
SOFTWARE—PRACTICE AND EXPERIENCE

Softw. Pract. Exper. 2005; 00:1–33 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

64-bit versus 32-bit Virtual

Machines for Java

Kris Venstermans, Lieven Eeckhout and Koen De Bosschere

Department of Electronics and Information Systems (ELIS), Ghent University,

St.-Pietersnieuwstraat 41, B-9000 Gent, Belgium

{ kvenster,leeckhou,kdb}@ elis. UGent. be

SUMMARY

The Java language thanks its popularity to its platform independence, making it useful

in a lot of technologies ranging from embedded devices to high-performance systems.

The platform independent property of Java, which is visible at the Java bytecode level,

is only made possible thanks to the availability of a Virtual Machine (VM) that needs

to be designed specifically for each underlying hardware platform. More specifically, the

same Java bytecode should run properly on both a 32-bit or a 64-bit VM. In this paper,

we compare the behavioral characteristics of 32-bit versus 64-bit virtual machines using

a large set of Java benchmarks. This is done using the Jikes Research VM as well as

the IBM JDK 1.4.0 production VM on a PowerPC-based IBM machine. By running

the PowerPC machine in both 32-bit and 64-bit mode we are able to compare 32-bit

versus 64-bit VMs. We conclude that the space an object takes in the heap in 64-bit

mode is 39.3% larger on average than in 32-bit mode. We identify three reasons for this:

(i) the larger pointer size, (ii) the increased header and (iii) the increased alignment.

The minimally required heap size is 51.1% larger on average in 64-bit than in 32-bit

mode. From our experimental setup using hardware performance monitors, we observe

that 64-bit computing typically results in a significantly larger number of data cache

misses at all levels of the memory hierarchy. In addition, we also observe that when a

sufficiently large heap is available, the IBM JDK 1.4.0 VM is 1.7% slower on average in

64-bit mode than in 32-bit mode.

key words: Java; Virtual Machine; 64-bit vs. 32-bit computing; performance evaluation; PowerPC

Copyright c© 2005 John Wiley & Sons, Ltd.

2 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

INTRODUCTION

Java applications are becoming increasingly more common on various computing technologies,

ranging from embedded devices to desktop environments to high-performance systems. This is

due to its platform independent nature which is made possible by the availability of a Virtual

Machine (VM) for each specific hardware platform. In other words, the same Java bytecode

can be executed on different hardware environments provided that a VM is available for the

given hardware platform. Nowadays a multitude of VMs exist to support a large variety of

instruction set architectures (ISAs) such as IA-32, IA-64, PowerPC, Alpha, MIPS, Sparc, etc.

Obviously, Java applications should also run on 32-bit as on 64-bit machines.

In this paper we are specifically interested in 32-bit versus 64-bit Java processing and its

impact on performance. This research is motivated by the fact that although the 64-bit world

is not new to a variety of high-end servers and applications, its growing popularity towards

consumer desktop computers will make it the major universe tout court within a few years.

The main reason that the market for consumer applications is running behind, is that this

market is dominated by IA-32 ISA based hardware. However, AMD recently announced 64-

bit hardware extending the IA-32 ISA in its Athlon64 [11] and Opteron [15] microprocessors.

Currently, Intel is also working on 64-bit x86 processors, also called Intel Extended Memory

64 Technology (EM64T) [12]. With the availability of 64-bit hardware in the desktop market,

soon everyone will be confronted with 64-bit applications. So it is important for application

developers, virtual machine designers and computer architects to have a clear understanding

of how different 64-bit Java behaves from 32-bit Java.

In order to compare a 32-bit versus a 64-bit Java environment, we use two VMs, namely

the Jikes Research VM and the IBM JDK 1.4.0 production VM, on a PowerPC-based IBM

POWER4 hardware platform. Both VMs can be run in 32-bit as well as in 64-bit mode on

the same hardware which makes this setup an excellent opportunity to investigate the impact

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 3

of 32-bit versus 64-bit VMs on memory and overall performance. Many speculations have

been made about the impact on performance of 64-bit versus 32-bit computing, however few

quantitative results are available. The speculations being made typically concern the impact

on memory consumption and the impact on execution speed. To the best of our knowledge,

this paper is the first one to investigate the impact of 32-bit versus 64-bit computing in the

context of Java workloads. We study and quantify both the increased memory requirements

due to 64-bit computing and its impact on overall performance.

We show that the space an object takes in the heap increases by 39.3% on average when

using a 64-bit VM versus a 32-bit VM. We identify three reasons for this: (i) the increased

pointer size (64 bits versus 32 bits), (ii) the increased header and (iii) the increased number

of bytes that need to be inserted into the objects for alignment purposes. We also quantify

the increased heap size that is required for Java applications when run in 64-bit mode. To

this end, we define the critical heap size, or the minimum heap size for which near optimal

performance is achieved. From our experimental setup, we conclude that the critical heap size

is 39.5% larger for 64-bit VMs than for 32-bit VMs. Also the minimum heap size for which a

Java application still runs without crashing as a result of not having enough memory, increases

by 51.1%. Finally, we also quantify the impact on memory and overall performance and study

the behavioral characteristics using hardware performance monitors of a 32-bit versus a 64-bit

VM. We conclude that 64-bit computing typically results in a larger number of data cache

misses at all levels in the cache hierarchy. For example, we report a 9.9%, 29.0% and 38.4%

larger number of data cache misses when comparing 64-bit versus 32-bit computing for the

L1, L2 and L3 data caches, respectively. Finally, when considering overall performance, we

conclude that when a sufficiently large heap is available, Java applications run 1.7% slower on

average on a 64-bit VM than on a 32-bit VM.

The observation that 64-bit computing involves increased memory requirements is not

surprising. In fact, the larger data footprint for 64-bit versus 32-bit computing is already

subject of research addressing it, see for example the work done by Adl-Tabatabai et al. [1].

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

4 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

However, as mentioned before there is no prior work with quantitative measurements on the

increased memory requirements of 64-bit versus 32-bit computing for Java applications. In fact,

we are the first to quantify the increase in object and heap size and its impact on memory and

overall performance due to 64-bit computing. As such, we feel that the detailed measurements

presented in this paper are useful for future research attacking the problem of the excessive

memory consumption in 64-bit computing.

The rest of this paper is organized as follows. We first present our experimental setup and

detail on the key differences between 64-bit and 32-bit VMs. We next highlight its impact

on object size and we subsequently quantify and compare the memory requirements of 64-bit

versus 32-bit VMs and its impact on overall performance. Finally, we discuss related work

after which we conclude.

EXPERIMENTAL SETUP

This section describes the experimental setup for this paper. We discuss the virtual machines,

the hardware platform and the benchmarks used throughout this paper.

Virtual machines

In this paper we use two virtual machines, the Jikes Research VM (Jikes RVM) and the IBM

JDK 1.4.0 production VM (IBM VM). The Jikes RVM [2] is an open-source virtual machine,

developed by IBM Research∗. It runs on Linux/IA32, AIX/PowerPC, Linux/PowerPC and

OS X/PowerPC. All these ports are for 32-bit machines, except for the AIX/PowerPC which

was recently ported to 64-bit. The Jikes RVM compiles Java bytecode upon its first invocation

to native code using its baseline compiler. Whenever code is considered to be hot code, the

optimizing compiler will further optimize this code using advanced compiler optimizations. The

∗http://www.ibm.com/developerworks/oss/jikesrvm

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 5

Jikes RVM is itself written in Java. In this paper, we will use 3 garbage collectors (GCs) for

Jikes RVM [5], namely SemiSpace which is the simplest copying GC (worst heap consumption),

MarkSweep which is the simplest non-copying GC (worst collector-specific overhead), and

GenMS (generational MarkSweep), which is the best performing GC of Jikes RVM and which

is in essence a combination of a copying collector (as in SemiSpace) and MarkSweep. Assertion

checking was disabled in all measurements using the Jikes RVM. Recently, Jikes RVM was

extended to support reading the Hardware Performance Monitors per thread [22]. We make

use of this extension for the extraction of GC specific information via the GC thread. In

our measurements we use release 2.3.2, patched with code for a better inter-object alignment

strategy†. This patch will be integrated in the future releases of Jikes RVM, but was not yet

available in the 2.3.2 release.

The IBM JDK 1.4.0‡ VM [21] uses a mixed scheme of interpretation and compilation. It

is a production VM, meaning that it highly optimizes during compilation. The user has the

choice between throughput optimization or pause time optimization. We use both variants in

our measurements. The garbage collection strategy of the IBM JDK 1.4.0 VM is based on a

Mark-Sweep-Compact strategy.

We used these two virtual machines for the following reasons. First, the Jikes RVM has

the important advantage over other VMs of being open-source which allows us to add

instrumentation code to the VM to measure information of interest. This will be done in

this paper to measure for example object size. Second, since porting the Jikes RVM from 32-

bit mode to 64-bit mode for PowerPC was done very recently (as of release 2.3.2, April 2004),

the current 64-bit mode only supports the baseline compiler, i.e. the optimizing compiler is

not supported yet. Because comparing the 64-bit versus the 32-bit Jikes’ baseline compiler

would not have been representative for real environments, we decided to include a production

compiler as well, namely the IBM JDK 1.4.0 VM. Both virtual machines can be run in 32-

†http://www.elis.ugent.be/∼kvenster/patchAlignmentJikes232
‡http://www.ibm.com

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

6 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

Table I. Cache hierarchy of the IBM POWER4.

cache size line size associativity
L1 I-cache 64KiB 128B direct mapped
L1 D-cache 32KiB 128B 2-way set assoc.
L2 unified 1.41MiB 128B 8-way set assoc.
L3 unified 32MiB 512B 8-way set assoc.

bit and 64-bit mode. We believe that for the purpose of quantifying object sizes and related

issues, using the baseline Jikes RVM does not impact the overall conclusions. For reporting

performance numbers, we use the production IBM JDK 1.4.0 VM.

PowerPC platform

The IBM POWER4 [3], on which the hardware measurements in this paper are done, is a 64-

bit microprocessor implementing the PowerPC ISA with two cores on a single chip. Each core

is an 8-issue superscalar out-of-order microprocessor capable of processing over 200 in-flight

instructions at any given time. The POWER4 can be used in a multiprocessor system with

several POWER4 chips on the same motherboard. Our machine however, a 615 pSeries, only

has one single POWER4 chip. The machine has 1GiB§ of RAM. The memory subsystem of

the POWER4 has three levels of cache. Each core has an L1 instruction cache (I-cache) and

L1 data cache (D-cache). The L1 D-cache is a write through cache, which means that all data

stored in L1 is immediately stored through to the L2 cache. The L2 cache is a unified cache

and is shared by the 2 cores on the chip. It is a write back cache, meaning that data is not

immediately written to memory—this is done upon replacement. The L3 cache is designed to

be shared by multiple POWER4 chips. The L3 controller containing the tag arrays are stored

on chip whereas the L3 data arrays are stored off-chip. More details on the cache hierarchy of

the POWER4 can be found in Table I.

§KiB, MiB, etc.: see http://physics.nist.gov/cuu/Units/binary.html

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33
Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 7

The unified TLB (for both instructions and data) has 1024 entries in a 4-way set-associative

structure. The effective to real address translation tables (I-ERAT and D-ERAT) operate as

caches for the TLB. They are organized as 128-entry 2-way set-associative arrays.

The POWER4 has standard pages of 4KiB but also supports large 16MiB pages. In our

measurements we only use 4KiB pages for both the 32-bit and 64-bit VMs. 16MiB pages are

limited in use since they are limited in number (to be provided at boot time of the machine)

and are only accessible for privileged users.

In the evaluation section of this paper we will characterize the behavior of the 32-bit and

64-bit VMs using hardware performance monitors. Current microprocessors are generally

equipped with a set of specialized registers to count a variety of hardware events such as

number of cycles executed, instructions executed, cache misses, branch mispredictions, etc.

The AIX 5.1 operating system provides an application programming interface in the form of

a kernel extension (pmapi library) to access these hardware performance counter values. This

library automatically handles hardware counter overflows and kernel thread context switches.

These performance counters measure both user and kernel activity.

Benchmarks

The benchmark set was constructed from a variety of sources: SPECjvm98, SPECjbb2000,

Java Grande Forum suite and Xalan. Each benchmark is given a short description in Table II.

SPECjvm98¶ is a client-side Java benchmark suite, for which we used the default, s100 input

set. Pseudojbb is a variant of SPECjbb2000‖, a server-side benchmark focusing on the business

logic of a three-tier system. We used increments of 1 warehouse, ranging from 1 to 8 warehouses.

Instead of running for a fixed amount of time as done in standard SPECjbb2000, pseudojbb

processes a fixed amount of work. We have set the transaction parameter to 35,000 units. A

¶http://www.spec.org/jvm98
‖http://www.spec.org/jbb2000

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

8 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

Table II. Benchmarks used in our experimental setup.

Xalan XSLT processor for transforming XML documents into HTML, text, or
other XML document types.

pseudojbb A variant of SPECjbb2000, which is a three-tier transaction system
server benchmark, where the user interaction (first tier) is simulated
by random input selection and the database (third tier) is represented
by a set of binary trees. The benchmark focuses on the business logic
found (middle tier). Pseudojbb runs for a fixed number of transactions
(35,000) whereas SPECjbb2000 runs for a fixed amount of time. The
number of warehouses goes from 1 to 8.

SPECjvm98
202 jess An expert shell system, based on NASA’s CLIPS expert system, solving

a set of puzzles with varying degree of difficulty.
209 db This benchmark makes some database requests on a memory resident

database.
213 javac The JDK 1.0.2 Java to bytecode compiler.
222 mpegaudio A commercial application decompressing MPEG-3 audio files. This

benchmark makes very few allocation requests.
227 mtrt A dual-threaded raytracer program.
228 jack An early version of the JavaCC Java source code parser generator.
Java Grande Forum
search A program solving a connect-4 game, using an alpha-beta pruning

technique. N positions are evaluated. (N = 34, 517, 760)
moldyn Evaluation of an N-body model for particles interacting under a Lennard-

Jones potential in a cubic space. (N = 8, 788)
crypt This benchmark performs IDEA (International Data Encryption

Algorithm) encryption and decryption on an array of N bytes. (N =
50M)

heapSort Sorts an array of N integers using a heap sort algorithm.(N = 25M)
LUFact Solves an N x N linear system using LU factorization followed by a

triangular solve. (N = 2, 000)
SOR This benchmark performs 100 iteration of successive over-relaxation on

a N x N grid. (N = 2, 000)
sparseMatMult A N x N sparse matrix is used for 200 iterations. The sparse matrix

is stored in a compressed-row format with a prescribed sparsity
structure. This benchmarks exercises indirection addressing and non-
regular memory references. (N = 500K)

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 9

very different set of applications are the sequential benchmarks from the Java Grande Forum

suite∗∗. These so-called Grande applications require large amounts of memory, bandwidth

and/or processing power. Examples include computational science and engineering codes, as

well as business and financial models. For each of the selected benchmarks we have chosen the

largest input set available. Finally, we also use Xalan††, an XSLT processor for XML parsing.

32-BIT VERSUS 64-BIT VM

In this section we will highlight some key differences between the 32-bit and 64-bit versions

of the Jikes RVM. Unfortunately, we are unable to verify whether the same differences exist

between the 32-bit and the 64-bit versions of the IBM VM since the source code of the latter

is not available. However, we believe that the differences described below are general enough

to assume that they will also exist in the IBM VM. We identify four key differences: (i) the

extended ISA, (ii) the increased object size due to larger pointers and alignment, (iii) the

increased stack size, and (iv) argument passing.

64-bit ISA

Basically the 64-bit PowerPC ISA is a superset of the 32-bit ISA. Only 64-bit applications can

make use of the 64-bit ISA. The 64-bit ISA includes additional instructions such as arithmetic

operations on 64-bit integer values, loading and storing 64-bit values to and from memory,

etc. This can be beneficial for applications working on 64-bit quantities, since 32-bit machines

would require a sequence of instructions to compute the same result. In these cases, the 64-bit

VM will need fewer native instructions. However, in other cases, the 64-bit VM might require

more native instructions than the 32-bit VM. For example, manipulating 32-bit offsets in 64-bit

computing needs additional operations to sign/zero extend offsets.

∗∗http://www.javagrande.org
††http://xml.apache.org/xalan-j/index.html

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

10 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

Increased object size

There are three reasons why objects as they are allocated in the heap are larger in a 64-bit VM

than in a 32-bit VM. The first reason obviously is the increased size of the pointers, namely

64 bits instead of 32 bits. The second reason concerns the header. The default object model

in 32-bit Jikes uses 2 header words (32 bits each) and 1 extra header word for array objects

containing the array’s length (also 32 bits). These header words double in size in 64-bit Jikes†.

However, we observed there is room for improvement because 64-bit Jikes does not fully use

all words at all times, e.g. array length needs only 4 bytes, 4 out of 8 bytes in the status word

are only used for copying GCs, and the Type Information Block (TIB) word could possibly be

compressed. The third reason for the increased object size is the fact that additional bytes need

to be allocated for alignment. On 64-bit platforms, one typically wants references to be aligned

on 8-byte boundaries, whereas in 32-bit mode, alignment on 4-byte boundaries is sufficient.

Note that 64-bit fields (in both 32-bit and 64-bit mode) will get aligned on 8-byte boundaries.

This implies the possible existence of a hole (e.g. an unused padding field of 4 bytes) inside an

object; in the remainder of this paper, we will refer to this padding as intra-object alignment.

In general, all previous reasons cause the object size to increase when used in 64-bit mode and

they will potentially impact e.g. cache and TLB behavior.

Increased stack size

The sizes for the different Java types when used as object fields in Jikes RVM, i.e. when

allocated in the heap, are listed in Table III in the ‘field size’ column. This is the same in

32-bit mode as in 64-bit mode, except for the ‘reference’ and ‘returnAddress’ types which are

addresses. When pushing and popping these Java types on/off the operand stack, a different

number of bytes will be allocated and de-allocated. As shown in the ‘size on stack’ column in

†The first two words effectively double in size. The array length field always takes 4 bytes, but the resulting

20 bytes in 64-bit mode need 4 bytes in addition for alignment.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 11

Table III. Java types and their sizes in number of bits when used in the heap (‘field
size’ column) and when used on the stack (‘size on stack’ column).

32-bit platform 64-bit platform
Field Size on Field Size on

Java types size stack size stack
boolean 32 32 32 64
byte 32 32 32 64
char 32 32 32 64
short 32 32 32 64
int 32 32 32 64
float 32 32 32 64
reference 32 32 64 64
returnAddress 32 32 64 64
long 64 64 64 128
double 64 64 64 128

Table III, the size of the Java types doubles for all Java types, when comparing the 64-bit VM

to the 32-bit VM. As such, the amount of stack space needed in 64-bit mode is twice as much

as in 32-bit mode. Note that the baseline compiler in the Jikes RVM uses the operand stack

excessively for storing intermediate values—the baseline compiler nearly literally translates

the Java bytecode stack processing to native stack processing. The reason that all types take

twice as much stack space is due to the fact that all Java types use a fixed number of stack

slots (requirement for the Java bytecode) and a stack slot needs to be able to host an address,

whose size doubles in 64-bit mode. A detailed discussion of this issue however is out of the

scope of this paper. We refer the interested reader to [23] for more details.

Argument passing

Conventions for argument passing may also cause differences between 32-bit and 64-bit VMs.

In Jikes RVM’s baseline compiler, 13 floating point registers and 8 general purpose registers

can be used for argument passing. Passing a long in 32-bit mode requires 2 general purpose

registers, but requires only 1 register in 64-bit mode, leaving more registers available for other

arguments/purposes.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

12 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

Table IV. Average object size (in bytes) in 32-bit and 64-bit VM mode for all objects, array objects
and non-array objects.

overall array objects non-array objects
Benchmark 32-bit 64-bit increase 32-bit 64-bit increase 32-bit 64-bit increase
Xalan 106.1 134.5 26.7% 208.5 250.7 20.3% 24.3 41.7 71.4%
JGFCrypt 3124.0 3238.4 3.7% 7563.2 7818.1 3.4% 25.9 42.7 64.9%
JGFHeapSort 2152.5 2267.9 5.4% 5201.4 5458.4 4.9% 25.9 42.7 64.8%
JGFLUFact 760.7 866.5 13.9% 1724.0 1947.3 13.0% 25.9 42.7 64.8%
JGFMolDyn 134.6 219.6 63.1% 306.9 513.3 67.3% 35.8 51.1 42.7%
JGFSOR 767.3 880.2 14.7% 1737.1 1975.6 13.7% 25.9 42.6 64.8%
JGFSearch 44.3 52.5 18.4% 44.3 52.5 18.4% 25.9 42.6 65.0%
JGFSparseMatmult 1110.5 1226.8 10.5% 2665.5 2924.5 9.7% 25.8 42.6 64.9%
202 jess 35.8 59.0 65.0% 52.4 97.7 86.6% 27.4 39.5 44.2%
209 db 26.7 50.3 88.5% 202.2 360.4 78.3% 16.5 32.3 95.9%
213 javac 35.0 53.0 51.7% 58.1 78.7 35.4% 24.4 41.3 69.4%
222 mpegaudio 111.1 172.1 55.0% 233.4 356.6 52.8% 24.1 40.9 69.7%
227 mtrt 23.3 33.9 45.6% 34.5 50.7 47.1% 20.4 29.5 44.9%
228 jack 39.1 56.1 43.7% 53.0 71.6 35.1% 25.5 41.0 61.1%

pseudojbb 32.8 47.7 45.1% 42.3 55.9 32.2% 27.0 42.5 57.6%
avg 36.7% 34.6% 63.1%

Table V. Average object size (in bytes) in 32-bit and 64-bit VM mode for all objects, array objects
and non-array objects in the default object space(s).

overall array objects non-array objects
Benchmark 32-bit 64-bit increase 32-bit 64-bit increase 32-bit 64-bit increase
Xalan 67.8 85.1 25.6% 122.4 139.8 14.3% 24.2 41.6 71.6%
JGFCrypt 55.7 71.8 29.0% 98.6 113.9 15.5% 25.8 42.6 65.0%
JGFHeapSort 55.2 71.3 29.3% 97.3 112.6 15.8% 25.8 42.6 65.0%
JGFLUFact 55.7 71.4 28.4% 98.6 113.0 14.6% 25.8 42.6 64.9%
JGFMolDyn 59.6 75.0 25.8% 101.1 116.7 15.3% 35.8 51.1 42.8%
JGFSOR 55.1 71.2 29.1% 97.3 112.3 15.4% 25.8 42.6 65.0%
JGFSearch 44.0 52.0 18.2% 44.0 52.0 18.2% 25.8 42.6 65.1%
JGFSparseMatmult 55.0 71.1 29.5% 96.8 112.1 15.8% 25.8 42.5 65.1%
202 jess 35.0 57.6 64.6% 50.1 93.5 86.6% 27.4 39.5 44.2%
209 db 18.1 33.8 86.3% 46.6 59.4 27.5% 16.5 32.3 95.9%
213 javac 33.9 50.9 50.0% 54.8 71.9 31.2% 24.4 41.3 69.4%
222 mpegaudio 59.4 75.8 27.6% 109.2 125.0 14.4% 24.0 40.8 69.9%
227 mtrt 22.4 32.2 44.0% 29.9 42.5 41.9% 20.4 29.5 44.9%
228 jack 38.2 54.6 43.0% 51.3 68.6 33.8% 25.5 41.0 61.1%

pseudojbb 32.7 47.4 45.1% 41.8 55.2 32.0% 27.0 42.5 57.6%
avg 38.4% 26.2% 63.2%

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 13

ALLOCATION BEHAVIOR

In this section, we quantify the allocation behavior and the increase in memory requirements

when comparing the 64-bit VM versus the 32-bit VM. We first measure the increase in average

object size. We subsequently discuss how this affects the object size distribution. And finally,

we quantify the increase in heap size.

Average object size

As pointed out in the previous section, the object size increases when comparing 64-bit versus

32-bit because of three reasons: (i) 64-bit versus 32-bit pointers, (ii) the header doubling in size,

and (iii) additional padding for intra-object alignment. Before presenting our measurements on

the object size, it is interesting to make the following comment. Since the Jikes RVM is itself

written in Java, our measurements include application objects as well as objects supporting

the internals of the RVM. All VM-allocated data are heap objects and these objects are not

separated from the application data. In previous work, authors typically only reported object

sizes for objects belonging to the application and not the virtual machine, see for example [8].

As a result of that, the average object sizes reported in those papers typically are smaller

than the ones presented in this paper. This difference is due to the fact that a VM typically

allocates large structures, e.g. stacks, which increase the average object size. This relates to

all data presented in this paper.

Table IV presents the average object size in 32-bit and 64-bit mode along with its relative

increase. This is done for all objects, array objects and non-array objects. For non-array objects,

we observe an increase in size from 32-bit to 64-bit that is nearly constant over all benchmarks.

The average increase is around 16 bytes. Recall from the previous section that for non-array

objects 8 of these 16 bytes come from the increased header. The remaining increase thus comes

from alignment and larger pointers in the fields of the object—this suggest that a non-array

object has one or two references on average among its fields. The average relative increase in size

for non-array objects is 63.1%. For array objects, the picture is different (34.6% on average):

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

14 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

some benchmarks have small object size increases (3.4% for JGFCrypt) whereas others suffer

from large object size increases (86.6% for jess). This suggests that most arrays in jess contain

references (which all double in size) whereas for JGFCrypt, most arrays do not contain references

(those only have a header increase). When considering all objects (both array and non-array

objects), we observe an average object size increase of 36.7%. The average increase is larger

for SPECjvm98 (58.2%) than for Java Grande Forum (18.5%). It is also interesting to note

that the Java Grande Forum benchmarks typically have larger objects than the SPECjvm98

benchmarks. This is due to the frequent use of large numeric arrays in the JGF benchmarks.

Until now, we considered all objects, both small and large objects. In the following set of

measurements we focus on small objects. The reason for doing this is that small objects and

their placement can be manipulated easily by the memory allocator and the garbage collector.

Previous work has shown that data layout is an important issue for exploiting spatial and

temporal locality—for example, putting objects that are related to each other on the same

cache line [7]. The increase in small object sizes can thus affect the performance of such

optimizations. Distinguishing between small and large objects can be easily done in Jikes

since it maintains a Large Object Space and an Immortal Space next to (a) collector-specific

space(s) (two spaces for the SemiSpace and GenMS collectors and one space for the MarkSweep

collector). The Large Object Space, as its name suggests, is used for allocating objects that

are larger than a given threshold which is 8 KiB for the MarkSweep GC and the GenMS GC

and 16 KiB for the SemiSpace collector. The Immortal Space contains objects that should not

be collected, i.e. specific RVM objects. Table V shows the average object size in 32-bit and

64-bit mode solely for objects allocated in the collector-specific space(s), i.e. objects in the

Large Object Space and Immortal Space are excluded from these measurements. We observe

that the object sizes in the collector-specific space are indeed smaller than the average object

size presented in Table IV. This is due to the array objects since for non-array objects, there

is no significant difference between Tables IV and V. Array objects that are allocated in the

default space show a nearly constant increase in the object size when comparing 32-bit versus

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 15

64-bit mode, namely 16.1 bytes on average. Of these, 12 bytes will go to the (aligned) header

(see previous section); the remainder goes to alignment and references—by consequence, this

suggests the number of reference arrays in this space is small and/or the reference arrays are

very small in size. In general, the average object size increases by 38.4%. In terms of cache

lines, an IBM POWER4 L1 D-cache line can hold 2.8 and 2.1 objects on average in 32-bit and

64-bit mode, respectively.

Object size distribution

In the previous section we distinguished objects in the default space versus objects in the Large

Object Space and the Immortal Space to get an estimate of small versus large objects. We

now go one step further by studying the object size distribution. This will allow us to study

the impact of 64-bit versus 32-bit mode for different object sizes. Figures 1 and 2 present

two example object size distributions for jess and pseudojbb, respectively—similar results were

obtained for the other benchmarks. Within each figure, the three left graphs show the object

size distribution for the 32-bit mode; the three right graphs are for the 64-bit mode. The top

graphs in each figure show the object size distribution for all objects (array plus non-array

objects); the middle graphs are for array objects and the bottom graphs are for non-array

objects. We observe that non-array objects are typically smaller than 100 bytes, even in 64-bit

mode. Arrays have a more widespread size distribution: the tail of their distribution is heavier

than for non-array objects. For some benchmarks, the object size distribution shows peaks

for larger object sizes, e.g. pseudojbb has a fairly large amount of arrays with sizes between

600 and 1,000 bytes, see Figure 2. For several Java Grande Forum benchmarks, we observed

arrays of several thousands of bytes. If we compare the 32-bit mode versus the 64-bit mode

object size distributions, we conclude that, as expected, the distribution shifts towards larger

object sizes. This is particularly true for the non-array objects. In addition, the distribution

seems to change its shape. This is because not all objects increase in size by a fixed number of

bytes; some objects double in size whereas others only increase incrementally. Note that the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

16 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

ob

je
ct

s
al

lo
ca

te
d

object size (B)

jess MS 32-bit

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

ob

je
ct

s
al

lo
ca

te
d

object size (B)

jess MS 64-bit

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000 1200

ob

je
ct

s
al

lo
ca

te
d

object size (B)

jess MS 32-bit, array objects, limited x-range

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000 1200

ob

je
ct

s
al

lo
ca

te
d

object size (B)

jess MS 64-bit, array objects, limited x-range

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

ob

je
ct

s
al

lo
ca

te
d

object size (B)

jess MS 32-bit, scalar objects, full x-range

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

ob

je
ct

s
al

lo
ca

te
d

object size (B)

jess MS 64-bit, scalar objects, full x-range

Figure 1. Object size distribution for jess, from top to bottom: all
objects, array objects and non-array objects. The left graphs are for
32-bit mode, the right graphs are for 64-bit mode. The horizontal axes
are shown on a log scale for the top graphs and on a linear scale for the

middle and bottom graphs.

increased object size does not necessarily needs to be a disadvantage for 64-bit mode versus

32-bit mode. For example, consider the case that the object size in 32-bit mode is smaller than

the Large Object Space threshold and the object size in 64-bit mode is larger than the Large

Object Space threshold. In that case the object in 64-bit mode will be allocated in the Large

Object Space whereas the object will be allocated in the default space in 32-bit mode. The

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 17

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07

ob

je
ct

s
al

lo
ca

te
d

object size (B)

pseudojbb MS 32-bit

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07

ob

je
ct

s
al

lo
ca

te
d

object size (B)

pseudojbb MS 64-bit

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 200 400 600 800 1000 1200

ob

je
ct

s
al

lo
ca

te
d

object size (B)

pseudojbb MS 32-bit, array objects, limited x-range

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 200 400 600 800 1000 1200

ob

je
ct

s
al

lo
ca

te
d

object size (B)

pseudojbb MS 64-bit, array objects, limited x-range

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

ob

je
ct

s
al

lo
ca

te
d

object size (B)

pseudojbb MS 32-bit, scalar objects, full x-range

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

ob

je
ct

s
al

lo
ca

te
d

object size (B)

pseudojbb MS 64-bit, scalar objects, full x-range

Figure 2. Object size distribution for pseudojbb, from top to bottom:
all objects, array objects and non-array objects. The left graphs are for
32-bit mode, the right graphs are for 64-bit mode. The horizontal axes
are shown on a log scale for the top graphs and on a linear scale for the

middle and bottom graphs.

potential benefit for an object being allocated in the Large Object Space is that it will not

be copied by the garbage collector. Obviously, this is only an advantage in case of a copying

collector; a non-copying collector does not copy objects at all. From our measurements, we

conclude however that this effect is marginal: these objects represent no more than 0.06% of

all bytes allocated.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33
Prepared using speauth.cls

18 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

Table VI. Object size, increase due to inter-object alignment and object
heap size in 32-bit and 64-bit mode for the MarkSweep collector. The
right most columns shows the average increase in heap size when going

from 32-bit mode to 64-bit mode.

32-bit 64-bit
object +inter-object object +inter-object

Benchmark size alignment in heap size alignment in heap increase
Xalan 106.2 106.2 120.6 134.5 137.7 152.0 26.1%
JGFCrypt 3124.0 3124.2 3134.4 3238.4 3241.4 3251.5 3.7%
JGFHeapSort 2152.5 2152.7 2162.7 2267.9 2270.8 2280.7 5.5%
JGFLUFact 760.7 761.1 784.3 866.5 869.5 892.2 13.8%
JGFMolDyn 134.6 135.3 146.2 219.6 222.2 231.7 58.5%
JGFSOR 767.3 767.7 791.4 880.2 883.1 906.4 14.5%
JGFSearch 44.3 44.3 44.9 52.5 56.5 57.4 27.9%
JGFSparseMatmult 1110.5 1110.7 1120.7 1226.8 1229.8 1239.8 10.6%
202 jess 35.8 36.4 37.4 59.0 61.7 63.9 70.9%
209 db 26.7 26.7 27.5 50.3 50.9 51.7 88.0%
213 javac 35.0 35.0 37.0 53.0 55.8 57.9 56.5%
222 mpegaudio 111.1 111.2 121.7 172.1 175.2 185.5 52.4%
227 mtrt 23.3 23.3 23.9 33.9 38.3 39.1 63.7%
228 jack 39.1 39.2 43.1 56.1 60.6 62.5 45.1%

pseudojbb 32.8 33.3 35.2 47.7 51.1 53.6 52.1%
avg 39.3%

Heap growth

Even more interesting when evaluating a VM, is not the object size per se as done in the

previous subsections, but the number of bytes allocated for an object in the heap which we

will call the object heap size. This metric is very collector (and implementation) specific. The

object heap size is generally larger than the object size. A first source of overhead is inter-

object alignment—not to be confused with the intra-object alignment as discussed in previous

sections. Inter-object alignment comes from aligning the object pointer in the allocated heap

space; intra-object alignment comes from aligning the fields to the object pointer. A second

source of overhead comes from the memory manager. The memory manager can result in

different kinds of overhead. A memory manager typically keeps track of the allocated objects

in memory blocks (a number of contiguous memory pages); this information is maintained in

a data structure on the given memory block. Also, the memory manager might not be able to

completely fill up a memory block with allocated objects due to the fact that the number of

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 19

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 0 50000 100000 150000 200000 250000 300000 350000

he
ap

si
ze

 M
iB

allocations (x100)

JGFSearch B MS 600MiB Heap

32-bit
64-bit

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 0 20000 40000 60000 80000

he
ap

si
ze

 M
iB

allocations (x1000)

pseudojbb MS 600MiB Heap

32-bit
64-bit

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0 10000 20000 30000 40000 50000 60000 70000

he
ap

si
ze

 M
iB

allocations (x100)

mtrt MS 200MiB Heap

32-bit
64-bit

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

he
ap

si
ze

 M
iB

allocations (x100)

jack MS 200MiB Heap

32-bit
64-bit

Figure 3. Heap growth for MarkSweep collector as a function of time
(measured per allocation site).

available bytes is smaller than the number of bytes needed for allocating new objects (external

fragmentation). Finally, some memory managers use fixed-sized cells for allocating objects.

When the object size does not match the cell size used, an additional overhead incurs, i.e. a

number of bytes remain unused in a cell (internal fragmentation). Note that the additional

overhead due to the memory manager is very much dependent on the given memory manager.

To quantify the extra heap overhead, we first consider the MarkSweep collector in Jikes RVM

because it is the collector with the worst overhead of all 3 collectors used. The MarkSweep

collector in Jikes RVM uses cells per page and a data structure to keep track of used and unused

cells per page. The results are shown in Table VI: the object size, the additional overhead due

to inter-object alignment and the additional overhead due to the memory manager (the object

heap size). The average increase in heap size when going from 32-bit mode to 64-bit mode is

39.3%, which is larger than the increase in object size (36.7% see Table IV), this is due to

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

20 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 0 50000 100000 150000 200000 250000 300000 350000

he
ap

si
ze

 M
iB

allocations (x100)

JGFSearch B SS 600MiB Heap

32-bit
64-bit

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 0 20000 40000 60000 80000

he
ap

si
ze

 M
iB

allocations (x1000)

pseudojbb SS 1000MiB Heap

32-bit
64-bit

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0 10000 20000 30000 40000 50000 60000 70000

he
ap

si
ze

 M
iB

allocations (x100)

mtrt SS 200MiB Heap

32-bit
64-bit

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

he
ap

si
ze

 M
iB

allocations (x100)

jack SS 200MiB Heap

32-bit
64-bit

Figure 4. Heap growth for SemiSpace collector as a function of time
(measured per allocation site).

the bigger alignment cost in 64-bit mode. During our analysis of the additional overhead due

to inter-object alignment, we observed that the memory allocator in 64-bit Jikes RVM could

be improved. Our improved implementation (see also the section on our experimental setup

for more details) reduced this inter-object alignment from 9.9 bytes to 3.1 bytes on average

in 64-bit mode—we used the improved memory allocator in our measurements. The extra

overhead of the memory manager is almost the same number of bytes when comparing 64-bit

versus 32-bit. The overhead of the memory manager is 4.2% and 2.7% in 32-bit and 64-bit

mode, respectively. As mentioned above, the MarkSweep collector shows the worst overhead

of all collectors considered here. The SemiSpace collector shows the lowest memory manager

overhead: only 1.1% and 0.9% in 32-bit and 64-bit mode, respectively, which is significantly

smaller than for the MarkSweep collector. For the generational GenMS collector, the extra

overhead is not constant over time, because the generational collector copies objects from the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 21

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 50000 100000 150000 200000 250000 300000 350000

he
ap

si
ze

 M
iB

allocations (x100)

JGFSearch B genMS 600MiB Heap

32-bit
64-bit

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 0 20000 40000 60000 80000

he
ap

si
ze

 M
iB

allocations (x1000)

pseudojbb genMS 600MiB Heap

32-bit
64-bit

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 10000 20000 30000 40000 50000 60000 70000

he
ap

si
ze

 M
iB

allocations (x100)

mtrt genMS 200MiB Heap

32-bit
64-bit

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

he
ap

si
ze

 M
iB

allocations (x100)

jack genMS 200MiB Heap

32-bit
64-bit

Figure 5. Heap growth for GenMS collector as a function of time
(measured per allocation site).

nursery to the mature space. In each of the spaces a different collector is used: the nursery

uses the SemiSpace collection strategy whereas the mature space uses MarkSweep. Objects

in the nursery will thus experience the low overhead of the SemiSpace collector; objects in

the mature space will experience the higher overhead of the MarkSweep collector. As such,

the average overhead of the GenMS collector lies somewhere between the SemiSpace and

MarkSweep collectors.

Table VI provided the average size per allocated object, i.e. the size for each allocated object

is used to compute the average object heap size. However, the actual heap only contains live

objects (or more correctly, the objects not discovered to be dead yet). By consequence, the

actual heap growth when comparing 64-bit vs. 32-bit computing might be different than the

average 39.3% object heap size reported above. The Java heap grows until its size reaches a

given threshold, after which a GC occurs. A GC tries to shrink down the heap to a lower size;

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

22 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

at the same time the threshold might increase. The next time a GC occurs the heap might grow

larger than the previous time, because the GC threshold value is dynamically adjusted—but

never exceeds the maximum heap size. We now take a look at the growing/shrinking behavior

of the heap as a function of time. In Figures 3, 4 and 5, the heap size is shown as a function

of time measured by the number of allocations for the MarkSweep, the SemiSpace and the

GenMS collector, respectively. This is done for four benchmarks, search, pseudojbb, mtrt and

jack. In all these experiments the maximum heap size was set large enough so that the actual

heap size never reaches this maximum. As expected, the heap size in 64-bit mode never reaches

twice the 32-bit mode heap size, however, in several cases, for example for jack and mtrt, we

observe that the 64-bit VM uses nearly twice as much heap size as the 32-bit VM.

For the SemiSpace and the MarkSweep collectors, we observe that the 32- and 64-bit VMs

typically exhibit similar growing/shrinking behavior, except for the beginning, where the 64-bit

version needs 1 or 2 extra GCs. These extra GCs could be easily avoided by simply setting the

initial heap size twice the value in 32-bit mode. We did not set different initial heap sizes for

32- and 64-bit mode though. The heap behavior for GenMS collector is slightly different. We

can draw the same conclusion if we only take into account the mature space collections. The

GenMS collector does trigger a large number of collections in the nursery without adjusting

the heap threshold. Only after a mature space collection is triggered, the heap threshold can

increase. This leads to a much higher number of nursery collections in 64-bit mode.

We now quantify the critical heap size. The critical heap size is defined as the minimum

heap size for which the given benchmark reaches the same execution time as an almost infinite

maximum heap size, i.e. no additional GCs are needed compared to an infinite maximum

heap size. We computed the critical heap size by doing multiple measurements for different

maximum heap sizes. Then we determine the critical heap size Hc for which we do not observe

more than 2% extra GC-time compared to an infinite maximum heap size. In some cases

a value higher than Hc occasionally takes more than 2% extra GC-time. We did not take

into account these spurious values when determining Hc. As an example, Figure 6 shows the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 23

Table VII. Minimal heap size (Hm) and critical heap size (Hc)
measured in MiB for the SemiSpace collector.

32 bit 64 bit
Benchmark Hm Hc Hm Hc

202 jess 12 61 22 113
209 db 24 51 44 104
213 javac 26 76 49 118
222 mpegaudio 9 17 17 21
227 mtrt 22 78 44 159
228 jack 11 68 19 119

Xalan 19 42 31 57
JGFCrypt 150 150 156 156
JGFHeapSort 102 102 108 109
JGFLUFact 68 68 74 74
JGFSOR 68 68 74 74
JGFSparseMatMult 54 54 60 60
JGFSearch 12 101 18 160
JGFMoldyn 9 14 15 18
pseudojbb 289 692 358 662

Table VIII. Minimal heap size (Hm) and critical heap size (Hc)
measured in MiB for the GenMS collector.

32 bit 64 bit
Benchmark Hm Hc Hm Hc

202 jess 10 20 17 28
209 db 16 24 29 47
213 javac 18 23 34 66
222 mpegaudio 8 17 14 20
227 mtrt 14 20 28 31
228 jack 9 20 16 27

Xalan 16 25 23 35
JGFCrypt 149 149 155 155
JGFHeapSort 102 102 107 107
JGFLUFact 37 37 43 43
JGFSOR 37 37 43 43
JGFSparseMatMult 52 52 58 58
JGFSearch 11 20 17 20
JGFMoldyn 7 11 13 17
pseudojbb 171 494 244 501

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

24 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

 1e+09

 1e+10

 1e+11

 1e+12

 20 40 60 80 100 120 140 160 180 200

G
C

-ti
m

e

heapsize (MiB)

jess SS 64-bit

GC-time for different heap sizes
Critical Heap Size

 1e+11

 1e+12

 350 400 450 500 550 600 650 700 750 800

G
C

-ti
m

e

heapsize (MiB)

pseudojbb SS 64-bit

GC-time for different heap sizes
Critical Heap Size

Figure 6. Defining the critical heap size Hc for jess and pseudojbb in 64-bit mode. The
execution time spent in GC is shown as a function of the heap size.

execution time as a function of the maximum heap size along with the critical heap size Hc

for two benchmarks jess and pseudojbb‡on 64-bit. For all the benchmarks, we computed the

critical heap size Hc for the SemiSpace collector (worst heap usage) as well as for the GenMS

collector (best heap usage), see Tables VII and VIII. The critical heap size increases by 39.5%

on average when comparing 64- versus 32-bit computing. Tables VII and VIII also show the

minimal heap size Hm per benchmark. The minimal heap size is defined as the heap size for

which the given benchmark does not crash because of not having enough memory. We observe

that the minimal heap size Hm increases by 51.1% on average when comparing 64-bit versus

32-bit mode. It is interesting to note that the minimal heap size increases more than the critical

heap size does when comparing 64-bit versus 32-bit. We can conclude from this that especially

long-lived objects will increase in size when going from 32-bit mode to 64-bit mode.

Obviously, running a benchmark with a maximum heap size that is lower than the critical

heap size, results in an increase in garbage collections. In some cases, the overall execution

time might even get dominated by the time spent during collection. Figure 7 shows the heap

‡ In contrast to the other benchmarks, Hc for pseudojbb is larger on 32-bit than on 64-bit. This is because we

only have 1GiB of RAM and for bigger heap sizes we noticed more swapping. As a result Hc is pushed more

towards a smaller value in 64-bit mode. The real Hc for systems with more RAM available will be higher.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 25

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

he
ap

si
ze

 M
iB

allocations (x100)

jack SS Heap=Hc32 (68MiB)

32-bit
64-bit

Figure 7. Heap growth for jack as a
function of time (measured per allocation
site). Maximum heap size is set to 68MiB,

the critical heap size in 32-bit mode.

behavior of jack when run on 32- and 64-bit VMs with the SemiSpace collector; in these

experiments the maximum heap size was set to the critical heap size under 32-bit mode, i.e.

68MiB. Under 64-bit mode VM we measure 22 collections. This is significantly more than the

16 collections that occur when running under the 64-bit critical heap size.

OVERALL PERFORMANCE

In this section, we quantify the impact on execution time when comparing 64-bit versus 32-bit

computing. We then explain the measured differences by discussing other metrics such as (i)

the number of instructions executed, (ii) the number of cache misses and (iii) the number of

TLB misses. This is done using the hardware performance monitors. In these measurements

we use the IBM production VM under the two optimization schemes, maximum throughput

and minimum average pause time.

Execution time

Figure 8 shows the ratio in execution time for 64-bit mode compared to 32-bit mode. The

left graph is for the maximum throughput optimization scheme; the graph on the right for the

minimum pause time scheme. Values higher than 1 thus indicate 64-bit mode is slower than 32-

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

26 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

Figure 8. Ratio in execution time between 64-bit
and 32-bit mode.

Figure 9. Ratio in the number of executed
instructions between 64-bit and 32-bit mode.

bit mode execution. In general, 64-bit mode is slower than 32-bit mode. For some benchmarks,

we observe performance decreases up to 20% (jess under maximum throughput), 28% (db

under maximum throughput), 35% (db under minimum pause time) and 47% (JGFCrypt). For

other benchmarks, 64-bit is faster than 32-bit computing, for example JGFSearch (40%), xalan

(35%) and jack (32%). However, nearly half the benchmarks are unaffected by 64- vs. 32-bit

computing or experience a small performance decrease. On average, the IBM VM is 1.7%

slower in 64-bit mode than in 32-bit mode, mainly due to the larger memory footprint (see

the next subsections about data memory performance). In the following subsections we will

provide explanations for the observed behavior. The mean values of ratios are calculated as a

geometric mean.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 27

Figure 10. Ratio in the number of L1 D-cache
misses between 64-bit and 32-bit mode.

Number of instructions executed

Figure 9 quantifies the ratio of executed instructions in 64-bit mode versus 32-bit mode.

For most benchmarks, this ratio is close to 1, with a slight increase for most benchmarks

in 64-bit mode. On average however, we observe a decrease of 5.0%. Four benchmarks,

namely xalan, JGFSearch, JGFCrypt and jack are behaving differently from the rest. These

four benchmarks have a significantly lower dynamic instruction count under 64-bit mode than

under 32-bit mode. From a detailed analysis we discovered that JGFCrypt and JGFSearch

perform a large number of arithmetic operations on longs. As such, they can benefit from

the 64-bit instructions available in 64-bit mode. For the other two benchmarks, xalan and

jack, the lower dynamic instruction count is only observed for the pause time optimization

scheme; for the maximum throughput optimization scheme, the dynamic instruction count is

nearly equal under 32- and 64-bit computing. This suggests that the pause time optimization

scheme executes significantly less instructions in the garbage collector for these benchmarks.

The significantly smaller dynamic instruction count explains the better performance under

64-bit mode for JGFSearch, xalan and jack. For JGFCrypt on the other hand, we measured a

higher number of branch mis-predictions and more instruction cache misses in 64-bit mode, so

that the smaller dynamic instruction count does not reflect itself in better performance.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

28 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

Figure 11. Ratio in the number of L2 D-cache
misses between 64-bit and 32-bit mode.

Figure 12. Ratio in the number of L3 D-cache
misses between 64-bit and 32-bit mode.

Data cache misses

In this section as well as in the next subsection we will focus on the memory system performance

of the data stream only. We do not consider the instruction stream because a larger variability

between 64-bit and 32-bit processing was observed in the data stream than in the instruction

stream. We first study the performance of the data caches; in the next subsection we discuss

D-TLB behavior. Figures 10, 11 and 12 show the ratio between 64-bit mode and 32-bit mode

in the number of D-cache misses at the L1, L2 and L3 level, respectively. A value greater than

1 indicates that 64-bit mode results in an increased number of D-cache misses compared to

32-bit mode. Note that we use the number of misses and not (the commonly used) miss rate or

misses per instruction as our metric. This is because miss rate and misses per instruction are

related to the number of memory accesses and the number of instructions, respectively, and

these denominators are not equal under 32-bit and 64-bit mode. Given the increased object

size, the increased alignment, and by consequence an increased heap size, we expect that 64-

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 29

Figure 13. Ratio in the number of D-TLB misses
between 64-bit and 32-bit mode.

bit VMs will have an increased number of D-cache misses over 32-bit VMs. Figures 10, 11

and 12 show that most benchmarks indeed experience an increase in the number of misses. On

average the increase is 9.9%, 29.0% and 38.4% for the L1, L2 and L3 caches, respectively. Note

that most Java Grande Forum benchmarks have nearly the same number of misses in 64-bit

mode as in 32-bit mode on all cache levels. The SPECjvm98 benchmarks on the other hand,

generally have more cache misses in 64-bit mode (see e.g. at the L2 cache level with increases

ranging from 20% to 67%). This can be explained by the fact that the JGF benchmarks show

relatively small object size increases compared to SPECjvm98 between 64-bit mode and 32-

bit mode (see Table IV). As we discussed earlier, JGF benchmarks have large numeric data

structures and SPECjvm98 benchmarks have more pointer-rich data structures. Note that

especially SPECjvm98’s db suffers in terms of L3 cache misses in 64-bit mode: an increase of

more than a factor 4 in the number of misses. This can be explained in part by the fact that db

experiences the highest heap object size increase (88.5%) as reported in Table IV. This high

increase in data cache misses explains the higher than 30% performance degradation for db as

observed when comparing 64-bit versus 32-bit computing.

D-TLB performance

Figure 13 shows the ratio of D-TLB misses in 64-bit mode versus 32-bit mode. Again, a value

greater than 1 denotes an increase in the number of D-TLB misses in 64-bit mode over 32-bit

mode. Due to the larger object sizes in 64-bit mode, we expect more pages will get accessed,

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

30 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

and thus we would expect more TLB misses due to an expected increase in the number of

conflicts. We observe that the number of D-TLB misses for the IBM VM remains constant for

most benchmarks. For several benchmarks we observe a decrease, for example xalan, JGFsearch,

mpegaudio and mtrt; for other benchmarks we observe an increase, for example JGFCrypt, jess,

db and pseudojbb. On average we observe a(n) (unexpected) decrease in DTLB-misses of 13.8%

in 64-mode compared to 32-bit mode. For the throughput optimized VM the decrease is only

6.2% on average, while the minimum pause time optimized VM has a decrease of 20.8% on

average.

RELATED WORK

As we stated in the introduction, to the best of our knowledge there is no prior work on

comparing 64-bit versus 32-bit Java workloads. However, several studies have been done

on characterizing the memory allocation behavior and memory system performance of such

workloads. All these studies were done on one particular platform, either 32-bit or 64-bit—and,

as far as we can verify this statement, most of them (if not all) are done on a 32-bit platform.

Characterizing memory behavior

The study that is probably most related to this work, is the work done by Dieckmann and

Hölzle [8] in which they characterize the allocation behavior of SPECjvm98 benchmarks.

They measure the heap size as a function of time. They quantify heap composition, i.e. the

differentiation between array and non-array objects in the heap. And they also compute object

size and object alignment.

Shuf et al. [20] characterize the memory behavior of Java workloads. They measure for

example the distribution of heap accesses over different types such as object fields, arrays and

virtual method tables. In addition, they also measure cache miss rates and TLB miss rates.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 31

Blackburn et al. [4] present a detailed study on the performance impact of garbage collection.

For this use they use hardware performance monitors on three different platforms.

Li et al. [16] use complete system simulation to study the SPECjvm98 benchmarks. They

conclude that most of the kernel activity is due to TLB miss handling and that those TLB

misses are due to JIT compilation, garbage collection and class loading.

Kim and Hsu [14] characterize the memory system behavior of Java workloads. They measure

the lifetime characteristics of objects, the temporal locality and the impact of associativity on

cache miss rate.

Next to these there exist yet other studies characterizing the (memory) performance of

Java workloads, more specifically the time varying behavior in terms of cache miss rates and

TLB miss rates [22], method-level phase behavior [10], impact of VMs and input sets on overall

Java performance [9], Java middleware benchmarks (SPECjbb2000 and SPECjAppServer2001)

using real hardware as well as full-system simulation [13], Java TPC-W which exercises the

web server and transaction processing of a typical e-commerce web site [6], cache behavior of

SPECjvm98 benchmarks [18], Java server applications (SPECjbb2000 and VolanoMark 2.1.2)

on PowerPC hardware [19].

64-bit versus 32-bit pointers

As mentioned in the introduction, the increased memory consumption caused by using 64-bit

pointers is not unexpected and has already been subject of research addressing it. Again, we

want to emphasize that this previous work did not provide a detailed characterization of the

increased memory requirements of 64-bit versus 32-bit computing; this paper is the first to

provide such a detailed analysis. As such, we believe the results presented in this paper will be

useful in future research attacking the increased memory consumption of 64-bit computing.

Adl-Tabatabai et al. [1] study software techniques for reducing 64-bit pointers into 32-bit

pointers in the context of a virtual machine running Java applications. Applications that do

not need the full 64-bit address space can obviously benefit from this optimization. They study

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

32 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

compressing the object headers and the heap references in memory. They report significant

performance improvements for the SPECjvm98 benchmarks, up to 68% (for db)—note db was

shown in this paper to have the largest increase in heap object size due the transition from

32-bit to 64-bit computing—as well as for SPECjbb2000 (12%).

Mogul et al. [17] study the impact of the pointer size on overall performance. To this end,

they consider a number of applications that can run in a 32-bit address space and compare the

performance running in 64- vs. 32-bit mode. These measurements were done on a Digital Alpha

systems using a collection of C programs. They conclude that while performance was often

unaffected by larger pointers, some programs experience definite performance degradation,

primarily due to cache and paging issues. Our results are consistent with the observations

by Mogul et al. although we consider a different programming paradigm; we consider Java

workloads opposed to the C programs considered by Mogul et al.

CONCLUSION

The purpose of this paper was to compare 64-bit versus 32-bit VMs for Java applications in

general and the allocation behavior and memory system performance more in particular. This

was done using a large number of benchmarks from SPECjvm98 and Java Grande Forum

on two virtual machines, the Jikes Research VM and the production IBM JDK 1.4.0 VM.

The underlying hardware platform was the 64-bit PowerPC-based IBM POWER4 processor.

By running both virtual machines in 32-bit and 64-bit mode, we were able to compare

the characteristics and performance of 32-bit versus 64-bit virtual machines for Java. Using

instrumentation inside Jikes RVM, we measured and compared the average object size, the

object size distribution and the heap growth for 64-bit and 32-bit computing. We believe

that especially VM developers can benefit from the detailed study provided in this paper.

We conclude that the average size an object takes in the heap increases by 39.3% in 64-bit

mode. This is due to the increased pointer size (64 bits versus 32 bits), the increased header

and the increased alignment. The critical heap size, which is the minimum heap size to attain

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 33

nearly optimal performance, increases by 39.5%; the minimal heap size for which the VM still

runs (at the cost of a larger number of collections), increases by 51.1%. Using the hardware

performance monitors available on the POWER4 microprocessor, we were also able to measure

the total execution time, the number of instructions executed, the number of data cache and

TLB misses for the IBM production VM. We conclude that 64-bit computing is generally

slower than 32-bit computing, 1.7% on average. We also conclude that 64-bit Java results in a

larger number of data cache misses at all levels in the cache hierarchy which is to be expected

given the increased heap size.

ACKNOWLEDGEMENTS

Kris Venstermans is supported by a BOF grant from Ghent University. Lieven Eeckhout is a

Postdoctoral Fellow of the Fund for Scientific Research–Flanders (Belgium) (F.W.O.–Vlaanderen).

This research is supported by the HiPEAC Network of Excellence. This research is also supported by

the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT).

REFERENCES

1. Ali-Reza Adl-Tabatabai, Jay Bharadwaj, Michal Cierniak, Marsha Eng, Jesse Fang, Brian T. Lewis,

Brian R. Murphy, and James M. Stichnoth. Improving 64-bit Java IPF performance by compressing

heap references. In Proceedings of the international symposium on Code Generation and Optimization,

page 100. IEEE Computer Society, March 2004.

2. B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink,

D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar,

M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño

Virtual Machine. IBM Systems Journal, 39(1):211–238, February 2000.

3. Steve Behling, Ron Bell, Peter Farell, Holger Holthoff, Frank O’Connel, and Will Weir. The POWER4

Processor Introduction and Tuning Guide. Redbooks. IBM Corporation, International Technical Support

Organization, 2001.

4. Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths and realities: the performance

impact of garbage collection. In Proceedings of the joint international conference on Measurement and

modeling of computer systems, pages 25–36. ACM Press, June 2004.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

34 K. VENSTERMANS, L. EECKHOUT, K. DE BOSSCHERE

5. Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley”. Oil and water? high performance

garbage collection in Java with MMTk. In Proceedings of the 26th International Conference on Software

Engineering, pages 137–146. IEEE Computer Society, May 2004.

6. Harold W. Cain, Ravi Rajwar, Morris Marden, and Mikko H. Lipasti. An architectural evaluation of Java

TPC-W. In Proceedings of the seventh IEEE International Symposium on High-Performance Computer

Architecture, pages 229–240. IEEE Computer Society, January 2001.

7. Trishul M. Chilimbi and James R. Larus. Using generational garbage collection to implement cache-

conscious data placement. In Proceedings of the first International Symposium on Memory Management,

pages 37–48. ACM Press, October 1998.

8. Sylvia Dieckmann and Urs Hölzle. A study of the allocation behavior of the specjvm98 Java benchmarks.

In 13th European Conference for Object-Oriented Programming, pages 92–115, June 1999.

9. Lieven Eeckhout, Andy Georges, and Koen De Bosschere. How Java programs interact with virtual

machines at the microarchitectural level. In Proceedings of the 18th ACM SIGPLAN conference on

Object-Oriented Programing, Systems, Languages, and Applications, pages 169–186. ACM, October 2003.

10. Andy Georges, Dries Buytaert, Lieven Eeckhout, and Koen De Bosschere. Method-level phase behavior in

Java workloads. In Proceedings of the 19th ACM SIGPLAN Conference on Object-Oriented Programing,

Systems, Languages, and Applications, pages 270–287. ACM, October 2004.

11. Peter N. Glaskowsky. Athlon 64 moving to mass market. Microprocessor report, January 2004.

12. Tom R. Halfhill. AMD and Intel harmonize on 64. Microprocessor report, March 2004.

13. Martin Karlsson, Kevin E. Moore, Erik Hagersten, and David A. Wood. Memory system behavior of Java-

based middleware. In Proceedings of the Ninth IEEE International Symposium on High-Performance

Computer Architecture, pages 217–228. IEEE Computer Society, February 2003.

14. Jin-Soo Kim and Yarsun Hsu. Memory system behavior of Java programs: methodology and analysis. In

Proceedings of the 2000 ACM SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems, pages 264–274. ACM Press, June 2000.

15. Kevin Krewell. AMD serves up Opteron. Microprocessor report, April 2003.

16. Tao Li, Lizy Kurian John, Vijaykrishnan Narayanan, Anand Sivasubramaniam, Jyotsna Sabarinathan,

and Anupama Murthy. Using complete system simulation to characterize specjvm98 benchmarks. In

Proceedings of the 14th international conference on Supercomputing, pages 22–33. ACM Press, May 2000.

17. Jeffrey C. Mogul, Joel F. Bartlett, Robert N. Mayo, and Amitabh Srivastava. Performance implications

of multiple pointer sizes. In USENIX Winter, pages 187–200, 1995.

18. Ramesh Radhakrishnan, N. Vijaykrishnan, Lizy Kurian John, Anand Sivasubramaniam, Juan Rubio, and

Jyotsna Sabarinathan. Java runtime systems: Characterization and architectural implications. IEEE

Trans. Comput., 50(2):131–146, 2001.

19. Pattabi Seshadri and Alexis Mericas. Workload characterization of multithreaded Java servers on two

PowerPC processors. In IEEE 4th Annual Workshop on Workload Characterization, December 2001.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

64-BIT VERSUS 32-BIT VIRTUAL MACHINES FOR JAVA 35

20. Yefim Shuf, Mauricio J. Serrano, Manish Gupta, and Jaswinder Pal Singh. Characterizing the memory

behavior of Java workloads: a structured view and opportunities for optimizations. In SIGMETRICS

International Conference on Measurement and Modeling of Computer Systems, pages 194–205, June 2001.

21. T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Komatsu, and

T. Nakatani. Overview of the IBM Java just-in-time compiler. In IBM Systems Journal, volume 39(1),

pages 175–193, 2000.

22. Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon, Perry Cheng, Amer Diwan, David P. Grove, and

Michael J. Hind. Using hardware performance monitors to understand the behavior of Java applications.

In Proceedings of USENIX 3rd Virtual Machine Research and Technology Symposium(VM’04), pages

57–72, May 2004.

23. K. Venstermans and K. De Bosschere. JVM SPEC favours 32-bit platforms. In ProRISC, Veldhoven, the

Netherlands, November 2003. http://escher.elis.ugent.be/publ/Edocs/DOC/P103 143.pdf.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 00:1–33

Prepared using speauth.cls

