SPRAAK
|
This page explains the example code in SPRAAK/examples/exp_aur4/
. While the examples in the previous section deal with the Speecon data, which cannot be included with this distribution, Aurora-4 can be purchased at a lower cost, such that this example should be reconstructable for most users. Aurora-4 is derived from the WSJ0-corpus by adding noise. The new data is provided with Aurora-4, but the language model and lexicon are not. Hence, the WSJ0-database is required as well.
Running the Aurora-4 experiments requires the following steps
The MAKE_RESOURCES
scripts convert index files to corpora, download the CMU-dictionary and extract the words required for training and testing, convert language model to the SPRAAK binary format and so on.
The exp_aur4/RUN_EXPERIMENTS_MDT
script performs the following steps:
meannorm
) on speech only. This mode of operation matches the MDT channel estimate which also ignores silence frames in its channel estimate. Some practical notes:
exp_aur4/aur4_clean_mida_vad_mdt.ini
. Note that when using the 'channel feedback', the preprocessing file (resources/aur4_mida_vad_mdt.preproc
must contain a matching [feedback]
block. examples/resources/preproc/aur4_*
and examples/resources/preproc/impute_spec_hd.preproc
. Results:
clean car babble resto street airport train clean car babble resto street airport train 01 02 03 04 05 06 07 AV 08 09 10 11 12 13 14 AV ----------------------------------------------------------------------------------------------------------------------------- 5.55 14.18 32.67 40.22 35.51 27.91 34.75 27.26 19.13 34.34 50.98 55.71 56.53 46.44 55.50 45.52 5.64 9.99 21.60 25.76 25.26 17.99 26.77 19.00 15.26 24.70 38.84 39.79 42.35 34.04 43.92 34.13 5.90 9.56 20.68 25.24 25.63 17.99 27.12 18.88 13.13 21.30 37.27 39.16 40.59 32.92 43.38 32.53
Robust features:
exp_aur4/RUN_EXPERIMENTS_PREPROC
script will create two acoustic models based based on a preprocessing that contains noise normalisation, i.e. noise robust features. For more details, we refer to [1]. clean car babble resto street airport train clean car babble resto street airport train 01 02 03 04 05 06 07 AV 08 09 10 11 12 13 14 AV ----------------------------------------------------------------------------------------------------------------------------- 7.14 9.98 15.54 20.47 19.63 15.97 18.77 15.36 20.34 28.41 36.95 39.21 40.91 36.02 39.85 34.53 6.63 9.15 15.28 18.33 18.87 13.56 18.53 14.34 17.97 25.91 34.21 35.74 39.01 32.45 38.76 32.01