
Precise Runahead Execution

Ajeya Naithani , Josu�e Feliu , Almutaz Adileh ,
and Lieven Eeckhout

Abstract—Runahead execution improves processor performance by accurately

prefetching long-latency memory accesses. When a long-latency load causes the

instruction window to fill up and halt the pipeline, the processor enters runahead

mode and keeps speculatively executing code to trigger accurate prefetches. A

recent improvement tracks the chain of instructions that leads to the long-latency

load, stores it in a runahead buffer, and executes only this chain during runahead

execution, with the purpose of generating more prefetch requests during runahead

execution. Unfortunately, all these prior runahead proposals have shortcomings

that limit performance and energy efficiency because they discard the full

instruction window to enter runahead mode and then flush the pipeline to restart

normal operation. This significantly constrains the performance benefits and

increases the energy overhead of runahead execution. In addition, runahead

buffer limits prefetch coverage by tracking only a single chain of instructions that

lead to the same long-latency load. We propose precise runahead execution

(PRE) to mitigate the shortcomings of prior work. PRE leverages the renaming unit

to track all the dependency chains leading to long-latency loads. PRE uses a novel

approach to manage free processor resources to execute the detected instruction

chains in runahead mode without flushing the pipeline. Our results show that PRE

achieves an additional 21.1 percent performance improvement over the recent

runahead proposals while reducing energy consumption by 6.1 percent.

Index Terms—Microarchitecture, single-core performance, runahead execution

Ç

1 INTRODUCTION

RUNAHEAD execution [1], [2], [3] improves processor performance
by accurately prefetching long-latency loads. The processor triggers
runahead execution when a long-latency load causes the instruction
window to fill up and halt the pipeline. Instead of stalling, the pro-
cessor removes the blocking long-latency load and speculatively
executes subsequent instructions to uncover future independent
long-latency loads and expose memory-level parallelism (MLP).
However, not all instructions executed in runahead mode lead to
useful memory prefetches. Instructions that are not part of a depen-
dency chain that generates a long-latency load waste processor
resources that could otherwise be used to generate prefetch requests.
To improve the energy-efficiency and performance of runahead exe-
cution, runahead buffer [4] filters out unnecessary runahead instruc-
tions. In runahead mode, this technique identifies the chain of
instructions that generates the stalling load, stores it in the runahead
buffer, and keeps replaying only this instruction chain in a loop.

The runahead buffer improves energy-efficiency and perfor-
mance compared to traditional runahead execution. However, it
still suffers from significant shortcomings that impact its perfor-
mance and energy consumption. First, similar to prior runahead
techniques, the full instruction window has to be discarded every
time runahead execution is invoked. This reduces the potential per-
formance benefits from runahead execution and increases its
energy cost. Moreover, runahead buffer limits prefetch coverage to

only a single chain of instructions per runahead interval, while
several benchmarks access memory through multiple chains.
This limited prefetch coverage reduces the potential performance
gain from runahead buffer.

In this paper, we propose precise runahead execution (PRE), a
technique that remedies the shortcomings of prior runahead pro-
posals. We observe that when runahead execution is triggered, the
processor has sufficient unused resources to execute instructions
without discarding any instructions from the re-order buffer (ROB).1

PRE uses runahead register reclamation, a novel mechanism tomanage
free physical registers in runahead mode while preserving depen-
dencies among instructions. Moreover, PRE stores all instructions of
any chain that generates a long-latency load in a dedicated cache,
called the Stalling Slice Table (SST). First, it stores the stalling load in
the SST, then with every loop iteration it leverages the renaming unit
to detect the preceding instructions in the chain, and stores them
in the SST. In runahead mode, PRE receives decoded instructions
from the front-end but executes only the ones that hit in the SST.
Because PRE stores all long-latency load chains in the SST, it does
not limit prefetch coverage to a single load chain. As an optimization,
PRE can be augmented with an additional buffer to store all the
decoded instructions in runahead mode. When normal execution
resumes, instructions are then dispatched from this buffer. There-
fore, it is not necessary to fetch and decode runahead-mode instruc-
tions again. The micro-op queue is used to hold decoded micro-ops
in modern-day processors. We propose to extend its size and use it
to buffer micro-ops generated during runahead mode. Compared to
an out-of-order core, the performance improvements achieved
through runahead execution, runahead buffer and PRE amount to
14.5, 14.4 and 35.5 percent on average, respectively. While runahead
buffer is energy neutral relative to an out-of-order core, PRE reduces
energy consumption by 6.1 percent.

2 BACKGROUND AND MOTIVATION

2.1 Full-Window Stalls

In an out-of-order core, a load instruction that misses in the last-
level cache (LLC) typically takes a couple hundred cycles to bring
data from off-chip memory. Soon, the load instruction blocks com-
mit and the core cannot make any progress. Meanwhile, the front-
end continues to dispatch new instructions into the back-end. Once
the ROB fills up, the front-end can no longer dispatch instructions,
leading to a full-window stall. We refer to the load instruction that
causes a full-window stall as a stalling load, and to its backward
chain of dependent instructions as a stalling slice.

2.2 Runahead Execution

Runahead execution [2] pre-executes an application’s own code to
pre-fetch data closer to the core. A full-window stall marks the
‘entry’ to runahead mode. The processor checkpoints the Architec-
tural Register File (ARF), the branch history register, and the return
address stack. The processor identifies the results of stalling loads
and their dependents as invalid. In runahead mode, the processor
retires these instructions without affecting the processor architec-
tural state in order to unblock the ROB and keep the pipeline run-
ning. Once the stalling load returns, the pipeline is flushed and the
checkpointed architecture state is restored. This marks the ‘exit’
from runahead mode.

2.3 Filtered Runahead Execution

The original runahead proposal executes all the instructions coming
from the front-end of the processor. However, many instructions are

� A. Naithani, A. Adileh, and L. Eeckhout are with the Ghent University, Gent 9000,
Belgium. E-mail: {ajeya.naithani, almutaz.adileh, lieven.eeckhout}@ugent.be.

� J. Feliu is with the Universitat Polit�ecnica de Val�encia, Val�encia 46010, Spain.
E-mail: jofepre@gap.upv.es.

Manuscript received 7 Feb. 2019; revised 20 Mar. 2019; accepted 31 Mar. 2019. Date of
publication 10 Apr. 2019; date of current version 3 May 2019.
(Corresponding author: Ajeya Naithani.)
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2019.2910518 1. ROB and (instruction) window are used interchangeably.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 1, JANUARY-JUNE 2019 71

1556-6056� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0003-3017-4266
https://orcid.org/0000-0003-3017-4266
https://orcid.org/0000-0003-3017-4266
https://orcid.org/0000-0003-3017-4266
https://orcid.org/0000-0003-3017-4266
https://orcid.org/0000-0002-4656-6523
https://orcid.org/0000-0002-4656-6523
https://orcid.org/0000-0002-4656-6523
https://orcid.org/0000-0002-4656-6523
https://orcid.org/0000-0002-4656-6523
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
mailto:
mailto:

not necessary to calculate the memory addresses used in subsequent
long-latency loads. Hashemi et al. [4] propose a technique to track
and execute only the chain of instructions that leads to a long-latency
load. Upon a full-window stall, they perform an expensive back-
ward data-flowwalk in the ROB and the store queue to find a depen-
dency chain that leads to another instance of the same stalling load.
This chain is stored in a buffer named the runahead buffer that is
placed before the rename stage. In runahead mode, the instruction
chain stored in the runahead buffer is renamed, dispatched and exe-
cuted in a loop, instead of generating new instructions in the front-
end. Therefore, the front-end can be power-gated to save energy in
runahead mode. By executing only the stalling slice, this technique
runs further ahead than traditional runahead, exposing more MLP
and achieving higher performance.

2.4 Shortcomings of Prior Techniques

Both traditional runahead execution and runahead buffer signifi-
cantly improve single-threaded performance. However, their full
potential is limited by the following key factors.

Flushing and Refilling the Pipeline. Runahead execution specula-
tively executes and pseudo-retires instructions. At the exit of runa-
head execution, the processor flushes the pipeline and starts
fetching instructions starting from the stalling load. Flushing and
refilling the pipeline for every runahead invocation incurs signifi-
cant performance and energy overheads that limit the potential
performance gain from accurate prefetching.

Assuming that the ARF can be saved/restored in zero cycles,
we estimate that every runahead invocation incurs a performance
penalty of approximately 56 cycles assuming a 192-entry ROB:
(1) refilling the front-end (8 cycles), and (2) refilling the ROB by re-
dispatching 192 instructions with a dispatch width of 4, starting
from the stalling load (48 cycles). These cycles cannot be hidden
and thus directly contribute to the total execution time of the appli-
cation. Our experimental results reveal that compared to an out-
of-order core, runahead execution improves performance by
14.5 percent on average. However, the speedup has the potential to
reach up to 20.6 percent if the instructions that occupy the ROB
when the core enters runahead mode are not discarded.

Prior work [5] shows only a minor performance benefit from
reusing valid pseudo-retired instructions when returning into nor-
mal mode. After reusing these instructions, the program’s critical
path created by invalid pseudo-retired instructions still dominates
the execution. These instructions must be fetched and executed
again after a pipeline flush.

Limited Prefetch Coverage. Runahead execution has limited pre-
fetch coverage because it executes all future instructions in runahead
mode, which limits how deep in the dynamic instruction stream
runahead execution can speculate. Runahead buffer filters the most
dominant stalling slice per runahead interval and executes only this
dominant stalling slice. Although this allows runahead execution to
go further down the instruction stream, runahead execution is lim-
ited to a single slice. Unfortunately, this does not match the charac-
teristics of applications that access memory through a diverse set of
instruction slices andmultiple different load instructions.

Short Runahead Intervals. Prior runahead proposals avoid initiat-
ing runaheadmode if they estimate the runahead interval to be short.
The overhead of invoking runahead execution outweighs its benefit
for short runahead durations [6]. However, a significant fraction of
runahead intervals are short. In particular, for memory-intensive
workloads, we find that 27 percent of the runahead intervals take
less than 20 cycles on average. Therefore, such a restriction in current
runahead techniqueswastes a significant opportunity to enhance the
degree ofmemory-level parallelism in runahead execution.

3 PRECISE RUNAHEAD EXECUTION

We propose precise runahead execution to alleviate the limitations
of prior runahead proposals. We observe that at the entry of runa-
head mode, the processor has enough free resources to execute
stalling slices without tampering with the instructions in the ROB.
Therefore, none of the instructions in the ROB are discarded at the
entry of runahead mode, and the ROB is not flushed at the exit.
PRE leverages the renaming unit to execute all forthcoming stalling
slices. We rely on a novel register allocation and reclamation mech-
anism to execute instructions in runahead mode while preserving
instruction dependencies. Fig. 1 depicts the main components of
PRE and the following sections describe its operation.

3.1 Entering Precise Runahead Execution

As in prior techniques, PRE is invoked on a full-window stall. First,
PRE checkpoints the Register Allocation Table (RAT). The instruc-
tions filling the ROB can still execute as they would in normal
mode. However, no instructions are committed from the ROB in
runahead mode. Therefore, no updates are propagated to the ARF
and the L1 D-cache. During runahead execution, PRE dynamically
identifies the instructions that are part of potential stalling slices as
they arrive from the decode unit (as described in the next section),
and speculatively executes them.

3.2 Identifying Stalling Slices

PRE tracks the individual instructions that form a stalling slice in a
new cache that we call the Stalling Slice Table. As Fig. 1 shows, the
SST is accessed after the decode stage in a typical out-of-order
pipeline. The SST is a fully-associative cache that contains only
instruction addresses (i.e., PCs). If an instruction address hits in
the cache, that instruction is part of a stalling slice. Whenever a
stalling load blocks the ROB, we store it in the SST. To facilitate
tracking the chain of instructions that leads to that load, we extend
each entry in the RAT to hold the PC of the instruction that last pro-
duced that register.

We track the stalling slices in an iterative manner. First, the
stalling load is stored in the SST. When the stalling load is decoded
again, e.g., in the next iteration of a loop, the PC of the stalling load
hits in the SST. PRE checks the RAT entry for the load’s source
registers to find the PCs of the instructions that last produced those
registers; these PCs are then stored in the SST. Similarly, whenever
an instruction hits in the SST in the following iterations, we track
the PC information of its producer instructions and add those to

Fig. 1. Core microarchitecture for precise runahead execution.

72 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 1, JANUARY-JUNE 2019

the SST as well. By tracking all stalling slices in the SST, PRE does
not limit prefetch coverage to a single slice as in the runahead
buffer proposal.

3.3 Execution in Runahead Mode

PRE filters and speculatively executes all stalling slices that follow
the stalled window using the SST. After instruction decode, PRE
executes only the instructions that hit in the SST because they are
necessary to generate future loads. PRE properly maintains depen-
dencies among the executed instructions and manages the alloca-
tion and reclamation of registers in runahead mode (as described
in the next section). PRE executes future stalling slices for the entire
length of a runahead interval. The instructions executed in runa-
head mode are fetched and decoded again for execution in normal
mode. However, to avoid wasting the work and energy of the
front-end in runahead mode, we propose an Extended Micro-Op
Queue (EMQ) as shown in Fig. 1. We store all the decoded instruc-
tions (including the ones that hit in the SST) in the EMQ. When the
processor resumes normal mode execution, it does not need to re-
fetch and re-decode all these instructions again. These instructions
are directly dispatched and executed in the back-end. Note that
with this optimization, the number of speculatively executed
instructions in runahead mode is constrained by the size of the
EMQ. When the EMQ fills up, the core stalls until the stalling load
returns, at which point the processor exits runahead mode.

3.4 Recycling Resources in Runahead Mode

PRE requires sufficient issue queue entries and physical registers to
run ahead without discarding the instructions in the ROB. Our
evaluation reveals that at the time of runahead entry, 37 percent
of the issue queue entries, 51 percent of the integer registers,
59 percent of the floating-point registers are free on average. Stall-
ing slices are usually short and therefore issue queue entries are
quickly reclaimed and are unlikely to hinder forward progress of
runahead execution. In all of our experiments, we did not come
across instances of issue queue pressure during runahead.

In an out-of-order core, a physical register can be freed only
when the last consumer of the renamed architectural register com-
mits [7]. Since instructions in runahead mode are discarded after
execution, we cannot rely on the original renaming policy to free
physical registers. Thus, we devise a new mechanism, called runa-
head register reclamation, to free physical registers in runahead mode.
This process relies on a new FIFO hardware structure that we name
the Precise Register Deallocation Queue (PRDQ) in Fig. 1. Each entry in
the PRDQ has three fields: an instruction identifier, a physical regis-
ter (tag) to be freed, and an ‘execute’ bit that marks whether the
instruction has completed execution. PRDQ entries are allocated in

program order at the PRDQ tail. Register renaming maps a free
physical register to the destination architectural register of an
instruction in runahead mode. We mark the old physical register
mapped to the same (destination) architectural register in the PRDQ
entry. A PRDQ entry is deallocated when the instruction is executed
(i.e., ‘execute’ bit is set) and reaches the PRDQ head. PRDQ deallo-
cation is done in program order. The old physical register associated
with the instruction is freed upon deallocation. While instructions
may execute out-of-order and thus mark the ‘execute’ bit out-
of-order, in-order PRDQdeallocation guarantees that a physical reg-
ister is freed only when there are no more instructions in-flight that
may possibly read that register. The PRDQ is only enabled in runa-
head mode and its entries are discarded once the processor returns
to normal mode.

3.5 Exiting Precise Runahead Execution

The core exits runahead mode when the stalling load returns. On
exit, the checkpointedRAT is restored and execution resumes in nor-
mal mode. As instructions are preserved in the ROB, the core starts
committing instructions right away starting from the stalling load.

3.6 Hardware Overhead

PRE relies on the SST and PRDQ to implement runahead execu-
tion. We find that a 256-entry SST holds stall slices with almost no
misses. With 4-byte tags, the SST requires 1 KB storage. We conser-
vatively provision the PRDQ to hold 192 entries, for a total of
768 Bytes. We extend each mapping of the 64-entry RAT by 4 bytes
for a total of 256 Bytes. This leads to a total hardware cost of 2 KB.
When employing the (optional) EMQ, the overhead changes
according to the EMQ size. We show results with a 768-entry
EMQ, adding an extra 3 KB. Runahead buffer requires about
1.7 KB and uses expensive CAM lookups in the ROB to find stalling
slices. Overall, the hardware cost and complexity of PRE is compa-
rable to the runahead buffer proposal.

4 METHODOLOGY

We evaluate PRE using the most accurate cycle-level core model in
Sniper 6.0 [8]. The configuration for our baseline out-of-order core
is provided in Table 1. For a fair comparison, we maintain the
same ROB and issue queue sizes as in the runahead buffer pro-
posal [4]. For a 192-entry ROB, we base the number of physical
registers on the Haswell core [9], [10]. We select the same set of
memory-intensive benchmarks, from SPEC CPU2006, as in runa-
head buffer [4] and we simulate 1-Billion instruction SimPoints [11]
for each benchmark. The SST is modeled as a 256-entry fully-
associative cache with 8 read and 2 write ports. We assume the
front-end can deliver up to 8 micro-ops per cycle. We also evaluate
the case with EMQ optimization using an EMQ of 768 entries or 4×
the ROB size. The PRDQ and EMQ are modeled as in-order queues
with 4 read and 4 write ports each. We use McPAT [12] to calculate
power assuming a 22 nm chip technology. We calculate power for
the SST, EMQ and PRDQ using CACTI 6.5 [13] and we add those
numbers to the core and DRAM power numbers calculated using
McPAT.

5 EVALUATION

We compare the performance and energy-efficiency of the follow-
ing four runahead proposals compared to a baseline out-of-order
(OoO) core:

� RunaheadExecution (RA): Traditional runahead (Section 2.2)
with optimizations fromMutlu et al. [6].

� Runahead Buffer (RA-buffer): See Section 2.3.
� Precise Runahead Execution (PRE).
� PRE with EMQ optimization (PRE + EMQ).

TABLE 1
Baseline Configuration for the Out-of-Order Core

Core 2.66 GHz out-of-order, ROB: 192,
Issue/Load/Store queue: 92/64/64,
Width: 4, Depth (front-end only): 8 stages

Register file 168 int (64 bit), 168 fp (128 bit)
SST 256 entry, fully assoc, LRU
PRDQ size 192
EMQ size 768

L1 I-cache 32 KB, assoc 4, 2 cyc
L1 D-cache 32 KB, assoc 8, 4 cyc
Private L2 cache 256 KB, assoc 8, 8 cyc

Shared L3 cache 1 MB, assoc 16, lat 30 cyc

Memory DDR3-1600, 800 MHz
ranks: 4, banks: 32, page size: 4 KB
bus: 64 bits, tRP-tCL-tRCD: 11-11-11

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 1, JANUARY-JUNE 2019 73

5.1 Performance

Fig. 2 reports performance for all the runahead proposals normal-
ized to the baseline out-of-order core. RA and RA-buffer improve
performance by on average 14.5 and 14.4 percent, respectively.
PRE yields a significantly higher performance improvement of
35.5 percent. PRE+EMQ improves performance by 28.6 percent—
the length of a runahead interval is limited by the EMQ size. PRE
achieves this improvement by avoiding the frequent pipeline flush-
ing and refilling overheads incurred by RA and RA-buffer. This
has the additional benefit of allowing PRE to invoke runahead exe-
cution for slices with relatively short runahead intervals, exposing
more MLP. We find that PRE and PRE+EMQ invoke runahead exe-
cution 1.62× and 1.95× more frequently than traditional runahead.
RA-buffer outperforms the other techniques in cases where only a
single slice leads to all full-window stalls (e.g., libquantum).
However, for the majority of benchmarks where more than one
slice stalls the ROB frequently, precise runahead performs better
than runahead buffer. This is because precise runahead can execute
multiple slices upon every full-window stall.

5.2 Energy Consumption

Fig. 3 compares the energy savings (core plus DRAM) accrued by
all mechanisms over the baseline. All four runahead proposals
increase the dynamic instruction execution within the core, which
increases power consumption. However, both RA and RA-buffer
fetch, decode and execute an entire window worth of instructions
twice due to flushing and refilling the pipeline. RA increases
energy consumption of the core by 2.7 percent on average. On the
other hand, PRE does not discard the ROB and PRE+EMQ pre-
serves the work of the front-end in the EMQ. Overall, PRE and
PRE+EMQ consume 6.1 and 7.2 percent less energy, respectively,
compared to an out-of-order core. In contrast, RA-buffer does not
provide any energy saving.

6 CONCLUSION

Runahead execution improves processor performance by uncover-
ing future independent long-latency instructions upon full window
stalls. We show that the performance of prior runahead proposals
suffers from mandatory pipeline flush/restore overheads and

limited prefetch coverage. We propose Precise Runahead Execution
to alleviate shortcomings of prior runahead techniques. Relative to
an out-of-order core, PRE improves performance by 35.5 percent on
average (compared to 14.4 percent for recent runahead proposals).
In addition, PRE reduces energy consumption by 6.1 percent.

ACKNOWLEDGMENTS

This research is supported through FWO grants no. G.0434.16N
and G.0144.17N, and European Research Council (ERC) Advanced
Grant agreement no. 741097.

REFERENCES

[1] J. Dundas, et al., “Improving data cache performance by pre-executing
instructions under a cache miss,” in Proc. 11th Int. Conf. Supercomput., 1997,
pp. 68–75.

[2] O. Mutlu, et al., “Runahead execution: An alternative to very large instruc-
tion windows for out-of-order processors,” in Proc. 9th Int. Symp. High-
Perform. Comput. Archit., 2003, pp. 129–140.

[3] M. Hashemi, et al., “Continuous runahead: Transparent hardware acceler-
ation for memory intensive workloads,” in Proc. 49th Annu. IEEE/ACM Int.
Symp. Microarchitecture, 2016, pp. 1–12.

[4] M. Hashemi, et al., “Filtered runahead execution with a runahead buffer,” in
Proc. 48th Annu. IEEE/ACM Int. Symp.Microarchitecture, 2015, pp. 358–369.

[5] O. Mutlu, et al., “On reusing the results of pre-executed instructions in a
runahead execution processor,” IEEE Comput. Archit. Lett., vol. 4, no. 1,
pp. 2–2, Jan. 2005.

[6] O. Mutlu, et al., “Techniques for efficient processing in runahead execution
engines,” in Proc. 32nd Int. Symp. Comput. Archit., 2005, pp. 370–381.

[7] H. Tabani, et al., “A novel register renaming technique for out-of-order
processors,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit., 2018,
pp. 259–270.

[8] T. E. Carlson, et al., “An evaluation of high-level mechanistic core models,”
ACM Trans. Archit. Code Optimization, vol. 11, no. 3, 2014, Art. no. 28.

[9] P. Hammarlund, et al., “Haswell: The fourth-generation Intel core process-
or,” IEEE Micro, vol. 34, no. 2, pp. 6–20, Mar./Apr. 2014.

[10] A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs,” [Online].
Available: https://www.agner.org/optimize/microarchitecture.pdf.

[11] T. Sherwood, et al., “Automatically characterizing large scale program
behavior,” in Proc. 10th Int. Conf. Archit. Support Program. Lang. Operating
Syst., 2002, pp. 45–57.

[12] S. Li, et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchitecture, 2009, pp. 469–480.

[13] S. Li, et al., “CACTI-P: Architecture-level modeling for SRAM-based struc-
tures with advanced leakage reduction techniques,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des., 2011, pp. 694–701.

Fig. 2. Performance normalized to OoO.

Fig. 3. Energy savings relative to OoO.

74 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 1, JANUARY-JUNE 2019

https://www.agner.org/optimize/microarchitecture.pdf.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

