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ABSTRACT
Sustainability is a grand societal challenge, which requires our
urgent attention given the significant and growing contribution of
electronic devices to global warming. The environmental footprint
of an electronic device comprises of two major contributors: (1) the
embodied footprint due to raw material extraction, manufacturing,
assembly, end-of-life-processing, and (2) the operational footprint
due to device use during its lifetime. Sustainable hardware design
hence requires a holistic approach that encompasses the entire
lifetime of an electronic device.

In this paper, we demonstrate how to leverage conventional
performance-power-area (PPA) analysis towards sustainable hard-
ware design by investigating the sustainability-performance trade-
off of a non-trivial hardware circuitry, namely the dynamic instruc-
tion selection logic in superscalar processors. We assess five previ-
ously proposed complexity-effective and power-efficient instruction
selection approaches compared to conventional out-of-order (OoO)
selection, namely Casino, Load Slice Core (LSC), Forward Slice Core
(FSC), Delay-and-Bypass (DnB) and Freeway. We find that Casino,
FSC and OoO are Pareto-optimal, optimally balancing the environ-
mental footprint against performance; in contrast, LSC, DnB and
Freeway are suboptimal. In addition, based on these insights, we
further improve FSC’s environmental footprint and propose FSC++
as a compelling sustainable design point: hardware synthesis to
a 7 nm technology node and cycle-accurate FPGA simulation of
complete SPEC CPU2017 benchmarks show that FSC++ reduces
the environmental footprint by around 40% while degrading per-
formance by only 1.7% compared to an OoO baseline.

1 INTRODUCTION
Sustainability in general and global warming in particular are grand
societal challenges. Computer systems demand substantial materi-
als and energy resources during production and use. A recent study
by Freitag et al. [11] reports that information and communication
technology (ICT) contributes 2.1 to 3.9% of the world’s global green-
house gas (GHG) emissions — on a par with the aviation industry
— and this contribution is likely to increase further into the future.

A key question is how hardware designers can reduce the envi-
ronmental footprint of electronic devices. The total footprint of a
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computing device consists of two major contributors: the embod-
ied footprint (i.e., due to product manufacturing) and the opera-
tional footprint (i.e., due to product use during its lifetime). While
the ratio of embodied versus operational footprint varies across
devices [14], the embodied footprint is increasing under current
scaling trends and is expected to become the predominant con-
tributor in the near future [9]. Teehan and Kandlikar [26] report
that silicon dies account for around 20% of a product’s total em-
bodied emissions (reaching up to more than 30%) across a wide
spectrum of computing devices from tablets to laptops, desktops,
and servers. Given current scaling trends, it is reasonable to assume
that the environmental footprint of silicon dies has increased over
the last decade [12], and furthermore, it is to be expected that it
will continue to increase in the near future.

The most important silicon die in a computer system arguably
is the processor, which in today’s high-end systems (be it for per-
sonal computing or in the datacenter) contains multiple CPU cores,
each featuring a superscalar out-of-order (OoO) microarchitecture.
Unfortunately, while OoO cores deliver high performance, they are
complex, resulting in large chip area, and high energy and power
consumption. To tackle the complexity and power concern, a signif-
icant body of recent work [2, 6, 15, 17, 18] has proposed a variety
of complexity-effective and power-efficient dynamic instruction
selection mechanisms with the goal of approaching out-of-order
performance at the complexity of a low-power in-order core. It is
unclear though what their environmental footprint is.

In this paper, we evaluate five dynamic instruction selection
mechanisms: Load Slice Core (LSC) [6], Freeway [17], Casino [15],
Delay-and-Bypass (DnB) [2], and Forward Slice Core (FSC) [18];
and we compare these against the Berkeley Out-of-Order Machine
core [27]. Through cycle-accurate FPGA-accelerated simulation of
complete SPEC CPU2017 benchmarks and hardware synthesis to a
7 nm standard-cell technology node, we find that the different mech-
anisms lead to different trade-offs in environmental footprint versus
performance. The overall conclusion is that the Casino, FSC and
OoO cores are Pareto-optimal. In contrast, LSC, DnB and Freeway are
suboptimal: they deliver too low performance for the environmental
footprint they incur, or vice versa, they incur too high an environ-
mental footprint for the delivered performance. Casino and OoO
are the extremes along the Pareto frontier, i.e., Casino minimizes
the environmental footprint (with the lowest performance) while
OoO incurs the highest footprint (but also achieves the highest per-
formance). FSC is a Pareto-optimal compromise design balancing
footprint against performance.

Unfortunately, the sustainability-performance trade-off is some-
what underwhelming: while FSC reduces the environmental foot-
print by 25 to 33% (depending on the scenario), it also leads to a
(non-negligible) performance degradation of 5% compared to an
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OoO core. We therefore propose a novel mechanism, FSC++, which
offers a much more compelling design point: FSC++ reduces the
environmental footprint by 37 to 41% for a performance degradation
of only 1.7% compared to the OoO baseline. FSC++ achieves this (1) by
running at a higher clock frequency than the OoO core which in
part compensates for the reduction in instructions executed per
cycle (IPC), and (2) by featuring an instruction queue in which
half the entries are out-of-order while the other half are in-order,
requiring less chip area and achieving higher performance than
two in-order instruction queues in FSC.

By doing so, this paper demonstrates how to evaluate hardware
sustainability using conventional performance-power-area (PPA)
analysis — widely used in academia and industry — coupled with
cycle-accurate FPGA simulations. We further demonstrate that
optimizing for energy efficiency does not necessarily lead to the
most sustainable design. Finally, we argue that combined sustain-
ability metrics can be misleading, arguing for a comprehensive
sustainability-performance trade-off analysis instead.

2 EVALUATING SUSTAINABILITY
Reducing the environmental footprint of an electronic device re-
quires a holistic approach in which chip area, energy, power, clock
frequency, and performance are optimized as a whole. It further
requires that the entire lifetime is taken into account from raw
material extraction, to manufacturing, assembly, transportation,
usage, and end-of-life processing. This is a non-trivial endeavor
because it is a multi-objective optimization problem while suffering
from inherent data uncertainty.

We use the first-order FOCAL model [10] to assess the environ-
mental footprint of a hardware design. Motivated by the inherent
data uncertainty regarding the environmental impact of computing,
the model is based on first principles using proxies for the embod-
ied and operational footprint. The overall footprint of a computing
device consists of two major contributors: (1) the embodied foot-
print due to manufacturing and fabrication, and (2) the operational
footprint due to device usage over its entire lifetime. A parameter
weighs the relative importance of the embodied versus operational
footprint to account for variation in product use and lifetime.

Manufacturing a computer chip incurs a substantial environmen-
tal footprint, which can be decomposed into three scopes according
to the GHG Protocol [21]. Scope-1 refers to the chemicals and gases
emitted during the manufacturing process, i.e., fluorinated gases
with a carbon dioxide equivalent potential that is more than 20,000
times higher than CO2. Scope-2 refers to the carbon dioxide out-
put due to the energy consumed during chip production; the more
brown energy is used during manufacturing, the higher the scope-2
contribution. Scope-3 refers to the footprint upstream to chip man-
ufacturing due to material extraction and transportation. While
empowering the fabs with green energy sources may drastically re-
duce the environmental footprint of chip production, it only affects
scope-2, but not scope-1 nor scope-3 [9], hence it is not a silver
bullet for reducing the footprint of chip manufacturing. Because
the unit of fabrication is a wafer, a useful proxy for the embodied
footprint of a chip is its die size. Indeed, the larger the chip, the
larger its embodied footprint. Conversely, the smaller the chip, the
smaller its embodied footprint.

The operational footprint of a processor is proportional to its
energy usage during its entire lifetime. Assuming that the amount
of work done is constant when comparing two designs, i.e., a fixed-
work scenario, a useful proxy for the operational footprint of a chip
is hence its energy usage. Unfortunately, this fixed-work scenario
does not (always) reflect reality. It is expected that a system that
is more efficient, e.g., higher performance or lower energy, will be
used more intensively. This is the infamous rebound effect, also
called Jevons’ paradox, which states that a more efficient system
incentivizes its usage, ultimately leading to a larger overall foot-
print [1]. Assuming that a more efficient design is used for the same
time as a less efficient design, i.e., a fixed-time scenario, or for an
even larger fraction of time, the operational footprint of a chip is
proportional to its power consumption.

The first-order model features a parameter 𝛼 (0 ≤ 𝛼 ≤ 1) to
weigh the relative importance of the embodied versus operational
footprint. The motivation for doing so is that the embodied versus
operational footprint varies across computing devices [14]: while
the embodied footprint tends to dominate for mobile personal de-
vices (e.g., smartphones, tablets) as well as datacenter infrastructure,
the operational footprint dominates for always-connected personal
devices (e.g., desktop computers, gaming consoles). The relative
importance of embodied versus operational footprint is further
affected by the lifetime of the device, its use case, rebound effects,
geographic location (i.e., green versus brown energy mix at the
user’s location), etc. Using a range of the 𝛼 value allows for as-
sessing sustainability despite inherent uncertainty about the actual
manufacturing, deployment, and usage.

As such, FOCAL computes the normalized carbon footprint (NCF)
of design 𝑋 relative to design 𝑌 by weighing the normalized em-
bodied and operational proxies, for the fixed-work scenario:

𝑁𝐶𝐹fixed-work = 𝛼
𝐴𝑋

𝐴𝑌
+ (1 − 𝛼) 𝐸𝑋

𝐸𝑌
,

with 𝐴𝑋 and 𝐴𝑌 the chip area for designs 𝑋 and 𝑌 , respectively,
and 𝐸𝑋 and 𝐸𝑌 their respective energy usage. For the fixed-time
scenario, the NCF is computed as follows:

𝑁𝐶𝐹fixed-time = 𝛼
𝐴𝑋

𝐴𝑌
+ (1 − 𝛼) 𝑃𝑋

𝑃𝑌
,

with 𝑃𝑋 and 𝑃𝑌 the respective power consumption. By considering
both the fixed-work and fixed-time scenarios and by varying the
𝛼 parameter, one can understand the impact of a design choice on
their environmental footprint despite the inherent data uncertainty.

3 INSTRUCTION SELECTION LOGIC
We consider a total of five recently proposed complexity-effective
and power-efficient dynamic instruction selection mechanisms for
general-purpose superscalar processors, see also Figure 1. It is un-
clear though what their environmental footprint is.

(a) Load Slice Core (LSC) [6] features two in-order FIFO queues:
the A and B-queue. The B-queue enables load and store instructions
and their backward slices (i.e., the address-generating instructions
leading directly or indirectly up to these memory operations) to
bypass arithmetic instructions in the dynamic instruction stream,
which are sent to the A-queue. Instructions are issued to the func-
tional units in program order from the A and B-queues, while the



(a) LSC (b) Freeway (c) FSC

(d) Casino (e) DnB (f) FSC++

Figure 1: Microarchitecture implementations: (a) LSC, (b) Freeway, (c) FSC, (d) Casino, (e) DnB, and (f) FSC++. FSC+ is similar to
FSC except that the HL contains only 4 entries instead of 8; likewise, FSC+++ is similar to FSC++ except that the DEL contains
only 4 entries instead of 8, i.e., DEL is a 4-entry OoO queue. Green boxes indicate the number of read ports to a queue; purple
boxes indicate write ports; blue boxes indicate out-of-order entries.

queues may issue instructions out of program order with respect
to each other. LSC requires register renaming and a reorder buffer
(ROB) to keep track of program order and to enable precise ex-
ceptions. The motivation behind the LSC microarchitecture is to
increase the amount of parallelism in the memory subsystem by
steering load instructions and their dependents to different queues
(i.e., loads are steered to the B-queue while their dependents are
steered to the A-queue unless the dependents also lead to a memory
operation). This enables independent loads to be issued in parallel
to the memory hierarchy from the B-queue, despite load-dependent
instructions in-between the independent loads in the dynamic in-
struction stream.

Identifying backward slices is done through a hardware mecha-
nism called iterative backward dependence analysis (IBDA) which
requires two hardware tables, the register dependence table (RDT)
and the instruction slice table (IST). The RDT contains as many en-
tries as there are physical registers, with each entry holding the
instruction pointer of the instruction that last wrote to the physical
register. The IST is a cache that holds the instruction pointers of
backward-slice instructions. When a load or store instruction is
steered to the B-queue, IBDA adds its instruction pointer to the IST.
For any instruction with its instruction pointer in the IST, IBDA
adds the instruction pointers stored in the RTD of the instruction’s
source operands to the IST as well. This denotes that the instruc-
tion(s) is (are) now part of the memory instruction’s backward

slice. This procedure iteratively builds up the backward slice in the
IST, starting with the memory operation upon its first execution
(e.g., in the first iteration of a loop), the instruction(s) it depends
on, directly or indirectly, upon subsequent executions (e.g., subse-
quent iterations of the loop). All instructions that hit in the IST are
backward-slice instructions, and are steered to the B-queue; other
instructions are steered to the A-queue.

LSC’s hardware complexity is significantly reduced compared to
an OoO core because it does not require expensive out-of-order in-
struction scheduling involving content-addressable memory (CAM)
and long bypass wires. Instead, the instruction dispatch and issue
unit consists of two in-order queues. In our setup, the RDT and IST
incur a hardware overhead of 400 and 640 bytes, respectively.

(b) Freeway [17] makes the observation that an independent
load may get stuck behind a load that depends on another, possibly
long-latency, load in the B-queue of the LSC microarchitecture. The
independent load cannot execute because it needs to wait for the
dependent load to execute. This unnecessarily limits the amount
of parallelism that can be exploited in the memory hierarchy. The
Freeway microarchitecture addresses this performance issue by
adding a third in-order queue, called the yielding queue or Y-queue
for short, to which dependent loads are sent such that younger,
independent loads can execute from the B-queue. More specifically,
Freeway splits backward slices that contain multiple loads into two:
a producer slice (i.e., the backward slice leading up to the initial load)



and a dependent slice (i.e., the backward slice that starts after the
initial load and ends with the dependent load). The dependent slice
is steered to the Y-queue such that a younger independent backward
slice can go ahead and execute from the B-queue, thereby improving
memory-level parallelism and overall performance. Freeway ismore
complex than LSC by adding a third in-order queue.

(c) Forward Slice Core (FSC) [18] steers forward slices, i.e., the
chain of instructions that depend on a load instruction, rather than
backward slices to significantly reduce hardware overhead while
at the same time improve performance compared to both LSC and
Freeway. FSC steers instructions into three in-order queues: non-
forward-slice instructions are steered from the pipeline’s front-end
into the so-called Main Lane (ML), while forward-slice instructions
are steered into one of the Dependent Lanes, i.e., the loads are
steered to the Dependent Load Lane (DLL) while the arithmetic
(non-load) instructions are steered to the Dependent Execute Lane
(DEL). Instructions that reside at the head of the DEL for more
than a preset number of cycles (i.e., the L1 D-cache access latency)
are redirected to a fourth queue, the Holding Lane (HL), such that
independent instructions can execute from the DEL. To force loads
and stores to execute in program order, FSC features a technique
called store-address replication (SAR): a store instruction is broken
up in a store-address (STA) and store-data (STD) micro-op, of which
the STA micro-op is replicated across the ML and DLL lanes; the
STA micro-op executes only when all replicates have reached their
respective lane heads.

The intuition of the FSC proposal is to steer instructions that
depend on a load instruction that is yet to be executed to separate in-
order queues such that independent instructions can execute from
the main lane. Furthermore, instructions in the DEL that depend
on long-latency loads are sent to a separate holding lane, such that
younger independent instructions can execute as soon as possible.

FSC requires a so-called steering bit vector (SBV) to identify for-
ward slices: the SBV is a bit vector with as many entries as there
are physical registers to track which registers transitively depend
on a load. When steering a load, the SBV bit corresponding to its
destination register is set. An instruction for which at least one of
its source registers’ SBV bits is set, is a forward-slice instruction,
and its destination SBV bit is set. The SBV bit of the physical destina-
tion register is cleared upon instruction execution. This mechanism
identifies the forward slices of loads that are yet to be executed.

FSC incurs less hardware overhead than LSC as it does not rely
on IBDA and does not need the RDT and IST hardware structures;
instead, the SBV is a small hardware structure of 18 bytes.

(d) Casino [15] features two cascading FIFO queues: the Specu-
lative Instruction Queue (SQ) and the In-Order Queue (InQ). These
queues serve distinct purposes to enhance performance over a sin-
gle in-order core. All instructions are initially placed in the SQ.
Any instruction at the head of the SQ that is ready for execution is
promptly issued to a functional unit. A non-ready instruction at the
head of the SQ is redirected to the InQ from which it executes in
program order. Instructions issued from the SQ execute OoO with
respect to redirected instructions to the InQ.

(e) Delay-and-Bypass (DnB) [2] builds upon the notions of
instruction criticality and readiness. An instruction is critical if it is
a memory operation or an instruction that belongs to a backward

slice. (DnB uses the IBDA mechanism from LSC to detect backward
slices.) An instruction is ready if it has all of its operands available
in the front-end of the pipeline. The key observation that underpins
DnB is that ready instructions do not need complex OoO scheduling,
hence they can be sent to in-order queues and execute immediately.
Only critical and non-ready instructions can potentially benefit
from dynamic scheduling from an OoO queue, such that they can
execute as soon as their dependences resolve. Non-critical and non-
ready instructions can be delayed in an in-order queue until they are
about to be ready, at which time they are steered to the out-of-order
queue — this further reduces the pressure on the out-of-order queue.
Implementing this design principle requires DnB to complement
an out-of-order instruction queue (IQ) with two in-order queues:
the delay queue (DLQ) and the critical-ready queue (CRQ). The
DLQ contains non-critical, non-ready instructions, while the CRQ
contains the critical, ready instructions; the IQ is the OoO queue to
which critical, non-ready instructions are steered as well as non-
critical instructions when they are about to be ready. The IQ is
(much) smaller than the instruction queue in a conventional OoO
core because it contains only a small fraction of the instructions.

4 REDUCING FSC’S FOOTPRINT
As we will report in Section 7, FSC reduces the environmental foot-
print by, depending on the scenario, 25 to 33% for a 5% performance
degradation compared to OoO. While FSC meaningfully balances
environmental footprint versus performance, it would be even bet-
ter to further reduce its footprint and at the same time improve its
performance. This triggered us to evaluate three optimizations.
FSC+. The baseline FSC architecture features four equal-length
queues with eight entries each. Because we find the occupancy
in the HL to be relatively low compared to the other queues, the
first optimization is hence to explore unequal queue lengths. In
particular, we consider a 4-entry HL rather than an 8-entry FL,
while keeping the other queues unchanged (eight entries each).
FSC++. The second optimization is to merge the 4-entry HL into
the DEL, which also features relatively low occupancy, in such a
way that the top-four entries in the DEL effectively belong to the
HL and are eligible for selection in case an instruction is ready, see
also Figure 1(f). In other words, the four oldest instructions in the
DEL can be selected out-of-order; the other four entries in the DEL
are in-order. If an instruction is selected for execution, the DEL
shifts the younger instructions through the DEL such that the four
oldest instructions in the DEL can be selected for execution. The
intuition behind this optimization is to enable younger instructions
to bypass older instructions that depend on a long-latency load.
FSC+++. The third optimization further reduces the DEL to only
four entries, with all four entries being eligible for selection. In
other words, the DEL effectively is an out-of-order queue, albeit of
a small size, namely four entries.

5 HARDWARE IMPLEMENTATION DETAILS
We now dive deeper into some of the hardware implementation
details for the various microarchitectures. We use the SonicBOOM
core [27] as our starting point, leveraging its existing structures, and
directing our focus on the dynamic instruction execution engine,



which includes the steering logic, the various (in-order and out-of-
order) queues, and the selection logic. The core can fetch, decode,
rename, dispatch, and commit two instructions per cycle, and can
select up to four instructions per cycle for execution on one of the
two ALUs, the memory unit, or the floating-point unit.

All queues are implemented using a circular buffer with head
and tail pointers and consist of eight entries, unless mentioned oth-
erwise. Each queue has a specific number of read and write ports,
indicated in green and purple, respectively, see Figure 1. To handle
branch mispredictions and to update the branch masks, the dis-
patch/issue unit requires a dedicated port connected to the branch
unit. The instruction selection logic requires access to the register
ready table (RRT), which contains as many bits as there are physical
registers. A ready bit in the RRT is set when the corresponding
physical register value is computed. The ready bit is reset upon
physical register allocation in the rename stage.

The issue queue selection logic is implemented using a priority
multiplexer with a ready-valid interface connected to the heads
of the various FIFO queues. The selection logic acts as a control
mechanism, determining which instructions from the queues are
selected for execution in a given cycle depending on their type and
readiness information. A static priority scheme is followed across
the various queues. We now discuss the implementation details
that are specific to each of the microarchitectures.
LSC. Up to two instructions are steered to either the A or B queue
per cycle. An instruction for which its instruction pointer is stored
in the IST, i.e., this is a backward-slice instruction, is steered to
the B queue. Up to four instructions can be selected for execution.
Due to in-order processing inside each queue, the instruction in the
second head position of a queue can only be selected for execution
if the instruction at the head position is selected. Priority is given
to the B-queue for instruction selection, followed by the A-queue.
Freeway. An instruction that belongs to a dependent backward
slice is steered to the Y queue, while an instruction that is part of
a producer backward slice is steered to the B queue. Up to four
instructions can be selected from six queue head positions (again,
in-order selection per queue); priority is given to the Y-queue, then
the B-queue, and then the A-queue.
FSC. A forward-slice instruction is steered to the DLL or DEL
depending on whether it is a load or not. A non-forward-slice
instruction is steered to the ML. An instruction that sits at the
head of the DEL for more than four cycles — implemented using
a simple 2-bit down-counter — is re-directed to the HL. Up to
four instructions can be selected (in-order per queue) out of eight
instruction slots across the four queues, while giving priority to
HL, then DEL, then DLL, and then ML. Note that FSC+ is similar to
FSC except that the HL contains only four entries instead of eight.
Casino. Up to two ready instructions are selected from the head
of the SQ for execution. If the head of the SQ is non-ready, it is
re-directed to the InQ. Up to two instructions can be selected from
the head of the InQ. Priority is given to the InQ.
DnB. Backward-slice instructions are steered to the OoO IQ if
not ready; otherwise, they are steered to the CRQ. Non-backward-
slice instructions are steered to the DLQ. DnB selects up to four
instructions from the 16 instruction slots in the three queues: two at

the head of the DLQ (in-order selection), two at the head of the CRQ
(in-order selection), and any of the 12 entries in the IQ (out-of-order
selection). Priority is given to the DLQ, IQ and CRQ, respectively.
FSC++. Instruction steering is the same as for FSC. The HL is in-
tegrated in the DEL as a small OoO queue at the head of the DEL
from which up to four instructions can be selected. The DEL is im-
plemented as a shift register rather than a circular buffer, i.e., when
instructions are selected for execution, the queue is compacted by
shifting up to two instructions towards the head. FSC+++ is the
same as FSC++ except that the DEL contains four entries instead
of eight.

6 EXPERIMENTAL SETUP
Cycle-Accurate FPGASimulation.Weuse Chipyard’s FireSim [20]
to evaluate cycle count for the various instruction selection mecha-
nisms which we implemented in Chisel by modifying the 2-wide
fetch, 4-wide issue SonicBOOM Berkeley Out-of-Order Machine
core [27]. We obtain cycle-accurate performance results using two
on-premise Xilinx U250AlveoData Center accelerator cards. FireSim
uses FASED [5] to accurately model DRAM timing during FPGA-
accelerated simulation. The core configurations that we simulate
are listed in Table 1: they all run at 3.2 GHz and feature the same
total number of queue entries, namely 32, except for Casino (16
entries), FSC+ (28 entries), FSC++ (24 entries), and FSC+++ (20
entries). The other core components (number of functional units,
branch predictor, caches, etc.) are kept constant across the different
instruction selection mechanisms.
PPA Analysis. We synthesize to a standard-cell technology to
obtain cycle time, chip area and power consumption for the various
designs using the open-source ASAP7 Predictive Process Design
Kit (PDK) 7 nm FinFET standard-cell library [7]. The back-end
flow (placement, routing, clocking, and optimization) is done using
Cadence Innovus 2021.

To estimate power consumption, we use the following methodol-
ogy. Because it is impossible to simulate complete SPEC CPU2017
benchmarks of the final ASIC implementation to compute activity
factors, we instead simulate a set of microbenchmarks (provided
by Chipyard [3]) using Verilator to generate activity factors for all
signals in a design. These activity factors then serve as input to
Cadence Voltus to quantify power consumption, assuming a supply
voltage of 0.7 V and ambient temperature of 25°. This methodology
yields a power estimate per instruction selection mechanism.

We limit the evaluation of chip area and power consumption to
the core’s execution engine, as described in Section 5. The other
stages in the pipeline are the same across all designs, and hence we
do not synthesize them.
Benchmarks.We simulate nine SPECCPU2017 benchmarks, which
we run to completion with their reference inputs. (We considered
the ten ‘intspeed’ SPEC CPU2017 benchmarks supported by the
FireSim framework, but had to exclude the perlbench benchmark be-
cause of inconsistent performance results due to non-determinism.)
The benchmarks were compiled with the gcc compiler v7.5.0 at
optimization level -O3 using the FireMarshal framework [20]. The
number of dynamically executed instructions varies between 1.12
trillion for 620.omnetpp_s and 9.51 trillion for 657.xz_s. We run the
Linux kernel version 5.7.0 on top of FireSim.



Table 1: Simulated instruction selection mechanisms, incl. queue depth (number of entries) and selection logic (InO vs OoO).
Casino LSC Freeway FSC FSC+ FSC++ FSC+++ DnB OoO

Queues

SQ (#4, InO) AQ (#16, InO) AQ (#16, InO) ML (#8, InO) ML (#8, InO) ML (#8, InO) ML (#8, InO) IQ (#12, OoO) INT (#20, OoO)
InQ (#12, InO) BQ (#16, InO) BQ (#8, InO) DLL (#8, InO) DLL (#8, InO) DLL (#8, InO) DLL (#8, InO) CRQ (#10, InO) MEM (#12, OoO)

YQ (#8, InO) DEL (#8, InO) DEL (#8, InO) DEL (#8, InO/OoO) DEL (#4, OoO) DLQ (#10, InO) FP (#16, OoO)
HL (#8, InO) HL (#4, InO)

IBDA — RDT (400 B) RDT (400 B) — — — — RDT (400 B) —
IST (2-way, 640 B) IST (2-way, 640 B) IST (2-way, 640 B)

In-flight instructions 64-entry reorder buffer; 16-entry load queue; 16-entry store queue
Register file 80-entry integer RF (6 read ports, 3 write ports); 64-entry floating-point RF (3 read ports, 2 write ports)
Pipeline 2-way superscalar execution; 2 ALUs, 1 LD/ST unit, 1 FP unit; 10 pipeline stages
Front-end TAGE branch predictor w/ 64-bit global history and 6 tables, 1K-entry BTB, 32-entry 𝜇BTB, 8-byte fetch per cycle, 16-entry fetch buffer
Caches 16 KB 2-way L1 I-cache, 16 KB 2-way L1 D-cache (4 cycles load-to-use latency), 512 KB 8-way L2 cache (14 cycles)
TLBs 32-entry L1 I-TLB, 8-entry L1 D-TLB, 1024-entry L2 TLB
Memory 16 GB DDR3, 16GB/s maximum bandwidth, 14-14-14 (CAS-RCD-RP) latencies @ 1 GHz

7 RESULTS
We first discuss the environmental impact of the various microar-
chitectures, after which we analyze their performance, chip area,
and power consumption in more detail.

7.1 Sustainability-Performance Trade-Off
Figure 2 reports normalized carbon footprint as a function of perfor-
mance for the scenario (a) when the embodied footprint dominates
(i.e., 𝛼 = 0.8 with the error bars for 𝛼 ∈ [0.7, 0.9]) and (b) when the
operational footprint dominates (i.e., 𝛼 = 0.2 with the error bars for
𝛼 ∈ [0.1, 0.3]).1 We report results for the fixed-work scenario only
due to space constraints; the fixed-time scenario results are fairly
similar though, leading to similar conclusions. The ideal instruction
selection mechanism should deliver high performance and incur a
low environmental footprint, i.e., be situated in the bottom right
of Figure 2. Environmental footprint is computed as described in
Section 2 using the chip area and energy numbers obtained through
hardware synthesis. We reach several conclusions.

Finding #1: Casino, FSC, and OoO are Pareto-optimal while LSC,
Freeway and, DnB are not. It is interesting to observe that different
selection mechanisms lead to different trade-offs in performance
versus environmental impact. The Casino, FSC, and OoO cores are
Pareto-optimal, i.e., no other mechanism yields higher performance
at a lower environmental footprint. LSC, Freeway and DnB on the
other hand are suboptimal, i.e., they deliver too low performance for
the environmental footprint they incur, or vice versa, the environ-
mental footprint is too high for the performance they deliver. This
conclusion holds true for both the embodied-dominated and the
operational-dominated scenarios. The Pareto-optimal designs offer
different trade-offs in performance versus environmental footprint.
While Casino incurs the lowest footprint, it also delivers the lowest
performance; in contrast, the OoO core delivers the highest perfor-
mance but also incurs the highest footprint. FSC is a compromise
design yielding high performance at moderate footprint.

Finding #2: FSC++ delivers a compelling sustainable design point
substantially reducing the environmental footprint compared to an
OoO core with a negligible performance drop. The FSC optimiza-
tions further reduce the footprint of the FSC mechanism while
in addition improving performance (FSC+ and FSC++) or at the
cost of a limited performance degradation (FSC+++). In particular,

1When the error bars are not visible in Figure 2, this means that the impact is small
when changing𝛼 . This happens when the relative embodied and operational footprints
are similar.

FSC++ is a compelling design point: it reduces the environmental
footprint by 37% (when embodied footprint dominates) and 41%
(when operational footprint dominates) compared to the OoO core
while reducing average performance by only 1.7%.

Finding #3: Which design point is most sustainable depends on the
scenario. It is interesting to note that DnB (as well as Freeway to
some extent) is more sustainable than the baseline OoO core when
the operational footprint dominates, while being less sustainable
when the embodied footprint dominates. This indicates that DnB’s
higher embodied footprint does not get amortized by its reduced
operational footprint compared to the OoO core.

7.2 Performance
We now analyze performance in more detail. Single-core perfor-
mance is the product of the number of instructions executed per
cycle (IPC) times clock frequency. The methodology used in this
work allows for evaluating both factors: hardware synthesis yields
cycle time and thus clock frequency, and FPGA-accelerated simu-
lation yields IPC. We set the same target frequency for all designs
during synthesis, and we find that Casino, LSC and Freeway achieve
a similar (less than 0.1% difference) clock frequency as the OoO
core. DnB, FSC, and FSC+ slightly improve clock frequency by 0.7%,
0.8% and 1.4%, respectively. FSC++ and FSC+++ both achieve a 3.3%
higher clock frequency than OoO.

Finding #4: FSC++ achieves an average performance degradation
of only 1.7% compared to OoO, significantly outperforming the other
designs. Figure 3 reports normalized performance (IPS or instruc-
tions per second) for the various designs. (The vertical axis starts
at 0.7 which corresponds to the performance achieved by the in-
order Rocket core [4] assuming that its frequency is identical to
the OoO core.) The key conclusion is that FSC++ degrades per-
formance by only 1.7% compared to OoO. For some benchmarks
(omnetpp, gcc and mcf), FSC++ achieves even higher performance
than OoO because of its higher clock frequency while achieving
the same (or similar) IPC. The other complexity-effective designs
deliver substantially lower performance, degrading performance
by on average 5.2% (FSC+), 5.2% (DnB), 5.3% (FSC), 6.4% (FSC+++),
9.8% (Freeway), 12.2% (LSC) and 13.2% (Casino).

7.3 Chip Area
Figure 4 (on the left) reports chip area for the various microarchi-
tectures normalized to the OoO core.
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Figure 2: Normalized carbon footprint as a function of performance normalized to the OoO core when (a) the embodied footprint
dominates (𝛼 = 0.8) and (b) the operational footprint dominates (𝛼 = 0.2), assuming a fixed-work scenario. Casino, FSC and OoO
are Pareto-optimal designs, in contrast to LSC, Freeway and DnB which are suboptimal.
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Figure 3: Performance (IPS) normalized to OoO. FSC++ achieves
an average performance degradation of only 1.7% compared to OoO,
significantly outperforming the other complexity-effective designs.
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Figure 4: Chip area (left) and energy usage (right) normalized
to the OoO core. Casino results in the smallest design, followed by
FSC and its variants; Freeway and DnB incur more chip area than the
OoO core. Casino uses the least amount of energy followed by FSC
and its variants, and then LSC, Freeway and DnB.

Finding #5: FSC++ and FSC+++ are smaller than FSC. Casino
incurs the smallest chip area: it consists of only two queues (4-
entry SQ and 12-entry InQ). Interestingly and surprisingly perhaps,
FSC++ and FSC+++ are smaller sized than FSC. The 8-entry DEL
with a 4-entry OoO sub-queue in FSC++ and the 4-entry OoO
DEL in FSC+++ incur less chip area than the 8-entry in-order DEL
plus HL in FSC. This is something that is hard, if not impossible,
to assess without doing actual hardware synthesis, which further

illustrates the need for a hardware-synthesis-driven methodology
as advocated in this work.

Finding #6: LSC, Freeway, and DnB are larger than FSC (and vari-
ants) even though the aggregate queue size is the same (total of 32
entries); the reason for the larger chip area is the RDT and IST hard-
ware structures in LSC and Freeway versus the much smaller SBV
for FSC. DnB is the largest, due to the out-of-order IQ, in addition
to the DLQ and CRQ.

7.4 Energy Usage
Figure 4 (on the right) reports normalized energy usage. Casino is
the most energy-efficient design, followed by FSC and its variants.
LSC, Freeway, and DnB use more energy than FSC. All complexity-
effective designs use less energy than the OoO core.

8 DISCUSSION
Energy efficiency. It is probably common to believe that opti-
mizing the energy efficiency of a design also leads to the most
sustainable design. This is not true.

Finding #7: A more energy-efficient design is not necessarily more
sustainable. Take the example of DnB in comparison to OoO. As
illustrated in Figure 4, DnB uses less energy than OoO, and hence
its operational footprint is less. However, DnB also incurs a larger
chip area, hence its embodied footprint is higher. If the embodied
footprint dominates, which is the case for battery-operated devices
as well as for servers in hyperscale datacenters [14], this leads to
a higher overall carbon footprint, as illustrated in Figure 2(a). Al-
though DnB emits less carbon than OoO during usage, looking at
the entire lifecycle including manufacturing leads to the opposite
conclusion that OoO incurs more carbon, i.e., DnB’s lower opera-
tional footprint does not amortize its higher embodied footprint.
Combined sustainability metrics. Prior work proposed a va-
riety of combined sustainability metrics, i.e., these metrics com-
bine carbon footprint with another metric such as performance or
energy usage into a single metric to assess a design’s sustainabil-
ity. In particular, Gupta et al. [13] propose carbon-delay product
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Figure 5: Previously proposed combined sustainability met-
rics for the various instruction selection mechanisms nor-
malized to the OoO baseline. Combined sustainability metrics do
not expose trade-offs in sustainability versus performance.

(CDP), carbon-energy product (CEP), carbon-square-energy prod-
uct (C2EP) and carbon-energy-square product (CE2P), in which C
stands for the embodied footprint; all metrics are lower-is-better.
Switzer et al. [25] propose the computational carbon intensity (CCI)
metric, which is defined as the ratio of the total (embodied plus op-
erational) carbon footprint and performance. Figure 5 reports these
five previously proposed sustainability metrics for the various de-
signs normalized to the OoO baseline assuming that the embodied
footprint dominates (𝛼 = 0.8) under a fixed-work scenario.

Finding #8: Combined sustainability metrics cannot expose sustain-
ability-performance trade-offs. None of the combined sustainability
metrics provide the insight that Casino, FSC, and OoO are Pareto-
optimal, and that LSC, Freeway, and DnB are suboptimal. Interest-
ingly, both the CDP and CCI metrics point out that LSC, Freeway,
and DnB are suboptimal compared to OoO, unlike the other met-
rics. This suggests that the reduction in embodied footprint (for
CDP) and total footprint (for CCI) is smaller than the performance
degradation. However, a value below one for CDP or CCI does not
imply that a design is Pareto-optimal. Pareto-optimality can only be
assessed by explicitly reporting the environmental footprint versus
performance trade-off as previously shown in Figure 2.

9 RELATEDWORK
Sustainability. Sustainability just recently received attention by
the systems community. In particular, Gupta et al. [14] conducted
a comprehensive survey to assess the environmental footprint of
computing. One key conclusion from this study is that the carbon
footprint is mostly dominated by the embodied footprint for mobile
personal devices (smartwatches, smartphones, tablets) as well as
for servers in hyperscale datacenters. Personal always-connected
devices (game consoles, desktop computers) on the other hand
are mostly dominated by the operational footprint. Eeckhout [9]
reaches a similar conclusion by analyzing how current trends in
microprocessor chip demand and semiconductor manufacturing
energy and carbon footprint: the embodied footprint of computing
devices is likely to continue to grow in the foreseeable future up
to the point that it will be the dominant contributor to the total
footprint if that is not already the case today.

A number of carbon footprint models have been proposed, such
as GreenChip [16] and ACT [13] which are bottom-up data-driven

approaches to evaluate a computing device’s environmental foot-
print. Motivated by the inherent data uncertainty pertaining to
sustainability, we opted in this work to use the first-order top-down
FOCAL model [8, 10]. The key asset of FOCAL in the context of
this work is that it uses proxies that hardware designers have con-
trol over and can reason about to make a holistic sustainability
assessment when designing hardware circuitry.
Complexity- and power-efficient instruction selection. Am-
ple research effort has been devoted to improve the power and
energy efficiency of modern-day microarchitectures [24]. A variety
of techniques have been developed to reduce energy and power
consumption, including dynamic voltage and frequency scaling,
clock gating, power gating, pipeline gating, etc. These techniques
have collectively led to a significant reduction in operational emis-
sions for a broad range of computing devices, from wearables to
smartphones, tablets, laptops, desktops, and rack servers [14].

The embodied footprint of a processor can only be reduced by
reducing its complexity and thus the chip area that it incurs [8, 10].
OoO cores are known to be complex and incur substantial chip
area. A variety of proposals have been made in the literature to
reduce the design complexity of superscalar processors. Besides
the dynamic instruction selection mechanisms evaluated in this
work, complexity-effective superscalar processors (CESP) [19] steer
chains of dependent instructions to in-order queues that operate
out-of-order with respect to each other. Because instruction steering
stalls when an independent instruction cannot be steered to an
empty queue, CESP yields lower performance compared to FSC,
especially when few queues are deployed for CESP [18].

A couple other microarchitecture proposals leverage readiness
and criticality of instructions to simplify the out-of-order back-end,
similar to the Delay-and-Bypass sOoO proposal [2]. In particular,
the front-end execution architecture [23] promptly executes ready
instructions in the front-end, while steering non-ready instructions
to the out-of-order back-end. Because fewer instructions are steered
to the back-end, it can be made less complex. Instead of execut-
ing from the front-end, long-term parking [22] eagerly allocates
back-end resources for critical instructions while postponing back-
end resource allocation for non-critical instructions for as long as
possible, thereby saving power.

10 CONCLUSION
Assessing the environmental footprint of a hardware design re-
quires a holistic and detailed analysis of its chip area, power, en-
ergy, and performance. This paper contributes: (1) the insight that
conventional PPA analysis coupled with cycle-accurate FPGA simu-
lation enables comprehensively assessing the sustainability impact
of a design; (2) some previously proposed complexity-effective and
power-efficient dynamic instruction selection mechanisms (Casino
and FSC) offer Pareto-optimal sustainability-performance trade-
offs, while others (LSC, Freeway, and DnB) are suboptimal; and
(3) the novelly proposed FSC++ mechanism provides a compelling
sustainable design point reducing the environmental footprint by
around 40% while degrading performance by only 1.7% compared
to an OoO baseline. We hope that this paper inspires and provides
the insights and methodologies for hardware designers to explore
sustainability trade-offs when designing new hardware features.
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