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Abstract—Computer architects extensively use simulation to steer future processor development and research. Simulating large-scale
multicore processors is extremely time-consuming and is sometimes impossible because of simulation infrastructure limitations. This
paper proposes scale-model simulation, a novel methodology to predict large-scale multicore system performance. Scale-model
simulation first constructs and simulates a scale model of the target system with reduced core count and shared resources. Target
system performance is then predicted through machine-learning (ML) based extrapolation. Configuring the scale model (i.e., changing
core count while proportionally scaling the shared resources) enables trading off accuracy versus simulation speed. For a 32-core
target system running multiprogram workloads, configuring the scale model for the highest simulation speedup of 28× yields an
average absolute prediction error of 6%. Configuring the scale model for highest accuracy brings down the prediction error to 2.7%,
while still delivering a 2.6× simulation speedup.

F

1 INTRODUCTION

Predicting performance for a future computer system is a
challenging and critical problem. The traditional approach is to
employ detailed architectural simulation. Unfortunately, sim-
ulation is extremely time-consuming. In addition, simulation
infrastructures have their limitations and may not be able
to simulate a future large-scale system because of excessive
memory consumption or insufficient compute capabilities in
the simulation host system when simulating large numbers
of cores. Researchers and practitioners employ a variety of
techniques to tackle the simulation challenge. A widely used
solution is sampled simulation [1], [2]. Unfortunately, this ap-
proach does not solve the simulation problem when it comes
to simulating increasingly large target systems. In particular,
we find that simulating an 8-core, 16-core and 32-core target
system using Sniper [3], a fast and state-of-the-art parallel
multicore simulator, takes 8, 17 and 43 hours, respectively, on a
powerful 36-core simulation host when running multiprogram
SPEC CPU workloads with (only) one billion instructions per
benchmark. The super-linear increase in simulation time and
complexity as a function of system size is a major challenge for
computer architects in academia and industry.

In this paper, we propose scale-model simulation, a novel
paradigm to predict future system performance. Scale-model
simulation combines architectural simulation with machine
learning to predict performance for large-scale systems based
on detailed simulation of a scaled-down configuration of the
target system, called the scale model. Scale model simulation
first simulates a scale model of the target system. Performance
for the target system is then predicted through extrapolation.
Scale models solve the two problems aforementioned: (1) scale
models speed up the simulation of large-scale systems: scale
models are small enough to simulate in reasonable amount of
time while performance extrapolation is instantaneous; and (2)
scale models make simulation feasible for large-scale systems
that cannot be simulated on existing infrastructure because of
limitations in memory and compute capacity.

Scale models are widely used in a variety of engineering
disciplines, including civil engineering (e.g., construction, fluid
dynamics), mechanical engineering (e.g., aerodynamics, engine
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design), construction (e.g., architectural design, city develop-
ment), etc. The most familiar scale models are miniatures, i.e.,
scaled-down versions of an original object. A key property of
a scale model is that it accurately maintains relationships be-
tween various important aspects, but not necessarily all aspects,
of the original object. Scale models enable demonstrating or
studying some behavior of the original object. To the best of
our knowledge, scale models have not been applied to the field
of general-purpose computer architecture. While building an
exact miniature of a target system may be hard in the context of
processor architectures, if at all possible, we leverage the idea of
scale models to predict future computer system performance.

The scale-model simulation paradigm can be decomposed
into two sub-objectives: (1) scale-model construction and (2)
scale-model extrapolation. The first objective relates to how to
construct a scale model of a (much) larger target system. A scale
model should take substantially less time to simulate than the
target system, yet it should enable an accurate prediction of
the performance of the large-scale target system. This is not a
simple endeavor for general-purpose multi-core processors be-
cause of resource contention in the shared caches, the network-
on-chip (NoC), main memory, etc. Because the scale model is
not an exact miniature of the target system, the second objective
relates to how to extrapolate performance from the scale model
to the target system. Shared resources lead to a variety of
complex interactions at the system level, which the scale models
may or may not capture to a sufficient degree. Scale-model
extrapolation is employed to predict the impact of contention
effects in shared resources on target-system performance based
on the simulated scale model.

To address the first objective, we explore how to construct
scale models and we find that proportionally down-scaling the
shared resources with system size is effective. In particular,
using multiprogram SPEC CPU2017 workloads, we find that
a single-core scale model in which the shared last-level cache
and memory bandwidth are proportionally scaled, predicts 32-
core system performance with an average error of 15% and at
most 32%. To further improve accuracy, we explore a variety of
machine learning (ML) based scale-model extrapolation tech-
niques and we find that support vector machines (SVM) yield
the most accurate approach. By adjusting the configuration
of the scale model (i.e., by changing core count), scale model
simulation spans a range of simulation speed versus accuracy
trade-offs. The fastest configuration yields a 28× simulation
speedup with an average absolute prediction error of 6% (and
at most 21%) compared to a 32-core target simulation. The most
accurate scale model extrapolation configuration brings down
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#cores LLC NoC DRAM

32 32 MB: 32 slices 128 GB/s: 4 CSLs, 32 GB/s per CSL 128 GB/s: 8 MCs, 16 GB/s per MC
16 16 MB: 16 slices 64 GB/s: 4 CSLs, 16 GB/s per CSL 64 GB/s: 4 MCs, 16 GB/s per MC
8 8 MB: 8 slices 32 GB/s: 2 CSLs, 16 GB/s per CSL 32 GB/s: 2 MCs, 16 GB/s per MC
4 4 MB: 4 slices 16 GB/s: 2 CSLs, 8 GB/s per CSL 16 GB/s: 1 MC, 16 GB/s per MC
2 2 MB: 2 slices 8 GB/s: 1 CSL, 8 GB/s per CSL 8 GB/s: 1 MC, 8 GB/s per MC
1 1 MB: 1 slice 4 GB/s: 1 CSL, 4 GB/s per CSL 4 GB/s: 1 MC, 4 GB/s per MC

TABLE 1: Constructing scale models through Proportional Resource Scaling: LLC capacity in MB; on-chip interconnection network
in GB/s: number of cross-section links (CSLs) and bandwidth per CSL; main memory bandwidth in GB/s: number of memory
controllers (MCs) and bandwidth per MC.

the average prediction error to 2.7% (and at most 14%) while
still delivering a 2.6× simulation speedup.

2 SCALE-MODEL ARCHITECTURAL SIMULATION
Scale-model simulation is a novel methodology that combines
architectural simulation of scale models with machine learning
to predict large-scale system performance. There are two key
objectives to be addressed for scale-model architectural simula-
tion: (1) we need to construct the scale models, and (2) we need
to build an accurate extrapolation model. We will now discuss
both objectives.

2.1 Scale Model Construction
The first step is to create a scale model of the target large-scale
multi-core system. A scale model is a scaled-down version of
the large-scale target system such that its performance is still a
(relatively) accurate representation of the target system. More
precisely, the scale model needs to be configured such that its
per-core performance is similar to per-core performance in the
target system. The challenge when constructing scale models
for general-purpose multicore processors is how to deal with
shared resources. In a multi-core processor, there are various
shared resources, including the last-level cache (LLC) which is
typically shared among the cores while the L1 and L2 caches are
typically private, the on-chip interconnection network in which
the inter-core links are shared, and main memory in which the
memory controllers as well as the memory banks and channels
are shared. The question is how to scale these shared resources
in the scale models.

One option is to simply scale the number of cores in the scale
model while keeping the shared resources unchanged as in the
target system — we refer to this approach as No Resource Scaling
(NRS). For example, a scale model consisting of a single core
would simply have access to the fully sized LLC capacity as
well as the same NoC bandwidth and main memory bandwidth
as in the target system. We find though that such a scale model
is largely inaccurate, as we will quantify in the results section of
the paper. This can be understood intuitively: for example, the
performance of a single-core scale model with a 32 MB LLC,
128 GB/s NoC bandwidth and 128 GB/s memory bandwidth
will be (very) different from the per-core performance observed
in a target system with 32 cores competing for the same shared
LLC capacity and NoC/memory bandwidth.

Another, more accurate, option is to proportionally scale the
shared resources with core count — we refer to this approach
as Proportional Resource Scaling (PRS). In particular, scaling LLC
capacity, NoC bandwidth and memory bandwidth proportion-
ally with core count leads to relatively accurate scale models.
In particular, when scaling the number of cores by a factor
F , we scale LLC capacity, NoC bandwidth and main memory
bandwidth with the same factor F . In other words, we keep
LLC capacity per core constant as we scale the number of cores.
Similarly for interconnection and memory bandwidth, we keep
bandwidth per core constant. In our setup, we assume 1 MB
of LLC per core, 4 GB/s bisection bandwidth per core, and
4 GB/s memory bandwidth per core. How to implement PRS in

practice depends on the specific nature of the shared resource,
see also Table 1. Scaling cache capacity in our setup is trivial.
Since we assume a NUCA LLC with a 1 MB slice attached to
each core, we proportionally scale down LLC capacity as we
consider fewer cores in the scale model. Scaling bandwidth is
more complicated. We scale DRAM bandwidth by changing
both the number of memory controllers and bandwidth per
memory controller. Starting from the target system, we first
scale down the number of memory controllers from 8 (at 32
cores) to 1 (at 4 cores), and then scale down the amount
of bandwidth per memory controller. For the interconnection
network, we scale link bandwidth as the number of cross-
section links reduces with core count. In particular, moving
from 32 to 16 cores, the number of cross-section links remains
unchanged, hence we have to halve bandwidth per link from
32 GB/s to 16 GB/s. In contrast, when moving from 16 to 8
cores, the number of cross-section links halves from 4 to 2,
hence we maintain the per-link bandwidth at 16 GB/s.

The intuition behind PRS is to provide balanced scale mod-
els that exhibit similar degrees of resource contention as in
the target system. Intuitively speaking, a scale model with two
cores and a total of 2 MB LLC capacity, 8 GB/s bisection band-
width and 8 GB/s memory bandwidth, is likely to experience
a level of interference in the shared resources that is (some-
what) comparable to the target system with 32 cores, 32 MB
LLC, and 128 GB/s bisection NoC and memory bandwidth. In
other words, the amount of resource contention is likely to be
similar as the sizing of the shared resources is proportional to
the number of cores in the system. Our experimental results
confirm that PRS is indeed more accurate than NRS.

2.2 Scale Model Extrapolation
Scale model construction is only a first step. We need scale
model extrapolation to yield even more accurate target system
performance predictions. Scale-model extrapolation considers
scale-model simulation results to predict target-system perfor-
mance. We consider two extrapolation models in this work.
Each of these approaches can be configured to provide different
trade-offs in simulation speed versus accuracy.

No Extrapolation uses the per-core performance observed in
the scale model as a prediction for per-core performance in
the target system. This approach implicitly assumes that the
interference in the shared resources is the same in the scale
model as in the target system. No Extrapolation can be config-
ured in different ways leading to different simulation speed
versus accuracy trade-offs. The fastest configuration considers a
single-core scale model: we simulate a single-core system (with
the shared resources proportionally scaled following the PRS
approach), and its measured performance is a prediction for
per-core performance in the target system. Accuracy can be
improved though by simulating a scale model with more cores,
e.g., two cores with twice the shared resources as the single-
core scale model, following PRS — this scale model’s per-core
performance typically yields a more accurate prediction for per-
core performance in the target system. Of course, simulating a
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dual-core scale model takes longer than simulating a single-
core scale model, thereby providing a simulation speed versus
accuracy trade-off.

Machine Learning-based Prediction leverages ML to yield
higher accuracy. We consider three ML techniques: decision
trees, random forest and support vector machines (SVM). We
use the radial basis function (RBF) as the SVM kernel to cap-
ture non-linear performance scaling trends. ML-based Prediction
follows a two-step process involving a training phase followed
by an inference phase. The training phase is a one-time cost
and involves simulating a number of training benchmarks for
the scale model as well as the target system. When simulat-
ing the scale model, in addition to measuring performance
(i.e., execution time), we also measure other possibly relevant
performance metrics including memory bandwidth utilization,
LLC misses per thousand instructions (MPKI) and NoC delay.
The ML model is trained using the simulation data as input:
the performance metrics obtained for the scale model are the
independent variables, while performance of the target system
is the dependent variable. At inference time, a previously
unseen application of interest is simulated on the scale model.
These simulation results (per-core performance of the scale
model plus optional performance metrics) serve as input to the
prediction model to predict performance for the unseen appli-
cation on the target system. Training is a one-time cost whereas
inference is a recurring cost for each application of interest.
The more cores we consider in the scale model, the higher the
accuracy — at the cost of a higher recurring cost, i.e., longer
simulation times to collect the scale-model performance results.
We perform meta-training of the ML parameters through cross-
validation during training using the scikit-learn framework.1

3 EXPERIMENTAL SETUP
We use Sniper v6.0, a parallel and high-speed cycle-level x86
simulator for multicore systems, using its most detailed cycle-
level hardware-validated core model [3]. Our target system
is a 32-core processor. We simulate 4-wide out-of-order cores
with a 3-level on-chip cache hierarchy. The LLC is a 32 MB
NUCA cache, and we assume a 128 GB/s bisection bandwidth
mesh NoC and 128 GB/s main memory system with 8 memory
controllers. We run rate-based multiprogram workloads with
32 benchmark instances from SPEC CPU 2017; we consider 1B-
instruction simulation points per benchmark [1]. We run Sniper
on a 36-core Intel PowerEdge R440 server.

4 EVALUATION
We now evaluate scale model simulation. We first evaluate
scale-model construction, and then evaluate scale-model ex-
trapolation. Finally, we explore the simulation speed versus
accuracy trade-off. We quantify accuracy using the following
absolute prediction error metric:

error =

∣∣∣∣Tpredicted − Tactual

Tactual

∣∣∣∣ .
Tactual is the execution time of the application of interest on
the target system — in our setup, this is the execution time
of a single benchmark instance in a 32-copy multi-program
workload. Tpredicted is the predicted execution time of the appli-
cation of interest on the target system based on a measurement
obtained through simulation of the scale model. In case of No
Extrapolation, the predicted execution time on the target system
is the execution time obtained on the scale model. In case of
ML-based Prediction, the predicted execution time is provided
by the ML model when given the performance metrics for the

1. https://scikit-learn.org/

scale model as input. We use a cross-validation setup in which
we use N − 1 benchmarks for training the ML models when
evaluating prediction accuracy for the N th benchmark.
Scale Model Construction. We consider the following four
scale-model construction techniques: (1) No Resource Scaling
(NRS), i.e., the shared resources in the scale model are sized
identically to the target system, (2) Proportional Resource Scal-
ing (PRS) in which we only scale the LLC in the scale model
(i.e., DRAM bandwidth in the scale model is the same as in the
target system), (3) PRS with scaled DRAM bandwidth only (i.e.,
LLC capacity is the same in the scale model and target system),
and (4) PRS with scaled LLC size and DRAM bandwidth. (Note
that we evaluated NoC scaling as well but found it to have
(virtually) no effect for the workloads considered in this work,
hence we exclude it from the discussion.)

Figure 1 reports prediction error for the single-core scale
model, i.e., we consider a scale model with a single core to
predict per-core performance in the 32-core target system. NRS
is highly inaccurate with an average absolute error of 60%. PRS
is more accurate: scaling the LLC brings down the average error
to 51%, while scaling DRAM bandwidth reduces the average
error to 41%. Scaling both LLC capacity and DRAM bandwidth
has synergistic effects, bringing down the prediction error to
15% and at most 32% (milc). Proportionally scaling all shared
resources leads to a scale model that is a relatively accurate
representation for per-core performance in the target system.
Scale Model Extrapolation. While PRS leads to relatively accu-
rate scale models, we can do even better through scale-model
extrapolation. No Extrapolation uses performance obtained for
the scale model as a prediction for per-core performance in the
target system — this is effectively PRS with scaled resources
from the previous section. We further consider three ML-based
Prediction techniques, namely Decision Tree (DT), Random Forest
(RF) and Support Vector Machines (SVM). We use three indepen-
dent variables obtained for the scale model as input to these ML
models, namely execution time, memory bandwidth utilization
and NoC delay. (LLC MPKI does not contribute to improved
accuracy, hence we exclude it.)

Figure 2 reports prediction error for these techniques. ML-
based Prediction brings down the average absolute prediction
error by a significant margin compared to No Extrapolation
(average error of 15% and up to 32%). SVM is to be the most
accurate ML-based Prediction technique with an average error
of 6% (maximum error of 21%). DT yields an average absolute
prediction error of 9% (and up to 29%), whereas RF leads to an
average error of 8% (and up to 21%).
Accuracy versus Simulation Speed Trade-Off. So far, we
assumed single-core scale models. These scale models yield the
highest simulation speedup. Indeed, simulating a single-core
scale model is substantially faster than simulating a 32-core
target system. In our setup, the simulation of a single-core scale
model yields a 28× simulation speedup compared to simulat-
ing a 32-core system, while yielding an average 6% prediction
error as reported in the previous section. It is possible to further
increase accuracy by considering scale models with higher core
count. In particular, we could simulate a scale model with 2,
4, 8 or even 16 cores to predict 32-core performance. It is to be
expected that as we increase core count, accuracy is going to
improve as the scale models gradually incur more contention
in the shared resources with increasing core count.

Figure 3 reports prediction error versus simulation speed
for No Extrapolation versus ML-based Prediction (DT, RF and
SVM). The different data points on each of the curves corre-
spond to scale models with 16, 8, 4, 2 and 1 cores, from left to
right. Larger scale models (generally) improve accuracy while
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Fig. 1: Evaluating scale model construction: NRS versus PRS with scaled LLC capacity, scaled DRAM bandwidth, and both.
Proportional Resource Scaling (PARS) in which all shared resources are scaled proportionally leads to the most accurate scale models.
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Fig. 2: Evaluating scale model extrapolation: No Extrapolation versus ML-based Prediction (Decision Tree, Random Forest and
Support Vector Machines). The SVM-based prediction method yields the highest accuracy (6% average absolute prediction error).
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Fig. 3: Accuracy versus simulation speed trade-off. Scale models
with increased core count (generally) lead to higher accuracy at the
cost of reduced simulation speedup.

sacrificing simulation speed. ML-based Prediction uniformly
outperforms No Extrapolation by a significant margin. In par-
ticular, the average absolute prediction error for SVM-based
extrapolation decreases from 6% to 2.7% (at most 14%) as we
go from a single-core to a 16-core scale model. This comes at
the ‘cost’ of a simulation speedup reduction from 28× to 2.6×.

5 RELATED WORK
The most closely related work by Eyerman et al. [4] proposes
scale models for an experimental Intel processor, called PIUMA
(Programmable Integrated Unified Memory Architecture), that
is specifically designed for the efficient execution of graph ana-
lytics workloads. The lack of resource sharing among processor
cores makes the development of scale models for this type
of architecture relatively easy. More specifically, the PIUMA
architecture does not have shared caches; each core has a dedi-
cated memory controller; and a highly scalable interconnection
network provides high bandwidth and low latency to each indi-
vidual core. In contrast, general-purpose multi-core processors
feature a vastly different architecture with various interference
opportunities in the shared caches, NoC and memory.

Machine learning (e.g., neural networks [5] and spline-
based regression [6]) was previously proposed to explore mi-
croprocessor design spaces. Alameldeen et al. [7] propose a
methodology for scaling down commercial workloads in both
size and runtime, allowing commodity machines to simulate

much more powerful server systems. Hoste et al. [8] and
Piccart et al. [9] determine the optimum platform among a
set of previously benchmarked platforms for an application of
interest. Other prior work predicts performance across archi-
tecture paradigms. Baldini et al. [10] and Ardalani et al. [11]
propose machine-learning based methodologies to predict GPU
performance using (single-threaded) CPU implementations.
6 CONCLUSION
This paper proposed scale-model simulation, a novel method-
ology to predict large-scale system performance. Configuring
the scale model enables trading off accuracy versus simulation
speed. Our experimental results demonstrate high accuracy
and simulation speed. We plan to extend and evaluate scale-
model simulation for multi-threaded workloads as well as other
architecture paradigms (e.g., GPUs).
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