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Abstract—MCM-GPUs scale performance by integrating mul-
tiple chiplets within the same package. How to partition the
aggregate compute resources across chiplets poses a fundamental
trade-off in performance versus cost and sustainability. We
propose the Performance Per Wafer (PPW) metric to explore this
trade-off and we find that while performance is maximized with
few large chiplets, and while cost and environmental footprint
is minimized with many small chiplets, the optimum balance
is achieved with a moderate number of medium-sized chiplets.
The optimum number of chiplets depends on the workload and
increases with increased inter-chiplet bandwidth.

I. INTRODUCTION

The ever-increasing compute demand of emerging general-
purpose GPU applications pushes industry towards GPUs
with ever-higher compute capability and thus more Streaming
Multiprocessors (SMs). Unfortunately, technology scaling has
slowed down significantly, which implies that we can no
longer rely on it to scale performance. Increasing die size
beyond the reticle limit (around 860 mm2) is impossible, and
furthermore, large die sizes result in lower yield. The result
of these trends is the introduction of advanced packaging and
stacking solutions to continue to scale performance [11]. One
option (explored in this work) is multi-chip-module (MCM)
integration in which a GPU package consists of multiple GPU
dies, called chiplets, alongside 3D-stacked memory chiplets
that are interconnected using, for example, a silicon interposer
or organic substrate [1]. Each GPU chiplet is connected to a
local memory stack and the chiplets are connected to each
other through an inter-chiplet network; and memory, while
physically distributed, is logically shared, i.e., all SMs in all
chiplets can access the entire memory space. The bandwidth
offered by the inter-chiplet network is typically lower than the
intra-chiplet Network-on-Chip (NoC) bandwidth. As a result,
the effective bandwidth for an SM to access a remote memory
partition is lower than when accessing local memory.

While MCM-GPUs provide a pathway to scale GPU per-
formance, they expose a fundamental trade-off between per-
formance and yield (and thus cost and sustainability, as we
will explain next). Performance is maximized with few large
chiplets because this provides higher effective bandwidth
between SMs and (remote) memory partitions, while yield is
maximized with many small chiplets. The goal of this paper is
to explore this trade-off. We therefore introduce a novel metric,
namely Performance Per Wafer (PPW), to quantify the overall
performance of MCM-GPUs with a target aggregate number
of SMs, consisting of identical chiplets taken from a single
wafer. Allocating more SMs to each chiplet increases chiplet
size which in turn results in fewer chiplets per wafer and the

GPU requiring fewer chiplets to reach the target aggregate
SM count. Larger chiplets also reduce yield, meaning that a
larger proportion of the chiplets in a wafer will be unusable
due to production defects. Creating smaller chiplets conversely
requires more chiplets to reach the target aggregate SM count,
which improves yield. On the flip side, it also means that
a larger proportion of SMs may communicate with remote
memory partitions using the (limited) inter-chiplet bandwidth.

An important motivation for looking into the performance
versus yield trade-off relates to cost and sustainability. Highest
performance is achieved with few large chiplets (or even a
single chip if possible). Presumably, this is what industry is
pursuing (or has been pursuing) in spite of the high cost
(both monetary and environmentally) due to the low yield,
as testified by the large GPUs on the market, e.g., Nvidia’s
Hopper GPU with a 814 mm2 die.1 At the other end of the
spectrum, cost is minimized with many small chiplets [8].
Likewise, the embodied environmental footprint per chiplet
is minimized with a small die size [6]. The reason is that the
embodied footprint per wafer is high and continues to increase
with technology advancements: the amount of energy needed
to produce a wafer, the chemicals and gases emitted during
manufacturing, the materials needed (some of which are rare
and energy-intensive to extract), as well as the ultra-pure water
consumption increases with each generation of technology
node [3]. Because datacenter infrastructure is mostly domi-
nated by the embodied footprint [7], in part because of the
operational energy consumption being empowered by green
energy sources, the embodied footprint serves as a proxy for
the overall environmental footprint [5].

In this work, we explore this MCM-GPU trade-off in
performance versus cost and sustainability. While few large
chiplets maximize performance, many small chiplets minimize
cost and environmental footprint. We find the optimum PPW
configuration to be in the middle with a moderate number of
medium-sized chiplets. The optimum depends on the work-
load’s characteristics and the inter-chiplet network topology
and bandwidth. We find that for workloads with significant
inter-chiplet traffic (due to data sharing across chiplets) the
optimum shifts towards fewer chiplets, while for workloads
with limited inter-chiplet communication, the optimum shifts
towards more chiplets. We find that the design space needs to

1The total cost of a system is a function of engineering cost, manufacturing
cost (including packaging), and deployment cost (including provisioning of
power and cooling). The lack of publicly available data makes it hard, or
impossible, to make a detailed cost analysis. This work hence uses yield as
a first-order proxy for manufacturing cost.
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Fig. 1: Architectural resource allocation example comparing
an unrealistic monolithic GPU versus a 4-chiplet GPU. Dis-
tributing architectural resources across more chiplets improves
yield but exposes SMs to the lower inter-chiplet bandwidth.

Parameter Aggregate Per Chiplet
2-chiplet 4-chiplet 8-chiplet 16-chiplet

Number of SMs 256 128 64 32 16
LLC capacity (MB) 64 32 16 8 4
Memory bw. (TB/s) 8 4 2 1 0.5
On-chip NoC bw. (TB/s) 40 20 10 5 2.5
Baseline inter bw. (TB/s) 7.2 3.6 1.8 0.9 0.45
Estimated area (mm2) 1,600 800 400 200 100

TABLE I: MCM-GPU system configurations in this study.

be explored holistically: perhaps contrary to common intuition,
a locally suboptimal component, i.e., a high-bandwidth inter-
chiplet network which incurs a higher cost than a low-
bandwidth network, leads to a system that globally optimizes
performance versus cost and environmental footprint.

II. PROBLEM STATEMENT

Since the area of a wafer is finite, the task at hand is
to allocate this limited area to architectural resources across
chiplets in a way that maximizes PPW. We now discuss how
performance and yield scale with chiplet count.
Performance. We consider a target GPU system with a total of
256 SMs, 64 MB Last-Level Cache (LLC) capacity, and 8 TB/s
memory bandwidth. Manufacturing this large a monolithic
chip, as illustrated in Figure 1a, is unrealistic because its total
chip area is estimated to be 1,600 mm2. Instead, a chiplet-
based design enables manufacturing this large a GPU by
partitioning the architecture resources across multiple chiplets
with each chiplet featuring proportionally fewer architecture
resources. We consider 2, 4, 8 and 16 chiplets with proportion-
ally scaled down architecture resources.2 Figure 1b illustrates
the 4-chiplet design with one fourth of the resources per chiplet
relative to the monolithic design, i.e., 64 SMs, 16 MB LLC
capacity, and 2 TB/s memory bandwidth per 400 mm2 chiplet.
Table I specifies how chiplet resources scale with chiplet
count. Note that this is just one way to scale GPU resources
through MCM integration. Alternative options include 3D-
stacking of cache and compute chiplets, e.g., AMD’s V-Cache
or 3D-stacking of compute chiplets [11]. Exploring resource
scaling alternatives is left for future work.

2The two-chiplet design features 128 SMs, 32 MB LLC and 4 TB/s for
a 800 mm2 die size per chiplet which is in line with Nvidia’s Volta [12],
Ampere [13], and Hopper [14] GPUs with 815 mm2, 826 mm2, and 814 mm2

die sizes, respectively.
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Fig. 2: Inter-chiplet bandwidth distribution for 4 (top row) and
8 chiplets (bottom row) for different network topologies. Per-
link bandwidth varies with chiplet count and network topology.
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Fig. 3: CY and GGPW as a function of the number of chiplets.
More chiplets implies smaller chiplet size, which leads to
higher chiplet yield and more good GPUs per wafer.

We further assume that the total aggregate bandwidth of-
fered by the silicon interposer or bridges is constant, i.e.,
yield and cost of the inter-chiplet network is constant [8].
The off-chiplet bandwidth thus decreases proportionally with
chiplet count, as reported in Table I ranging from 3.6 TB/s
for the 2-chiplet configuration to 450 GB/s for the 16-chiplet
configuration. This possibly incurs performance implications
for applications with significant inter-chiplet communication.

Finally, we assume a memory-side LLC organization (unless
mentioned otherwise), which means that the LLC can only
cache data from its local memory partition [1]. A remote
memory request needs to traverse the lower-bandwidth inter-
chiplet links to access remote LLC/memory of another chiplet.
In contrast, an SM-side LLC can cache remote data locally,
making it less sensitive to inter-chiplet bandwidth [17].

The available inter-chiplet network bandwidth not only de-
pends on chiplet size (and thus chiplet count), it also depends
on the inter-chiplet network topology, as illustrated in Figure 2.
Assuming a fully connected network, the available off-chiplet
bandwidth is evenly partitioned to all connections going out of
the chiplet. Because there are fewer connections going out per
chiplet, the per-link bandwidth increases for a torus, ring, and
switch network. Note that a switch network needs additional
switch chiplets for increased bandwidth [15].
Yield. de Vries [4] provides a formula for the number of
chiplets per wafer (CPW) as a function of die area A:

CPW =
πd2

4A
− 0.58

πd√
A
,

where d is the wafer’s diameter (e.g., 300 mm2). We further
consider the Murphy yield model [10] to compute chiplet yield
(CY) as a function of die area A:

CY =

(
1− e−AD0

AD0

)2

,

with D0 the defect density per cm2, assumed to equal 0.09
for volume production processes for a 5 nm technology node
according to TSMC [16]. This enables us to compute the
number of good GPUs per wafer (GGPW):
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Benchmark CTAs Footprint (MB) MPKI Min RPKI Max RPKI
BFS 1,088 56 93 35 58
B+Tree 3,306 121 4 1 2
LUD 16,128 196 4 0.5 1
DWT2D 30,052 264 7 0.002 0.04

TABLE II: Benchmarks used in this study.

GGPW =
CY × CPW

N
,

with N chiplets per GPU. Figure 3 reports CY and GGPW as
a function of the number of chiplets per GPU. The key conclu-
sion is that both CY and GGPW increase with an increasing
number of chiplets, which, assuming constant aggregate GPU
resources, corresponds to increasingly smaller chiplets. More
specifically, when increasing the number of chiplets from 2 to
4, 8, and 16, the yield of a single chiplet increases from 51% to
71%, 84%, and 91%, respectively. The number of good GPUs
per wafer also increases from 17 to 26, 33, and 37. Real-world
designs employ redundancy and bypassing faulty modules to
improve the effective yield as well as die speed-binning to
maximize profit [8]. We hence use yield as a first-order proxy
for manufacturing cost (and embodied footprint).
Putting It Together. With the notion of GGPW, we define
Performance Per Wafer (PPW) as the product of GGPW and
the Instructions Per Cycle (IPC) of each good GPU:

PPW = GGPW × IPC.
PPW balances GPU performance against yield/cost/footprint.

III. EXPERIMENTAL SETUP

We modified Accel-Sim [9] to evaluate MCM-GPU per-
formance. We simulate the configurations as listed in Table I
while assuming that each SM features a 228 KB L1 data cache
and shared memory; two SMs share a network port to the
40 TB/s on-chip crossbar; sectored cache organization and an
HBM3 interface. We further assume first-touch memory page
allocation and distributed CTA scheduling [1].

We consider four benchmarks from Rodinia, namely BFS,
B+Tree, LUD and DWT2D, with varying degrees of memory
intensity, see Table II. MPKI reports the number of L1 cache
misses per kilo instructions, while RPKI reports the number
of remote misses (i.e., L1 cache misses incurring a remote
memory partition access) per kilo instructions; the latter is
hence a measure to what extent the workload stresses the
inter-chiplet network. RPKI depends on the number of chiplets
and hence we report the minimum (2 chiplets) and maximum
(16 chiplets). We carefully scale the input sets to provide
enough threads and CTAs, making full use of the aggregate
resources provided. To limit simulation time, we simulate 1 B
instructions for all benchmarks, except BFS (10 M).

IV. RESULTS

Performance. Figure 4 reports IPC normalized to our base-
line crossbar inter-chiplet network with 7.2 TB/s aggregate
bandwidth when distributing 256 SMs, 64 MB LLC capacity,
and 8 TB/s of memory bandwidth across, 2, 4, 8, and 16
chiplets (see Table I). We also consider GPUs with ×2, ×4,
and ×8 our baseline aggregate inter-chiplet bandwidth (14.4,
28.8, and 57.6 TB/s, respectively). The performance trends of
each benchmark are explained by their RPKI (Table II) which
increases with chiplet count because it becomes increasingly
likely that shared data elements are allocated in remote mem-
ory partitions. Moreover, the aggregate inter-chiplet bandwidth

is distributed across more chiplets which in turn reduces the
inter-chiplet bandwidth available to each chiplet proportionally
to the number of chiplets. BFS has an RPKI of 35 in the 2-
chiplet GPU and 58 in the 16-chiplet architecture, and hence
its performance hence degrades significantly with increasing
chiplet count (Figure 4a). B+Tree and LUD have (much) lower
RPKI which results in smaller slowdowns, especially for the
configurations with more inter-chiplet bandwidth. DWT2D has
low RPKI across all configurations and its performance is
hence insensitive to chiplet count.

Performance Per Wafer. Figures 5 reports PPW across the
same design space. Because PPW is the product of IPC and the
number of good dies per wafer, the optimum is achieved when
the benefit of higher yield is balanced against the reduction
in IPC caused by increasingly limited inter-chiplet bandwidth.
The optimum chiplet count depends on the workload’s char-
acteristics (i.e., degree of inter-chiplet communication due to
data sharing) as well as on the available inter-chiplet network
bandwidth. Indeed, the 2-chiplet configuration is optimal for
the high-RPKI BFS with the ×1 and ×2 bandwidth configu-
rations, whereas the higher performance with the ×4 and ×8
bandwidth configuration shifts the optimum to the 4-chiplet
GPU. The performance of the low-RPKI DWT2D on the other
hand is insensitive to inter-chiplet bandwidth and PPW hence
increases with chiplet count and is maximized for the 16-
chiplet configuration. For LUD, the optimum chiplet count
shifts from 4 (×1 bandwidth) to 8 (×2) and 16 (×4 and ×8).

Inter-chiplet network topology. We considered a fully con-
nected (Full) inter-chiplet network so far. Figure 6 reports
results for Ring, Torus and Switch topologies for the ×1
and ×8 inter-chiplet bandwidth configurations. All results
are normalized to the 2-chiplet GPU with ×1 inter-chiplet
bandwidth. Higher effective inter-chiplet bandwidth shifts the
sweet spot in PPW towards higher chiplet counts. In particular,
Switch and Ring achieve optimum PPW with 4 chiplets in
the ×1 inter-chiplet configuration (Figure 6a), whereas the
8-chiplet configuration is optimal for these topologies at ×8
bandwidth (Figure 6b). In contrast, the fully connected net-
work is suboptimal because of its lower performance. Switch
is suboptimal, especially at ×8 bandwidth because of the
additional switch chiplets involved (eight 300 mm2 chiplets
are needed to provide 8 times 7.2 TB/s).

It is further worth noting that, across the entire design space,
PPW is maximized at relatively high chiplet count and high
inter-chiplet bandwidth, i.e., Torus and Ring at ×8 bandwidth
maximizes PPW across the design space, yielding on average
75% higher PPW compared to the baseline 2-chiplet GPU
at ×1 bandwidth. This is counter-intuitive perhaps: it shows
that a locally suboptimal component, i.e., a high-bandwidth
inter-chiplet network which incurs a higher cost than a low-
bandwidth network, leads to a globally optimal system, i.e.,
a high-performance, low-cost/footprint MCM-GPU. Interest-
ingly, Arunkumar et al. [2] reached a similar conclusion when
analyzing energy efficiency: they found that a high-energy,
high-bandwidth inter-chiplet network is beneficial for reducing
an MCM-GPU’s total energy consumption.

SM-side LLC. Figure 6 also reports PPW for the Ring
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(a) BFS (b) B+Tree (c) LUD (d) DWT2D
Fig. 4: IPC versus chiplet count with a fully connected inter-chiplet network. The performance trends are determined by RPKI.

(a) BFS (b) B+Tree (c) LUD (d) DWT2D
Fig. 5: PPW versus chiplet count with a fully connected inter-chiplet network. Optimal PPW balances yield and performance.

(a) Bandwidth ×1 (b) Bandwidth ×8
Fig. 6: PPW as a function of chiplet count for (a) the ×1 and
(b) ×8 inter-chiplet bandwidth configurations, normalized to
the two-chiplet fully connected topology.

topology (the optimum topology) assuming an SM-side LLC.
The fundamental trade-off is qualitatively similar for SM-side
and memory-side LLCs. However, because the SM-side LLC
is less sensitive to inter-chiplet bandwidth, the optimum chiplet
count is the same for the ×1 and ×8 configurations, while
shifting towards higher chiplet counts under the memory-side
LLC. Interestingly, PPW is maximized with an SM-side LLC
with 4 chiplets at ×1, while being maximized with a memory-
side LLC with 8 chiplets at ×8. The underlying reason is that
an SM-side LLC outperforms a memory-side LLC at low inter-
chiplet bandwidth, while a memory-side LLC outperforms an
SM-side LLC at high inter-chiplet bandwidth.

V. CONCLUSION

We proposed Performance Per Wafer (PPW) as a novel
metric to explore the fundamental trade-off in performance
versus cost and sustainability in MCM-GPUs. Performance
is maximized with few large chiplets, while cost and envi-
ronmental footprint is minimized with many small chiplets.
The MCM-GPU that optimally balances performance against
cost and sustainability features a moderate number of medium-
sized chiplets. The optimum number of chiplets depends on the
workload and increases with increased inter-chiplet bandwidth.

ACKNOWLEDGEMENTS

Shiqing Zhang is supported by a CSC scholarship (Grant
No. 201903170128), and Magnus Jahre is supported by the
Research Council of Norway (Grant No. 286596). Lieven
Eeckhout is supported in part by the UGent-BOF-GOA grant
No. 01G01421, and the European Research Council (ERC)
Advanced Grant agreement No. 741097.

REFERENCES

[1] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU: Multi-Chip-Module
GPUs for Continued Performance Scalability,” in ISCA, 2017.

[2] A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, “Understanding the
Future of Energy Efficiency in Multi-Module GPUs,” in HPCA. IEEE,
2019, pp. 519–532.
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