooner than other threads, even when they are
still executing. Cai et al. [7] keep track of how many iter-
ations of a parallel loop each thread has executed, delaying
those that have completed more, and giving more resources
to those with fewer in an SMT context. Age-based schedul-
ing [16] uses history from the previous instance of the loop
to choose the best candidate for acceleration. While pre-
vious works all target a specific synchronization paradigm
(barriers and parallel loops), our metric is independent of
the type of synchronization, and can profile every (instru-
mented) stall event due to synchronization.

As discussed in the introduction, thread-criticality predic-
tion (TCP) [3] aims at estimating load imbalance in barrier-
synchronized parallel programs by correlating criticality to
cache misses. Their predictions are used to steal work from
critical threads to improve performance, or to reduce the
frequency of cores running non-critical threads. We showed
in Section 5.2 that our metric finds threads that are more
critical, and when accelerated, result in higher speedups.

Turbo Boost5 increases the core frequency when there are
few active cores. As such, for multi-threaded programs,
it increases thread performance when parallelism is low.
Booster [23] speeds up threads that hold locks or that are
active when other threads are blocked, using a dual voltage
supply technique. Bottleneck Identification and Scheduling
(BIS) by Joao et al. [15] accelerates synchronization prim-
itives (locks, barriers, pipes) with large amounts of con-
tention by migrating them temporarily to a faster core in a

5http://www.intel.com/technology/turboboost

heterogeneous multicore. The methods used by both Turbo
Boost and Booster to identify threads that need to be accel-
erated are a subset of the methods used by BIS, which means
that the BIS results in Section 7.2 are an upper bound for the
results for Turbo Boost and Booster. While BIS optimizes
bottlenecks, we identify the thread(s) most critical to overall
performance. Optimizing bottlenecks does not necessarily
imply improved overall performance, because they also ac-
celerate non-critical threads. In Section 7.2, we showed that
our dynamic algorithm results in a higher speedup than BIS
for barrier-bound applications.

10. CONCLUSIONS
We present a technique to analyze parallel program thread

imbalance due to synchronization, and use that to guide on-
line optimizations to speed up multi-threaded applications.
We introduce a novel, intuitive criticality metric that is inde-
pendent of synchronization primitives, which takes into ac-
count both a thread’s active running time and the number of
threads waiting on it. We also design criticality stacks that
break down execution time visually based on each thread’s
criticality, facilitating detailed analysis of parallel imbalance.

We present a simple hardware design that takes a very
small amount of power, while being off the processor’s crit-
ical path, to compute criticality stacks during execution.
We validate the accuracy and utility of criticality stacks by
demonstrating that our low-overhead online calculation ap-
proach indeed finds the thread most critical to performance,
improving over a previously proposed metric based on cache
misses.

We then present three use cases of criticality stacks to
illustrate their broad applicability to (1) optimize software
code, (2) dynamically accelerate the critical thread to im-
prove performance, even doubling over the best-performing
previous work, and (3) target optimizations of parallel pro-
grams to reduce energy consumption. From these case stud-
ies, we report that (1) after optimizing the code of one
benchmark based on criticality imbalance, we achieve an
average speedup of 1.9×; (2) our dynamic algorithm reacts
to application phase changes, achieving an average speedup
of 4.4%, and up to 17%; (3) by accelerating the most criti-
cal thread, we also reduce the total energy consumption by
3% on average, and up to 12.6% (while at the same time
improving performance). Overall, we conclude that critical-
ity stacks are instrumental to understanding and improving
parallel performance and energy.

11. REFERENCES
[1] G. M. Amdahl. Validity of the single-processor approach to

achieving large-scale computing capabilities. In Proceedings
of the American Federation of Information Processing
Societies Conference (AFIPS), pages 483–485, 1967.

[2] M. Annavaram, E. Grochowski, and J. Shen. Mitigating
Amdahl’s law through EPI throttling. In Proceedings of the
International Symposium on Computer Architecture
(ISCA), pages 298–309, June 2005.

[3] A. Bhattacharjee and M. Martonosi. Thread criticality
predictors for dynamic performance, power, and resource
management in chip multiprocessors. In Proceedings of the
International Symposium on Computer Architecture
(ISCA), pages 290–301, June 2009.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In Proceedings of the International

Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 72–81, Oct. 2008.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. Computer
Architecture News, 39:1–7, May 2011.

[6] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages
83–94, June 2000.

[7] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro,
and A. González. Meeting points: using thread criticality to
adapt multicore hardware to parallel regions. In
Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages
240–249, Oct. 2008.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In Proceedings of the IEEE
International Symposium on Workload Characterization
(IISWC), pages 44–54, Oct. 2009.

[9] G. Chen and P. Stenström. Critical lock analysis:
Diagnosing critical section bottlenecks in multithreaded
applications. In Proceedings of Supercomputing: the
International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), pages
71:1–71:11, Nov. 2012.

[10] S. Eyerman, K. Du Bois, and L. Eeckhout. Speedup stacks:
Identifying scaling bottlenecks in multi-threaded
applications. In Proceedings of the International
Symposium on Performance Analysis of Software and
Systems (ISPASS), pages 145–155, Apr. 2012.

[11] S. Eyerman and L. Eeckhout. Modeling critical sections in
Amdahl’s law and its implications for multicore design. In
Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 362–370, June 2010.

[12] B. Fields, S. Rubin, and R. Bod́ık. Focusing processor
policies via critical-path prediction. In Proceedings of the
International Symposium on Computer Architecture
(ISCA), pages 74–85, June 2001.

[13] M. Herlihy and J. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 289–300, June 1993.

[14] J. Hollingsworth. An online computation of critical path
profiling. In Proceedings of the SIGMETRICS Symposium
on Parallel and Distributed Tools, pages 11–20, May 1996.

[15] J. Joao, M. Suleman, O. Mutlu, and Y. Patt. Bottleneck
identification and scheduling in multithreaded applications.
In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 223–234, Mar. 2012.

[16] N. B. Lakshminarayana, J. Lee, and H. Kim. Age based
scheduling for asymmetric multiprocessors. In Proceedings
of Supercomputing: the International Conference on High
Performance Computing Networking, Storage and Analysis
(SC), pages 199–210, Nov. 2009.

[17] J. Li, J. Martinez, and M. Huang. The thrifty barrier:
Energy-aware synchronization in shared-memory
multiprocessors. In Proceedings of the International
Symposium on High Performance Computer Architecture
(HPCA), pages 14–23, Feb. 2004.

[18] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An integrated power,
area, and timing modeling framework for multicore and
manycore architectures. In Proceedings of the International
Symposium on Microarchitecture (MICRO), pages 469–480,

Dec. 2009.
[19] T. Li, A. Lebeck, and D. Sorin. Quantifying instruction

criticality for shared memory multiprocessors. In
Proceedings of the Symposium on Parallel Algorithms and
Architectures (SPAA), pages 128–137, June 2003.

[20] T. Li, A. R. Lebeck, and D. J. Sorin. Spin detection
hardware for improved management of multithreaded
systems. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 17:508–521, June 2006.

[21] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. Irwin.
Exploiting barriers to optimize power consumption of
CMPs. In Proceedings of the International Symposium on
Parallel and Distributed Processing, page 5a, Apr. 2005.

[22] J. F. Martinez and J. Torrellas. Speculative
synchronization: Applying thread-level speculation to
explicitly parallel applications. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 18–29, Oct. 2002.

[23] T. Miller, X. Pan, R. Thomas, N. Sedaghati, and
R. Teodorescu. Booster: Reactive core acceleration for
mitigating the effects of process variation and application
imbalance in low-voltage chips. In 18th International
Symposium on High Performance Computer Architecture
(HPCA), pages 1–12, Feb. 2012.

[24] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and
A. Ayguade. Performance, power efficiency and scalability
of asymmetric cluster chip multiprocessors. IEEE
Computer Architecture Letters, 5(1):14–17, Jan. 2006.

[25] R. Rajwar and J. R. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution. In
Proceedings of the International Symposium on
Microarchitecture (MICRO), pages 294–305, Dec. 2001.

[26] R. Rajwar and J. R. Goodman. Transactional lock-free
execution of lock-based programs. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 5–17, Oct. 2002.

[27] A. G. Saidi, N. L. Binkert, S. K. Reinhardt, and T. Mudge.
End-to-end performance forecasting: finding bottlenecks
before they happen. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages
361–370, June 2009.

[28] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt.
Accelerating critical section execution with asymmetric
multi-core architectures. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
253–264, Mar. 2009.

[29] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield.
Analyzing lock contention in multithreaded applications. In
Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP),
pages 269–280, Jan. 2010.

[30] C. Tian, V. Nagarajan, R. Gupta, and S. Tallam. Dynamic
recognition of synchronization operations for improved data
race detection. In Proceedings of the International
Symposium on Software Testing and Analysis, pages
143–154, July 2008.

[31] E. Tune, D. Liang, D. Tullsen, and B. Calder. Dynamic
prediction of critical path instructions. In Proceedings of
the International Symposium on High-Performance
Computer Architecture (HPCA), pages 185–195, Jan. 2001.

[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In Proceedings of the
International Symposium on Computer Architecture
(ISCA), pages 24–36, June 1995.

