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Abstract
Sustainability in general and global warming in particular
are grand societal challenges. Computer systems demand
substantial materials and energy resources throughout their
entire lifetime. A key question is how computer engineers
and scientists can reduce the environmental impact of com-
puting. To overcome the inherent data uncertainty, this paper
proposes FOCAL, a parameterized first-order carbon model
to assess processor sustainability using first principles. FO-
CAL’s normalized carbon footprint (NCF) metric guides com-
puter architects to holistically optimize chip area, energy
and power consumption to reduce a processor’s environ-
mental footprint. We use FOCAL to analyze and categorize a
broad set of archetypal processor mechanisms into strongly,
weakly or less sustainable design choices, providing insight
and intuition into how to reduce a processor’s environmental
footprint with implications to both hardware and software.
A case study illustrates a pathway for designing strongly sus-
tainable multicore processors delivering high performance
while at the same time reducing their environmental foot-
print.

CCS Concepts: • Computer systems organization → Su-
perscalar architectures;Multicore architectures; •Com-
puting methodologies →Modeling methodologies.
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1 Introduction
As the world’s population and average affluence per capita
continues to increase, the world-wide demand for resources,
both materials and energy, continues to grow. The extraction
of raw materials, the manufacturing of products, transporta-
tion, usage, and finally depletion and recycling requires huge
amounts of energy, most often provided by fossil fuels. This
in turn leads to global warming and climate change as a
result of increased greenhouse gas (GHG) emissions, which
has now reached such proportions that we need to act.
Freitag et al. [14] report that information and communi-

cation technology (ICT) contributes for 2.1 to 3.9% of the
world’s GHG emissions — currently on par with the aviation
industry — and is likely to increase (substantially) in the
near future. To understand the environmental footprint of
computing, Gupta et al. [20] provide a comprehensive car-
bon characterization of mobile devices, always-connected
computers, and hyperscale datacenters. They conclude that
most emissions related to personal mobile (battery-operated)
devices and datacenter equipment come from hardware man-
ufacturing and infrastructure, the so-called embodied carbon
footprint. In contrast, for always-connected personal devices,
most emissions come from the energy usage during a device’s
lifetime, the so-called operational footprint.
Understanding the carbon footprint of computing raises

the question how to reduce it. This is a non-trivial question
because of inherent data uncertainty. There are many un-
knowns due to lack of accurate and reliable data sources,
industry secrecy, non-transparent supply chains, hard-to-
predict usage patterns, rebound effects, changes in power
grid mix, etc.
This work embraces the inherent data uncertainty by

proposing FOCAL, a First-Order analytical CArbon modeL
to assess processor sustainability while being deliberately
simple and flexible [11]. FOCAL’s primary goal is to provide
insight, intuition and guidance for computer architects in
research and early-stage development of sustainable pro-
cessors. FOCAL is based on first principles, using proxies
for the embodied and operational footprints that relate to
what computer architects have control over at design time.
In particular, the proxy for embodied emissions is chip area,
while the proxy for operational emissions is energy and
power consumption assuming a fixed-work and fixed-time
scenario, respectively. The model further includes a parame-
ter to weigh the relative importance of the embodied versus
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operational footprint to account for variation in product use
and lifetime, and to anticipate the infamous rebound effect
of increased usage.
FOCAL computes the normalized carbon footprint (NCF)

metric enabling computer architects to holistically optimize
chip area, energy and power consumption for improving
overall processor sustainability. Making a distinction be-
tween the fixed-work and fixed-time scenarios enables as-
sessing whether a design is strongly, weakly or less sustain-
able depending on whether it reduces the environmental
impact under all circumstances, specific circumstances, or
under no circumstances, respectively. We use FOCAL to as-
sess to what extent archetypal processor design choices are
sustainable, with implications to both hardware and soft-
ware. We conclude that while some processor mechanisms
are strongly sustainable (e.g., low-complexity core microar-
chitecture, multicore, voltage scaling), others are onlyweakly
sustainable (e.g., heterogeneity, speculation), or not sustain-
able (e.g., turboboosting, dark silicon). Combining FOCAL
with chip manufacturing carbon footprint data, we demon-
strate a pathway for designing strongly sustainable multi-
core processors across technology nodes delivering higher
performance while at the same time reducing total carbon
footprint.

2 Inherent Data Uncertainty
This work is motivated by the observation that developing a
detailed sustainability model for computer architects to steer
the design process is extremely complex and involved, if at
all possible. There is inherent uncertainty in modeling the
environmental footprint due to data limitations and various
unknowns [19]. While some contributing factors are known
and can be accounted for to some extent, such as the use of
materials and energy as well as the amount of chemicals and
gases emitted during manufacturing, others are unknown,
or at least, there is substantial uncertainty about the specific
values [16]. Furthermore, the operational footprint depends
on the user, the intensity of use, product lifetime, and ge-
ographic location of the user which determines the power
grid mix. Operational footprint hence needs to be estimated
using historical data of similar products [3].
To make things even worse, improving the efficiency of

a device often has the unintended side-effect of a rebound
effect, also known as Jevons’ paradox [2], which essentially
means that an improvement in efficiency leads to an in-
crease in demand (thereby increasing the embodied foot-
print) and/or usage (thereby increasing the operational foot-
print), which ultimately leads to a net increase in the envi-
ronmental impact which the designer originally intended to
reduce.
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Figure 1. Embodied footprint per chip as a function of die
size for a 300mm wafer assuming perfect yield and the Mur-
phy yield model; the trendlines show linear and second-
degree polynomial approximations, respectively.

3 FOCAL: First-Order Carbon Modeling
In light of the inherent data uncertainty, we propose FOCAL,
a model built upon first principles for computer architects to
gain insight and reason about the sustainability implications
of design choices without being tampered with inaccurate
and missing data, and unknown and unintended side-effects
and parameters. FOCAL uses first-order proxies for the em-
bodied and operational footprints, and a parameter to weigh
their relative importance.

3.1 Embodied Footprint
The embodied footprint of chip manufacturing consists of
three major components, following the GHG Protocol [41].
Scope-2 refers to the amount of energy needed during pro-
duction. Imec [16] recently analyzed the amount of energy
needed for a range of CMOS technology nodes from 28 nm
to 3 nm, and reports that the annual growth rate in energy
per wafer is estimated to be around 11.9% as a result for
increased complexity with increasing number of process
steps, increasing number of metal layers, new extreme ultra-
violet lithography (EUV) equipment, etc. Scope-1 refers to
the emissions of chemicals and gases including fluorinated
compounds (e.g., SF6, NF3 and CF4, among others), which
is estimated to increase by 9.3% per year. Scope-3 refers to
the carbon emissions during raw material extraction and
processing both upstream and downstream along the manu-
facturing process.
The unit of production in a semiconductor fabrication

plant is a wafer, and what we, computer architects, have
control over when it comes to embodied footprint is chip
size and design complexity. A big chip (large die size) means
fewer chips per wafer, and thus a larger embodied footprint
(and also cost) per chip. In contrast, a small chip implies
more chips per wafer, and thus a smaller per-chip embodied
footprint. The number of chips per wafer, and the embod-
ied footprint per chip, thus depends, to the first order, on
the chip’s die size. de Vries [10] provides a formula that em-
pirically derives the number of chips per wafer (CPW) as a
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Figure 2. Operational footprint is proportional to (a) en-
ergy consumption under a fixed-work scenario, i.e., the high-
lighted area which is the product of power and execution
time, and (b) power consumption under a fixed-time sce-
nario, i.e., the highlighted areas are proportional to power
consumption because execution time is constant.

function of die size 𝐴:

CPW =
𝜋𝑑2

4𝐴
− 0.58

𝜋𝑑
√
𝐴
,

with 𝑑 the wafer’s diameter (e.g., 300mm). The embodied
footprint per chip is inversely proportional to CPW.
Figure 1 shows the embodied footprint per chip for a

300mm wafer as a function of die size in the region of practi-
cal concern, up to 800mm2 (close to the reticle limit) and nor-
malized to 100mm2. The two curves represent perfect yield
(i.e., all dies are good dies) versus a Murphy yield model [30]
assuming a 0.09 defect density per cm2 which is achievable
for volume production processes according to TSMC [44].
Indeed, the larger a chip’s die size and the larger its com-
plexity, the lower the yield. In practice, to maximize profit,
industry increases the effective yield by turning off or by-
passing defective circuit blocks in large chips, selling those
chips as lower-performance, lower-power products. In fact,
profit is maximized when all defective chips can be sold as
alternative products, thereby approaching the perfect yield
model curve. FOCAL therefore uses die size as a proxy for a
processor’s embodied footprint.

3.2 Operational Footprint
The operational footprint relates to the total energy con-
sumed by a processor over its entire lifetime. To anticipate
different use cases, we consider fixed-work and fixed-time
scenarios.
The fixed-work scenario assumes that a processor per-

forms a fixed amount of work during its entire lifetime. As
illustrated in Figure 2(a), design 𝑋 takes more time to get
the same amount of work done than design 𝑌 but the latter
consumes more power. Which design incurs the smallest

operational footprint is determined by the amount of energy
consumed or the product of power consumption and execu-
tion time, i.e., the highlighted areas in Figure 2(a). Under the
fixed-work scenario, the proxy for the operational footprint
thus equals energy consumption. Examples of a fixed-work
scenario are strong-scaling workloads on a supercomputer,
or a video decoder on a mobile device that decodes a fixed
number of frames per unit of time.
The fixed-time scenario overcomes the (simplifying) as-

sumption by the fixed-work scenario that the amount of
work done by a device is fixed for its entire lifetime. Instead,
the fixed-time scenario assumes that a more efficient device
performs more work and is used for the same amount of
time as a less efficient device. As illustrated in Figure 2(b),
design 𝑌 achieves higher performance than design 𝑋 at the
cost of consuming more power. This implies that 𝑌 can per-
form ‘extra work’ within the same amount of time as 𝑋 .
Because time is constant, total energy consumption — and
thus the operational footprint — is proportional to power
consumption, and thus the height of the highlighted areas
in Figure 2(b). As a result, under the fixed-time scenario, the
proxy for operational footprint is power consumption. Ex-
amples of a fixed-time scenario are weak-scaling workloads
on a supercomputer, an always-on network interface, or a
data center system where improved performance leads to
the deployment of new applications filling the freed up idle
time. (Note that the lifetime operational footprint of an idle
device is also proportional to its idle (leakage) power.)

Which of the two scenarios is most representative depends
on the anticipated use case, for which the appropriate proxy
should be used. However, many designs do not strictly fall
under only a single scenario and/or the typical use case may
be (largely) unknown at design time. In such cases, both
scenarios can and should be considered. In particular, one
may expect that a device’s operational carbon footprint is in
line with the fixed-work scenario at the bare minimum, and,
because of increased usage due to rebound effects, with the
fixed-time scenario in many practical use cases.

3.3 Embodied versus Operational Footprint
To assess a processor’s total footprint one has to weigh the
embodied and operational footprint. The relative importance
of the embodied versus operational footprint is hard to assess
though at design time as it depends on a number of factors.
For one, and as aforementioned, the ratio varies across de-
vices [20]. Second, the ratio also depends on the lifetime
of the device, i.e., the longer the lifetime of the device, the
higher weight the operational footprint carries in the total
footprint, and the less significant the embodied footprint
is. Third, and as alluded to before, the rebound effect may
increase the usage of more efficient devices, possibly increas-
ing the relative importance of operational emissions. Finally,
whether green energy sources are used during product man-
ufacturing and/or product lifetime also affects the relative
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ratio of the embodied versus operational footprint. Note
that even if manufacturing would be done using only green
energy, the embodied footprint still incurs a substantial envi-
ronmental impact as a result of the materials used (scope-3)
and the chemicals and gases emitted during manufacturing
(scope-1).

FOCAL weighs the relative importance of the embodied
versus operational footprint using a parameter called the
embodied-to-operational (E2O) weight 𝛼𝐸2𝑂 . How to set the
𝛼𝐸2𝑂 parameter depends on the anticipated use case, which
is known approximately at best, and yet we need to make a
holistic assessment considering both the embodied and op-
erational footprints and potential rebound effects. Moreover,
the relative weight may even change when comparing differ-
ent designs due to increased usage, shift in energy mix, etc.
It is hence advised to consider multiple scenarios and ranges
of the weighing factor 𝛼𝐸2𝑂 to understand the sustainability
impact of a particular design despite the inherent data un-
certainty. Based on Gupta et al. [20], we consider a scenario
where the embodied footprint dominates (𝛼𝐸2𝑂 = 0.8±0.1) as
well as a scenario where the operational footprint dominates
(𝛼𝐸2𝑂 = 0.2 ± 0.1), see also Section 5.

3.4 Normalized Carbon Footprint (NCF) Metric
To compare the environmental footprint of alternative de-
signs, FOCAL computes the Normalized Carbon Footprint
(NCF) metric as a weighted sum of the normalized embodied
footprint and operational footprint, with the weight 𝛼𝐸2𝑂
determined by the anticipated use case. This leads to the
NCF metrics 𝑁𝐶𝐹𝑓 𝑤,𝛼𝐸2𝑂 and 𝑁𝐶𝐹𝑓 𝑡,𝛼𝐸2𝑂 for the fixed-work
and fixed-time scenarios, respectively, and a given embodied-
to-operational weight 𝛼𝐸2𝑂 . FOCAL uses the proxies for em-
bodied and operational footprint as previously derived. This
leads to the definition for NCF when comparing designs 𝑋
versus 𝑌 under a fixed-work scenario:

𝑁𝐶𝐹𝑓 𝑤,𝛼𝐸2𝑂 (𝑋,𝑌 ) = 𝛼𝐸2𝑂
𝐴𝑋

𝐴𝑌

+ (1 − 𝛼𝐸2𝑂 )
𝐸𝑋

𝐸𝑌
,

and under a fixed-time scenario:

𝑁𝐶𝐹𝑓 𝑡,𝛼𝐸2𝑂 (𝑋,𝑌 ) = 𝛼𝐸2𝑂
𝐴𝑋

𝐴𝑌

+ (1 − 𝛼𝐸2𝑂 )
𝑃𝑋

𝑃𝑌
.

The normalized embodied footprint is computed as the ratio
of chip areas𝐴 for𝑋 and𝑌 , while the normalized operational
footprint is computed as the ratio of the energy consumption
𝐸 and power consumption 𝑃 under the fixed-work and fixed-
time scenarios, respectively. An NCF value below one implies
that 𝑋 incurs a lower footprint than 𝑌 ; an NCF value above
one implies that 𝑋 incurs a higher footprint than 𝑌 .
What sets sustainability apart from other optimization

objectives is that computer architects should consider chip
area, energy consumption and power consumption holis-
tically. Indeed, computer architects commonly take these

optimization targets into account, but the objective and fo-
cus has not been to minimize the overall environmental im-
pact. Moreover, computer architects do not (typically) trade
off embodied versus operational footprint, e.g., incur larger
embodied footprint to reduce operational footprint, or vice
versa. FOCAL makes these design trade-offs explicit, and
provides an intuitive tool to gain insight into how design
decisions impact sustainability.

3.5 Comparison against ACT
TheACTmodel [19] is a recently proposed empirically-based,
data-driven carbon model that quantifies the carbon foot-
print of a computing device in absolute terms using a variety
of data sources including semiconductor fabs and industrial
sustainability reports. While FOCAL is built on the same
principled foundations as ACT, i.e., considering both the em-
bodied and operational footprint, FOCAL takes a different
approach by focusing on first principles in light of the inher-
ent data uncertainty. FOCAL should hence not be considered
an alternative to ACT, but rather as a useful complement
to gain insight, steer decisions in early stages of the design
process, and assess the sustainability of new research and
development proposals.
The key difference is that FOCAL is a top-down, param-

eterized model in contrast to ACT which is a bottom-up,
data-driven approach. As acknowledged by prior work — in-
cluding the ACT work — there is inherent data uncertainty,
putting a fundamental limit on what can be achieved with
a data-driven approach. This is why the FOCAL model in-
tentionally starts from first principles while considering (1)
different use-case scenarios (fixed-work versus fixed-time),
(2) ranges of embodied-versus-operational weights, and (3)
potential rebound effects. This enables powerful analyses
despite inherent data uncertainty: if we are reaching similar
conclusions across a range of scenarios and embodied-to-
operational footprint weights, we can be confident that the
conclusions hold true despite the unknowns. If different con-
clusions are reached across scenarios (e.g., with and without
rebound effects), the overall conclusion is that we need to
be more cautious when formulating overall conclusions.

3.6 Model Validation
Validating a sustainability model is extremely challenging, if
at all possible, because of the lack of detailed and accurate
data — again, this is exactly why FOCAL is a parameterized
first-order analytical model. To be able to validate the FOCAL
model, one would need precise data regarding the carbon
footprint of individual processor chips, which is currently
not available unfortunately. It would be greatly beneficial
if processor manufacturers would publish detailed carbon
characterizations of the processors they bring to market,
which would enable precise validation of architecture car-
bonmodels pushing research and development towardsmore
sustainable processors. The closest available data includes
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Life Cycle Assessment (LCA) reports of existing systems, ag-
gregating the total footprint of the entire system into a single
number, making it impossible to assess the carbon footprint
of individual components including processor chips.
The ACT model [19] was validated but the authors ac-

knowledge “a non-negligible gap” between LCA-based carbon
cost estimates and ACT. They further hypothesize that the
difference comes from the “lack of up-to-date carbon emission
data for the latest compute [...] technologies”. In contrast, by
building upon first principles and by considering ranges of
model parameters and use-case scenarios, the FOCAL model
enables comprehensive sustainability analyses despite the
inherent data uncertainty.

3.7 Limitations
While it is important to understand a model’s strengths, it is
equally important to understand its limitations. First, as men-
tioned above, FOCAL is less detailed than ACT and should
therefore not be used to make fine-grained design trade-offs
when detailed numbers are available. Instead, it can be used
to gain insight and understand major design choices. The
proxies used by FOCAL are first-order approximations. Re-
garding the embodied footprint, while a small chip die area
may emit less carbon during fabrication, it may lead to more
carbon being emitted during other steps in the production
process (such as assembly, testing, packaging, etc.) — prior
work indicates though that semiconductor manufacturing
dominates the embodied footprint [47], hence the choice
for chip area as a first-order proxy. Regarding the opera-
tional footprint, the actual operational footprint of a device
is a complex function of its idle time, the workloads it runs,
its lifetime, its usage (possibly subject to rebound effects),
etc. Processor performance (possibly) degrades over time,
also affecting the operational footprint. Anyhow, a chip’s
operational footprint is proportional to its power and en-
ergy consumption, hence the choice for power and energy
consumption as first-order proxies under the fixed-time and
fixed-work scenarios, respectively.
Second, one has to understand the broader context. Re-

ducing the environmental footprint of computing is not just
an engineering challenge, it also touches upon market dy-
namics and economic business models, as well as policy and
legislation. While FOCAL allows for understanding the en-
vironmental footprint of an individual processor, it does not
capture market dynamics which, due to Jevons’ paradox,
may lead to increased deployment. As mentioned before,
rebound effects can happen in various ways: efficiency im-
provements can lead to increased usage of existing devices
(thereby increasing the operational footprint of individual
devices) and/or can lead to increased deployment (thereby
increasing the overall embodied footprint of producing more
devices). In the FOCAL model, the former is captured via
the fixed-time scenario, while the latter can be modeled by
changing the embodied-to-operational weight. Estimating

the magnitude and form of the rebound effect is hard, if at all
possible. In a market mostly driven by sales, companies are
not incentivized to reduce the environmental footprint of
their processors if that may hurt their profit margin. This is
where new business models, legislation and policy come in
to challenge the processor industry to reduce their environ-
mental footprint. Similarly, investors and electronics makers
keen on reporting green supply chains to end customers,
may further push processor manufacturers to ramp up ac-
tion and tackle their climate footprint. Understanding the
impact of a processor’s reduced environmental footprint on
market dynamics falls beyond the scope of this work though.

4 Strong versus Weak Sustainability
FOCAL’s key strength is to explore the design space and
understand how gross design choices affect a processor’s
environmental footprint under a variety of scenarios de-
spite the inherent data uncertainty. In fact, the notion of the
fixed-work versus fixed-time scenarios provides a unique
opportunity to assess whether a processor design choice
is strongly, weakly, or less sustainable. Or in other words,
whether a design choice is sustainable under all circum-
stances (including the rebound effect of increased usage),
specific circumstances (assuming constant work only), or no
circumstances, respectively.
More specifically, we define a system 𝑋 to be strongly

sustainable compared to system 𝑌 if it yields a lower total
footprint under both the fixed-work and fixed-time scenarios,
i.e., 𝑁𝐶𝐹𝑓 𝑤 (𝑋,𝑌 ) < 1 and 𝑁𝐶𝐹𝑓 𝑡 (𝑋,𝑌 ) < 1. The intuitive
meaning of strong sustainability is that design 𝑋 is always
more sustainable than system 𝑌 , under all circumstances,
even under a rebound effect where system 𝑋 performs more
work than 𝑌 . We define a system 𝑋 to be weakly sustainable
compared to system 𝑌 if it yields a lower carbon footprint
under the fixed-work scenario but not the fixed-time sce-
nario, i.e., 𝑁𝐶𝐹𝑓 𝑤 < 1 and 𝑁𝐶𝐹𝑓 𝑡 > 1, or vice versa, i.e.,
𝑁𝐶𝐹𝑓 𝑤 (𝑋,𝑌 ) > 1 and 𝑁𝐶𝐹𝑓 𝑡 (𝑋,𝑌 ) < 1. Weakly sustain-
able implies that 𝑋 is more sustainable than 𝑌 under specific
circumstances, but definitely not all, i.e., it is subject to a
rebound effect. Finally, we define a system 𝑋 to be less sus-
tainable than𝑌 if its carbon footprint is larger under both the
fixed-work and fixed-time scenarios, i.e., 𝑁𝐶𝐹𝑓 𝑤 (𝑋,𝑌 ) > 1
and 𝑁𝐶𝐹𝑓 𝑡 (𝑋,𝑌 ) > 1.

5 Archetypal Processor Design Choices
We now use FOCAL to assess the environmental footprint
of archetypal processor design choices. This analysis is done
using a variety of analytical performance and power mod-
els, first-order approximations, and previously published
results.1

1Awelcome corollary is that this methodologyminimizes the environmental
footprint of this research compared to a simulation-based setup typically
seen in architecture papers.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lieven Eeckhout

We consider the following processor design choices: mul-
ticore, heterogeneity, hardware acceleration, dark silicon,
caching, coremicroarchitecture, speculation, frequency/voltage
scaling, and power/energy saving. In the discussion to follow,
we make a distinction between a scenario where the embod-
ied footprint dominates (i.e., 𝛼𝐸2𝑂 = 0.8) versus a scenario
where the operational footprint dominates (i.e., 𝛼𝐸2𝑂 = 0.2).
To further account for modeling error and data uncertainty,
we also report error bar ranges for 𝛼𝐸2𝑂 ∈ [0.7, 0.9] and
𝛼𝐸2𝑂 ∈ [0.1, 0.3], respectively. These scenarios are based on
the empirical findings by Gupta et al. [20] who report that
the total carbon footprint of mobile battery-operated devices
and hyperscale-datacenter servers is mostly dominated by
the embodied footprint while the carbon footprint of always-
connected devices is mostly dominated by the operational
footprint.

5.1 Multicore
We rely on Amdahl’s Law and its extensions to evaluate the
impact of multicore on processor sustainability. Following
Hill and Marty [23], we assume a chip of 𝑁 base core equiv-
alents (BCEs). A multi-core processor consisting of 𝑁 cores,
i.e., one BCE per core, yields the following speedup over a
one-BCE single-core processor, assuming that a fraction 𝑓

of the sequential execution can be parallelized:

𝑆 =
1

(1 − 𝑓 ) + 𝑓

𝑁

. (1)

To compute multicore power and energy consumption,
we use the extensions to Amdahl’s Law byWoo and Lee [50].
During serial execution, a single core is active and consumes
one unit of power, while the other 𝑁 − 1 cores consume
𝛾 power each due to leakage (0 < 𝛾 < 1). Hence, during
the serial execution phase, which takes a fraction (1 − 𝑓 )
of the execution time, the multicore processor consumes
1 + (𝑁 − 1)𝛾 units of power, i.e., one active core consumes
one unit of power and 𝑁 − 1 cores consume 𝛾 leakage power.
During the parallel execution phase, which takes a fraction
𝑓 /𝑁 of the execution time, all cores are active and consume
one unit of power. Amulticore’s average power consumption
hence equals the power consumed during serial execution
plus the power consumed during parallel execution divided
by the total execution time, i.e., serial plus parallel execution
phases:

𝑃 =
(1 − 𝑓 ) (1 + (𝑁 − 1)𝛾) + 𝑁

𝑓

𝑁

(1 − 𝑓 ) + 𝑓

𝑁

=
1 + (1 − 𝑓 ) (𝑁 − 1)𝛾

(1 − 𝑓 ) + 𝑓

𝑁

.

(2)

Energy consumption is power consumption times execution
time, i.e., Equation 2 divided by Equation 1, and hence equals

𝐸 = 1 + (1 − 𝑓 ) (𝑁 − 1)𝛾 . (3)
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Figure 3. Comparing (symmetric) multicore against single-
core with varying number of BCEs (from 1 to 32 in powers
of two) and varying degrees of parallelism 𝑓 from 0.5 to
0.95. Carbon footprint and performance are normalized to
a one-BCE single-core processor. Multicore is strongly sus-
tainable, and is beneficial for performance and sustainability
when software is highly parallel.

In contrast, a big single-core processor consisting of 𝑁
BCEs (same chip area as the multicore we compare against)
delivers a speedup of

√
𝑁 over a one-BCE single-core proces-

sor, following Pollack’s rule [7]. If we assume that one BCE
consumes one unit of power, this 𝑁 -BCE single-core proces-
sor consumes 𝑁 units of power, and its energy consumption
equals

√
𝑁 , i.e., power consumption divided by speedup.

Figure 3 reports normalized carbon footprint as a function
of performance for four scenarios: when the embodied and
operational footprint dominate (subfigures (a) and (b) versus
subfigures (c) and (d), respectively) and under the fixed-work
and fixed-time scenarios (subfigures (a) and (c) versus sub-
figures (b) and (d), respectively); all results are normalized
to a one-BCE single-core processor, while assuming 𝛾 = 0.2.
We vary the number of BCEs from 1 to 32 in powers of two;
the multi-core curves hence show results for 1, 2, 4, 8, 16 and
32 cores, and we consider different values of 𝑓 ranging from
0.5 to 0.95 to denote varying degrees of parallel software.

Finding #1: Multicore is strongly sustainable, especially when
the operational footprint dominates. Multicore reduces the
carbon footprint under both the fixed-work and fixed-time
scenarios compared to a single-core processor with the same
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chip area. The reduction in carbon footprint increases as
the operational footprint increases in importance, see 1 in
Figure 3. For example, assuming 32 BCEs and 𝑓 = 0.95 under
the fixed-time scenario, multicore reduces the environmental
footprint by 10% when the embodied footprint dominates,
see Figure 3(b), and by 39% when the operational footprint
dominates, see Figure 3(d).
Finding #2: Parallelizing software is weakly sustainable.

Parallelizing software reduces the overall footprint under a
fixed-work scenario while increasing it under a fixed-time
scenario, see 2 in Figure 3. This is particularly the case
when the operational footprint dominates, see Figures 3(c)
and (d): increasing the degree of parallelism from 𝑓 = 0.5 to
𝑓 = 0.95 reduces the carbon footprint by 23% under a fixed-
work scenario while increasing it by 53% under a fixed-time
scenario. Software parallelization is a two-edged sword: it
reduces the footprint for a given processor iff this does not
lead to increased usage.

Finding #3: Parallelizing software is a more sustainable way
to improve performance than increasing the number of cores.
Parallelizing software has the potential not only to improve
performance — as is well known — but also to improve sus-
tainability by enabling the processor to feature fewer cores
(and thus be smaller in size), thereby reducing its embodied
and overall footprint, see 3 in Figure 3. For example, a mul-
ticore with 16 BCEs and highly parallel software (𝑓 = 0.95)
yields 17% higher performance compared to a multicore that
is twice as big (32 BCEs) and (slightly) less parallel software
(𝑓 = 0.9). At the same time, the environmental footprint is re-
duced by 30%, see Figure 3(d), and up to 50%, see Figure 3(a).
This insight implies that from a system’s sustainability per-
spective, software has a critical role to play: parallelizing
software should be preferred over adding more cores.
Discussion. Industry embraced multicore for power effi-

ciency reasons, and this turns out to be a sustainable design
choice as well. However, parallelizing software (e.g., using
high-performance parallel programming frameworks, if pos-
sible) is more sustainable than adding cores. It seems though
that, at least for general-purpose desktop computing, indus-
try has pushed harder for adding cores than for parallelizing
software [6], which turns out not to be the most sustainable
design choice.

5.2 Asymmetric Multicore
Performance asymmetry or heterogeneity [18, 28] has been
introduced in multicore designs by integrating one (or few)
high-performance ‘big’ core(s) alongside low-power ‘small’
cores to improve performance in an energy-efficient way.
Hill and Marty [23] extend Amdahl’s Law for asymmetric
multicores with 𝑁 BCEs. Assuming that the one big core
takes𝑀 BCEs, and hence achieves a level of performance of√
𝑀 (i.e., Pollack’s rule), alongside𝑁−𝑀 small one-BCE cores

with a performance of one, asymmetric multicore speedup
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Figure 4. Comparing asymmetric multicores (one 4-BCE
big core plus 𝑁 − 4 one-BCE small cores) versus symmetric
multicores with 𝑁 one-BCE small cores. Carbon footprint
and performance are normalized to a one-BCE single-core
processor. Multicore heterogeneity is weakly sustainable, and
is beneficial for performance and sustainability when software
lacks high parallelism.

over a one-BCE single-core processor equals:

𝑆 =
1

1−𝑓√
𝑀

+ 𝑓

𝑁−𝑀

. (4)

Woo and Lee [50] estimate power consumption of an asym-
metric multicore as follows. During serial execution, which
takes (1− 𝑓 )/

√
𝑀 time units, the big core consumes𝑀 units

of power while the 𝑁 −𝑀 small cores are idle (consuming 𝛾
leakage power, 0 < 𝛾 < 1). During parallel execution, which
takes 𝑓 /(𝑁 −𝑀) time units, the 𝑁 −𝑀 small cores consume
one unit of power, while the big remains idle, hence consum-
ing 𝑀𝛾 leakage power. Average power consumption thus
equals:

𝑃 =

1−𝑓√
𝑀
(𝑀 + (𝑁 −𝑀)𝛾) + 𝑓

𝑁−𝑀 (𝑀𝛾 + (𝑁 −𝑀))
1−𝑓√
𝑀

+ 𝑓

𝑁−𝑀

. (5)

Energy is obtained by dividing power consumption (Equa-
tion 5) with speedup (Equation 4):

𝐸 =
1 − 𝑓
√
𝑀

(𝑀 + (𝑁 −𝑀)𝛾) + 𝑓

𝑁 −𝑀
(𝑀𝛾 + (𝑁 −𝑀)). (6)
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Figure 4 reports normalized carbon footprint as a function
of performance assuming that the asymmetric core consists
of one 4-BCE big core (i.e., 𝑀 = 4) alongside 𝑁 − 4 small
one-BCE cores. We consider three asymmetric multicore con-
figurations with 8, 16 and 32 BCEs, respectively. We further
consider three values for 𝑓 : 0.5, 0.8 and 0.95.
Finding #4: Heterogeneity is weakly sustainable. Perfor-

mance asymmetry reduces the carbon footprint under a
fixed-work scenario while increasing the carbon footprint
under a fixed-time scenario compared to a symmetric multi-
core of the same chip area, see 1 in Figure 4. This is most
notable when the operational footprint dominates: for 32
BCEs and 𝑓 = 0.8, heterogeneity reduces the footprint by
4% under a fixed-work scenario, see Figure 4(c), while in-
creasing the footprint by 22% under a fixed-time scenario,
see Figure 4(d). Heterogeneity is hence a two-edged sword:
it only reduces the overall footprint iff it does not lead to
increased usage.
Finding #5: Heterogeneity is a sustainable way to improve

performance only when software lacks high degrees of paral-
lelism. Heterogeneity reduces the environmental footprint
while at the same time improving performance if software is
modestly parallel (𝑓 ≤ 0.8), see 2 in Figure 4. For example,
an asymmetric multicore with 16 BCEs and 𝑓 = 0.8 yields
35% higher performance compared to a symmetric multi-
core that is twice as big (32 BCEs) while at the same time
reducing the environmental footprint ranging from 28%, see
Figure 4(d), to 50%, see Figure 4(a).
In contrast, when software is highly parallel (𝑓 = 0.95),

while the 16-BCE asymmetric multicore reduces the carbon
footprint between 38%, see Figure 4(d), and 50%, see Fig-
ure 4(a), it also degrades performance by 23.5% compared to
a 32-BCE symmetric multicore, see 3 in Figure 4. In other
words, heterogeneity is beneficial from a sustainability per-
spective iff software lacks high degrees of parallelism.
Discussion. Industry embraced heterogeneity for energy

efficiency reasons, see for example ARM’s big.LITTLE sys-
tem [18] and Intel’s Alder Lake CPU [43]. Heterogeneous
multicores turn out to be a sustainable design choice when
software offers limited parallelism, which appears to be the
case for some classes of workloads, e.g., mobile [15], desk-
top [6].

5.3 Hardware Acceleration
Hardware acceleration is widely seen as a way to continue
to improve performance in a power- and energy-efficient
way in the post-Dennard era. As an example, Hameed et
al. [21] propose an H.264 accelerator that incurs 6.5% extra
chip area when delivering similar performance and consum-
ing 500× less energy compared to an out-of-order (OoO)
core. Figure 5(a) reports the total footprint for the OoO core
plus accelerator, normalized to the OoO core without the
accelerator, as a function of the fraction of time spent on the
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Figure 5. Total footprint of hardware specialization (nor-
malized to OoO core) for an accelerator that incurs (a) 6.5%
extra chip area and (b) twice as much chip area. Hardware
acceleration is strongly sustainable if the operational footprint
dominates; if the embodied footprint dominates, the accelera-
tor needs to be extensively used for it to be sustainable. Dark
silicon is not sustainable.

accelerator when embodied emissions dominate (𝛼𝐸2𝑂 = 0.8)
and operational emissions dominate (𝛼𝐸2𝑂 = 0.2).
Finding #6: Hardware acceleration is strongly sustainable

if the operational footprint dominates. If the embodied foot-
print dominates, acceleration only improves sustainability if
the accelerator is extensively used. The total footprint of the
OoO core plus accelerator reduces relative to the OoO core
without the accelerator as the accelerator is used more inten-
sively, i.e., the increased embodied footprint gets offset by
the decrease in operational footprint. When the operational
emissions dominate, the hardware accelerator reduces the
overall footprint even when used for only a small fraction of
the time and significant savings can be obtained when exten-
sively used. For example, if the accelerator is used 50% of the
time, the environmental footprint reduces by 60%, see Fig-
ure 5(a). However, when the embodied emissions dominate,
the accelerator needs to be used intensively to amortize the
increased embodied footprint. For this particular example,
the accelerator needs to be used for more than 30% of the
time for it to lead to a net saving in overall footprint.

Discussion. Because the embodied footprint dominates for
mobile devices [20], it seems unlikely that hardware accel-
eration leads to a net reduction in environmental footprint.
Hardware acceleration drastically reduces the operational
footprint, which is a sustainable choice only if it does offset
the increase in embodied emissions.

5.4 Dark Silicon
A modern-day processor often times is a system-on-chip
(SoC) featuring several tens of accelerators [24]. Not all ac-
celerators can be powered on all the time due to power con-
straints — a phenomenon called dark silicon [13, 49]. To
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evaluate the impact of dark silicon on sustainability, we now
assume that the tens of accelerators occupy two thirds of
the entire chip, and that — same assumption as in previous
section — when in use, each accelerator consumes 500× less
energy for the same level of performance and, when not in
use, an accelerator does not incur any leakage power, see
Figure 5(b).

Finding #7: Dark silicon is not sustainable. If the embodied
footprint dominates (again, the likely case today [20]), it is
clear that dark silicon leads to a substantial∼ 2.5× increase in
total carbon footprint. If the operational footprint dominates,
dark silicon should be used (very) intensively (more than 50%
of the time) to amortize the embodied footprint to reduce the
overall footprint. This might not be feasible, simply because
it is dark silicon and cannot be powered on all at the same
time within the available power and thermal budget.
Discussion. Industry has embraced dark silicon and hard-

ware specialization, however, this is not a sustainable design
choice. Instead of having many fixed-function accelerators,
it might be more sustainable to design reconfigurable accel-
erators to amortize the embodied footprint across multiple
applications.

5.5 Caching
Caches take up a significant fraction of the total chip area to-
day. The larger the cache, the larger the embodied footprint.
A larger cache leads to a reduced miss rate, hence higher
performance and fewer accesses to the next level in the hier-
archy. If the increase in energy consumption of a larger cache
is offset by the reduction in energy consumption in the next
level of the hierarchy (due to fewer misses), this leads to a net
reduction in energy consumption. If the reduction in energy
consumption outweighs the improvement in performance,
this also leads to a reduction in power consumption.

To evaluate the impact of caching on sustainability, we use
area and energy results from CACTI 5.1 [48] for a last-level
caches (LLCs) ranging from 1MB to 16MB in powers of two
assuming a 65 nm technology node.We assume that the 1MB
LLC occupies 25% of the core chip area; according to CACTI,
the LLC size increases by a factor 20.7× from 1MB to 16MB.
A cache access consumes between 0.55 nJ (1MB) to 2.9 nJ
(16MB). We further assume a memory-intensive workload
that spends 80% of its energy and execution time waiting
for memory with a 1MB LLC, and we follow the empirical
rule that cache miss rate scales following a square-root of
its size [22]. A reduction in miss rate leads to a proportional
reduction of the memory stall time. As a sanity check, LLC
chip area of a 2MB LLC is approximately equally large as
the entire core as is the case for the AMD Renoir CPU [4],
and power consumption in memory takes up between 25%
to 40% of total server power [5, 31, 34].
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Figure 6. Sustainability impact of last-level caches: NCP
as a function of cache size. Caching is not sustainable or
(marginally) weakly sustainable if the operational footprint
dominates.

Finding #8: Caching is not sustainable when the embodied
footprint dominates. Caching is (marginally) weakly sustain-
able if the operational footprint dominates and when the reduc-
tion in energy consumption offsets the area increase in terms
of its carbon impact. As noted in Figure 6, the increase in
embodied footprint is substantial for larger caches, which
makes caching not sustainable when the embodied footprint
dominates. When the operational footprint dominates on the
other hand, caching may lead to a net reduction in overall
carbon footprint under a fixed-work scenario for relatively
small cache sizes for which the reduction in energy consump-
tion offsets the increase in chip area.

Discussion. Caching is critical to performance, but not sus-
tainable, unfortunately. Paradigms that bring computation
where the data is, i.e., processing-in-memory, may reduce
the need for large caches and therefore be more sustainable.

5.6 Core Microarchitecture
We now evaluate how core microarchitecture affects sus-
tainability by considering three microarchitectures: (1) an
in-order (InO) core, (2) a Forward Slice Core (FSC) [29], and
(3) an out-of-order (OoO) core. FSC is a state-of-the-art slice-
out-of-order core that achieves a level of performance that
is comparable to OoO at a small area and power overhead
over InO by featuring in-order issue queues that operate
out-of-order with respect to each other. We take the chip
area, power, energy and performance numbers from [29] for
comparing InO, FSC and OoO: 64% and 75% higher perfor-
mance is achieved for FSC and OoO compared to InO for
1% and 39% extra chip area, and 1% and 2.32× higher power
consumption, respectively. All three microarchitectures op-
erate at the same 2GHz clock frequency, feature the same
cache hierarchy and superscalar width (2-wide). Area and
power numbers were obtained using McPAT [32] and CACTI
v6.5 [35] assuming 22 nm.
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Figure 7. Comparing InO, FSC and OoO microarchitectures
in terms of environmental footprint versus performance. An
OoO core is less sustainable than an InO core. FSC is (close to
being) strongly sustainable compared to InO.

Figure 7 reports the NCF (normalized carbon footprint) for
InO, FSC and OoO as a function of normalized performance
assuming a fixed-work scenario, when (a) the embodied emis-
sions dominate (𝛼𝐸2𝑂 = 0.8), and (b) the operational emis-
sions dominate (𝛼𝐸2𝑂 = 0.2). Subfigures (c) and (d) report
similar results under a fixed-time scenario. Design points to-
wards the bottom-right are optimal, i.e., highest performance
and lowest environmental footprint.
Finding #9: OoO cores are less sustainable than InO cores.

Inversely, InO is strongly sustainable compared to OoO. OoO
cores are less sustainable than InO cores under both the fixed-
work and fixed-time scenarios, i.e., the carbon footprint of
an OoO core is larger than an InO core. Obviously, OoO
cores yield higher performance. As a result, OoO and InO
cores represent different trade-offs in the design space: an
OoO core yields higher performance at the cost of a higher
carbon footprint; in contrast, an InO core delivers lower
performance but also incurs a smaller carbon footprint.

Finding #10: A low-complexity core such as FSC is (very close
to being) strongly sustainable compared to InO. FSC achieves
a lower total footprint than InO under a fixed-work scenario.
Under a fixed-time scenario, FSC’s footprint is slightly higher
than InO, but only barely so.
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Figure 8. Sustainability impact of branch prediction: NCF as
a function of branch predictor chip area. Branch prediction is
weakly sustainable if the operational footprint dominates, and
not sustainable when embodied emissions dominate (assuming
that the branch predictor takes up more than 2% of core chip
area).

Finding #11: FSC is strongly sustainable compared to OoO.
FSC offers an interesting sustainability-performance trade-
off compared to OoO: the environmental footprint is 32% to
53% smaller (depending on the scenario) at a relatively small
6.3% degradation in performance.

Discussion. Industry opts for either InO or OoO cores. How-
ever, a complexity-effective core like FSC yields higher per-
formance than InO for a similar environmental footprint,
and a drastic reduction in environmental footprint at the
cost of a small performance degradation compared to OoO.

5.7 Speculation
Branch Prediction. Although a branch predictor consumes
additional energy, it leads to a net reduction in the total en-
ergy consumed by reducing the amount of useless work done
by the processor for fetching, decoding, renaming, issuing
and executing wrong-path instructions. Parikh et al. [39]
report that the largest hybrid branch predictor considered
in their study reduces total CPU energy consumption by
7% compared to a small bimodal branch predictor, while im-
proving performance by 14%. This implies that CPU power
consumption increases by 6.6%. Unfortunately, Parikh et al.
do not report the impact on chip area. Modern-day branch
predictors incur multiple tens and even several hundreds
of KBs of hardware overhead [17, 45]. This translates into
a couple percent of the total core’s die area devoted to the
branch predictor [4];2 a 64 KB TAGE-SC-L branch predictor
is reported to take up 4.4% of a CPU’s total chip area [40]. Fig-
ure 8 reports the normalized carbon footprint as a function
of chip area.
2Based on annotated die shot photos, see for example
https://www.techpowerup.com/268747/amd-renoir-die-annotation-
raises-hopes-of-desktop-chips-featuring-x16-peg
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Finding #12: Branch prediction is weakly sustainable when
operational emissions dominate, and leads to a less sustainable
system when embodied emissions dominate. Branch predic-
tion reduces the overall footprint irrespective of its size only
under a fixed-work scenario and when the operational foot-
print dominates. The branch predictor needs to be small
when the embodied footprint dominates under a fixed-work
scenario. Under a fixed-time scenario, dynamic branch pre-
diction increases the overall footprint irrespective of its size.
Runahead Execution. Runahead prefetches future mem-
ory requests when the core stalls on a long-latency load [36].
Precise Runahead Execution (PRE) [37] is a state-of-the-art
runahead technique improving performance by 38.2% com-
pared to an out-of-order baseline core while at the same time
reducing energy consumption by 6.8%; as a result, power
consumption increases by 29.8%. PRE is reported to incur
1.24 KB of extra hardware (assumed area increase of 0.5%).

Finding #13: Runahead execution is weakly sustainable. Be-
cause the hardware overhead is small, the normalized carbon
footprint of runahead execution is primarily a function of
its energy and power consumption. Runahead execution
reduces energy consumption but also increases power con-
sumption, hence it is weakly sustainable. When the opera-
tional footprint dominates, PRE reduces the carbon footprint
under a fixed-work scenario (𝑁𝐶𝐹𝑓 𝑤,0.2 = 0.95) while in-
creasing the footprint under a fixed-time scenario (𝑁𝐶𝐹𝑓 𝑡,0.2 =
1.23). The same conclusion holds true when the embodied
footprint dominates: 𝑁𝐶𝐹𝑓 𝑤,0.8 = 0.99 and 𝑁𝐶𝐹𝑓 𝑡,0.8 = 1.06.

Discussion. Speculation is a key technique to boost perfor-
mance. However, it is weakly sustainable when the hardware
overhead is small and operational emissions dominate, and
less sustainable when the overhead is high and embodied
emissions dominate. Making speculation more sustainable
requires minimizing its hardware and power overheads.

5.8 Frequency and Voltage Scaling
Dynamically scaling frequency and voltage is a widely de-
ployed mechanism to either save energy and power (by scal-
ing down voltage and frequency), or boost performance (by
scaling up) [25]. Dynamic power consumption scales cu-
bically with voltage and frequency, while dynamic energy
consumption scales quadratically. Leakage power scales lin-
early. On-chip voltage regulators incur a small chip area (no
more than a couple percent over a core) [26].

Finding #14: DVFS is strongly sustainable. The increase in
chip area is (most likely) offset by the reduction in energy
and power consumption, leading to a net reduction in carbon
footprint. DVFS might lead to a net increase in carbon foot-
print if the reduction in energy and power does not offset
the increase in chip area (though unlikely).

Finding #15: Turboboosting leads to a less sustainable system.
Boosting the clock frequency (and voltage) when there is
thermal headroom [42] increases the carbon footprint by

increasing energy and power consumption, on top of the
extra chip area needed to implement the turboboost circuitry.

5.9 Power/Energy Saving
Manne et al. [33] proposed pipeline gating to reduce the
amount of useless work due to branch mispredictions. A con-
fidence predictor steers the number of instructions into the
pipeline: when several low-confidence branches have been
dispatched, the pipeline is gated to save power and energy
by limiting the number of wrong-path instructions being
fetched, decoded, renamed and executed. Parikh et al. [39]
report that pipeline gating reduces energy consumption by
3.5% while degrading performance by 6.6%; power hence
reduces by almost 10%. The confidence estimator incurs no
additional hardware overhead when relying on the values of
the saturating counters in a hybrid predictor.
Finding #16: Pipeline gating is strongly sustainable. By

reducing both power and energy consumption at no extra
hardware cost, the net carbon footprint reduces both when
the embodied footprint dominates (𝑁𝐶𝐹𝑓 𝑤,0.8 = 0.99 and
𝑁𝐶𝐹𝑓 𝑡,0.8 = 0.98) and when the operational footprint domi-
nates (𝑁𝐶𝐹𝑓 𝑤,0.2 = 0.97 and 𝑁𝐶𝐹𝑓 𝑡,0.2 = 0.92).

6 Die Shrink
The previous analysis implicitly assumed the same tech-
nology node. We now consider implementing an existing
processor in a new chip technology node.
Finding #17: A die shrink is strongly sustainable. The 50%

reduction in chip area across consecutive technology nodes is
partially offset by the increase in energy consumption due to
manufacturing in a new technology node — Imec [16] reports
that the amount of energy consumed to manufacture a wafer
(i.e., scope-2) increases by 25.2% between two consecutive
tech nodes, while increasing the amount of chemicals and
gases emitted (i.e., scope-1) by 19.5%. The increase in energy
consumption and chemicals/gases is offset by the decrease
in chip area. A die shrink hence leads to a net reduction in
embodied footprint.
For the operational footprint, we make a distinction be-

tween classical scaling versus post-Dennard scaling [49].
Assuming classical scaling, power consumption reduces by
a factor 2×, and because the circuit can be clocked at 1.41×
higher frequency, energy consumption is reduced by a fac-
tor 2.82×. In other words, the operational footprint reduces
under classical scaling, under both the fixed-work and the
fixed-time scenarios. In contrast, under post-Dennard scal-
ing, power consumption remains constant, while clock fre-
quency is 1.41× higher and energy reduces by a factor 1.41×.
This implies that the operational footprint reduces under
a fixed-work scenario while remaining unchanged under a
fixed-time scenario.

Discussion. This analysis implies that microprocessor chips
would have become more sustainable over time if we would
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have leveraged Moore’s Law to make our chips smaller. This
is not what we have seen though in practice. Architects
have used the additional transistors, which have become
exponentially cheaper thanks to Moore’s Law, when moving
from one technology node to the next to add functionality
(e.g., more cores, larger caches, accelerators, etc.), which has
led to an overall increase in environmental footprint — this
is yet another example of Jevons’ paradox.

7 Sustainable Multicore Design
With these insights, we now consider a case study in which
we explore the trade-offs in sustainability versus perfor-
mance when designing a next-generation multicore proces-
sor in a new technology node. Ideally, a next-generation
processor should deliver higher performance at a lower car-
bon footprint. One option is to keep the number of cores
constant, i.e., implement a die shrink which will halve the
chip area. Another option is to increase the number of cores;
if we assume the same core microarchitecture, this implies
that we can integrate twice as many cores in the next tech-
nology node for the same chip area. It appears that current
practice is aligned with the latter option, more so than with
the former. We now explore the impact on sustainability
and performance for these two options (constant-core and
constant-area) and intermediate options.

We consider a quad-core processor with 4 BCEs, i.e., one
core occupies one BCE, in a current technology node. Mov-
ing to the next-generation technology node, we consider the
options of integrating 4, 5, 6, 7 or 8 cores while preserving
the core’s microarchitecture. We further assume that the
parallel workload is modestly parallel (𝑓 = 0.75); an idle core
consumes 𝛾 = 0.2 leakage power while an active core con-
sumes one unit of power. Because modern-day processors
are power-constrained, we assume that power consumption
in the new technology node is the same as in the old technol-
ogy node. This implies that the achievable clock frequency
reduces with the number of cores, i.e., clock frequency in
the new technology node reduces from being 1.41× higher
for 4 cores compared to the same architecture in the old
technology node to being 1.24× higher for 8 cores.
Relative to the embodied carbon footprint of the 4-core

option in the old technology node, the embodied carbon foot-
print of the 4-core option in the new technology node equals
0.625, i.e., chip area halves but the manufacturing footprint
increases by 25.2%. In contrast, the 8-core option leads to a
normalized embodied carbon footprint of 1.25, i.e., incurring
the full increase in manufacturing footprint by maintaining
the same chip area. Because power consumption is constant
across the multicore options, the operational footprint is the
same in the new technology node compared to the old one
under a fixed-time scenario. However, under a fixed-work
scenario, the operational energy consumption decreases due
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Figure 9. Exploring the sustainability versus performance
trade-off when designing a multicore processor in a new
technology node; the different data points correspond to 4,
5, 6, 7 and 8 cores. The design points with 4, 5 and 6 cores are
strongly sustainable, while the 7- and 8-core design points are
weakly (or not) sustainable.

to the improved clock frequency and performance. As a re-
sult, the operational carbon footprint either remains constant
or declines when transitioning to a new technology node.
Figure 9 reports the impact on total carbon footprint.

When the operational footprint dominates, see Figure 9(b),
there is a net decrease in footprint for all multicore options
under a fixed-work scenario. However, under a fixed-time
scenario, the overall footprint for 7 and 8 cores exceeds the
footprint of the 4-core processor in the old technology node;
limiting the number of cores to 4, 5 or 6 leads to a net over-
all footprint reduction (or stagnation for 6 cores). In other
words, 4, 5 or 6 cores are a strongly sustainable design op-
tions, while the 7- or 8-core designs are weakly sustainable.
When the embodied footprint dominates, see Figure 9(a),
there is a net reduction in total footprint when limiting the
number of cores to at most 6; implementing 7 or 8 cores
leads to a net footprint increase, even under a fixed-work
scenario. This implies that the designs with 4, 5 and 6 cores
are strongly sustainable, while the designs with 7 and 8 cores
are not sustainable.
Discussion. It is interesting to note that the sober design

options with 4, 5 or 6 cores are strongly sustainable under
both scenarios. Note further that they also offer a substan-
tial performance improvement in the 1.41× to 1.52× range
for the specific example in Figure 9. In contrast, the more
aggressive design options with 7 or 8 cores are not (or only
weakly) sustainable, i.e., they may potentially lead to an in-
creased overall carbon footprint depending on the scenario.
The question is whether the relatively small performance
improvement for 7 and 8 cores outweighs the increase in
overall carbon footprint. A microprocessor market that pri-
marily focuses on performance gears the industry towards the
non-sustainable design options with more cores. This case study
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suggests though that there is pathway to continue to improve
multicore processor performance in a strongly sustainable way.

8 Related Work
A couple studies have proposed methodologies and tools
to explore the computing system design space from a sus-
tainability perspective, but none has proposed a first-order
and parameterized carbon model like FOCAL that embraces
uncertainty and accounts for a variety of use-case scenarios
— prior work implicitly considers a fixed-work scenario only,
i.e., does not account for rebound effects, and assumed a fixed
embodied-to-operational footprint ratio. The work closest re-
lated to FOCAL is the ACT model [19], previously discussed
and compared against in Section 3.5. GreenChip [27] is a
tool for evaluating the total carbon footprint of computing
systems, which computes the indifference point or the point
in time when a new device will reach the same total carbon
footprint as the system it will replace, indicating when it is
beneficial from a sustainability perspective to upgrade the
system. Using GreenChip, Brunvand et al. [8] analyze the
sustainability impact of processor configurations (increasing
core, count and cache size) and dark silicon, and conclude
that upgrading to larger core counts and cache sizes as well
as dark silicon is worthwhile from a sustainability perspec-
tive only for high-performance computing systems for which
the total carbon footprint is highly dominated by the opera-
tional footprint — this aligns with the conclusions reached
in our analysis. CarbonExplorer [1] is a tool to explore the
design space of sustainable datacenters while considering
the deployment of renewable energy sources, batteries, and
scheduling.

Other prior work analyzed the carbon footprint of existing
designs from either a general scope or specific application-
specific scope. Gupta et al. [20] quantify the carbon footprint
for a range of computing devices, from personal devices to
datacenter servers, by analyzing their LCAs. The embodied
footprint of mobile personal devices and datacenter servers
appears to outweigh their operational footprint. Personal
always-connected devices appear to have a larger opera-
tional footprint. Wu et al. [51] analyze the operational and
manufacturing carbon footprint of Artificial Intelligence (AI)
workloads in hyperscale datacenters. Ollivier et al. [38] ex-
plore the design space encompassing GPUs, FPGAs, and
processing-in-memory (PIM) for AI processing at the edge,
concluding that while GPUs offer higher energy efficiency,
their high embodied footprint makes them less sustainable
than PIM-based solutions. Chang et al. [9] introduce the
thermodynamic metric of exergy consumption, which is es-
sentially equivalent to the embodied footprint, and which
they use to analyze and optimize server design for reduced
overall (embodied plus operational) environmental impact.
Eeckhout [12] analyzes how current trends in micropro-
cessor chip demand and manufacturing energy and carbon

footprint affect the overall computer chip carbon footprint,
and concludes that computer architects should primarily
focus on designing smaller chips to reduce the embodied
carbon footprint; reducing the operational footprint is of
secondary importance, yet still significant. Switzer et al. [46]
extend the lifetime of discarded smartphones by repurposing
them into so-called ‘junkyard’ cloudlets; this amortizes the
smartphones’ embodied footprint over an extended lifetime.
Zhang et al. [52] propose the performance per wafer met-
ric to balance and trade off performance against cost and
sustainability in multi-chip-module GPUs.

9 Conclusion
This paper proposed FOCAL, a parameterized carbon model
based on first principles to drive processor design decisions.
FOCAL offers valuable insight despite the inherent data un-
certainty regarding sustainability. FOCAL uses proxies for
embodied and operational emissions, considers fixed-work
and fixed-time scenarios to account for rebound effects, and
parameterizes the embodied-to-operational footprint ratio.
FOCAL computes the normalized carbon footprint (NCF)
metric to holistically optimize chip area, energy and power
consumption for improving overall computer system sus-
tainability. A variety of archetypal processor mechanisms
were analyzed and categorized in strongly, weakly and less
sustainable design choices. A case study illustrated how FO-
CAL can guide the design of future processors that deliver
both higher performance and incur a smaller environmental
impact by leveraging technology innovation in a sober way.
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