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What & Why

speech is the most used form of communication between humans
speech is considered a cornerstone of human intelligence

⇒ learn machines to handle speech

verbal information information extraction & visualization
subtitles / transcriptionsspeech recognition

speaker identification

speech / music / silence

text

business/contactcenter analytics

m−health / e−health

face−to−face

meetings

telephone

speech

topic−classification
semantics / ontology

personality analysis

emotion / stress / psychical condition

non−verbal (paralinguistic) information
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Speech as acoustic signal

Recording speech:

digital (analog is obsolete) ⇒ sampling + quantisation
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Speech as acoustic signal

Recording speech:

digital (analog is obsolete) ⇒ sampling + quantisation

typical sample frequencies
I telephone: 8kHz (information loss)
I speech processing: 16kHz (close to no information loss)
I CD-quality: 44.1kHz (sufficient to match the human hearing)
I DAT (digital audio tape): 48kHz
I high-end audio gear: 96kHz or 192kHz (for analysing bat sounds?)

Nyquist: max. frequency content = 1
2 of the sample frequency [1,−1, 1, . . .]

(re)sampling: low-pass filter at fs/2 needed to prevent aliasing

quantisation:
I normal: 16bits (quantisation error: -96dB; sufficient for human hearing)
I telephone speech: 8bits non-linear
I high-end gear: 24 bits

avoid ’clipping’ !
→
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Speech as acoustic signal

Aliasing:

original @ 16kHz
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Speech as acoustic signal

Time-amplitude plot (oscillogram)
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⇒ speech is a non-stationary signal

a time-amplitude plot is not very informative; we can observe:
I energy changes
I changes in basic properties of the sounds (pulse train versus noisy)
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Speech as acoustic signal

Zoom-in on the waveform:
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⇒ more or less isolated acoustic units are detectable
I either an (almost) periodic signal;

Fo = 1/To (pitch, vibrations per second produced by the vocal cords)
I either an irregular (noisy) signal
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Speech analysis: the spectrogram
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Time−amplitude plot (oscilogram) Time−frequency plot (spectrogram)

spectrogram : same information, different representation

axes : x time
y frequency
color (log) energy

usage : render information (much) more visible
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Speech analysis: the spectrogram

compact visual representation of spectral information in non-stationary signals

spectral content ⇒ Fourier-transform (see next slide)

only interested in power distribution (the ear is phase deaf)

short-term power spectrum: power density along frequency axis

S(f ; t) =
1

Ew

∣∣∣∣∣
∫ +T/2

−T/2
w(u) x(t + u)e−j2πfu du

∣∣∣∣∣
2

Parseval:

V (t) =

∫ ∞
−∞

S(f ; t) df

use color to represent the 3D info in 2D
I time = x-axis
I frequency = y-axis
I S(f ; t) in dB = gray value, color, . . .

only positive frequencies are drawn (symmetry)
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Speech analysis: intermezzo – Fourier-transform

signal reconstruction

cosine series

sine series

− 8
+ 8

x(t) eX(f) = −j dttfπ2

+T/2

−T/2

an = x(t) e−jn dtt/T2π

− 8

+ 8

Σ
f2j π ) = x[k] e−j fkπ2X(e

X[n] = Σ x[k] e−j
N−1

k=0

2πkn/N

Fourier−transform

Fourier−series

Z−transform

Discrete Fourier−transform
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Speech analysis: the spectrogram
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audio signal

+ windowing
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Speech analysis: the spectrogram
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Fourier−transformation

10 log10(||FFT||  )

+ power in (in dB)

computers ⇒ discrete signals ⇒ Discrete Fourier Transform

in practice: Fast Fourier Transform (FFT)

windowing: DFT/FFT assumes a periodic extension of the signal
⇒ suppress unpredictable transitions at the edges

examples on artificial signals – see next slide + demo1

visual result: strong dependency on the integration time T in eqn. of S(f ; t)
speech: small-band versus wide-band spectrogram – demo2
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Speech analysis: the spectrogram
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Speech production: physiology

Electro-mechanical equivalent:

electronics: the brains

mechanics: lungs, trachea, larynx,
pharynx, oral cavity, nasal cavity

Fast moving parts:

articulators: lips, tongue, mandible,
soft palate (velum), epiglottis

vocal cords (no articulator since
not directly controllable)
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Speech production: physiology

Lungs and thorax

lungs drive the
speech
I pump air through

the larynx
I air stream makes

vocal cords vibrate

speech generated only
during exhalation

Larynx + vocal cords

vibration → voiced sounds

pitch (Fo): vibration freq.
I pressure difference
I vocal cord length
I vocal cord tension

unvoiced:
stricture in vocal tract
→ turbulent air stream

(white noise)

Vocal tract

acts as a filter

determines the
timbre/color of
the sound

formants (F1, F2):
resonance freqs.
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Speech production: introducing audible frequencies

Voiced sounds: chopping-up the air stream

the vocal cords are closed
⇒ building-up and release of pressure
⇒ pulse train

-t

6p(t)

-t

6
d(t)

�
�
�

�
�
�

�
�
�D

DD
D
DD

D
DD�
�

results in a periodical pressure and air flow
pattern (fundamental frequency; pitch Fo)
pitch+loudness (intonation) controlled by:
I tension in vocal cords
I length of vocal cords
I air flow rate (pressure difference)

F0 of men, women, and kids: demo3

Voiceless sounds: obstruction of the air stream

air flows through a narrow opening
⇒ turbulence
⇒ high frequencies

Obstruents: block air stream + release

the vocal cords remain active for voiced obstruents
plosives (/p/, /b/, /t/, /d/, /k/, /g/)
fricatives (/f/, /v/, /s/, /z/, /S/, /Z/, /x/, /G/, /h/)
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Speech production: visualising the process

vocal cords

turbulent air stream

pulse train

channel  (transfer function)

unvoiced

lu
n
g
s

voiced

=

s
o
u
n
d

mouth position (vocal tract)
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Speech production: visualisation in time & frequency

time domain

frequency domain

h(t) y(t)

H(f) Y(f)X(f)

x(t)

=

resonance freq.

F1

F2

F0 (pitch)

pair of complex poles
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Speech production: making the basic sounds (phones)

Manner of articulation:

how the sound is being made:
I degree of obstruction
I change in time of the obstruction
I which cavities resonate

determines the phonetic class:
I vowels
I obstruents: fricatives & plosives
I nasals (/m/, /n/, /ï/, /ñ/)
I approximants (/r/, /l/, /j/, /w/)

Place of articulation:

place of the main obstruction in the vocal tract

further sub-division of the phonetic class
I bilabial: (/p/, /b/, /m/)
I labiodental: (/f/, /v/, /M/)
I velar: (/k/, /g/, /x/, /G/)
I . . .
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Speech production: making the basic sounds (phones)
Consonants:

m
a
n
n
e
r

place

Vowels (manner=vowel):

p
la

c
e

2

place1

Speech processing – crash course – Speech production: physiology 19 / 74



Speech production: making the basic sounds (phones)

The sound timbre/color is mainly reflected in the formants (F1, F2, . . . ):
formant: resonance frequency of a vocal cavity
the absolute size of the cavity is related to the openness of a sound (F1)
the place of articulation determines the relative sizes of the cavities (F2)
example: the vowel triangle (see next slides)
the formants are visible in a spectrogram (left);
linear predictive coding (LPC) (right) shows the formants more clearly
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Speech production: the vowel triangle

F0 : pitch (fundamental freq. of vocal cords)

F1 : 1st formant; height of the tongue

F2 : 2nd formant; place of the tongue

approximately one formant per kHz

F4,F5, . . . speaker dependent timbre
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Speech as information carrier

Verbal information: what is being said

Linguists distinguish different processes:

syntax : rules concerning sentence structure, e.g. word order;
rules, principles, and processes on how to combine words to
sentences

semantics : the meaning of words, sub-sentences, . . .
relations between words (e.g. chair ↔ table)

pragmatics : influence of context on meaning; examples:
- speaking style (formal↔informal),
- co-reference (to who/what refers ’he’, ’it’),
- implicit implications, . . .

phonetics : the speech sounds (word pronunciations)
also includes lexical stress

prosodics : intonation, tone, stress, and rhythm (including pauses)
usage: macro structure (grouping words), emphasis, question,
sarcasm, . . .
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Speech as information carrier

Non-verbal information: how is something being said (and who is speaking)

Also called paralinguistics.

“How something is said” is reflected in:

pitch, volume (loudness), pauses, speech rate (tempo), modulation, . . .
(common denominator: prosodics)

Affected by:
I mood (angry versus happy),
I mental state (stress, depression),
I physical state (gender, age, weight, alcohol, smoking),
I . . .

fluency (filler words [uhm], vowel lengthening)

language, accent, dialect
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Speech as information carrier

Encoding of the information in the speech signal

phonetics
the phone identity is mainly determined by the signal’s spectral envelope
12 to 13 phones per second, 10.000 words/hour

prosody
combination of V (t) + Fo(t) + metrum
I volume pattern V (t): loudness
I intonation pattern Fo(t): melody or intonation
I metrum (tempo, temporal structure)

intonation can encode lexical info as well (tone languages such as Chinese)
intonation can encode semantic info as well (e.g. Dutch)

(vóórkomen (appearance) ↔ voorkómen (prevent))

⇒ splitting spectrogram in filter(envelope) and source
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Speech analysis: envelope (cepstrum)
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Speech analysis: envelope (LPC)

Linear Predictive Coding
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Speech analysis: envelope (LPC)
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Speech analysis: envelope (LPC)

LPC coefficients can be converted into a tube shape

works very well for vowels, even when simplified (simple speech synthesis)

assumes a simple linear tube, the reality is more complex (e.g. nasals)

no closed form solution for complex model (signal → filter shape)
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Speech analysis: describing the source

splitting spectrogram in filter(envelope) and source
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Speech analysis: pitch tracking
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a wide variety of algorithms
clean-up needed to obtain logical pitch tracks
implemented in toolboxes, e.g. Praat (http://www.fon.hum.uva.nl/praat),
OpenSMILE (https://www.audeering.com/technology/opensmile/), . . .
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Speech analysis: jitter, shimmer, voicing quality, . . .

Jitter
timing variations on the pitch pulses; perturbation on Fo

mainly due to lack of control of vocal folds

Shimmer
amplitude variations on the pitch pulses

due to reduction of glottic resistance and mass lesions in the vocal folds

Harmonic to noise ratio (HNR)
percentage of energy that is voiced versus unvoiced

shimmer

jitter

ideal

low HNR

Why + how
indicates less control over the vocal cords (stress, emotion, . . . )

a wide variety of algorithms; same toolboxes as for pitch tracking
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Speech analysis: MFCCs

compact + informative representation of the spectral envelope

filter (timbre) ↔ source (prosody)

Requirements

compact + informative
I keep all relevant information + suppress/remove non-relevant information
I remove non-informative part
⇒ model needs less parameters, ergo less data needed to train the model

I auditive close together ←→ close together in the feature space

tuned to the modelling techniques being used
I requirement for more or less any modelling technique:

same class (phone) ←→ close together in the feature space
I also: a good feature representation allows simpler models (real-time)
I in practice (see later)

1. decorrelate the feature components of Xn

2. features that help in describing time evolution

robust w.r.t. the acoustic environment (noise, reverberation)
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MFCCs: the Mel(ody) frequency scale

Principles/ideas:

speech and hearing are well matched
⇒ look at limitations of hearing to

compress the information
what works for humans, may also work
for computers
⇒ auditive spectral representation

envelope ⇒ cepstrum

Spectral analysis in the cochlea:

the ear does frequency analysis
(tonotopie)

position ∼ log frequency
non-linear frequency sensitivity

The Mel subjective frequency scale

sample in freq. ∼ human perception:
m(f ) = 1127 log(1 + f /700)

critical band ≈ 100 mel 0.1 1.0 10.0
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determined indirectly: perception experiments
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Speech perception: functional description

Subjective frequency scales – examples

how does a linearly increasing tone sounds (perception)?
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Speech perception: functional description

Subjective frequency scales – examples

minimal audible differences between two tones:
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MFCCs: computation

Step1: pre-emphasis

first-order filter: x(t) = s(t)− µ s(t − 1)

suppresses DC-components: µ = 0.95⇒ −26dB

amplifies HF-components: µ = 0.95⇒ +6dB
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MFCCs: computation

Step2: divide into frames + windowing

overlapping frames: Tf = 10ms, Tw = 30ms = L samples

10ms sampling ⇒ track the movement of the articulators till 50 Hz

30ms window ⇒ at least 3 pitch periods (100Hz for a low male voice)
30ms window ⇒ stability of the spectral analysis

30ms10ms

x(t) = s(t) −    s(t−1)µ

pre−emphasis

divide into frames

audio signal

+ windowing
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MFCCs: computation

Step2: divide into frames + windowing

aim: power spectrum of the signal in a frame (= signal × rectangle)

problem: signal transitions at the edges (periodic extension)
→ false frequency components (may mask weak, but informative info)

solution: multiply with w(t) (smooth, symmetric, bell-shaped)

30ms10ms

x(t) = s(t) −    s(t−1)µ

pre−emphasis

divide into frames

audio signal

+ windowing
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MFCCs: computation

Step3: spectral analysis (DFT, FFT)

Fourier transform of xw (t) = w(t) x(t), t = 0. . .L− 1

zero padding till length N, with N a power of 2
(s(t) sampled at 16kHz, Tw = 30ms ⇒ N = 512)

FFT (Fast Fourier Transform):

X (m) =
L−1∑
t=0

xw (t) e−j2πmt/N m = 0, . . .,N − 1

|X (m)|2 : measure of power in (m fs
N − 1.5 fs

L ,m
fs
N + 1.5 fs

L ), n = 0. . .N2
⇒ spectrogram (after taking log)
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MFCCs: computation

Step4: Mel-spectrum

|X (m)|2 = measure of power per Hz (linear frequency axis)

desired: power distribution per critical band (perceptual frequency-axis)

⇒ critical band filters

100 Mel100 Mel

fck

f

Mel−filterbanks

G ()
k

I central frequencies fck
equidistant on Mel-scale:

mel(f ) = 1127 log(1 + f /700)

I band width Gk(f ):
1 critical band (100 Mel)

Mel-spectrum by summing the power contributions

Smel(k) =

N/2∑
m=0

Gk(m) |X (m)|2 fm =
mfs
N

data reduction: from N/2 (typical 128. . . 256) to 20. . . 25 numbers
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MFCCs: computation

Step5: Compression of the signal range

human ear: log-power (dB-scale)

distances between log-spectra are perceptually relevant

result: log Mel-spectrum LSmel(k) = log [Smel(k) + S0]
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MFCCs: computation

Step6: Mel-cepstra

Desired

compact set of parameters

simple ’distance metric’ (or probabilistic model)

Starting point: Mel-spectra

correlated data (intra-frame)

correlation between individual parameters
frequently indicates redundancies

Mel-spectra: correlation coefficients
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Solution: Mel-cepstra

transformation to a minimal set of decorrelated parameters
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MFCCs: computation

Step6: Mel-cepstra

How1: (I)DCT of log Mel-spectrum

cosine series

sine seriesdecomposes the spectrum in
sinusoidal components

cm =
K∑

k=1

LSmel(k) cos
π(k − 0.5)m

K
(m = 0, . . .,K − 1)

result: DCT with K degrees of freedom

How2: truncation of the DCT

cm, the smaller indices m describe slow variations (c0 = log-energy)

cm, the larger indices m describe fast variations ⇒ can be dropped

the truncated DCT describes the trends in the log Mel-spectrum

Result:
Mel-Frequency Cepstral Coefficients (MFCC)

Speech processing – crash course – Speech analysis: MFCCs 43 / 74



MFCCs: computation

Step6: Mel-cepstra

Advantage1: data reduction

20 40 60 80 100 120 140

frame index

5

10

15

20

25

M
e
l-
fi
lt
e
rb

a
n
d

⇒

20 40 60 80 100 120 140

frame index

0

2

4

6

8

10

12

C
e
p
s
tr

u
m

=

20 40 60 80 100 120 140

frame index

5

10

15

20

25

M
e
l-
fi
lt
e
rb

a
n
d

the models have fewer free parameters

training the models requires less training data

removes the pitch (F0)
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MFCCs: computation

Step6: Mel-cepstra
Cep12
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MFCCs: computation

Step6: Mel-cepstra

Advantage2: decorrelation ⇒ simpler distance metrics / models

Mel-spectra: correlation coefficients
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Mel-cepstra: correlation coefficients
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Euclidean distances instead of Mahanalobis distances

Gaussians with diagonal covariance matrix instead of full matrix

⇒ fewer free parameters
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MFCCs: computation

Step7: time differences

Problem: inter-frame correlations

consecutive frames show a fair amount of correlation (time evolution)

most techniques assume independent feature vectors (simpler models)

extra step needed to incorporate the time evolution anyhow

⇒ extend the features Xn with dynamic information

Result: vector with 3 components

static features (Xnk): MFCC-vector (dimension = 13)

first order differences = velocity features (∆Xnk)

∆Xnk =

∑2
m=1 m × (Xn+m,k − Xn−m,k)

2
∑2

m=1 m
2

second order differences = acceleration features (∆2Xnk)

∆2Xnk =

∑2
m=1 m × (∆Xn+m,k −∆Xn−m,k)

2
∑2

m=1 m
2
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MFCCs: computation

Step7: differences

20 40 60 80 100 120 140

frame index
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 [
1
,

,
2
]

the fine temporal aspects are handled via the input features

the models only needs to handle the coarse temporal aspects

note: the operations [1,∆,∆2] and (I)DCT are interchangeable
(associativity of linear operators)
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MFCCs: computation

Step8: mean-normalisation (optional)

changes in recording volume
→ offset on log Mel-spectrum
→ only affects c0

compensating the features for the volume dependency:

c ′0(t) = c0(t)−
∑T

t′=1
c0(t

′)

T

assumes that volume differences are not the sole information source to
differentiate between two patterns

Speech processing – crash course – Speech analysis: MFCCs 49 / 74



MFCCs: computation

Step8: mean-normalisation (optional)

extension to recording channel h(t),H(f ) (e.g. freq. characteristic µ-phone)

s(t)
h(t)→ s(t)⊗ h(t) time

S(f )
H(f )→ S(f )× H(f ) spectrum

log S(f )
H(f )→ log S(f ) + logH(f ) log-spectrum

log Sw (t, f )
H(f )
 log Sw (t, f ) + logH(f ) log-spectrum; frames

ck(t)
H(f )
 ck(t) + hk cepstrum; frames

with S(t, f ) a non-stationary signal and H(f ) a stationary channel
removing the influence of the recording channel:

c ′k(t) = ck(t)−
∑T

t′=1
ck (t

′)

T

assumes that
∑T

t=1 ck(t) = Ck (constant);
OK if T is sufficiently large, i.e. s(t) contains enough different phones
h(t) should not spread the information in s(t) across frame boundaries;
OK for microphone characteristics; not for reverberation
linear operator ⇒ order w.r.t. [1,∆,∆2] and (I)DCT can be chosen
removes, up to a certain extent, also speaker characteristics
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MFCCs: summary

IDCT

log

pre−emphasis

10ms 30ms

MEL−filterbanks

sliding window

cepstra 0−12

[  1  ∆  ∆   ]
2

x(t) = s(t) − 0.95 s(t−1)

time derivatives

(represented as spectrum)

2|| FFT ||
=

Cepstrum

‘Smooth’ Spectrum

Power spectrum

speech signal
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OpenSMILE:
SMILExtract -C config/MFCC12 0 D A.conf -I sample.wav -csvoutput mffc.csv
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MFCCs: use case1 – exemplar-based speech recognition
Training
I make one or more recordings of all words to be recognised
I the MFCCs of the recorded words form the reference patterns (exemplars)

word: nul

word: vijf

word: een

word: zes word: zeven

word: twee word: drie

word: acht word: negen

word: vier

word: ???

Training:

Recognition:

D(   ,            ) = ?

store one or more reference patterns per word

compare (compute distance) with all reference patterns

Recognition
I record a word; compare the corresponding MFCCs with all reference patterns
I recognised word = most similar reference pattern (smallest distance)
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Dynamic Time Warping (DTW)

compare vector time series showing non-trivial variations in timing

Starting point: the feature extraction generates a sequence of frames
I perceptually motivated MFCC features (1 vector per 10ms)
I straightforward comparison of two sounds on a 10ms basis (Eucl. dist.)
I 6= pronunciations of same word ⇒ comparable trajectories in feature space

Challenge: combine the local distance metrics (10ms frames) to a global
distance metric between words when
every utterance (delivery) of a word
or even a phone shows (slightly)
different timings
Solution: Dynamic Time Warping
I find optimal alignment
I sum local distances

Example: “audiosignaal” (2×)
black-white: local distance
Demos:

- media/dtw steps.m
- media/dtw demo.m
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MFCCs: use case2 – statistical speech recognition

Training

1S

2S

S3

word: ???

a12 a23 a34

a22 a33a11

s2 s3s1

word = sequence of states
hidden Markov model (HMM)

b32b (x)(x)(x)1b

states

transition probs

w
o

r
d

: 
z
e
s

observation prob. density functions

Training:

P(   |            ) = ?

w
o

r
d

: 
z
e
v
e
n

Recognition:

condens multiple examples in a single model

compute p(w|X) for all models

Recognition
I compute p(w |X) for all word models
I recognised word = model that provided the highest likelihood

Speech processing – crash course – Speech analysis: MFCCs 54 / 74



The “hidden Markov model” (HMM)

s1 s2 s3

a11 a22 a33

a34
a23a12

(x)
1

b
2
(x)b b

3
(x)

free parameters:
I the number of states
I the transition probabilities aqs (s = q or s = q + 1), this for every state q
I the emission (observation) distributions bq(X ) = P(X |q)

before 2014: Gaussian Mixture Models (GMMs)
I 39 dimensional (MFCCs, ∆, ∆2)
I diagonal covariance matrices
I parameters: mean, variances, mixture weights

nowadays: deep neural networks (DNNs) bq(X ) ∼ P(q|X )
P(q)

I MFCCs + ∆ ( + ∆2 ) or Mel-spectrum or spectrum
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The “Gaussian mixture model” (GMM)

Weighted sum of Gaussians

Σ (x;P(x) = P(x) = N )Σµ(x; , λkN µ ,k )kΣ

Gaussian distributed

diagonal matrix

in HMMs: emission (observation) distributions bq(X ) = P(X |q)
can also be seen as a 1-state HMM (no modelling of time evolution);
handy in many applications (see part II)
parameters:
I mixture weights λ (or w or g)
I mean vector µ
I variances Σ, σ or V (usually a diagonal matrix – requires decorrelation)
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The “Gaussian mixture model” (GMM)

Effect “Cepstrum” – Mel-spectrum → Mel-cepstrum (decorrelation)

k (x; µk Σ, k)N

diagonal

x 2

x
 ,

1

 ,

λf(x) = Σ
reality

⇒ tune features to better match the properties of the acoustic model
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The “Gaussian mixture model” (GMM)

Effect “Cepstrum” – Mel-spectrum → Mel-cepstrum (decorrelation)

k (x; µk Σ, k)N

x ,
2

x ,
1

λf(x) = Σ
diagonalreality

⇒ tune features to better match the properties of the acoustic model
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(Deep) Neural Networks (DNNs/MLPs)

model p(s|x) instead of p(x |s);

probability density posterior probability

better: p(q|X) instead of p(X|q) q = state seq.; training via graph
currently mainly: “deep neural networks” (DNNs)
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(Deep) Neural Networks (DNNs/MLPs)

image recognition: 40% → 4% error (Cifar-10; 10 image categories)

hierarchical decomposition of the problem (convolutional NNs; CNNs):
works like a charm
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(Deep) Neural Networks (DNNs/MLPs)

Why do DNNs finally work

first wave (begin ’90s):
I MLP with 2-layers is a universal function approximator
I vanishing gradient problem (not know at that time)

⇒deep did not work
I anyhow, only CPU power to handle small MLPs (2 layers)

what changed:
I compute power (GPUs 40× faster than CPUs for DNNs operations)
I vanishing gradient problem “solved” (took insight + time)

batch normalisation
non-linearities with less near-zero gradient regions
more iterations

I techniques to counteract overfitting (deep = huge → overfitting)

(Acoustic) modelling with DNNs

speech recognition: 15 tot 50% relative improvement

linguists already made a hierarchical decomposition
⇒ less improvement from the CNNs/DNNs

structure (hierarchical decomposition) is essential for big improvements
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(Deep) Neural Networks (DNNs/MLPs)

Modelling time series (e.g. word sequences)

recurrent neural networks

LSTM (long short-term memory)
extra gates so that “neurons” can
learn which information is relevant,
when to keep information, . . .

fewer gates (3→2→1) works better

examples (speech & language processing)
I language modelling: halving the perplexity

compared to N-grams
I word vector space models

(distance ∝ syntax & semantics)

RNN/LSTM is not an FST!
⇒ complex to integrate with other (non-DNN)
models
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Finite State Transducers

Decomposing the problem into smaller elements

w
^ = argmax P( ) argmax=

f( ) P( )
X

X

w
w

ww

)XP(

w
^ = argmax

f( ) P( )X w

w

w

)XP(

knowledge

language model

informationpronunciation

lexicon & acoustic model

linguistic

search the words that fit best with the sound

search the most probable
 speech signalgiven the

word sequence (sentence)
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Finite State Transducers

Decomposing the problem into smaller elements

Result: top-down decomposition

(sounds)

acoustic model

lexicon

language model

probabilistic

sentence

words

phones

 speech signal
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Finite State Transducers

Components in a large vocabulary continuous speech recogniser

basic eqn. using phone-based acoustic models:

ŵ, q̂ = arg max
w,q

P(X|q)P(q|fw)P(w)

3 knowledge sources:

acoustic model: P(X|q)
lexicon: w → fw ⇒ P(q|fw)
language model: P(w)

combining everything
I needs an efficient representation of the knowledge sources
I needs an efficient search algorithm needed
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FST : example1

Acoustic model

provides P(signal|phones) [phones → signal]

a34a23a12

11a a22 a33

= s1 s2 s3

bbb

le
x
ic

o
n

[a]

(X) (X) (X)

parameters (X)

1 2 3

signal (S)
preprocessing

phones

word
Hidden Markov Models (HMMs)
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FST : example2

Lexicon

provides P(phones|w) [words → phones]

a straightforward word list (optional: multiple pronunciations):

0.9

h e

I z

n [(.1)j / (.9)[]] u w

e I z

n
j u w

u0.1

h
he

is

new new

he is

extensions:
I assimilation rules
I context dependent phones (+ tied states)
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FST : example3

Language model

provides P(w) [sentence → words]
(a priori probability of a word sequence)

use in recogniser: progressive [left→ right] (cf. signal)
⇒ chain rules (Bayes):

P(w) =
Nw+1∏
i=1

P(wi |wi−1
0 ) w0 =<s>, wNw+1 =</s>

=
Nw+1∏
i=1

P(wi |LM-contexti−1)

types of knowledge:

he

we

works

work

syntax semantics

sit

table

pragmatics

this, that, he, ...chair

legs refers to ...
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FST : example3

Language model – N-gram language models

predict next word based on the preceeding wordsN−1

p(y|x)y

z p(z|x)

p(x|x)x

)

...   the   united   states   of   ???

states the united

of united states

states ofAmerica

Belgium states ofP(

P(

P(

P( |

|

|

| ) =  . . .

=  . . .

=  . . .

=  . . .)

) <
s
>

y

x

<
s
>

z
p(x|<s>)

p(x|   )

p(
x|
<s

>)

x

y

z

x

y

z

p(x|y)

p(y|y)

p(z|y)

p(x|z)

p(y|z)

p(z|z)

reduce the context in Bayes chain rule to N − 1 words

is in principle still a Finite State Grammar
⇒ a Markov-automaton that generates words; each state is an LM context
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FST : combining information

Language Model

Lexicon (pronouncing dictionary)

HMM Search Space

bal

bel

de

een

p(vloog|bel)
p(bel,de)

p(bel|een)

p(een|<s>)

p(bal|een)

p(bal|de)

p(vloog|bal)p(de|<s>)

p(vloog|bal)p(vloog|bel)

p(bel|de)

p(bal|de)

p(bal|een)

p(bel|een)

p(een|<s>) p(de|<s>)

e

b

e

d

e
b

a

l

n

l

e de
b
e
l

v
lo

o
g

b
a
l

d
e

e
e
n

<
s
>

a=

b=

e=

l=

b a l

leb

e
d

n

een

bel bal

<s>
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Finite State Transducers (FST)

Efficient decoding with Finite State Transducers
an FST is a finite state machine with:

- input & output symbols (ε: no input/output)
- converts input to output (transducer)
- transition probabilities

outputs

inputs

costs

states

:

: /

/B ε

Cε

:

:

0.9

0.1

0

initial state

1

2

3

a

ε
ε

b

final states

most important operator: ◦ (compose)

FST1 : abc→ ABC
FST2 : ABC→ αβγ

}
FST1 ◦ FST2 : abc→ αβγ

other frequently used operations:
I determinisation (left → right optimisation, cf. lexicon tree structure)
I minimisation (cf. lexicon in network structure) + weight pushing
I ε-removal
I . . .

Speech processing – crash course – Finite State Transducers 72 / 74



Finite State Transducers (FST)

determinisation & optimisation are unambiguously defined for loop-free
FSTs; approximations needed for FSTs with loops

all knowledge sources in a speech recogniser are FSTs:

- Hidden Markov Models
H : obs. dens. function id → HMM-states

- context-dependency constraints (decision trees)
C : (tied context-dependent) HMM-states → phones

- lexicon
L : phones → words

- language model
G : words → words

⇒ search space:
H ◦ C ◦ L ◦ G : obs. dens. function → words

static composition is doable for compact language models
(N ≤ 3 and k in Kneser-Ney is large)

otherwise: dynamic (on-the-fly) composition of H ◦ C ◦ L with G
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Materials used

Tools
Python3 (3.6 or later)
I scipy (includes numpy)
I matplotlib
I optional: pyaudio or sounddevice

OpenSMILE (v2.3)
I https://www.audeering.com/technology/opensmile/
I documentation: openSMILE-book-latest.pdf

Scripts
spectrogram.py
I make spectrogram
I plot pitch (F0)
I generate artificial signal (freq. sweep, pulse train, noise)
I play the audio signal

demo{1,2,3}.py

Audio material

speech @ 16kHz: audiosignaal.wav, male.wav, female.wav, boy.wav, girl.wav

music @ 16kHz: piano short.wav, drum short.wav, percussion short.wav,
music short.wav
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