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What & Why

speech is the most used form of communication between humans
speech is considered a cornerstone of human intelligence

= learn machines to handle speech

information extraction & visualization
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Speech as acoustic signal

Recording speech:

m digital (analog is obsolete) = sampling + quantisation
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Speech as acoustic signal

Recording speech:
m digital (analog is obsolete) = sampling + quantisation
m typical sample frequencies

> telephone: 8kHz (information loss)
» speech processing: 16kHz (close to no information loss)
» CD-quality: 44.1kHz (sufficient to match the human hearing)
> DAT (digital audio tape): 48kHz

» high-end audio gear: 96kHzor192kHz (for analysing bat sounds?)

Nyquist: max. frequency content = % of the sample frequency [1,-1,1,...]

(re)sampling: low-pass filter at f;/2 needed to prevent aliasing

quantisation:
> normal: 16bits (quantisation error: -96dB; sufficient for human hearing)

> telephone speech: 8bits non-linear

» high-end gear: 24 bits
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m avoid 'clipping’!
9 — ¢



Speech as acoustic signal

N

original @ 16kHz suvvvl ing @ 8kHz -- no anti-aliasing filter

Aliasing:
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Speech as acoustic signal

Time-amplitude plot (oscillogram)

T T

amplitude

1 1

0 0.5 1 15
time (sec) @
= speech is a non-stationary signal
m a time-amplitude plot is not very informative; we can observe:
> energy changes
> changes in basic properties of the sounds (pulse train versus noisy)
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Speech as acoustic signal

Zoome-in on the waveform:
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= more or less isolated acoustic units are detectable
> either an (almost) periodic signal;

Fo =1/ T, (pitch, vibrations per second produced by the vocal cords)
» either an irregular (noisy) signal
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Speech analysis: the spectrogram

Time-amplitude plot (oscilogram) Tlme—frequency plot (spectrogram)

amplitude
frequence (kHz)

0 0.5 1 1.5 02 04 06 08 1 12 14
time (sec) time (sec)

spectrogram : same information, different representation

axes @ X time
y frequency
color (log) energy

usage : render information (much) more visible
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Speech analysis: the spectrogram

|compact visual representation of spectral information in non-stationary signals

spectral content = Fourier-transform (see next slide)
only interested in power distribution (the ear is phase deaf)

short-term power spectrum: power density along frequency axis

1 +T/2 )
S(f;t) = — / w(u) x(t + u)e 2™ dy
EW J—T/2
Parseval: -
V() :/ S(F: t) df
use color to represent the 3D info in 2D

> time = x-axis
> frequency = y-axis
> S(f;t) in dB = gray value, color, ...

only positive frequencies are drawn (symmetry)

Speech processing — crash course — Speech analysis: the spectrogram

8 /74



Speech analysis: intermezzo — Fourier-transform

Fourier—transform
+00

X(f) = [ x(t) e2™"dt

o0

cosine series

Fourier—series
+T/2 )
an= [ x(t) eN2™VTgt
=T/2

NN

sine series

/NN X

Z—-transform

. - .
X(eJZ‘[cf) — Z X[k] e—]21'cfk
+00

Discrete Fourier—transform
N-1 )
X[n] =Z X[k] e—jZTckn/N
k=0

XL NS

5|gnal reconstruction
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Speech analysis: the spectrogram

audio signal ——
v
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Speech analysis: the spectrogram

Fourier—transformation 51
+ power in (in dB) -

10 log10(||FFT||?)

frequence (kHz)

Ep————

0.2 0.4 0.6 0.8 1 1.2 1.4
time (sec)

m computers = discrete signals = Discrete Fourier Transform
m in practice: Fast Fourier Transform (FFT)

m windowing: DFT/FFT assumes a periodic extension of the signal
= suppress unpredictable transitions at the edges

m examples on artificial signals — see next slide + demol

m visual result: strong dependency on the integration time T in eqn. of S(f;t)
speech: small-band versus wide-band spectrogram — demo?2
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Speech analysis: the spectrogram
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Speech production: physiology

Electro-mechanical equivalent: Fast moving parts:

m electronics: the brains m articulators: lips, tongue, mandible,

m mechanics: lungs, trachea, larynx, soft palate (velum), epiglottis

pharynx, oral cavity, nasal cavity m vocal cords (no articulator since
not directly controllable)

Frontal sinus

nasal cavity
pharynx
trachea oral cavity

Nasal cavil

Soft palate
7

Hard palate

Vocal folds \ he larynx

Trachea

Esophagus
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Speech production: physiology

Lungs and thorax Larynx + vocal cords Vocal tract

m vibration — voiced sounds ...
m pitch (F,): vibration freq.
» pressure difference

> vocal cord length fis pharym
» vocal cord tension

m unvoiced:
stricture in vocal tract
— turbulent air stream
(white noise)

larynx (vocal cords)

m lungs drive the

m acts as a filter
e Ty _

speech o R ==
. = The throat nto the Jarvime Eh\;J S
» pump air through
the larynx m determines the

P air stream makes
vocal cords vibrate

timbre/color of
the sound

m speech generated only . /. m formants (F1, Fp):
during exhalation resonance fregs.

Closed
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Speech production: introducing audible frequencies

Voiced sounds: chopping-up the air stream p(t)
m the vocal cords are closed I/V\/Vt

= building-up and release of pressure >

= pulse train d(t)
m results in a periodical pressure and air flow H H H ¢
pattern (fundamental frequency; pitch F,) g
m pitch+loudness (intonation) controlled by:
> tension in vocal cords
» length of vocal cords
> air flow rate (pressure difference)
m [y of men, women, and kids: demo3
Voiceless sounds: obstruction of the air stream
m air flows through a narrow opening
= turbulence
= high frequencies
Obstruents: block air stream + release
m the vocal cords remain active for voiced obstruents
m plosives (/p/, /b/, /t/, /d/. /k/. /9])
w fricatives (/f/, /v/. /s/. /2. /I]. [3/. /%], ¥/, /h])

Speech processing — crash course — Speech production: physiology 15/ 74




Speech production: visualising the process

mouth position (vocal tract)

vocal cords
PN @ @
=F =|.5
iced X| @
voice |pulse train b
- ~— @

Il
channel (transfer function)

G |
L

lungs

T
L. /i\
A

; @
unvoiced
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Speech production: visualisation in time & frequency

time domain

x(t) ® | h(t) = y(t
T I L
N

frequency domain
X(f x| H(f)

F1

resonance freq
pair of comp/ex pole
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Speech production: making the basic sounds (phones)

Manner of articulation:

m how the sound is being made:
P degree of obstruction
» change in time of the obstruction
P which cavities resonate

m determines the phonetic class:

> vowels
> obstruents: fricatives & plosives

> nasals (/m/, /n/, /n/, /n/)
» approximants (/r/, /I/, /i/, /w/)

Place of articulation:
m place of the main obstruction in the vocal tract
m further sub-division of the phonetic class

» bilabial: (/p/, /b/, /m/)
> labiodental: (/f/, /v/, /m/)
> velar: (/k/, /g9/. /x/, /¥/)

> ..

Speech processing — crash course — Speech production: physiology
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Speech production: making the basic sounds (phones)

Consonants:
CONSONANTS (PULMONIC) place ©2005 IPA
Bilabial | Labiodental Dental | Alveolar Postalveolar Retroflex| Palatal | Velar | Uvular |Pharyngeal| Glottal

Plosive pb t d tdcjikgqeao ?
Nasal m n n np g/ N

qh) Trill B T R

E Tap or Flap V r f

Clricae & B f v OOsz [3 sz ¢Jjxyyxys hehdh

€ Lateral ‘ | } 13 | I
fricative | | |
Approximant v 1 1 J u
Lateral 1 l [ [(' L ‘

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

Vowels (manner=vowel):

place2

v

VOWELS place1
Front Central " Back

Close 1 y i XH Welu
1Y O

Close-mid €' () 95 \9 R Xe)

Q
Open-mid e (c— 3\5\ B—Aed
e

Open QeE ' QeD

Where symbols appear in pairs, the one

to the right represents a rounded vowel.
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Speech production: making the basic sounds (phones)

The sound timbre/color is mainly reflected in the formants (F1, Fa, ...

frequence (kHz)

formant: resonance frequency of a vocal cavity

):

the absolute size of the cavity is related to the openness of a sound (Fi)
the place of articulation determines the relative sizes of the cavities (F,)
example: the vowel triangle (see next slides)

the formants are visible in a spectrogram (left);
LPC) (right) shows the formants more clearly

06 08 1 1.2 14 02 04

time (sec)
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Speech production: the vowel triangle

F2 (kHz)

front 2,0 central 1,0 back

uu

o o
. R S—

high I
ig \

—— ge

amplitude

®
8

P/

tijd

uu g
§760
£
: 400 4 6 8
0,5 frequentie (kHz)
mid . e
= T £ MW/\J\/\/\WWW
\ 5 f
mannen = g
=
low & 100
E’ EOMM\
vrouwen £
> 40
0 2 4 8
frequentie (kHz)
1,0
m Fo @ pitch (fundamental freq. of vocal cords) gwww/\/v
m Fi: 1% formant; height of the tongue s
tijd
m F, : 2" formant; place of the tongue i
m approximately one formant per kHz ginow
£
m Fy, Fs, ... speaker dependent timbre ) P P 0 s
frequentie (kHz)
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Speech as information carrier

Verbal information: what is being said )

Linguists distinguish different processes:

syntax

semantics

pragmatics :

phonetics

prosodics

. rules concerning sentence structure, e.g. word order;

rules, principles, and processes on how to combine words to
sentences

: the meaning of words, sub-sentences, ...

relations between words (e.g. chair <> table)
influence of context on meaning; examples:

- speaking style (formal«informal),

- co-reference (to who/what refers 'he’, 'it'),
- implicit implications, . ..

: the speech sounds (word pronunciations)

also includes lexical stress

. intonation, tone, stress, and rhythm (including pauses)

usage: macro structure (grouping words), emphasis, question,
sarcasm, ...
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Speech as information carrier

Non-verbal information: how is something being said (and who is speaking)

Also called paralinguistics.

“How something is said” is reflected in:

m pitch, volume (loudness), pauses, speech rate (tempo), modulation, ...

(common denominator: prosodics)
Affected by:

> mood (angry versus happy),

> mental state (stress, depression),

> physical state (gender, age, weight, alcohol, smoking),
> ..

m fluency (filler words [uhm], vowel lengthening)

m language, accent, dialect
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Speech as information carrier

Encoding of the information in the speech signal

phonetics

m the phone identity is mainly determined by the signal’s spectral envelope

m 12 to 13 phones per second, 10.000 words/hour
prosody
m combination of V/(t) + F,(t) + metrum
> volume pattern V/(t): loudness
> intonation pattern F,(t): melody or intonation
> metrum (tempo, temporal structure)

m intonation can encode lexical info as well (tone languages such as Chinese)

m intonation can encode semantic info as well (e.g. Dutch)
(v66rkomen (appearance) <+ voorkémen (prevent))

= splitting spectrogram in filter(envelope) and source
spectrum spectral envelope (filter) prosody (source) (Fox 10)

02 04 06 o8
Seconds Seconds

08
Seconds

=P analysis: signal / filter = source synthesis: source x filter = signal <=
Speech processing — crash course — Information in speech
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Speech analysis: envelope (cepstrum)

Fourier-transformatie
10 log10(||FFT]||?)

i

ce (kHz)

quen
n

fred

Cepstrale analyse

M I ﬂ Mﬂm, y Mﬂ
|

ence (kHz)

FFT zero IFFT




Speech analysis: envelope (LPC)

Linear Predictive Coding

w
A :

%
¥

Y(2)

E(2)

_ 1
S1-YalilY(z )
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Speech analysis: envelope (LPC)

Linear Predictive Coding

y[il = gam < yli—i] + efi]
J=

speech signal
exitation signal
(white noise)

1
Y@) = - S TPE E(z)

Least Squares Solution
Yo |Y-1 Y2 Y3 :--
Yy Yo Y1 Yoo
Yo|=1Y1 Yo Y-

Ye| | Yke1Yk-2 Y3 -

\

Spectrum
E@=1 - Y(E>"")
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Speech analysis: envelope (LPC)

m LPC coefficients can be converted into a tube shape

w-alllli sl -

m works very well for vowels, even when simplified (simple speech synthesis)
It It

el fal

e

8

2010 60

Nostrils

\ Radiated sound pressure

Mouth opening

m no closed form solution for complex model (signal — filter shape)
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Speech analysis: describing the source

splitting spectrogram in filter(envelope) and source

prosody (source)

(Fy x 10)

spectral envelope (filter)

kHertz

kHertz

Seconds

08 1

12 14 0.6
Seconds
synthesis: source x filter = signal <=

02 04 06 08
Seconds

=P analysis: signal / filter = source

29 / 74
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Speech analysis: pitch tracking

kHertz

Seconds

m a wide variety of algorithms
m clean-up needed to obtain logical pitch tracks
m implemented in toolboxes, e.g. Praat (http://www.fon.hum.uva.nl/praat),

OpenSMILE (https://www.audeering.com /technology /opensmile/), ...
30/ 74
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Speech analysis: jitter, shimmer, voicing quality, ...

Jitter
® timing variations on the pitch pulses; perturbation on F,

m mainly due to lack of control of vocal folds

Shimmer
m amplitude variations on the pitch pulses

m due to reduction of glottic resistance and mass lesions in the vocal folds

Harmonic to noise ratio (HNR)
m percentage of energy that is voiced versus unvoiced

ideal
jitter
shimmer

Why + how
m indicates less control over the vocal cords (stress, emotion, ...)

m a wide variety of algorithms; same toolboxes as for pitch tracking
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Speech analysis: MFCCs

compact + informative representation of the spectral envelope

filter (timbre) <«

Requirements
m compact + informative
> keep all relevant information + suppress/remove non-relevant information
» remove non-informative part
= model needs less parameters, ergo less data needed to train the model
> auditive close together «— close together in the feature space

m tuned to the modelling techniques being used

» requirement for more or less any modelling technique:

same class (phone) <— close together in the feature space
> also: a good feature representation allows simpler models (real-time)
> in practice (see later)

1. decorrelate the feature components of X,

2. features that help in describing time evolution

m robust w.r.t. the acoustic environment (noise, reverberation)

Speech processing — crash course - Speech analysis: MFCCs 32 /74



MFCCs: the Mel(ody) frequency scale

Principles/ideas:
m speech and hearing are well matched :
. g i Travelling waves
= look at limitations of hearing to Basiiar membrane displacement
. . g a function of frequency
compress the information
m what works for humans, may also work
for computers
= auditive spectral representation
m envelope = cepstrum

Spectral analysis in the cochlea:
m the ear does frequency analysis
(tonotopie)
m position ~ log frequency
m non-linear frequency sensitivity

Stéphan Blatiic

The Mel subjective frequency scale
m sample in freq. ~ human perception:
m(f) = 1127 log(1 + £/700)
m critical band ~ 100 mel o 10 100
m determined indirectly: perception experiments freauency (k)

@
3

=)

excitation spectrum (dB)
Y
8

o
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Speech perception: functional description

Subjective frequency scales — examples
m how does a linearly increasing tone sounds (perception)?

T | '\‘\‘

MR

3 4 6 7
m is this noise with a certain bandwidth or an airy tone?

o

IS

N

frequence (kHz)

o

time (sec) time (sec)
8

S o

frequence (kHz)
n

time (sec) time (sec)
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Speech perception: functional description

Subjective frequency scales — examples

m minimal audible differences between two tones:

.;J_Mhuij. s HM!_MH” il L.nzll_luuu“h
m T

5 5

IS

¥ ¥
<3 <3
jo] (o]
2 2
0)2 02
=} =]
o o
£ £
0

0.5 1 1.5
time (sec)

time (sec)



MFCCs: computation

Stepl: pre-emphasis
m first-order filter: x(t) = s(t) — p s(t — 1)
m suppresses DC-components: = 0.95 = —26dB
m amplifies HF-components: p = 0.95 = +6dB

frequence (kHz)
n w » (4]

—

frequence (kHz)
N w » (6 =)

-

0
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MFCCs: computation

Step2: divide into frames
m overlapping frames: Tf = 10ms, T,, = 30ms = L samples
m 10ms sampling = track the movement of the articulators till 50 Hz

m 30ms window = at least 3 pitch periods (100Hz for a low male voice)
=> stability of the spectral analysis

audio signal —»
v

pre—emphasis
Xx(t) = s(t) - s(t-1)

+ A

divide into frames o N A
+ windowing
A

% -
H H T C ﬁ
10ms 30ms 0.44 045 0.46 047 0.48 0.49 05 051

Speech processing — crash course - Speech analysis: MFCCs
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MFCCs: computation

Step2: windowing
m aim: power spectrum of the signal in a frame (= signal x rectangle)

m problem: signal transitions at the edges (periodic extension)
— false frequency components (may mask weak, but informative info)

m solution: multiply with w(t) (smooth, symmetric, bell-shaped)

audio signal —
v

pre—emphasis
X(t) = s(t) —u s(t-1)
v

divide into frames
+ windowing

Ny

10ms 30ms
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MFCCs: computation

Step3: spectral analysis (DFT, FFT)
m Fourier transform of x,,(t) = w(t) x(t), t=0...L—1
m zero padding till length N, with N a power of 2
(s(t) sampled at 16kHz, T,, = 30ms = N = 512)
m FFT (Fast Fourier Transform):

m):wa(t) e j2mmt/N m=0,..,N—-1
2. fy f fs — N
m |[X(m)|® : measure of power in (m& — 1.5% mk 4 1.5%) n=0...5
= spectrogram (after takmg log)

. =
<4
z |
33
2
g2
g
E 1

0 = — . S —

02 0.4 0.6 0.8 1 12 14
time (sec)

Speech processing — crash course — Speech analysis: MFCCs

39 /74



MFCCs: computation

Step4: Mel-spectrum
m | X(m)[?> = measure of power per Hz (linear frequency axis)

m desired: power distribution per critical band (perceptual frequency-axis)
= critical band filters G.)
K

> central frequencies fu
equidistant on Mel-scale:
mel(f) = 1127 log(1 + £ /700) S—
> band width G(f): 100 Mel : 100 Mel
1 critical band (100 Mel) Mel—filterbanks ok

~y

m Mel-spectrum by summing the power contributions
N2 mf.
Smet(k) = > G(m) |X(m)[? fn = =2

m=0

m data reduction: from N/2 (typical 128...256) to 20...25 numbers
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MFCCs: computation

Step5: Compression of the signal range
m human ear: log-power (dB-scale)
m distances between log-spectra are perceptually relevant
m result: log Mel-spectrum LS,,e/(k) = log [Smei(k) + So]

'L hi]

20 40 60
frame |ndex

25

o
S

4

Mel-filterband

frequence (kHz)
>
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MFCCs: computation

Step6: Mel-cepstra
Desired

m compact set of parameters

m simple 'distance metric’ (or probabilistic model)

Startmg pomt: Mel_sPeCtra Mel-spectra: correlation coefficients

m correlated data (intra-frame) 25 o

m correlation between individual parameters 20 06
frequently indicates redundancies 15 04

0.2

10

0
5 0.2
. 0.4

Solution: Mel-cepstra 5 10 15 20 25

m transformation to a minimal set of decorrelated parameters
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MFCCs: computation

cosine series

Step6: Mel-cepstra

Howl: (I)DCT of log Mel-spectrum \;L ;L/

m decomposes the spectrum in sine series
sinusoidal components

K
Cm = Z LSmei(k) cos

k=1

w(k—05)m ——, o -
— .

m result: DCT with K degrees of freedom

How?2: truncation of the DCT
B Cp, the smaller indices m describe slow variations (co = log-energy)
B Cp,, the larger indices m describe fast variations = can be dropped
m the truncated DCT describes the trends in the log Mel-spectrum

Result:
Mel-Frequency Cepstral Coefficients (MFCC)
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MFCCs: computation

Step6: Mel-cepstra

Advantagel: data reduction

Mel-filterband
Cepstrum

Mel-filterband

20 40 60 80 100 120 140 40 60 80 100 120 140 20 40 60 80 100 120 140
frame index frame index frame index

m the models have fewer free parameters
m training the models requires less training data
m removes the pitch (Fp)




MFCCs: computation

Step6: Mel-cepstra
Cep4

Cep12
25 25 25
20 20 20
o e e
] ] &
215 215 215
2 2 2
o 10 o 10 - 10
= = =
5 5 5
50 100 150 50 100 150 50 100
frame index frame index frame index
Cep2 Cep1 Cep0
25 25 25
20 20 20
© he) ©
] ] ]
215 215 215
I 2 2
- 10 < 10 < 10
= = =
5 5 5
50 100 150 50 100 150 50 100 150
frame index frame index frame index
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MFCCs: computation

Step6: Mel-cepstra

Advantage2: decorrelation = simpler distance metrics / models

Mel-spectra: correlation coefficients Mel-cepstra: correlation coefficients

0.8
0.6
0.4
0.2
0
-0.2

-0.4

5 10 15 20 25
m Euclidean distances instead of Mahanalobis distances

m Gaussians with diagonal covariance matrix instead of full matrix
= fewer free parameters
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MFCCs: computation

Step7: time differences

Problem: inter-frame correlations
m consecutive frames show a fair amount of correlation (time evolution)
m most techniques assume independent feature vectors (simpler models)
m extra step needed to incorporate the time evolution anyhow

= extend the features X, with dynamic information

Result: vector with 3 components
m static features (Xux): MFCC-vector (dimension = 13)
m first order differences = velocity features (AX)

fnzl m X (Xn+m,k - Xn—m,k)
2
2 Zm:l m?

m second order differences = acceleration features (A2X)

AXp = Z

22[11:1 m X (AXn+m,k - A)<n—m,k)
2 22,11:1 m?
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MFCCs: computation

Step7: differences

7 L | g ] P T T

O L II' L ‘3. - -|

q i 40 O . O |

< 23 . Rl # b

= L & T, - e

2 e [

1 :

L - L I

9 5 s F ] - T

3 [T . {:. .
J= = ™

20 40 60 80 100 120 140
frame index

m the fine temporal aspects are handled via the input features
m the models only needs to handle the coarse temporal aspects

m note: the operations [1,A,A?] and (I)DCT
(associativity of linear operators)
Speech processing — crash course — Speech analysis: MFCCs
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MFCCs: computation

Step8: mean-normalisation (optional)

m changes in recording volume
— offset on log Mel-spectrum
— only affects ¢

[l '.L
R T I

I [ | -
m compensating the features for the volume dependency:
T ’
co(t) = colt) — Zt/:ITCO(t)
m assumes that volume differences are not the sole information source to
differentiate between two patterns
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MFCCs: computation

Step8: mean-normalisation (optional)
m extension to recording channel h(t), H(f) (e.g. freq. characteristic u-phone)

s() "™ s(6) @ n(r) time

sih) "D s(h) < HR spectrum

log S(f) HE) log S(f) + log H(f) log-spectrum
log S (t,f) i log Sw(t, ) + log H(f) log-spectrum; frames
c(t) o ck(t) + he cepstrum; frames

with S(t,f) a non-stationary signal and H(f) a stationary channel
m removing the influence of the recording channel:
i) = ai(t) — T
m assumes that Z;l ck(t) = Ci (constant);
OK if T is sufficiently large, i.e. s(t) contains enough different phones
m h(t) should not spread the information in s(t) across frame boundaries;
OK for microphone characteristics; not for reverberation
m linear operator = order w.r.t. [1, A, A2] and (I)DCT can be chosen
® removes, up to a certain extent, also speaker characteristics
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MFCCs: summary

— -
v %
pre—emphasis ] = S5
X(t) = s(t) - 0.95 s(t-1) MEL‘f”ie’ 2D 8
(%]

v
sliding window

v
N

s lcepstra 0-12
10ms  30ms
v

spectrum

Cepstrum N .
1 £ ! ‘
| FFT ||2 ‘Smooth’ Spectrum = B
v v & 4 ' .ﬁ.
time denvagves <_|J =i
— [144% o | A
(represented as spectrum)
m OpenSMILE:

SMILExtract -C config/MFCC12_0D_A.conf -I sample.wav -csvoutput mffc.csv
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m Training

MFCCs: use casel — exemplar-based speech recognition

P> make one or more recordings of all words to be recognised
» the MFCCs of the recorded words form the reference patterns (exemplars)
Training: store one or more reference patterns per word

Ll’:i

I‘I 7
g
1

Mi—

- ]

)

. —
word: nul word: een word: twee word: drie word: vier
- .-I T
o - —
— -'- =
word: vijf word: zes word: negen

Recognition: compare (compute distance) with all reference patterns

m Recognition

P record a word; compare the corresponding MFCCs with all reference patterns
> recognised word = most similar reference pattern (smallest distance)

Speech processing — crash course — Speech analysis: MFCCs
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Dynamic Time Warping (DTW)

|compare vector time series showing non-trivial variations in timing|

m Starting point: the feature extraction generates a sequence of frames
> perceptually motivated MFCC features (1 vector per 10ms)
» straightforward comparison of two sounds on a 10ms basis (Eucl. dist.)
> £ pronunciations of same word = comparable trajectories in feature space
m Challenge: combine the local distance metrics (10ms frames) to a global
distance metric between words when
every utterance (delivery) of a word
or even a phone shows (slightly)
different timings
m Solution: Dynamic Time Warping
> find optimal alignment
» sum local distances
m Example: “audiosignaal” (2x)
black-white: local distance
m Demos:
- media/dtw_steps.m
- media/dtw_demo.m
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MFCCs: use case2 — statistical speech recognition

m Training
Training condens multiple examples in a single model

hidden Markov model (HMM) -----eeemeememsemmmsmensesneneeeany
word = sequence of states

states <
i arz ,.é_l_z::g_ 34 transition probs =
o O 3 b T By ™
N
g
s observation prob. density functions <

m Recognition
» compute p(w]|X) for all word models
> recognised word = model that provided the highest likelihood

Speech processing — crash course — Speech analysis: MFCCs
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The “hidden Markov model” (HMM)

m free parameters:
» the number of states
> the transition probabilities a4s (s = g or s = g + 1), this for every state g
> the emission (observation) distributions bq(X) = P(X|q)
m before 2014: Gaussian Mixture Models (GMMs)
» 39 dimensional (MFCCs, A, A?)
> diagonal covariance matrices
P> parameters: mean, variances, mixture weights
m nowadays: deep neural networks (DNNs) by (X) ~ PIE‘EL))()
> MFCCs + A ( + A?) or Mel-spectrum or

Speech processing — crash course — Speech analysis: MFCCs
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The “Gaussian mixture model” (GMM)

Gaussian distributed

P(x) = N (x; u,X)

Weighted sum of Gaussians

P(x) = ¥ AN (X; 1k, Zk)

diagonal matrix

m in HMMs: emission (observation) distributions b,(X) = P(X|q)
m can also be seen as a 1-state HMM (no modelling of time evolution);
handy in many applications (see part I1)

m parameters:

> mixture weights A (or w or g)

» mean vector p

> variances X, o or V (usually a diagonal matrix — requires decorrelation)
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The “Gaussian mixture model” (GMM)

Effect “Cepstrum” — Mel-spectrum — Mel-cepstrum (decorrelation)

f(X) =Z }\,k?\[{X,' Wk %k)

reélity diaéonal

+o

AR

= tune features to better match the properties of the acoustic model
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The “Gaussian mixture model” (GMM)

Effect “Cepstrum” — Mel-spectrum — Mel-cepstrum (decorrelation)

f(X) =Z }\,k?\[{X,' Wk %k)

reélity diaéonal
A

P>

X 1’

= tune features to better match the properties of the acoustic model
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(Deep) Neural Networks (DNNs/MLPs)

m model p(s|x) instead of p(x|s);

probability density posterior probability

m better: p(q|X) instead of p(X|q) g = state seq.;  training via graph
m currently mainly: “deep neural networks” (DNNs)

hidden layer 1 hidden layer 2 hidden layer 3
input layer
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(Deep) Neural Networks (DNNs/MLPs)

m image recognition: 40% — 4% error (Cifar-10; 10 image categories)

m hierarchical decomposition of the problem (convolutional NNs; CNNs):
works like a charm
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(Deep) Neural Networks (DNNs/MLPs)

m image recognition: 40% — 4% error (Cifar-10; 10 image categories)

m hierarchical decomposition of the problem (convolutional NNs; CNNs):
works like a charm

Speech processing — crash course — The “Gaussian mixture model” (GMM) 61 /74



(Deep) Neural Networks (DNNs/MLPs)

Why do DNNs finally work
m first wave (begin '90s):
> MLP with 2-layers is a universal function approximator
> vanishing gradient problem (not know at that time)
=-deep did not work
> anyhow, only CPU power to handle small MLPs (2 layers)

m what changed:

> compute power (GPUs 40x faster than CPUs for DNNs operations)
> vanishing gradient problem “solved” (took insight + time)
@ batch normalisation

@ non-linearities with less near-zero gradient regions
@ more iterations

> techniques to counteract overfitting (deep = huge — overfitting)
(Acoustic) modelling with DNNs
m speech recognition: 15 tot 50% relative improvement

m linguists already made a hierarchical decomposition
= less improvement from the CNNs/DNNs

m structure (hierarchical decomposition) is essential for big improvements

Speech processing — crash course — The “Gaussian mixture model” (GMM)
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(Deep) Neural Networks (DNNs/MLPs)

Modelling time series (e.g. word sequence

recurrent neural networks

LSTM (long short-term memory)
extra gates so that “neurons” can
learn which information is relevant,
when to keep information, ...

fewer gates (3—2—1) works better

examples (speech & language processing)

» language modelling: halving the perplexity 4}
compared to N-grams
» word vector space models ‘Q
(distance o syntax & semantics)
RNN/LSTM is not an FST! FORGETGA
= complex to integrate with other (non-DNN) ()
models T

NET INPUT

OUTPUT GATE

INPUT GATE
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Finite State Transducers

Decomposing the problem into smaller elements

search the words that fit best with the sound

A4

search the most probable word sequence (sentence)
given the speech signal

\ 4
VI\\’ = argmax P(WlX) = argmax f(XlW) P(w)
w P(X)
\ 4
W = argmax f(Xw) P(w)

w P
pronunciation information linguistic knowledge
lexicon & acoustic model language model
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Finite State Transducers

Decomposing the problem into smaller elements

Result: top-down decomposition

sentence
|——
words '
— e
phones E
(sounds) :
|—— e
speech signal :-» probabilistic
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Finite State Transducers

Components in a large vocabulary continuous speech recogniser

m basic eqn. using phone-based acoustic models:

W, § = arg max P(w)
w.q

m 3 knowledge sources:

acoustic model:
lexicon: w—f, =
language model:  P(w)

m combining everything
P needs an efficient representation of the knowledge sources
> needs an efficient search algorithm needed
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FST : examplel

Acoustic model

m provides P( | ) [ - ]
"9 Hidden Markov Models (HMMs)
asjy agp ass

Preprocessing signal (S)

e parameters (X)
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FST : example2

Lexicon
m provides P( |w) [words — ]

m a straightforward word list (optional: multiple pronunciations):

h e oz
he he he o« v IS ¢« v *
is 1z ) j |
new n[(.1)j/(9)luw new ¢ 0.15Jg

m extensions:

> assimilation rules
> context dependent phones (+ tied states)
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FST : example3

Language model

m provides P(w) [ — words]
(a priori probability of a word sequence)

m use in recogniser: progressive [left — right] (cf. signal)
= chain rules (Bayes):
Ny +1
Pw) = ] P(wilwg ™) Wo =<S>, W, 11 =</s>
i=1

Ny, +1
= H P(w;|LM-context;_1)
i=1

m types of knowledge:

syntax semantics pragmatics
chair . this, that, he, ...
he - works sit
we work table }
legs refers to ...
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FST : example3

Language model — N-gram language models

predict next word based on the N-1 preceeding words

the united states of ???

—L'ﬁf,

I
states |the united) = ...

L

of |united states) = ...

P
L p
P

L—

(
(
(America |states of) = ...
P(Belgium |states of) = ...

m reduce the context in Bayes chain rule to N — 1 words

m is in principle still a Finite State Grammar

= a Markov-automaton that generates words; each state is an LM context

Speech processing — crash course — Finite State Transducers
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FST : combining information

HMM \
a=8\%\ e= 8\%\
Lexicon (pronouncing dictionary) § n ;Ee
a! 25 p(balleen)
bel een @@ > » p(belleen) %ﬂ p(ballde)

b b

Search Space

Language Model

E p(ballde)
p(de|<s>) p(vloog|bal)

p(bel,de)
p(een|<s> p(vloog|bel)
p(belleen),
(o)

e

%8‘8@8%8

5

KRR

|

j p(viooglbel) || p(viooglbal
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Finite State Transducers (FST)

Efficient decoding with Finite State Transducers
m an FST is a finite state machine with:
- input & output symbols (£: no input/output)
- converts input to output (transducer)
- transition probabilities

inputs a B/0.9 b:g
outputs
costs
states i ee/o4d e
final states 2+~
“~ initial state
® most important operator: o (compose)
FST1: —
FST?2 - s afy } FST1 o0 FST2: — afy

m other frequently used operations:
> determinisation (left — right optimisation, cf. lexicon tree structure)
> minimisation (cf. lexicon in network structure) + weight pushing
> £-removal
> ..
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Finite State Transducers (FST)

m determinisation & optimisation are unambiguously defined for loop-free

FSTs; approximations needed for FSTs with loops
m all knowledge sources in a speech recogniser are FSTs:
- Hidden Markov Models
: obs. dens. function id — HMM-states
- context-dependency constraints (decision trees)
C : (tied context-dependent) HMM-states — phones
- lexicon
: phones — words
- language model
G : words — words

= search space:
o Co ! oG: obs. dens. function — words

m static composition is doable for compact language models
(N < 3 and k in Kneser-Ney is large)

m otherwise: dynamic (on-the-fly) composition of H o C o | with G

Speech processing — crash course — Finite State Transducers
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Materials used

Tools
m Python3 (3.6 or later)
> scipy (includes numpy)
> matplotlib
» optional: pyaudio or sounddevice
m OpenSMILE (v2.3)
> https://www.audeering.com /technology/opensmile/
» documentation: openSMILE-book-latest.pdf
Scripts
m spectrogram.py
P> make spectrogram
> plot pitch (Fo)
> generate artificial signal (freq. sweep, pulse train, noise)
> play the audio signal
m demo{1,2,3}.py
Audio material
m speech @ 16kHz: audiosignaal.wav, male.wav, female.wav, boy.wav, girl.wav

m music @ 16kHz: piano_short.wav, drum_short.wav, percussion_short.wav,
music_short.wav
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