
1

R.I.P. Geomean Speedup
Use Equal-Work (or Equal-Time) Harmonic Mean Speedup Instead
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Abstract—How to accurately summarize average performance is chal-
lenging. While geometric mean speedup is prevalently used, it is mean-
ingless. Instead, this paper argues for harmonic mean speedup which
accurately summarizes how much faster a workload executes on a
target system relative to a baseline. We propose the equal-work and
equal-time harmonic mean speedup metrics to explicitly expose the
different assumptions they make, and we further suggest that equal-
work speedup is most relevant to computer architecture research. The
paper demonstrates that which average speedup is used matters in
practice as inappropriate averages may lead to incorrect conclusions.

1 INTRODUCTION

Measuring computer system performance is fundamental to
research and development. Speedup is arguably the most fre-
quently used performance metric to quantify relative perfor-
mance differences. How to summarize speedup across a set
of benchmarks has led to a vivid, multi-decade debate. While
some argue for geometric mean speedup, others argue for
harmonic mean speedup, and yet others argue, under spe-
cific (perhaps hypothetical) circumstances, for arithmetic mean
speedup. Geometric mean speedup is prevalent: most computer
architecture research articles use geometric mean speedup to
summarize performance.

In this paper, we argue that geometric mean speedup, or
geomean speedup for short, lacks physical meaning and leads
to misleading and incorrect conclusions in contrast to harmonic
mean speedup which accurately reports how much faster a
workload executes on average on a system of interest relative
to a baseline system. We demonstrate that it matters in practice:
using SPEC CPU2017 performance results we identify (many)
examples where geomean speedup reports that system A out-
performs system B by a non-negligible margin, while harmonic
mean reaches the opposite conclusion.

This paper proposes the equal-work (EWS) and equal-time
(ETS) harmonic mean speedup metrics to comprehensively
summarize average performance. The meaning of EWS and
ETS differs because of the difference in the underlying as-
sumptions: EWS gives equal weight to the amount of work
done by each benchmark, while ETS gives equal weight to the
amount of time each benchmark spends on the baseline system.
Because computer architecture performance analysis typically
values the work done by each benchmark equally, EWS is the
appropriate average speedup to use. This result calls for action
from our community to (1) abandon geomean speedup, (2)
use harmonic mean speedup instead, and (3) explicitly state
whether EWS or ETS is used.

2 BACKGROUND

While it is generally agreed upon that ‘performance is not a
single number’, it is convenient to summarize performance

across a set of benchmarks using a single performance number.
We first revisit the different means.

2.1 Arithmetic and Harmonic Mean

Consider n measurements Mi, 1 ≤ i ≤ n, typically representing
a metric of interest M for n different workloads or benchmarks.
The arithmetic mean (AM) is defined as

AM(M) =
1

n

n∑
i=1

Mi, (1)

while the harmonic mean (HM) is defined as

HM(M) =
n∑n

i=1
1

Mi

. (2)

John [6] provides a comprehensive and mathematically
sound discussion when to use the arithmetic versus harmonic
mean for metrics M that are a ratio of other metrics A and B,
i.e., M = A/B. Many metrics used in computer architecture
research and development are ratios, e.g., cycles per instruction
(CPI), million instructions per second (MIPS), etc. For a metric
M = A/B with equal Bs across the benchmarks, it turns out
that the arithmetic mean is the correct mean:∑n

i=1 Ai∑n
i=1 Bi

=

∑n
i=1 Ai

n ·B =
1
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=
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Ai

Bi
= AM(A/B).

(3)

If on the other hand, the As are equal across the benchmarks,
the harmonic mean is the correct mean:∑n

i=1 Ai∑n
i=1 Bi

=
n ·A∑n
i=1 Bi

=
n∑n

i=1 Bi/A

=
n∑n

i=1
1

A/Bi

=
n∑n

i=1
1

Ai/Bi

= HM(A/B).
(4)

Based on these derivations it is clear that depending on the
performance metric of interest, one has to choose for either
the harmonic or arithmetic mean. In particular, whether the As
or Bs are equal determines what mean to use. For example,
if instruction count is constant across a set of benchmarks,
average IPC (instructions executed per cycles) needs to be
computed using the harmonic mean, while average CPI (cycles
per instruction) is obtained using the arithmetic mean.

In practice though, the As or Bs are not necessarily equal,
e.g., instruction count may differ across benchmarks. In such
cases, one needs to resort to weighted averages. The weighted
arithmetic mean (WAM) is defined as

WAM(M) =

n∑
i=1

wi ·Mi, (5)



and the weighted harmonic mean (WHM) is defined as

WHM(M) =
1∑n

i=1
wi
Mi

, (6)

with wi the weights such that
∑n

i=1 wi = 1. John [6] demon-
strates that weighted arithmetic or harmonic mean can be
used interchangeably provided that the appropriate weights
are applied. In general, for a metric M = A/B, the arithmetic
mean with the weights of B is identical to the harmonic mean
with the weights of A. For example, when computing average
IPC using the weighted harmonic mean, one needs to weigh the
IPC of benchmark i with its respective relative instruction count
wi = Ii/

∑n
j=1 Ij . Alternatively, one can compute the average

IPC using the weighted arithmetic mean with the weights based
on cycle count, i.e., wi = Ci/

∑n
j=1 Cj .

2.2 Geometric Mean
The geometric mean (GM) is defined as

GM(M) = n

√√√√ n∏
i=1

Mi. (7)

The geometric mean has an appealing property for rate-based
metrics, namely the geometric mean of the ratios is the same as
the ratio of the geometric means [5]:

GM(A/B) = n

√√√√ n∏
i=1

Ai

Bi
=

n
√∏n

i=1 Ai

n
√∏n

i=1 Bi

=
GM(A)

GM(B)
. (8)

2.3 The War of the Means
The debate started in 1986 with Fleming and Wallace [4]
who argue in favor of the geometric mean when computing
performance ratios or speedup. Smith [9] argues against the
geometric mean for rate-based metrics and in favor of harmonic
mean. John [6] provides a solid and comprehensive discussion
when to use the (weighted) arithmetic versus harmonic mean
depending on the metric. Mashey [7] uses a statistical argument
in favor of geomean mean based on the assumption that per-
formance results is typically log-normally distributed. Citron et
al. [3] concludes that the average used has little impact on the
overall conclusion. Hennessy and Patterson [5] use geometric
mean throughout their seminal textbook.

2.4 Computing Average Speedup
While the war of means included a variety of metrics, we
focus on speedup in this paper which is the single most
frequently used metric to quantify relative performance differ-
ences. Speedup S is defined as execution time on the baseline
system B divided by the time on the optimized system O:

S =
TB

TO
. (9)

Speedup above one means higher performance, while speedup
below one means the optimized system effectively yields a
slowdown. Computing speedup for individual benchmarks
is easy and uncontested, however, how to compute average
speedup across a set of benchmarks is more controversial.

Geometric mean speedup is prevalent. Geomean speedup
is used by benchmarking consortia including SPEC. In partic-
ular, SPEC CPU reports SPECratio or the geomean speedup
of a machine relative to a reference machine, namely a Sun
Ultra5 10 workstation with a 300 MHz SPARC processor and
256 MB main memory. To compute the relative performance

TABLE 1: Example illustrating why geomean speedup lacks
physical meaning.

Benchmark Execution time Speedup
baseline optimized

A 1 1 1
B 1 0.01 100

Geometric mean speedup 10
Harmonic mean speedup 1.98

difference between two machines one can simply divide the
respective SPECratios — the execution time on the reference
machine drops out meaning that the choice of the reference
machine becomes irrelevant [5], which is convenient.

Researchers also widely use geomean speedup. A sam-
ple survey of the 79 papers accepted at the premier 2023
IEEE/ACM International Symposium on Computer Architec-
ture (ISCA) reveals that out of the 31 papers reporting average
speedup across a set of benchmarks, 24 use the geometric mean,
6 do not specify which average is used, and only one paper uses
harmonic mean.

3 R.I.P. GEOMEAN SPEEDUP

Despite its convenience and widespread use, geomean speedup
is meaningless. A speedup of a factor S, per its definition,
implies that the optimized system is S times faster than the
baseline system, i.e., the work gets done in S fewer time
units. However, this is not what the geometric mean speedup
computes. In fact, geomean speedup lacks physical meaning.

The example in Table 1 illustrates this. Consider two bench-
marks A and B that run equally long on the baseline system,
i.e., their normalized execution time equals one unit of time. As-
sume now that benchmark A runs equally fast on the optimized
system, i.e., executing A on the optimized system also takes one
unit of time. In contrast, benchmark B executes 100× faster on
the optimized system, i.e., its execution time equals 0.01 time
units on the optimized system. The geometric mean speedup
across the two benchmarks equals GM =

√
1 · 100 = 10×.

Based on the definition of speedup, the intuitive understanding
is thus that the optimized system reduces execution time by a
factor 10. Unfortunately, this does not reflect reality. Executing
benchmarks A and B on the baseline system takes 2 time units
while taking 1.01 time units on the optimized system. The
speedup hence equals 2/1.01 = 1.98×, not 10×!

In contrast, the harmonic mean speedup across the two
benchmarks equals HM = 2/(1/1 + 0.01/1) = 1.98×, which
is exactly what the average speedup is supposed to report: it
reports the reduction in execution time on the optimized sys-
tem relative to the baseline system. In other words, harmonic
mean speedup provides a precise physical meaning, namely it
reports how much faster a workload executes on average on
the optimized system relative to the baseline system.

The above example assumed that the execution on the
baseline system is the same for each benchmark, which is why
harmonic mean provides the right answer. Of course, in reality
benchmarks execute for a different amount of time, implying
that a weighted average needs to used, which is affected by
the relative execution times of the benchmarks. This raises the
fundamental question: how important are the relative execution
times of the benchmarks on the reference machine? According
to SPEC at least — and this is likely true in most benchmarking
scenarios — the relative execution times are irrelevant, which
implies that one should use the (unweighted) harmonic mean.
The implicit assumption here is that the time spent on the
baseline system is weighed equally for each of the benchmarks.
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(b) Zoomed-in view
Fig. 1: Harmonic mean (vertical axis) versus geometric mean (horizontal axis) of SPECratios for integer speed base SPEC CPU2017.
While the geometric and harmonic means strongly correlate, they may reach opposite conclusions for pairwise comparisons.

4 DOES IT REALLY MATTER?

One may (be tempted to) think that which mean to use
does not have much impact in practice. To illustrate the con-
trary, consider the SPEC CPU2017 integer speed base results,
downloaded on November 2, 2023 from https://www.spec.
org/cpu2017/results/. The data set contains speedup numbers
for the ten integer benchmarks for a total of 7,815 machines
submitted over a period of about six years. Figure 1 reports
the harmonic mean (vertical axis) versus geometric mean (hor-
izontal axis) of SPECratios1 for the complete data set (figure
on the left) and for a subset of the data (figure on the right).
There is clearly a strong correlation between the harmonic and
geometric means, see Figure 1(a) which seems to align with the
general findings of Citron et al. [3] that ‘the choice of the mean
used is of little consequence’.

However, upon closer inspection, see Figure 1(b), when
comparing specific systems, it is clear that the geometric and
harmonic means do not necessarily agree on which system
yields higher performance. For example, consider the HPE
ProLiant DL385 Gen102 versus the Supermicro SuperWorksta-
tion 5039C-I3. The HPE ProLiant achieves a 7.85× geomean
speedup while the Supermicro SuperWorkstation achieves a
7.16× speedup. However, the harmonic mean reports the op-
posite: the HPE ProLiant achieves a 6.34× speedup versus
6.79× for the Supermicro SuperWorkstation. Note that the dif-
ference is non-negligible, i.e., 9% in one direction versus 7% in
the opposite direction. Figure 1(b) illustrates another example
where geomean reports that the HPE ProLiant DL385 Gen10
Plus4 outperforms the NEC Corporation Express5800/R110i-15,
while harmonic mean reports the opposite.

These cases — and there are many more examples —
illustrate that how average speedup is computed really matters
in practice: geomean speedup may reach an incorrect conclu-
sion which could have been avoided by using the harmonic
mean speedup. The implications could be severe, steering re-
search and development in a sub-optimal direction. Or, more

1. Note that the harmonic mean of SPECratios differs from EWS
and ETS because the ratio of harmonic means is not the same as the
harmonic mean of ratios, as discussed later.

2. /cpu2017/results/res2019q3/cpu2017-20190903-17794.html
3. /cpu2017/results/res2019q2/cpu2017-20190430-13461.html
4. /cpu2017/results/res2020q2/cpu2017-20200330-21613.html
5. /cpu2017/results/res2018q4/cpu2017-20181029-09331.html

practically, one may be making mistakes when using SPEC’s
geomean speedup numbers to guide purchasing decisions.

5 EQUAL-WORK AND EQUAL-TIME SPEEDUP

The above analysis advocates for harmonic mean speedup to
summarize average performance across a set of benchmarks.
An implicit assumption underpinning harmonic mean speedup
though is that, as aforementioned, one weighs the time spent
on the original system for each of the benchmarks equally.
This implies that different benchmarks may execute a different
amount of work, e.g., a memory-intensive application may ex-
ecute fewer instructions than a compute-intensive application
in the same amount of time. Another way to compute average
performance using the harmonic mean speedup is to weigh
the amount of work done for each of the benchmarks equally.
This leads to the equal-work and equal-time harmonic mean
speedup metrics we introduce and discuss now.

Assume we have n benchmarks executing a fixed number of
instructions, e.g., 1 B instructions. Alternatively, the amount of
work by each benchmark differs but the experimenter weighs
the work done by each benchmark equally. Assume further
we want to compare performance for the optimized system
O relative to a baseline system B. For each benchmark we
measure time in cycles, and we can thus compute IPCB,i and
IPCO,i for each benchmark i, 1 ≤ i ≤ n. (If execution time
is measured in seconds, one can compute IPS or instructions
per second. For multi-threaded workloads for which IPC and
IPS are harmful, one can use work-related metrics or more
specifically work units per unit of time, e.g., transactions per
second [1]. We consider IPC without loss of generality.)

We define and compute equal-time harmonic mean speedup or
equal-time speedup (ETS) as follows. We first compute speedup
Si of the optimized system over the baseline system for each of
the benchmarks:

Si =
IPCO,i

IPCB,i
. (10)

Note that this is equivalent to Equation 9 because instruction
count is constant. Computing the harmonic mean over these
speedup values yields equal-time speedup:

ETS =
n∑n

i=1
1
Si

. (11)

ETS computes per-benchmark speedup before computing the
harmonic mean. Informally speaking, ETS is the ‘harmonic
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Fig. 2: Comparing different multi-chip GPU LLC organizations using the EWS and ETS averages. EWS and ETS provide different
average performance numbers, exposing the underlying difference in meaning and assumptions.

mean of ratios’, i.e., first compute ratios (speedups), then har-
monic mean. By doing so, ETS gives equal weight to the time
spent by each benchmark on the baseline system.

We define and compute equal-work harmonic mean speedup
or equal-work speedup (EWS) as follows. We first compute the
average IPC on the optimized system and the baseline system
across all the benchmarks. Because instruction count is fixed,
we have to use the harmonic mean:

IPCB =
n∑n

i=1
1

IPCB,i

(12)

and
IPCO =

n∑n
i=1

1
IPCO,i

. (13)

We subsequently compute the speedup of the optimized system
over the baseline system to obtain equal-work speedup:

EWS =
IPCO

IPCB
. (14)

EWS computes the harmonic mean IPC per system before
computing speedup. Informally, one could say that EWS is the
‘ratio of harmonic means’, i.e., first compute harmonic means,
then the ratio. Hence, EWS gives equal weight to the amount of
work done by each benchmark.

Note that if one were to replace the harmonic mean with
geometric mean in the above formulas, there would be no
difference between ETS and EWS, because the geomean of the
ratios equals the ratio of geomeans. This convenience presum-
ably contributes to the popularity of the geomean speedup.

In contrast, ETS and EWS provide different numbers, and
they should, because their meaning differs. Which metric to
use, EWS or ETS, depends on the experimenter’s perspective.
If one considers the amount of work done by each bench-
mark to deserve equal weight, one should use EWS. If on the
other hand, one considers the amount of time spent by each
benchmark on the baseline system to deserve equal weight, one
should use ETS. There is no right or wrong metric as it depends
on the context. In any case, and at the very least, the EWS and
ETS metrics clearly expose what the underlying assumptions
are when reporting average speedup numbers.

A golden rule in computer architecture performance eval-
uation is to measure time to execute a unit of work, i.e., a
complete benchmark or a representative region thereof [5].
When computing average computer system performance across
a set of benchmarks, one thus makes the implicit assumption
that the work done by each benchmark is valued to be equally
important. This is made explicit when considering the same
amount of instructions per benchmark. This suggests that EWS
is the appropriate average speedup to use.

Case study. We now illustrate how EWS and ETS (may) lead(s)
to different conclusions in practice. We consider the data set
from Zhang et al. [10] in which different last-level cache (LLC)
organizations are evaluated in the context of a multi-chip
GPU system. The authors compared five LLC organizations:

memory-side, static [2], dynamic [8], SM-side, and (the authors’
own) sharing-aware caching (SAC). Figure 2 reports EWS and
ETS for a collection of benchmarks normalized to the memory-
side LLC. (Zhang et al. use the EWS metric although this is
not explicitly mentioned in the paper.) It is remarkable that
EWS and ETS lead to fairly different conclusions. In fact, for
some of the LLC organizations, EWS and ETS disagree. In
particular, EWS reports that the static, dynamic and SM-side
LLCs outperform the memory-side LLC, while ETS reaches
the opposite conclusion that memory-side LLC outperforms
the static, dynamic (by a small margin) and SM-side LLCs.
Both EWS and ETS agree that SAC outperforms the other
LLC organizations, but the magnitude of the benefit varies
significantly: 1.71× speedup for EWS versus 1.19× for ETS.

6 CONCLUSION

This article will hopefully convince researchers and perfor-
mance analysts to finally abandon geomean speedup. The
newly proposed equal-work and equal-time harmonic mean
speedup metrics comprehensively summarize average perfor-
mance by weighing work versus time equally, respectively.
Given that the amount of work (rather than time on the baseline
system) by each benchmark is typically valued equally, it is
expected that equal-work (rather than equal-time) speedup is
most appropriate and relevant.
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