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Abstract—The ever-growing need for high-performance com-
puting has driven the popularity of employing multi-GPU sys-
tems. Modern multi-GPU systems employ unified virtual memory
(UVM) to manage page placement and migration. However,
the page management in UVM is application object agnostic.
In this paper, we characterize the page access behaviors in
relation to the application objects, and reveal that the beneficial
page management policy varies according to (i) the different
data objects within the same application, and (ii) the different
execution phases of the same object. This motivates the need for
dynamic and proactive page management in multi-GPU systems.
To this end, we propose OASIS, which dynamically identifies
object patterns during the execution and proactively determines
the appropriate page management policies for these objects at
runtime. Experimental results show that OASIS improves the
performance over uniformly adopting on-touch migration, access
counter-based migration, and duplication by an average of 64%,
35%, and 42%, respectively. Moreover, OASIS achieves 12%
performance improvement over the state-of-the-art technique
(i.e., GRIT) while having significantly lower design complexity.

I. INTRODUCTION

Multi-GPU systems have emerged as the preferred platform
to meet the ever-growing demands of high-performance com-
puting, offering enhanced parallelism and expanded memory
capacity [15], [19], [20], [24]–[26], [33], [38], [39], [51],
[55], [57]. Modern multi-GPU systems generally employ
Unified Virtual Memory (UVM) [37], [42], which simplifies
application development by avoiding manual memory man-
agement across devices. In addition, UVM’s runtime memory
management accommodates evolving GPU configurations and
memory capacities. UVM also broadens the application of
multi-GPU systems to fields with irregular and unpredictable
memory access patterns, such as graph processing, where data
cannot be easily and statically partitioned across GPUs. De-
spite its advantages, UVM-enabled multi-GPU systems suffer
from Non-Uniform Memory Access (NUMA) overheads that
arise from data sharing and communication across GPUs.

Modern UVM-enabled multi-GPUs utilize three different
page management policies to mitigate NUMA overheads:
(i) on-touch page migration [41], (ii) access counter-based
migration [42], and (iii) page duplication [42]. Specifically,
the on-touch policy always migrates pages to the requesting
GPU’s local memory, enabling high bandwidth access for all
subsequent accesses to the same page. However, it causes
frequent page migrations when GPUs frequently share the

page. To address this, the access counter-based migration
policy only migrates pages when page accesses reach a cer-
tain threshold (e.g., 256 remote accesses in NVIDIA UVM
driver [37], [40]), alleviating frequent migrations but incurring
remote access latency before a page is migrated [3], [4], [7],
[8]. The page duplication policy enables concurrent local reads
by duplicating pages but requires invalidating all copies upon a
write to the page (called page write-collapse) [22], [23], [35].

Current multi-GPU systems uniformly employ one of the
aforementioned page management policies. However, each of
these policies has distinct pros and cons, and there is no
universal solution that serves good for all applications. This
variability arises because applications often contain different
types of data, each favoring a different page management
policy. For example, on-touch migration is beneficial for data
that is accessed exclusively by one GPU, enabling subsequent
accesses to be served locally. In contrast, if data is shared
among multiple GPUs, on-touch migration can incur substan-
tial migration overheads. These can be significantly reduced
by employing access counter-based migration. Furthermore, if
the shared data is predominantly read-only, duplication proves
to be the most effective solution, ensuring that all shared read
accesses are served locally.

Several prior studies [11], [53], [56] propose optimizations
to the three policies. For example, the state-of-the-art multi-
GPU approach GRIT [53] dynamically learns the beneficial
management policy on a per-page basis. Unfortunately, learn-
ing memory access patterns on a per-page basis can incur
considerable memory overheads and additional memory access
latency. Moreover, GRIT [53] incorporates hardware predic-
tion for neighboring page management, which this study finds
to be overly complex and unnecessary. We aim for a simpler
and more efficient memory management design compared to
GRIT and show quantitative evidence (Section VI-C).

While making page management decisions at the page
granularity can be implemented in the operating system and
hardware, ensuring transparency to applications, we observe
that operating at such a fine granularity overlooks opportunities
for more efficient page management at a reduced cost. To
this end, we choose to strike a balance between application
transparency and page management efficiency by leveraging
object granularity. An object is a data structure that is dy-
namically created at runtime by calling a memory allocation



function, such as cudaMallocManaged. Tracking objects
at runtime provides an efficient and transparent way for mem-
ory management as object access patterns naturally represent
the application memory page access behavior. Making memory
management decisions at the object granularity, which is
typically coarser than page granularity, eliminates the overhead
of learning a policy for each individual page, as a single object
typically comprises a significant number of pages.

We show that preferred page management decisions can be
determined based on the sharing characteristics of an object.
For example, the on-touch policy is optimal for an object
that is only accessed by a single GPU. Similarly, the page
duplication policy is beneficial for a read-only object that is
accessed by multiple GPUs. Finally, the access-counter policy
is suitable for a read-write object that is accessed by multiple
GPUs. Based on these insights, we propose OASIS, which
captures the object runtime access pattern and dynamically
adapts the most suitable memory management policy at the
object granularity. Specifically, OASIS consists of three key
components: (1) the Object Tracker to identify objects during
run-time, (2) the Object Table to capture the sharing pattern
of objects based on access patterns, and (3) the Object Policy
Controller to dynamically modify the page management policy
based on the observed object access patterns.

We make the following contributions in this paper:
1) Our characterization of page management at object

granularity reveals several key insights: (i) pages allo-
cated to the same object exhibit similar access patterns;
(ii) objects demonstrate varying preferences for page
management policies; and (iii) object patterns remain
consistent within a specific execution phase but may
change at the phase boundary.

2) To the best of our knowledge, OASIS is the first work
to leverage object information for enhancing page man-
agement decisions in multi-GPU systems. We propose
hardware-assisted OASIS, an object-aware page man-
agement system designed to dynamically identify object
patterns and determine the most effective page manage-
ment policy for each object at runtime. Additionally,
we design a software-only alternative, OASIS-InMem,
to accommodate diverse demands.

3) We evaluate OASIS using 11 representative multi-GPU
applications. Results show that OASIS improves the
overall performance by 64%, 35%, and 42% over uni-
formly adopting on-touch migration, access counter-
based migration, and duplication, respectively. It also
outperforms the state-of-the-art GRIT [53] by 12% on
average and delivers near-optimal performance with
much lower design complexity.

II. BACKGROUND

A. UVM-Enabled Multi-GPU Memory Management
In this paper, we focus on UVM-enabled multi-GPU sys-

tems, where multiple GPUs are connected via high-bandwidth
interconnects such as PCIe [36] or NVLink [21]. The uni-
fied virtual memory (UVM) [21] is employed in multi-GPU
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Fig. 1. UVM-enabled multi-GPU architecture.

systems and is managed by the UVM driver located on the
CPU. UVM greatly simplifies GPU application development
by establishing a shared memory space between CPUs and
GPUs. This shared memory is facilitated by a crucial function
called cudaMallocManaged [43]. This function allocates a
continuous block of virtual memory for a specified data object,
making it universally accessible. As a result, both the CPU and
GPU can use universal pointers to directly access this shared
memory space, which eliminates the need for manual data
transfers. Figure 1 shows the GPU architecture of the baseline
multi-GPU system. Each GPU has its own local memory
and local page table. The GPU Memory Management Unit
(GMMU) handles GPU local page table walks. The UVM
driver maintains a centralized page table on the host CPU side
that holds up-to-date translations from all connected GPUs and
CPU. When a kernel running on a GPU accesses a page where
its page table entry is invalidated in the local page table, it
triggers a page fault. The page fault is then sent to the UVM
driver and is resolved using the centralized page table.

B. Page Management Policy

The currently adopted page management policies in multi-
GPU infrastructures are (i) on-touch page migration, (ii) access
counter-based page migration, and (iii) page duplication.

1) On-touch migration: This policy always migrates a page
into the local memory of the requesting GPU. While it benefits
all subsequent accesses of the same GPU to the same page (as
they become local memory accesses), it causes frequent “ping-
pong” page migrations when multiple GPUs frequently share
pages. This significantly degrades performance because page
migration is expensive and introduces execution overheads.

2) Access counter-based migration: NVIDIA Volta GPUs
and newer generations [13], [37] introduce a policy known
as access counter-based migration. This policy allows a GPU
to access pages stored in the memory of a remote GPU
by establishing the address translation of the remote page
in its local page table. The access counter-based migration
utilizes a hardware-based access counter to track the number
of remote accesses. Page migration only occurs when a certain
threshold is met (e.g., 256 remote accesses for a 64 KB page
group [37], [40]). This policy resolves the “ping-ponging” of
pages under on-touch migration; however, it incurs remote
access latency before a page is migrated and page table entry
(PTE) invalidation overheads [32].

3) Page duplication: The page duplication policy dupli-
cates read-shared pages among GPUs and allows concurrent



TABLE I
BASELINE MULTI-GPU CONFIGURATION.

Module Configuration
Compute Units 1.0 GHz, 64 per GPU
L1 Vector Cache 16 KB, 4-way
L1 Inst Cache 32 KB, 4-way
L1 Scalar Cache 16 KB, 4-way
L2 Cache 256 KB, 16-way
DRAM 4 GB
L1 TLB 32 entries, 32-way, CU private,

LRU replacement policy
L2 TLB 512 entries, 16-way, CUs shared,

LRU replacement policy
Access counter threshold 256 [40]
Inter-GPU network 300 GB/s NVLink-v2
CPU-GPU network 32 GB/s PCIe-v4

local reads to duplicated pages. However, when a GPU per-
forms a write operation, it sends a page protection fault to
the UVM, and all shared pages in other GPUs have to be
invalidated to ensure consistency. The page duplication allows
read-shared pages to be accessed by multiple GPUs locally,
avoiding remote memory accesses. However, the overhead
of collapsing read-write shared pages can lead to significant
performance degradation [17], [35], [42], [56].

III. METHODOLOGY

A. Baseline Configuration

We conduct our experiments and evaluations using the
industry-validated MGPUSim Simulator [49]. Our experimen-
tal setup includes a 4-GPU platform, where each GPU has
its local page table and GMMU. Additionally, we extend our
experiments to analyze performance across varying numbers of
GPUs: in Section VI-B2, we provide a sensitivity study where
OASIS is evaluated on platforms with 8 and 16 GPUs. Our
baseline configurations are detailed in Table I. These settings
include the use of a standard 4 KB page size, and we further
study the impact of using a large page size in Section VI-B4.

B. Applications

We use eleven applications from well-known bench-
mark suites, including AMDAPPSDK [5], Hetero-Mark [48],
SHOC [16], and DNN-MARK [18], as detailed in Table II.
These applications span a broad spectrum of domains, includ-
ing machine learning, graph algorithms, and numerical com-
putations. Moreover, these applications cover various multi-
GPU access patterns as listed in Table II, enabling a thorough
analysis of multi-GPU access patterns and their implications
on system performance. Specifically, BFS and PR demonstrate
random access patterns, with GPUs performing read and write
operations to and from different GPUs unpredictably. C2D, ST,
LeNet, VGG16, and ResNet18 exhibit an adjacent access
pattern, where input data is batched and sequentially shared
among neighboring GPUs. I2C, FFT, MM, and MT incur a
scatter-gather access pattern, with each GPU handling data
from local or remote GPUs. Note that data parallelism is
employed for these DNN workloads by distributing the data
across multiple GPUs. The LeNet model utilizes the MNIST
dataset [30], a large collection of handwritten digits (0-9)
with 70,000 images, split into 60,000 for training and 10,000

TABLE II
LIST OF APPLICATIONS.

Abbr. Application Benchmark
Suite

Access
Pattern # Objects Memory

Footprint

BFS
Breadth-First
Search SHOC Random 5 32 MB

C2D Convolution 2D DNN-Mark Adjacent 10 92 MB

FFT
Fast Fourier
Transform SHOC Scatter-

Gather 2 48 MB

I2C
Image to
Column DNN-Mark Scatter-

Gather 3 80 MB

MM
Matrix
Multiplication AMDAPPSDK Scatter-

Gather 4 32 MB

MT Matrix Transpose AMDAPPSDK Scatter-
Gather 3 64 MB

PR Page Rank Hetero-Mark Random 6 32 MB
ST Stencil 2D SHOC Adjacent 3 32 MB
LeNet LeNet DNN-Mark Adjacent 115 24 MB

VGG16
Visual Geometry
Group 16-layer DNN-Mark Adjacent 240 220 MB

ResNet18
Residual Network
18-layer DNN-Mark Adjacent 263 297 MB

for testing. The dataset used for VGG16 and ResNet18
is Tiny-Imagenet-200 [54], which contains 100,000 images
distributed across 200 classes, with each class consisting of
500 training images, 50 validation images, and 50 test images.
We also list the number of objects for each application under
the “# Objects” column in the table. Note that the number
of objects reported here represents the maximum number of
objects allocated throughout the execution. The actual number
of objects utilized during any specific period may be fewer.
We also report the memory footprint in Table II, ranging
from 20 MB to 300 MB, which is sufficient to capture the
memory access patterns in multi-GPU systems [11], [53]. Note
that simulating large memory footprints is impractical due to
extremely long simulation times. The memory footprint sizes
are similar as in prior multi-GPU studies [11], [53].

IV. MOTIVATION AND CHARACTERIZATION

A. Overall Application Characteristics

We plot the performance of uniformly employing a single
page management policy on all pages in Figure 2, in which
the performance numbers are normalized to the on-touch
migration (i.e., baseline policy). The “Ideal” bar represents
an ideal NUMA-GPU system that duplicates all shared pages,
irrespective of read or write operations. Specifically, all initial
accesses to pages from a GPU (i.e., both read and write
accesses) incur a duplication latency and duplicate that page to
the requesting GPU. For subsequent accesses to these pages,
once they are already present locally, they are treated like
read accesses, incurring zero NUMA latency regardless of
whether the operation is a read or a write. It is important
to note that this “Ideal” configuration is hypothetical and not
feasible in practice; it serves merely to illustrate the potential
for optimization. The results in the figure highlight that there
is no universal page management policy that consistently
achieves the best performance across various applications.
This is because object access patterns vary across different
applications and execution phases within the same application.
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Fig. 2. Performance of different page-management policies normalized to the
baseline on-touch migration policy.

Observation 1: No single page management policy fits
all applications because data access patterns vary across
different applications.

B. Object Characteristics

To optimize page management policies for various applica-
tions, we begin by conducting a detailed analysis of memory
access patterns during multi-GPU execution.

Basic Terminology. To facilitate the discussion in this section,
we first introduce the following terms to categorize memory
access patterns of pages: (i) private pages: pages accessed
exclusively by one GPU during a particular execution period;
(ii) shared pages: pages accessed by more than one GPU
within a specific period; (iii) read-only, write-only, or read-
write-mix (rw-mix) pages: pages that are only read from, only
written to, or both read and written to by the GPUs during a
certain execution period. We then define the memory access
patterns of an object by analyzing the patterns of its pages.
Specifically, if all pages or over 90% of the pages exhibit
a consistent pattern, we classify the object according to this
predominant pattern. For instance, if all pages within object0
are private, we identify this object as a private object. If pages
within an object show a variety of patterns, we categorize
the object with a ‘mix’ pattern. For example, if 30% of an
object’s pages are read-only and 70% are write-only or rw-
mix, we categorize this object as an rw-mix object. Similarly,
a private-shared-mix object contains a combination of both
private and shared pages. Additionally, since the patterns of
private/shared and read/write are orthogonal, we can combine
them to describe the object pattern. For example, a shared-
read-only object indicates that multiple GPUs access the object
and it is only read by those GPUs.

Effectiveness of Object Granularity. We demonstrate the
effectiveness of focusing on object granularity by charac-
terizing the distribution of object sizes across our evaluated
applications, as shown in Figure 3. One can observe that
while the smallest objects may consist of only a single 4 KB
page, most objects tend to have larger sizes, spanning multiple
pages. In addition, our evaluation reveals that pages within
an object tend to exhibit consistent behavior. For example,
Figure 4 illustrates the access patterns of MT, where the x-
axis represents pages. The first approximately 9,000 pages,
belonging to MT Input, are entirely read-only, while the next
9,000 pages, belonging to MT Output, are all write-only. It
is worth noting that scaling MT to a larger input size (e.g.,
2 GB) does not affect the object count or page access patterns.
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In this case, MT Input and MT Output would encompass
more pages (i.e., 262,144 each), with MT Input read-only and
MT Output write-only. This underscores the effectiveness of
object-level analysis, allowing us to focus on two objects, each
with pages exhibiting consistent patterns, instead of analyzing
over 500,000 pages.
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Fig. 4. The page access patterns related to objects of MT.

It is important to note that this uniformity in page patterns
within the same object is also observed in other benchmarks
besides MT, though not all objects show 100% consistency
across their pages. To quantify this, we introduce the concept
of a non-uniform object, defined as having at least one page
whose pattern differs from others of this object in both
dimensions (i.e., private/shared, read/write). We then define the
concept of a non-uniform app, where at least one object within
the application is non-uniform. We evaluate 7 applications that
only have one explicit phase (i.e., kernel function) throughout
their application execution (i.e., BFS, FFT, I2C, MM, MT,
PR, and ST). Note that, in this paper, we define phase as
an execution period during which the objects exhibit distinct,
recognizable patterns. We further categorize the phase into
two types: explicit and implicit. Explicit phases, such as
CUDA kernels, are identifiable by the runtime system at the
time of launch. Implicit phases, in contrast, are not explicitly
recognizable but exhibit recognizable pattern shifts during
execution, usually associated with iterative processes. Our
evaluation shows that only 2 out of 26 objects are non-uniform,
and only 1 out of 7 applications (i.e., ST) qualify as non-
uniform apps, with non-uniform pages comprising less than
5% of the total. We exclude applications with multiple explicit
phases from this analysis because their object patterns vary
across phases, leading to them being classified as non-uniform
applications. Even in this non-uniform application ST, our
subsequent analysis reveals that its object behavior exhibits
consistency during implicit phases. These pattern variations
will be thoroughly studied in subsequent parts of this section.

Observation 2: Pages within a single object typically ex-
hibit the same patterns. We can use object granularity to
study access patterns.



I2C Object Pattern # Pages

I2C_Input Shared-read-only 2048

I2C_Output Private-write-only 18379

MM Object Pattern # Pages

MM_A Shared-read-only 4096  

MM_B Shared-read-only 2048

MM_C Private-write-only 2048

ST Object Pattern # Pages

ST_Data1 Shared-rw-mix 4133

ST_Data2 Shared-rw-mix 4129

(b)(a)

I2C_Input

I2C_Output

ST_Data1

ST_Data2

MM_A

MM_B

MM_C

Fig. 5. (a) Object behavior analysis for three applications. (b) Percentage of
accesses going to different objects.

To understand the performance differences of each policy
across different applications and reveal the object preference
for different page management policies, we analyze the object
behavior of three applications. First, as illustrated in Fig-
ure 5, I2C primarily consists of two objects: I2C Input and
I2C Output. I2C Output, a private object, occupies a larger
number of pages and is accessed more frequently (i.e., 75%
of the total accesses) compared to I2C Input, making it play a
dominant role in determining performance. This observation,
combined with the performance results in Figure 2, one
can find that the on-touch migration policy delivers optimal
performance compared to the other two policies. This is
because on-touch migration exhibits the lowest latency for
private objects, as it promptly places the pages to the GPUs
that request them. In contrast, access counter-based migration
defers data migration until the counter threshold is met,
leading to increased remote access latency. Note that when
using duplication, a read-only copy of the page is made on
the requesting GPU. Even if a page is private, any attempt to
write to the read-only copy will still trigger a page protection
fault, introducing significant fault handling overhead. This
prevents duplication from achieving optimal performance for
private-rw-mix objects. Second, as shown in Figure 5, MM
comprises three primary objects: MM A, MM B, and MM C.
Among these, MM A and MM B, are shared-read-only and
account for the majority of pages as well as the accesses (i.e.,
80% of the total accesses). Recall the performance result in
Figure 2 showing that the duplication policy demonstrated
the best performance for MM. Duplication performs best for
shared-read-only objects by maintaining local replicas, thus
minimizing remote data access and data migration. Third, as
shown in Figure 5, ST owns two main objects: ST Data1,
and ST Data2, both of which are shared-rw-mix. The perfor-
mance result in Figure 2 illustrates that access counter-based
migration delivers better performance for ST over on-touch
and duplication. This is because on-touch migration may in-
troduce excessive unnecessary data migrations, and duplication
struggles with the overhead from frequent write-collapses. In
contrast, access counter-based migration efficiently caters to
the GPU that most actively demands the data, as it prioritizes
data migration based on request frequency, ensuring that the
GPU frequently accessing certain data reaches the threshold
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Fig. 6. The object access patterns across different phases of C2D.

first. Consequently, access counter-based migration results in
fewer unnecessary migrations than on-touch migration and
reduces the write-collapses more efficiently than duplication.

In addition, we want to emphasize that on-touch migration
and duplication can achieve the ideal performance for private
and read-only objects, respectively. However, although access
counter-based migration also shows the best performance
among the three policies for shared-rw-mix and shared-write-
only objects, it cannot achieve the ideal target. This is because
the ideal scenario assumes that all shared pages are duplicated,
as detailed in Section IV-A. Achieving the ideal target for
shared-rw-mix objects is impossible due to the unavoidable
migration latency of on-touch migration, remote access latency
of access counter-based migration, or write invalidation of du-
plication. In contrast, for private objects and read-only objects
managed by the on-touch migration and duplication policies,
respectively, after the initial cold migration or duplication,
subsequent accesses are local, aligning closely with the ideal
scenario. Therefore, if we could further partition the shared-
rw-mix object into either private or read-only objects across
different execution periods, the potential for performance
improvement would be maximized. To explore this possibility,
we conduct a thorough analysis of object pattern variations.

Observation 3: Different objects prefer specific page man-
agement policies: private objects favor on-touch migration;
read-only benefits from duplication; shared-write-only and
shared-rw-mix objects prefer access counter-based policy.

Characteristics of Object Pattern Variation. First, we ex-
amine the access patterns of objects during a specific explicit
phase. Figure 4 also shows the memory access patterns over
time. The y-axis represents the total execution time of MT,
divided into 8 intervals. One can observe that the object pattern
remains consistent throughout the execution of this MT phase.
Specifically, the MT Input remains a read-only pattern, and
the MT Output remains a write-only throughout the entire
execution. This consistency arises because, during this specific
matrix transpose execution phase, pages belonging to the same
object are requested by GPUs in a similar way.

Then, we analyze how their patterns vary across different
explicit phases. We plot the object pattern analysis for C2D
in Figure 6. We list three main explicit phases of C2D,
Image-to-Column, GEMM, and Matrix-Transpose, and we
present five objects that dominate these three phases, including
Im2col Input, Im2col Output, GEMM Output, MT Output,
and Parameters. The “overall object pattern” refers to the
object pattern throughout the entire execution. We mark the
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read-only or write-only with different colors, and the private
or shared patterns are directly labeled. First, focusing on the
“overall object pattern” depicted in Figure 6, we observe
that objects such as Im2col Output and GEMM Output are
shared-rw-mix. However, when tracking the access patterns
through various phases (i.e., Image-to-Column, GEMM, and
Matrix-Transpose), we find that these objects exhibit a private
pattern, with clear distinctions between read-only and write-
only patterns across phases, rather than a mixed pattern. Note
that an object might be classified as shared throughout the
execution but appear as private within individual phases (e.g.,
Im2col Output). This occurs when the object is accessed
privately by one GPU in a given phase and then exclusively
accessed by a different GPU in another phase.

However, we observe that even in some applications without
multiple explicit phases, their objects still exhibit regular
pattern changes within a single explicit phase. For example, as
shown in Figure 7 (a), ST involves two objects, ST currData
and ST newData, and operates through one Stencil2D func-
tion, which includes multiple execution iterations in a loop.
Both objects exhibit a shared-rw-mix pattern over multiple
iterations throughout the execution. We then study and reveal
the object patterns across multiple iterations as illustrated in
Figure 7 (b). One can observe from this figure that the total
12 pages are categorized into two parts according to their
patterns. The first six pages start as read-only and then switch
to write-only, continuing this interleaved pattern of changes.
Conversely, the latter six pages start as write-only and exhibit
the opposite read/write patterns compared to the first six pages.
This behavior occurs because ST reads from ST currData and
writes to ST newData during each iteration. After this, ST
swaps these two objects and proceeds to the next iteration,
causing the observed alternations in access patterns. We iden-
tify each iteration in the ST explicit phase as an implicit phase.
Note that the implicit and explicit features of a phase depend
on the algorithm’s implementation; different implementations
may yield varying implicit and explicit features for the phases.
For example, in our evaluated ST, where different iterations
are implemented within the kernel function, we categorize the
phases implicitly. In a different ST implementation where each
iteration would launch a separate kernel, ST would exhibit
explicit phases at kernel boundaries.

Observation 4: Object access patterns change with phase
transitions but remain consistent within the same phase.

Takeaway. Our study highlights that different data objects
benefit from specific page management policies, indicating
that adopting a universal policy is ineffective. The diversity in
object patterns across applications influences the performance
of different page management policies. Even though memory
access patterns for a single object remain consistent within a
specific phase, they can change across different phases. The
dynamic nature of object patterns, varying both across appli-
cations and phases, necessitates the development of flexible
and uniquely-designed page management policies.

V. OASIS DESIGN

A. System Overview
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Fig. 8. High-level overview of OASIS.

We propose OASIS and show the overview of our design in
Figure 8. OASIS has three major components: (i) an Object
Tracker that identifies objects at the time of allocation, using
existing allocation APIs (i.e., cudaMallocManaged()),
and encodes an object ID into the upper pointer bits. This
process enables the system to accurately associate memory
accesses with their corresponding objects during runtime; (ii)
an Object Table that tracks object access patterns during appli-
cation execution to provide information for page management
policy decision-making; and (iii) an Object Policy Controller
that leverages the information stored in the Object Table to
dynamically adjust page management policies for objects.
Given that object patterns may vary across phases, as discussed
earlier in Section IV-B, the Object Policy Controller also
facilitates automatic runtime corrections, capturing changes in
pattern and reassigning the proper policy accordingly.

B. Object Tracker

… Object Index Configuration Object Virtual Address

4 bits                   1 bit                                48 bits                

Fig. 9. Pointer layout in OASIS.

To effectively understand the access patterns of objects
during different phases, it is crucial to distinctively separate
each object. This separation ensures that the CPU and GPUs
accurately identify the relevant object during memory access.
To achieve this, we propose to encode the object index
(Obj ID) into the unused bits of the pointer that points to this
object, as depicted in Figure 9. The number of unused upper
pointer bits can vary depending on the host CPU architecture
typically ranging from 7 to 16 bits; for our purposes, we
assume 5 unused bits. In our design, we use 4 bits to encode
Obj ID and reserve 1 bit for the configuration bit. Note that the



void* ptr_a;
cudaMallocManaged(&ptr_a, ...);  

Appended with…

ADDR_BITS = 48
obj_ID_config_shifted = OBJ_ID_Config << ADDR_BITS
MASK = (( 1 << ADDR_BITS) -1)
ptr_temp = ptr_a & MASK
ptr_a = ptr_temp | obj_ID_config_shifted

Fig. 10. An example of how to encode object ID into the pointer.

maximum number of bits that can be used to encode Obj ID
is 15. We use only 4 bits as most of the applications we
evaluated have fewer than 24 objects. The configuration bit is
used to differentiate OASIS and OASIS-InMem (i.e., “1” for
OASIS, “0” for OASIS-InMem). OASIS-InMem is designed
as a software-only alternative (Section V-F).

The Object Tracker creates a wrapper around the existing
memory management APIs (e.g., cudaMallocManaged())
to encode the Obj ID and configuration bit in the upper
pointer bits whenever a new object is created. Figure 10
illustrates the pointer encoding process. The memory allocator
first calculates obj_ID_config_shifted by shifting the
Obj ID and configuration bits left by the addressable bit width
(48 bits), positioning them in the upper unused bits of a
64-bit pointer. A mask (MASK) is then created to preserve
the lower 48 bits of an original pointer ptr_a, ensuring
any pre-existing higher bits are cleared. Finally, ptr_a is
reconstructed by combining these extracted lower bits with
the shifted Obj ID and configuration bits, using a bitwise OR
operation. The Obj ID is initialized based on the order of
allocation. For instance, the first allocated object is assigned
the ID “0000”, the second “0001”, and so forth. We leverage
the Top Byte Ignore feature, which is available on NVIDIA
GPUs and modern CPUs, such as ARM’s Top Byte Ignore
(TBI) [10], Intel’s Linear Address Masking (LAM) [27], and
AMD’s Upper Address Ignore (UAI) [6], to efficiently encode
the Obj ID in the unused upper pointer bits without causing
segmentation faults upon pointer dereferencing.

C. Object Table

The Object-Table (O-Table) in OASIS is an on-chip LRU-
managed structure designed to track and record information
about each object, such as Obj ID, and the assigned page
management policy. The maximum capacity of the O-Table
is fixed at 24. When entries exceed this capacity (e.g., more
than 4 unused bits of the pointer are employed for encoding
objects), it employs LRU to manage the entries. The O-Table
enables the system to (i) facilitate OASIS’s Object Policy
Controller in learning and assigning appropriate policies dur-
ing execution, and (ii) record the policy for objects, allowing
related memory accesses to directly retrieve the corresponding
policy for that object page. The detailed architecture of the O-
Table is illustrated in Figure 11. Specifically, each entry within
the O-Table occupies 12 bits, comprising a 4-bit Obj ID, a 1-
bit policy bit (0 for duplication, 1 for access counter-based
migration), a 3-bit page fault counter (PF Count), and a 4-
bit LRU bits. The Obj ID stores the object index, which is
the same as the Obj ID stored in the pointer. Although the
number of entries in the O-Table is fixed, the number of bits
for Obj ID in the O-Table is not fixed but matches the Obj ID

CPU

Host Page Table

GPU0

GPU1

GPU2

GPU3

O-Table

Obj_ID Policy PF Count LRU

0000 0 000

0001 1 001

… … …

16

Fig. 11. O-Table overview with an Object Policy Controller example.

bits in the pointer (i.e., up to 15 bits). The policy bit specifies
the page management policy applied to pages belonging to
this object. We record only duplication and access counter-
based migration in the O-Table because on-touch migration
is set as the default, and the Object Policy Controller of
OASIS only determines between these two policies. We use
two unused bits in the page table entry (PTE) to reflect all
three policies, as illustrated in Figure 12. This enables both the
CPU and GPUs to effectively identify the policy to employ.
Specifically, “00” refers to on-touch migration and is set as
default, “01” is for access counter-based migration, and “11”
indicates duplication. The PF Count tracks the number of page
faults forwarded to the O-Table, which is used to monitor
the effectiveness of the policy adopted. The detailed process
of runtime policy determination is discussed in Section V-D.
When an object is allocated, its corresponding entry in the O-
Table is initialized. This includes setting the Obj ID the same
as the Obj ID encoded in the pointer and initializing both
the policy bit and PF Count to “0” and “000”, respectively.
When an object is freed, its entry is removed from the table.
As shown in Table II, most of our evaluated applications have
fewer than 24 objects. Even in applications with a large total
number of objects, only a handful of objects are referenced
during a specific phase. As a result, the O-Table requires only
a minimal number of entries, with each entry occupying just
12 bits. This modest space requirement allows us to store
the O-Table directly in the host CPU’s hardware, significantly
reducing access overhead.

XD Unused PFN Unused Policy Bits Flags

63 62:52 51:12 11 10:9 8:0

Fig. 12. Page table entry format for 4 KB pages in OASIS.

D. Object Policy Controller

We use an Object Policy Controller (OP-Controller) that
leverages the pattern similarity among same-object pages, en-
abling dynamic determination of the object policy at runtime.
Initially, on-touch migration is set as the default policy for all
page handling, with policy bits in the PTE set as “00”. The
on-touch migration is chosen as the default policy because it
allows the CPU to effectively capture memory access patterns
by triggering a page fault for every remote request. In contrast,
access counter-based migration handles a specified number of
remote accesses directly from a remote GPU without sending
a page fault to the CPU, and duplication does not trigger a
page fault for read-only duplications. In our proposed OP-
Controller, we utilize two “tables” to support policy decision-
making: the host page table and the O-Table.



Host Page Table. We use the host page table to serve private
objects. This means that all first-time page faults to a page
are processed at the host page table using the default on-touch
migration without being forwarded to the O-Table. Accesses
to the private object are served only using the host page table
because for private objects, the default on-touch migration is
already the most effective policy, therefore, it is unnecessary
to leverage the O-Table to determine a better policy. Note
that identifying whether pages of an object are private or
shared does not require additional mechanisms; the host page
table naturally provides information on whether pages are
private or shared. Specifically, since the physical addresses
assigned to different GPUs and the host CPU are typically
distinguished by specific physical address ranges, by checking
the address range associated with the physical address of the
page, the UVM driver can identify which GPU currently holds
the data or the data is in the CPU. The data being located
on another GPU indicates that this page was accessed by a
different GPU previously, thereby confirming that the page
is shared. The data in the CPU is considered private as it
has not been previously accessed by other GPUs. Note that,
oversubscription may influence the classification of data as
private or shared. We discuss and evaluate oversubscription in
Section VI-D. The host page table acts like an O-Table filter,
effectively distinguishing between private and shared objects
while also eliminating unnecessary O-Table accesses, thereby
avoiding unnecessary memory access overhead.

O-Table. We use O-Table to serve shared objects. This means
that all subsequent page faults on a page will be forwarded
to the O-Table for handling after the host page table lookup.
Using the O-Table to handle shared objects allows the OP-
Controller to (i) determine the appropriate policy, and (ii)
record this policy in the O-Table so that later accesses to the
shared object can utilize it. Given that all requests propagated
to the O-Table are for shared objects, and the read/write pattern
is immediately evident from the request (i.e., the “W” bit
in the error code [44]), the OP-Controller obtains sufficient
information to decide the policy for the object. Specifically, if
the page is read from, the policy bits in the O-Table are set to
“0” for duplication; if the page is written to, we set the policy
bits to “1” for access counter-based migration. Then the page
fault is resolved using this newly employed policy, updating
the policy bits in the PTEs for this page to reflect the new
policy. Subsequent page faults can directly check the O-Table
and employ the policy. We utilize the PF Count in the O-Table
to determine whether an incoming request is used to establish
a new policy (i.e., PF Count is “000”) or employs an existing
policy (i.e., PF Count is not “000”).

Example. We illustrate the process of the OP-Controller with
an example, as shown in Figure 11. Assume GPU0 accesses
page1 of object obj1. Since page1 is currently accessed only
by GPU0, it is considered a private page. Consequently, the
OP-Controller only checks the host page table, bypasses the O-
Table, and directly resolves the page fault by migrating page1
to GPU0 adopting on-touch migration ( 1 ). Then, GPU1
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Fig. 13. (a) Example of self-correction. (b) The state transition diagram.

requests the same page page1 ( 2 ), and a page fault to the
same page is triggered and sent to the host CPU. The host
page table reveals that the data resides on another GPU, not the
CPU, confirming that the page is shared. This request is then
directed to the O-Table ( 3 ). Using the Obj ID in the virtual
address, the corresponding entry in the O-Table is located.
Since it is the first time O-Table access for this object and the
PF Count is initially “000” for this object, the OP-Controller
determines the appropriate policy based on the object pattern,
updates the policy bit, and increments the PF Count by 1.
For example, if it is a write request, the policy is set to
“1”, which corresponds to access counter-based migration. The
UVM driver then employs this policy to resolve the page fault
and update the related PTEs. Next, GPU3 requests page1 ( 4 ),
and the O-Table is checked after host PT lookup since the page
is shared. It finds that the PF count is not zero, therefore, the
OP-Controller utilizes the recorded policy from the O-Table to
resolve the page fault and increment the PF Count by one ( 5 ).
This process is consistently applied to subsequent accesses.
Note that, the object pattern as well as the policy decision
are determined by the pattern of only a single page. This is
justified by Observation 2 and Observation 4 in Section IV-B,
where the access patterns of a particular object’s pages remain
consistent. Therefore, it is unnecessary to track multiple pages
within an object to determine the appropriate policy. Analyzing
the pattern of just one page is sufficient to accurately decide
the behavior of all pages associated with that object. This
simple mechanism effectively removes a significant amount of
overhead, both in latency and metadata size, in capturing the
object access pattern and determining the management policy.

Self-Correction. Recall from Observation 4 that the object
pattern changes across different phases. To effectively detect
changes in object patterns across phases and dynamically
apply the appropriate policy, our proposed OP-Controller
includes the following two self-correction mechanisms.

For implicit phase detection, we use shared page faults
as triggers for resets. A shared page fault is defined as a
page fault that occurs to a shared object; only shared faults
are propagated to the O-Table. As previously discussed, page
faults occurring during the first access to a page do not
reach the O-Table. A high frequency of shared page faults
for an object suggests that the current policy may no longer



be appropriate due to frequent accesses by multiple GPUs.
We use a pre-defined reset threshold to trigger the policy
correction1. Once the PF Count reaches the reset threshold,
the PF Count is reset to “000” and the OP-Controller then
re-evaluates the object pattern and determines a more suitable
policy based on the new pattern observed. We use Figure 13
(a) as an example to illustrate how the self-correction operates.
Assuming a given object is shared-write in an explicit phase
(phase-2). The policy employed for the shared-write phase
is access counter-based migration. During execution, if the
page becomes heavily shared-read by different GPUs ( B ), the
access counter will increase to the threshold and trigger page
migrations and page faults. The page faults will be captured
by OASIS, and once the page fault count reaches the reset
threshold, the self-correction mechanism detects the implicit
phase (phase-3) change, resets the entry in the O-Table, and
relearns the policy based on read-access patterns, setting the
policy to duplication.

For explicit phase detection, when transitioning to a new
phase (e.g., launching a CUDA kernel), the runtime system
also resets the corresponding entry in the O-Table (e.g., A in
Figure 13 (a)). This integration requires modifying the CUDA
runtime API, such as cudaLaunchKernel, to include an
O-Table entry reset as part of the kernel launch process.
Note that, this reset only sets the PF count to “000” which
ensures that the new policy is learned at the next page fault. In
Figure 13 (a), since the access pattern is changed from shared-
read (explicit-phase-1) to shared-write (explicit-phase-2), the
policy for this object is re-learned as counter-based migration.
Then, the subsequent shared page faults will retrieve metadata
from the O-Table and apply the newly learned policy.

Figure 13 (b) depicts the state transition diagram. Initially,
an object follows the on-touch policy. If the access pattern
remains private, the object remains in the on-touch policy.
Once the access pattern changes (i.e., phase changes), de-
pending on whether it is shared-write or shared-read, the
policy state will transit to access counter-based migration or
duplication, respectively ( 1 , 2 ). Note that, once the policy
is changed from on-touch to duplication or access counter-
based, it will not return to on-touch. This is because when an
object’s access pattern changes from shared back to private,
it will eventually migrate/duplicate in the requesting GPU,
and all subsequent accesses to the object pages will be local
without generating any page fault. Reverting to the on-touch
policy is therefore unnecessary. For a shared-write object in the
access counter-based migration state, if shared write accesses
continue, the policy remains unchanged due to its write pattern
( 5 ). However, if the access pattern changes to shared-read, the
policy will change to duplication ( 3 ). On the other hand, for a
shared-read object using duplication, shared write accesses to
this object will trigger page-protection faults, self-correction
then reset the policy to access counter-based migration ( 4 ).

1Our default setting is 8 faults, we also evaluate our approach with other
reset thresholds in Section VI-B1.
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Fig. 14. High level overview of OASIS-InMem.

E. Overhead

OASIS introduces two main sources of overhead. First, the
O-Table storage overhead and associated access latency. Since
the number of objects for most of our evaluated workloads is
small, we find that a 16-entry O-Table is sufficient. Each entry
in the O-Table occupies 12 bits, dedicated to storing object
information. Thus OASIS requires an O-Table that requires
12 bits × 16 = 24 bytes. We employ CACTI [52] to estimate
chip area, and the results indicate that the O-Table occupies
less than 0.02% of the total area compared to a 256 KB 16-
way cache. In addition, since the O-Table is implemented as
an on-chip hardware component, the latency associated with
accessing this table is also negligible. The second overhead is
related to updating the PTE policy bits. Updating the policy
bits in the PTE of all devices’ page tables occurs whenever a
shared page fault is directed to the O-Table and a new policy
needs to be applied. However, this update process coincides
with the page fault resolution activities, which typically in-
volve page migrations, duplications, or collapses. Since these
operations already necessitate PTE invalidation or updates,
the overhead for updating the policy bits in PTEs effectively
runs in parallel with the page fault resolution process. Thus,
although OASIS introduces specific overheads, they are either
minimal or efficiently integrated into the existing processes,
minimizing their impact on the system’s overall performance.

F. OASIS-InMem: A Scalable Software Alternative

While hardware-only OASIS provides fast lookups using
the hardware O-Table, it has scalability limitations. When
the number of objects exceeds the unused upper pointer
bits (i.e., 15 bits) or the upper bits are reserved for other
purposes [9], [47], we propose OASIS-InMem, a software-only
system that (i) stores the O-Table in system memory (i.e., O-
Table-InMem), and (ii) utilizes a shadow map to retrieve the
index of the O-Table-InMem entry associated with a given
object. Figure 14 shows the details of OASIS-InMem. The
shadow map is a software component and is managed by
the runtime driver. In OASIS-InMem, we do not encode the
Obj ID in the upper bits of the pointer. Instead, we simply
use the configuration bit of “0” to indicate that the Obj ID is
retrieved using the shadow map. By doing so, the upper bits
of the pointer remain unused and require no modifications.
The shadow map functions similarly to a page table, where
an N -bit Obj ID is assigned to each M -byte segment of
an object’s virtual memory region. Here, M is defined by



the unit of memory allocation. To retrieve the Obj ID for a
specific pointer, OASIS-InMem employs a two-level shadow
map. The Obj ID is consistently stored across all shadow map
entries that correspond to the memory region allocated to that
object. For instance, if we have a shadow map that allocates
an N -bit Obj ID for every 4 KB segment of virtual memory,
then a 2 MB object would occupy 2 MB

4 KB = 512 shadow map
entries, with each entry containing the same N -bit Obj ID.
When a pointer accesses memory, OASIS-InMem retrieves the
associated metadata by using the pointer value to index into
the shadow map and extract the Obj ID. In brief, OASIS-
InMem proposes not only a scalable optimization that accom-
modates more objects but also a compatible solution that does
not use the upper pointer bits.

Overhead of OASIS-InMem. OASIS-InMem incurs two main
sources of overhead. The first is associated with maintaining
the O-Table-InMem in memory. The O-Table-InMem requires
(4 + N) × #Obj bits of space. For instance, if the number
of objects is #Obj = 1, 024, the space required amounts to
only 1,792 bytes, which is negligible. The second source of
overhead originates from the two-level shadow map. The first
level of this shadow map is a 128 MB array consisting of
224 elements, with each element capable of holding a 64-bit
pointer to a second-level shadow map table. The second-level
shadow map tables are allocated dynamically and consist of
212 N-bit entries where each entry covers 4 KB of allocated
virtual memory. Assuming N = 16, each second-level entry
uses 16 bits that can encode the index of up to 216 objects. For
a program memory footprint of 64 GB, the number of the cor-
responding second-level shadow map tables is 236

212×212 = 212,
making the total memory usage for the second level equals
212 table × 212 entry × 2 bytes = 32MB. Summing up the
memory usage across both levels, the overall shadow map
system incurs a memory overhead of approximately 160 MB
(128 MB from the first level plus 32 MB from the second
level). This represents less than 0.3% of the total 64 GB
allocated memory. Moreover, memory access latency for the
shadow table and O-Table-InMem is minimized by caching
both in the CPU’s last-level cache (LLC). As most program
data resides in the GPU, the CPU’s LLC is underutilized,
making it feasible to efficiently cache these table accesses.
This significantly minimizes latency.

VI. EVALUATION

A. Overall Performance

We evaluate our proposed design using the benchmarks
listed in Table II. The baseline configuration is presented
in Table I. Figure 15 plots the performance of OASIS and
three policies (i.e., on-touch migration, access counter-based
migration, and duplication), and the results are normalized to
the baseline on-touch migration. OASIS achieves an average of
64%, 35%, and 42% performance improvement compared to
uniformly adopting on-touch migration, access counter-based
migration, and duplication, respectively. The performance im-
provement is because OASIS effectively captures the object
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Fig. 15. Performance of different page-management policies versus OA-
SIS relative to baseline on-touch migration.

patterns and their variances across different phases. First, our
approach effectively identifies the most suitable page manage-
ment policies for different objects across various applications.
For example, in the MM application, the three main objects
are MM A, MM B, and MM C. Our approach effectively
identifies the patterns of these objects, applying duplication to
shared-read-only MM A and MM B, and on-touch migration
to private-write-only MM C. OASIS is similarly effective for
other applications that consist of objects operating in a single
phase without implicit phases, such as FFT, I2C, MM, MT, and
PR. Second, our approach effectively captures object pattern
changes during execution and dynamically assigns the most
appropriate policies accordingly. For example, in C2D, the
object pattern changes due to explicit phase transitions, and
different phases utilize the same object in varied ways. Our
approach effectively resets the previous policy at each phase
change and applies a new, suitable policy for the object. In ST,
where there are no explicit phase changes, OASIS captures
the phase transitions through page faults. It recognizes the
swapped currData in each iteration, applying duplication to
the read-only currData. Our evaluated benchmarks have a
mixed number of explicit and implicit phases detected by
OASIS. On average, there are 67 explicit and 11 implicit
phases. For example, there are 8 explicit phase changes in
C2D, and 129 explicit phase changes in LeNet. In contrast,
ST has 20 implicit phases. One can observe that most of
these applications reach the ideal performance. However, the
performance of some applications still exhibits a gap from
the ideal due to the presence of shared-rw-mix and shared-
write-only objects. These objects cannot be partitioned into
different implicit phases for finer granular pattern recognition.
As we discussed in Section IV-B, private and read-only objects
can achieve ideal performance, whereas the shared-rw-mix and
shared-write-only objects cannot.

We also plot the performance of OASIS-InMem normalized
to the baseline on-touch migration in Figure 15. One can
observe that the performance of OASIS-InMem drops only 2%
on average compared to OASIS, and it still significantly out-
performs other policies. The effectiveness of OASIS-InMem is
maintained by leveraging the host CPU’s LLC to mitigate
latencies associated with shadow memory and O-Table-InMem
access. However, as the initial accesses to the shadow map
and O-Table-InMem are unavoidable, they introduce some
overhead, leading to a slight performance degradation. Overall,
OASIS-InMem remains highly effective. Note that we employ
simulation to validate OASIS-InMem and demonstrate its



feasibility as a proof-of-concept. A comprehensive software
implementation on a real system, including optimizations in
the UVM drivers and Linux kernel, falls beyond the scope of
this paper and is planned for future work.

B. Sensitivity Analyses
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Fig. 16. OASIS using 4, 8, and 32 as the reset threshold.

1) Different reset threshold: Recall that we utilize a shared
page fault threshold to reset the O-Table entry, enabling the
runtime OP-Controller to relearn the most effective page
management policies for objects. A higher threshold value
means more shared page faults are required to trigger self-
correction for O-Table, which may delay the system’s response
to object patterns due to implicit phase shifts. Conversely, a
lower threshold value leads to more frequent resets of the
O-Table entries, potentially resulting in unnecessary updates
to the policies. To determine the most effective reset thresh-
old, we evaluated system performance using different reset
thresholds (4, 8, and 32), normalized to the baseline on-
touch migration, as shown in Figure 16. The performance
improvements over the baseline were 55%, 64%, and 56%
for thresholds of 4, 8, and 32, respectively. We observed that
performance gains tend to saturate at a threshold of 8, which
we then adopted as the default setting in our main results.
Additionally, one can observe that some applications are less
affected by the threshold. This is because these applications
typically consist of read-only or private objects and without
phase changes. Once the policy is set, even if the policy is
reset by reaching the fault threshold, it remains the same as the
previous optimal policy. However, for some applications, the
choice of threshold influences performance. These applications
contain shared-rw-mix objects. Since we use only one page to
determine the pattern of the entire object, a threshold set too
low can cause the policy to fluctuate between duplication and
access counter-based migration, introducing unnecessary page-
collapse overhead. Conversely, a threshold set too high may
delay the adoption of a more suitable policy.
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Fig. 17. OASIS with 8 and 16 GPUs.

2) GPU Count: We evaluate OASIS in 8-GPU and 16-GPU
systems. Figure 17 presents the performance of OASIS using
8 and 16 GPUs, each normalized to their respective baselines.
Note that we proportionally increase the workload size to scale

TABLE III
MEMORY FOOTPRINT (MB) FOR DIFFERENT GPU COUNTS.

Abbr. BFS C2D FFT I2C MM MT PR ST LeNet VGG16 ResNet18

8-GPU 64 200 96 175 128 160 74 65 64 358 508
16-GPU 128 308 192 264 192 320 132 129 170 718 1167

up to 8 and 16 GPUs. Table III shows the increased memory
footprints for each application. OASIS achieves performance
improvements of 65% and 67% over on-touch migration when
using 8 and 16 GPUs, respectively. The results indicate our
approach remains effective with different numbers of GPUs.
This is because even with more GPUs, the object patterns still
align with the patterns we discussed in Section IV-B, and our
proposed approach effectively captures these patterns, allowing
it to assign the most suitable per-object policy.
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Fig. 18. OASIS with larger input size.

3) Input size: We next evaluate OASIS’ effectiveness on
large input sizes. To do that, we use the 16-GPU input size
(Table III) and run the experiments on a 4-GPU system
under each page management policy. As shown in Figure 18,
OASIS achieves an average 62% performance improvement
over the baseline, indicating that OASIS remains effective for
larger workloads. This is because large input sizes translate
into larger object sizes. Increasing the object size does not
necessarily significantly affect object behavior. Consequently,
OASIS can efficiently track and record data for those objects,
and remain effective for large inputs.
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Fig. 19. OASIS with 2 MB pages.

4) Large pages: We evaluate OASIS using a 2 MB page.
The result is shown in Figure 19. The performance of OASIS
using 2 MB pages is normalized to the baseline on-touch mi-
gration with 2 MB pages. The average performance improve-
ment is 43% compared to the baseline on-touch migration
using 2 MB pages. This indicates OASIS remain effective even
when using larger pages. However, one can observe that the
performance improvement is reduced. This is because the use
of a 2 MB page may convert a private object to a shared
one. For instance, consider an object composed of 10 4 KB
pages: GPU0 privately reads and writes the first five pages,
while GPU1 does the same with the other five. Now this
object is a private-rw-mix object. However, assuming these
pages are consolidated into a single 2MB page, all ten pages
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Fig. 20. Percentage of different types of pages.

become shared by GPU0 and GPU1, resulting in a shared-
rw-mix pattern for the object. As previously discussed, while
on-touch migration achieves ideal performance for private-rw-
mix objects, none of the three policies can enable shared-
rw-mix objects to reach ideal performance. Consequently, the
increase in shared-rw-mix objects further limits the potential
for performance improvement. We also characterize the page
access patterns with 2 MB pages in Figure 20. Figure 20 (a)
shows the read or write percentage of pages, while Figure 20
(b) illustrates the percentage of private versus shared pages.
One can observe that the percentage of shared and rw-mix
pages is higher with 2 MB pages compared to 4 KB pages.
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Fig. 21. OASIS with initial page placement on GPU.

5) Initial page placement: In our baseline configuration,
pages are initially placed on the host. We study sensitivity
to initial page placement by distributing pages uniformly
across the GPUs (both in baseline and OASIS). As illustrated
in Figure 21, OASIS achieves a 57% average performance
improvement over the baseline on-touch migration, indicating
that OASIS is insensitive to the initial data placement.

C. Comparison to GRIT

We compare OASIS with the state-of-the-art multi-GPU
page management, i.e., GRIT [53]. GRIT has three compo-
nents: (i) Fault-Aware Initiator to determine when the cur-
rent page management policy is inappropriate and needs to
be changed, (ii) Policy Decision Selection to decide which
policy to change to, and (iii) Neighboring-Aware Prediction
to proactively decide the management policy of neighboring
pages leveraging the spatial locality. Figure 22 compares
the performance of OASIS normalized to GRIT. For fair
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Fig. 22. Comparison to GRIT [53].

comparison, we use the same application input size for these
two approaches. OASIS achieves a performance improvement
of 12% over GRIT, attributable to the following key factors.
First, under the same input size settings, OASIS manages
fewer objects relative to the thousands of pages that GRIT
handles. This allows OASIS to store object information within
a small hardware component, significantly reducing memory
access overhead. Second, OASIS utilizes phase changes to
trigger the re-determination of page management policies, and
efficiently capture the optimal timing for policy adjustments.
In contrast, GRIT requires four faults to trigger a policy change
for a single page. Although OASIS also uses page faults as
indicators for implicit phase changes, it only requires a few
page faults per object for a reset, whereas GRIT needs a page
fault for each page reset. This makes OASIS more effective in
responding to dynamic changes. In addition, OASIS improves
effectiveness by reducing on-chip storage overhead, metadata
overhead, and design complexity. Specifically, GRIT requires
48 bits (per-page) of in-memory storage to store page attributes
while OASIS only requires 12 bits (per-object). Since the
number of objects is much fewer than the number of appli-
cation pages, OASIS has negligible impact on the reduction
in effective GPU memory capacity. GRIT requires a 352-
byte of on-chip caching structure (i.e., PA-Cache). OASIS
on the other hand requires only 24 bytes on-chip (i.e., O-
Table). Note that OASIS-InMem eliminates all on-chip storage
overhead. Moreover, OASIS applies the same policy to all
pages of a given object, thereby effectively avoiding the design
complexity that GRIT incurs for predicting the neighboring
page policy. Overall, OASIS proves to be more effective than
page-granularity analysis in terms of space efficiency, time
effectiveness, and design complexity.
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Fig. 23. Page policy distribution under GRIT and OASIS.

We present a breakdown of the page management policies
applied to all L2 TLB miss requests for OASIS and GRIT, as
illustrated in Figure 23. To better illustrate the performance
improvement, we also present a comparison of the total
number of GPU page faults for both OASIS and GRIT in
Figure 24. The number of page faults plays a crucial role in
performance, as each fault incurs a significant overhead due to
CPU interruptions and UVM handling. Reducing page faults
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Fig. 24. The number of page faults.

can lead to performance gains. As shown, OASIS achieves a
reduction of 22% in page faults compared to GRIT, which
contributes to its overall improved performance.

D. Oversubscription
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Fig. 25. Performance of baseline and OASIS under oversubscription.

Recall that OASIS relies on the physical address range to
distinguish between private and shared pages. However, when
a shared page is evicted to CPU memory under oversubscrip-
tion, it is incorrectly identified as private when re-referenced
and leads to inaccurate policy and re-learning overheads. To
resolve this issue, we also leverage policy bits in the PTE to
manage pages during oversubscription. If the policy of pages
on the host CPU differs from on-touch migration (which is
the default initial policy), they are treated as shared pages,
and the O-Table is used to determine the appropriate policy
for this object. To evaluate OASIS under oversubscription
without incurring excessively long simulation times with large
memory footprints, we keep the working set of the applications
unchanged. Instead, we configure a parameter that specifies
the available free space in the GPU memory, simulating a
scenario with 150% memory oversubscription [11], [22], [23].
As shown in Figure 25, OASIS achieves a 20% performance
improvement over the baseline on-touch migration when over-
subscription occurs, demonstrating that OASIS can still deliver
improved performance under memory oversubscription. It is
worth noting that memory oversubscription is very expensive
and can dominate the execution overheads, offsetting the
performance gains delivered by OASIS.

VII. RELATED WORK

Object-Based Optimizations. Prior research has effectively
leveraged object-level information to optimize CPU and GPU
systems across different contexts [14], [28], [31], [45], [50].
For example, several studies have maintained object metadata
in tables and utilized this information to enforce memory
safety on GPUs [31], [50] and CPUs [28], [45]. Addition-
ally, object-based information has been used for reducing
the TLB translation cost of contiguous physical memory
allocations [14]. To the best of our knowledge, OASIS is the

first work to leverage object-level information for enhancing
page management decisions in multi-GPU systems.
Multi-GPUs and Optimizations. Multi-GPUs are already
widely employed to enhance GPU performance across a broad
spectrum of workloads [29], [34], [46]. Substantial prior stud-
ies have explored approaches to improve the runtime memory
management in multi-GPU systems [1], [2], [56]. Young et
al. [56] improved NUMA-GPU performance of multi-GPU
systems with CARVE (caching remote data in video memory),
a technique that allocates a small portion of GPU memory to
store contents from remote memory. However, none of these
studies focus on runtime object patterns, which are crucial
for further improving runtime memory management. In our
work, we provide a comprehensive analysis of object memory
access patterns and leverage these insights to optimize page
management across multi-GPU systems.
Static Analysis. Static analysis and cudaMemAdvise allow
the system to make informed decisions about data placement
and migration, optimizing memory access patterns and re-
ducing overhead in heterogeneous systems [12], [43]. These
techniques can be employed to determine whether an object is
read or written to, thus providing valuable hints for efficient
memory management. However, neither static analysis nor
cudaMemAdvise can determine whether an object is private
or shared at runtime. Making this distinction requires runtime
support, which is an essential component of our approach in
deciding between the different policies.

VIII. CONCLUSION

In this paper, we conduct a comprehensive study of memory
access patterns at the data object granularity on multi-GPU
systems. Our investigation reveals that the diverse object
patterns, along with variations in these patterns across ap-
plications and within the execution of a single application,
significantly affect the performance of different page man-
agement policies. We propose OASIS, which dynamically
tracks and manages object patterns, automatically adjusting
page management policies for objects. Experimental results
demonstrate that OASIS significantly improves performance,
delivering average improvements of 64%, 35%, and 42%
over uniformly employing on-touch migration, access counter-
based migration, and duplication, respectively. Moreover, OA-
SIS outperforms state-of-the-art GRIT by 12% and delivers
near-optimal performance.
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