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Abstract—Analytical performance models yield valuable architectural insight

without incurring the excessive runtime overheads of simulation. In this work, we

study contemporary GPU applications and find that the key performance-related

behavior of such applications is distinct from traditional GPU applications. The key

issue is that these GPU applications are memory-intensive and have poor spatial

locality, which implies that the loads of different threads commonly access different

cache blocks. Such memory-divergent applications quickly exhaust the number of

misses the L1 cache can process concurrently, and thereby cripple the GPU’s

ability to use Memory-Level Parallelism (MLP) and Thread-Level Parallelism (TLP)

to hide memory latencies. Our Memory Divergence Model (MDM) is able to

accurately represent this behavior and thereby reduces average performance

prediction error by 14� compared to the state-of-the-art GPUMech approach

across our memory-divergent applications.

Index Terms—Analytical performance prediction, memory divergence model, GPU

Ç

1 INTRODUCTION

QUANTITATIVE evaluation is an essential part of the computer
architect’s tool box. Simulation is the most common evaluation
tool since it enables detailed, even cycle-accurate, performance
analysis. However, simulation is excruciatingly slow and hence
parameter sweeps commonly require thousands of CPU hours.
An alternative approach is analytical modeling, which captures the
key performance-related behavior of the architecture with a set of
mathematical equations. Analytical models are much faster than
simulation—making them ideally suited for early-stage architec-
tural exploration [1], [2] and helping programmers understand
application performance [3], [4].

GPUs are the de facto standard platform for executing perfor-
mance-critical applications. Their highly parallel execution model
and high-performance memory system makes GPUs a popular
choice for emerging applications such as data analytics [5], [6]. The
diversity of modern-day GPU applications makes them challenging
to model. Several contemporary GPU applications differ from tradi-
tional GPU-compute workloads because they put a much larger
strain on the memory system. More specifically, they are memory-
intensive and memory-divergent—i.e., the memory accesses from
concurrently executing threads map to multiple cache lines. While
simulators account for this behavior by modeling cycle-by-cycle
activities, state-of-the-art GPU modeling approaches are unable to
predict performance with sufficient accuracy.

Our objective is to provide an analytical performance model for
GPUs that is able to accurately predict the performance of the

various GPU applications, including divergent memory-intensive
applications. Our starting point is interval modeling [7], which is a
widely used approach for CPU performance evaluation. The key
observations are that an application will have a certain steady-state
performance in the absence of miss events (e.g., data cache misses),
and that miss events are independent of each other. Therefore, per-
formance can be predicted by predicting steady-state performance
and subtracting the performance loss due to each miss event. GPU-
Mech [1] applies interval modeling to GPUs. While GPUMech is
accurate for traditional GPU-compute workloads, we find that it
falls short for memory-divergent applications.

We propose the Memory Divergence Model (MDM) which cap-
tures the key performance-related behavior of modern, memory-
divergent GPU applications. We find that the poor spatial locality
of memory-divergent applications leads to inefficient utilization
of the Miss Status Holding Registers (MSHRs). The number of
MSHRs determines the number of concurrent misses the cache can
sustain without blocking (a blocked cache cannot accept any
requests). Blocking has a profound performance impact. First, a
blocked cache limits the ability of the GPU core to hide memory
latencies with Memory and Thread-Level Parallelism (i.e., MLP
and TLP). Second, the memory system becomes saturated as the
cores issue a large number of requests to fetch all required data.
MDM accounts for these effects by accurately modeling MSHR
behavior and the Network-on-Chip (NoC) and DRAM queuing
latencies. Overall, MDM improves performance prediction accu-
racy by 14� on average compared to the state-of-the-art GPU-
Mech [1] approach across our memory-divergent applications.

2 UNDERSTANDING EMERGING GPU APPLICATIONS

2.1 The Architectural Effects of Memory Divergence

GPUs use multiple Streaming Multiprocessors (SMs) to execute
code. Each SM can run a limited number of software threads con-
currently. Thus, software threads are divided into groups, called
warps, that match the width of the SM. An SM executes the instruc-
tions of all threads within a warp in lock-step. For load instruc-
tions, each thread issues a load for a single data element. These
per-thread requests are aggregated to cache requests by the coa-
lescer. On a cache hit, the cache line is read by the SM. On a miss,
an MSHR is allocated and a memory request is sent to the lower
levels of the memory hierarchy. If the access pattern is favorable
(e.g., sequential), the coalescer can map the misses of the warp’s
concurrent threads to a single cache request, consuming a single
MSHR. However, a significant fraction of emerging GPU applica-
tions are memory-divergent (i.e., the threads of a warp tend to
access different cache blocks), exerting significant pressure on the
limited number of MSHRs. If the cache runs out of MSHRs, it
blocks until an MSHR becomes available. A blocked cache causes
SM stalls because no load instructions can be executed.

To understand how the poor spatial locality of memory-diver-
gent applications affects the memory system, Fig. 1 breaks down
the average memory latency of GPU applications into the memory
unit where it is incurred (see Section 4 for a description of our
experimental setup). The key observation is that the benchmarks
are clearly partitioned into two categories: The Non-Memory Diver-
gent (NMD) benchmarks—where the latency due to insufficient
MSHRs is negligible—and the Memory Divergent (MD) bench-
marks—which on average spend hundreds and even thousands of
cycles waiting for MSHRs to become available. Fig. 1 also shows
that MD-applications tend to experience significant queuing laten-
cies in the NoC and DRAM subsystems. Thus, an effective perfor-
mance model for MD-applications needs to accurately model
MSHR behavior, NoC queuing and DRAM queuing.
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2.2 Modeling Memory-Divergent Applications

Accurately modeling MSHR behavior and queuing in the NoC and
DRAM requires understanding how the poor spatial locality of
MD-applications interacts with the underlying architecture and
how this interaction differs from NMD-applications. Fig. 2 illus-
trates this with a simple example. We consider an NMD-applica-
tion that has one L1 cache miss per warp and an MD-application
with four cache misses per warp. Both warps of both applications
first execute a couple of compute instructions. Then, they execute
two load instructions (the second load depends on the first) before
they finish by executing additional compute instructions. We
assume that the SM can execute two warps concurrently and that
the L1 cache has two MSHRs.

We first consider the NMD-application. For the first few cycles,
Warp 1 and Warp 2 execute compute instructions at their steady-
state IPC. Then, they both reach the load instructions that miss in
the L1 cache (an L1 cache miss takes at least 120 cycles in our
model, see Section 4). NMD-applications typically have good spa-
tial locality across threads, and this enables the coalescer to com-
bine the load instructions into a single cache request (one for each
warp). The cache allocates an MSHR for each miss. Since there are
two MSHRs in the cache, the misses are processed concurrently—
uncovering MLP that successfully hides the latency of one of the
requests. When the misses return, the MSHRs are freed. This ena-
bles the next misses to be issued in parallel as well. Since a realistic
SM has a large number of warps in-flight and many MSHRs (128 in
our model), MLP effectively hides memory latency in NMD-appli-
cations. The result is that memory latency has a limited impact on
overall performance, and the simple memory latency models used
in GPUMech [1] are sufficiently accurate to achieve low perfor-
mance prediction errors for NMD-applications.

The key performance-related behavior of the MD-application is
significantly different. Initially, Warp 1 and Warp 2 execute their
compute-instructions concurrently. However, the four L1 cache
misses of Warp 1 exceed the MSHR capacity of the L1 cache. This
results in the misses being executed in batches. When Warp 1 has
issued two miss requests, the L1 cache blocks and Warp 1 cannot
execute its remaining cache requests. Further, Warp 2 cannot make
progress as the L1 cache cannot service its memory requests either.
After a few hundred clock cycles, the two first requests of Warp 1
return and it can issue its final two cache requests. When these
requests return, Warp 2 can issue its two first requests. This causes
Warp 1 to stall since its next instruction is a load instruction and
the cache is blocked. Execution continues in batches until both
warps have executed their load instructions (only partially shown).

The example explains how poor spatial locality leads to wide-
spread L1 cache blocking. This limits the SM’s ability to use MLP
to hide memory latencies since the number of concurrent loads is
limited by the number of MSHRs. Further, it also destroys TLP as
all available warps will stall on their first load instruction because
the L1 cache is mostly blocked. At the same time, the memory
system saturates because it is flooded with requests that fetch little
useful data (e.g., 128 concurrent requests from each L1 cache in our
model), causing excessive NoC and DRAM queuing. This illus-
trates that an effective performance model for MD-applications

must accurately model batching and saturation behavior. GPU-
Mech falls short of this requirement, leading to high prediction
errors for MD-applications.

3 THE MEMORY DIVERGENCE MODEL (MDM)

In this section, we explain how MDM models the batching and sat-
uration behavior of MD-applications. We leverage the framework
used by GPUMech [1] to collect the interval profile and select a rep-
resentative warp. The starting point of MDM is the number of
cycles it takes an SM to execute the instructions of interval i within
the representative warp without contention (i.e., Ci). We then add
the predicted MSHR-related stall cycles (i.e., SMSHR

i ) and the pre-
dicted stall cycles due to queuing in the NoC and DRAM subsys-
tems (i.e., SNoC

i and SDRAM
i ) to Ci to predict the number of cycles an

SM would use to execute interval i with contention (i.e., Si). We
can obtain per-interval IPC predictions by dividing the number of
instructions in the interval by the number of cycles we predict that
it will take to execute them (i.e., IPCi ¼ #Instructionsi=½Ci þ Si�).

We predict the IPC of the entire warp by summing the number
of instructions executed by the warp across all intervals and divid-
ing them by the total number of cycles required to execute all inter-
vals. Then, we multiply by the number of warps concurrently
executed on an SM (i.e.,W ) to predict the overall IPCSM of an SM

IPCSM ¼ W �
P#Intervals

i¼0 #InstructionsiP#Intervals
i¼0 Ci þ SMSHR

i þ SNoC
i þ SDRAM

i

: (1)

We obtain the IPC of the entire GPU by multiplying by the number
of SMs (i.e., IPC ¼ #SMs� IPCSM). MDM obtains Ci following the
approach of GPUMech [1], but we provide new approaches for
predicting SMSHR

i , SNoC
i and SDRAM

i . The following sections explain
how MDM predicts the stall cycles Si per interval (and we drop
the subscript i from the discussion).

3.1 MDM’s Memory and NoC Queue Models

Memory contention occurs because the memory requests of all SMs
queue up in the NoC and DRAM subsystems. The NoC and DRAM
use a certain number of cycles to service each request. More specifi-
cally, the NoC service latency LNoCService is a function of the cache
block size, the clock frequency f and the NoC bandwidth BNoC

LNoCService ¼ f � BlockSize

BNoC
: (2)

The DRAM service latency can be computed in a similar way.
However, only the LLC misses access DRAM

LDRAMService ¼ f � LLCMissRatio� BlockSize

BDRAM
: (3)

We obtain the LLC miss ratio from the information collected in the
interval profile and adjust the service latencies to account for paral-
lelism in the memory system (e.g., we divide the average service
latency by n to model an n-channel system).

Fig. 1. L1 miss latency breakdown for select GPU-compute applications. The key
take-away is that delays due to insufficient MSHRs significantly affect the overall
memory latency of MD-applications while NMD-applications are hardly affected.

Fig. 2. MD-applications and NMD-applications have very different behavior.
The poor spatial locality of NMD-applications results in poor utilization of the L1
MSHRs— crippling the SM’s ability to use TLP and MLP to hide memory latencies.
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We now use the service latency predictions to predict the aver-
age queuing latency—and thereby the SM stall cycles caused by
queuing latencies. The average queuing latency is determined by
the average number of pending requests an arriving request must
wait for times the average service latency. We first predict the aver-
age number of concurrent L1 missesM

M ¼ minðMRead �W;#MSHRsÞ þMWrite �W: (4)

Read misses allocate MSHR entries and are therefore bounded by
the number of L1 MSHRs. In other words, the application will
either: (1) issue the number of read misses of the current interval of
the representative warp times the number of warps; or, (2) as
many read misses as there are MSHRs. Since the L1 caches in our
GPU models are write-through and no-allocate, write misses effec-
tively bypass the L1 and are independent of the number of MSHRs.

The number of queued requests is determined by application
behavior while the service latency is an architectural parameter.
Thus, we can use the same model to predict both NoC and DRAM
stalls by providing LNoCService (LDRAMService) as input to compute
SNoC (SDRAM)

SNoC ¼ #SMs�M � LNoCService; MRead �W > #MSHRs
ð1=2Þ �#SMs�M � LNoCService; otherwise:

�

(5)

The equation formalizes the key observations of Section 2. For MD-
applications, the number of MSHRs is the bottleneck and the high
degree of divergence keeps the memory system saturated. Since
the memory system is saturated, each request needs to wait for all
other requests. For NMD-applications, the memory requests are
not sufficient to keep the memory queue saturated. In this case, the
first request is serviced directly and the last request needs to wait
for all other requests. Thus, a request waits for approximately half
the concurrent requests.

3.2 MDM’s MSHR Contention Model

The warps of MD-applications send their requests to the memory
subsystem over consecutive batches (see Section 2.2). To estimate
the length of these batches, we start by determining the memory
latency in the absence of contention

LNoContention ¼ LMinLLC þ LLCMissRate� LMinDRAM: (6)

Here, LMinLLC is the round-trip latency of an LLC hit without NoC
contention. The round-trip latency through the DRAM system is
LMinDRAM (again assuming no contention), but only LLC misses
incur this latency. We then combine LNoContention with the average
stall cycles due to queuing in the NoC and DRAM subsystems
(obtained with Equation (5))

SMem ¼ LNoContention þ SNoC þ SDRAM: (7)

SMem is the predicted stall cycles due to L1 misses—considering
both NoC and DRAM contention. We then use SMem to predict the
SM stall cycles due to MSHR contention

SMSHR ¼ ðdMRead�W
#MSHRs e � 1Þ � SMem; MRead �W > #MSHRs

0; otherwise:

�

(8)

Equation (8) checks whether the number of requests of the cur-
rent warps exceeds the number of MSHRs. If it does, we compute
the number of batches needed to issue the memory requests of all
warps by dividing the total number of readmisses by the number of
MSHRs. The latency of the final batch is covered by the queuing
model, so we need to subtract one from this quantity to avoid add-
ing this latency twice. Then, we multiply by SMem to obtain the com-
bined SM stall cycles of these batches. NMD-applications are
typically able to issue the requests of all warps in a single batch (see
Fig. 1). Therefore, we set SMSHR to zero for non-divergent intervals.

4 EXPERIMENTAL SETUP

We use GPGPU-sim 3.2 [10], a cycle-accurate GPU simulator, to
evaluate MDM’s prediction accuracy. We model an architecture
similar to Nvidia’s Pascal [14] as shown in Table 1. We select 15
applications: 8 NMD-applications and 7 MD-applications, from the
main GPU benchmark suites. Table 2 provides details on the
selected benchmarks. We simulate the benchmarks to completion
with the (largest) default input set and report performance predic-
tion error relative to simulated performance.

The original GPUMech proposal does not model NoC queuing
delay and does not account for the DRAM and NoC queuing delays
when estimating the MSHR stall latencies. GPUMech+ models a
NoC queuing delay that resembles GPUMech’s DRAM queuing
model, whereby each request waits for half the total number of
requests on average. GPUMech+ also accounts for the NoC and
DRAM queuing delays when estimating the MSHR waiting time.
MDM-Queue improves upon GPUMech+ by using MDM’s NoC
andDRAM queue model. MDM-MSHR improves upon GPUMech+
by using MDM’s MSHR model. This enables us to independently
evaluate MDM’s queue model and MSHR model. MDM incorpo-
rates the improvedNoC, DRAMandMSHRqueuing delays.

5 RESULTS

Fig. 3 reports the relative IPC prediction error for our NMD and
MD-benchmarks for all model combinations. MDM reduces

TABLE 1
Simulator Configuration

Parameter Value

Clock frequency 1.4 GHz
Number of SMs 28
Number of mem. ctrl. 24
Warp schedulers per SM 4 (LRR)
Issue width per sched. 2 warp-instructions/cycle
L1 cache per SM 48 KB, 6-way, LRU, 128 MSHRs
L2 cache per mem. ctrl. 128 KB, 8-way, LRU, 128 MSHRs
NoC bandwidth 1050 GB/s
DRAM bandwidth 480 GB/s
Maximumwarps per SM 64
Minimum L2 hit latency 120 cycles
Minimum DRAM latency 220 cycles

TABLE 2
Benchmarks

Benchmark Suite Abbr. Type

Hotspot Rodinia [8] HS NMD
B+trees Rodinia BT NMD
Back Propagation Rodinia BP NMD
FDTD3d SDK [9] FDTD NMD
Srad Rodinia SRAD NMD
Ray tracing GPGPUsim [10] RAY NMD
2D Convolution Polybench [11] 2DCONV NMD
Stencil Parboil [12] ST NMD

CFD solver Rodinia CFD MD
Breadth-first search Rodinia BFS MD
PageView Rank MARS [13] PVR MD
RageView Count MARS PVC MD
Inverted Index MARS IIX MD
Sparse matrix mult. Parboil SPMV MD
Kmeans clustering Rodinia KMEANS MD
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prediction error by 14� on average compared to GPUMech for the
MD-benchmarks, from 444 to 32 percent. For the NMD-bench-
marks, MDM reduces prediction error marginally compared to
GPUMech, from 19 to 16 percent on average. Across all bench-
marks, GPUMech has an average performance prediction error of
217 percent. MDM achieves an average prediction error of 23 per-
cent. The execution times of the MDM and GPUMech models are
practically equal.

GPUMech+, MDM-Queue and MDM-MSHR shed light on the
relative importance of the different components of MDM for the
MD-applications. Although GPUMech+ improves accuracy signifi-
cantly compared to GPUMech, it still has a high average prediction
error of 206 percent. This reinforces that minorly modifying
GPUMech is insufficient and that MD-applications need a funda-
mentally new modeling approach. MDM-Queue improves upon
GPUMech+ by applying the saturation model described in Section
3.1 to memory-divergent intervals, thereby reducing the average
prediction error to 100 percent. Similarly, MDM-MSHR improves
upon GPUMech+ by applying the batching model of Section 3.2 to
memory-divergent intervals, which reduces the average prediction
error to 98 percent. Neither MDM-Queue nor MDM-MSHR are
able to accurately predict MD-application performance in isolation,
indicating that modeling both queuing effects and MSHR behavior
is critical to achieve low prediction error.

6 RELATED WORK

Prior work uses GPU modeling techniques to guide runtime opti-
mizations (e.g., DVFS configuration [15] and cache miss-related
optimizations [16]) or GPU resource scaling analysis [2]. Our work
provides an accurate model for fast design space exploration. In
general, prior performance modeling efforts make simplifications
that lead to inaccuracies when modeling the cache hierarchy [4]
and divergent applications [1], [3], or do not provide insight [2].
Volkov [17] studies GPU performance using simple synthetic
benchmarks and shows that recent GPU models do not accurately
capture the effects of memory bandwidth, non-coalesced accesses,
and memory-intensive applications.

7 CONCLUSION

In this paper, we analyze the key performance characteristics of
contemporary GPU applications and find that the poor spatial
locality of these applications cause them to be memory-divergent.
The modeling assumptions made by state-of-the-art GPU perfor-
mance models such as GPUMech do not capture the characteristics
of such applications. Applying GPUMech to memory-divergent
applications leads to significant performance prediction errors (444
percent on average). We propose the Memory Divergence Model
(MDM), which accurately models the batching and saturation
behavior caused by high memory intensity and poor spatial local-
ity. MDM significantly improves performance prediction accuracy
compared to GPUMech, by 14� on average across a set of mem-
ory-divergent applications.
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