
Java Object Header Elimination for Reduced

Memory Consumption in 64-bit Virtual Machines

KRIS VENSTERMANS, LIEVEN EECKHOUT and KOEN DE BOSSCHERE

Ghent University, Belgium

Memory performance is an important design issue for contemporary computer systems given
the huge processor-memory speed gap. This paper proposes a space-efficient Java object model
for reducing the memory consumption of 64-bit Java virtual machines. We completely eliminate
the object header through Typed Virtual Addressing (TVA) or implicit typing. TVA encodes the
object type in the object’s virtual address by allocating all objects of a given type in a contiguous
memory segment. This allows for removing the type information as well as the status field from
the object header. Whenever type and status information is needed, masking is applied to the
object’s virtual address for obtaining an offset into type and status information structures. Unlike
previous work on implicit typing, we apply TVA to a selected number of frequently allocated object
types, hence the name Selective TVA (STVA); this limits the amount of memory fragmentation.

In addition to applying STVA, we also compress the Type Information Block (TIB) pointers for
all objects that do not fall under TVA.

We implement the space-efficient Java object model in the 64-bit version of the Jikes RVM on
an AIX IBM platform and compare its performance against the traditionally used Java object
model using a multitude of Java benchmarks. We conclude that the space-efficient Java object
model reduces memory consumption by on average 15% (and up to 45% for some benchmarks).
About half the reduction comes from TIB pointer compression; the other half comes from STVA.
In terms of performance, the space-efficient object model generally does not affect performance,
however for some benchmarks we observe statistically significant performance speedups, up to
20%.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors — run-time
environments

General Terms: Design, Performance, Experimentation

Additional Key Words and Phrases: virtual machine, 64-bit implementation, typed virtual ad-

dressing, implicit typing, Java object model

1. INTRODUCTION

A well known design concern in today’s computing systems is the large memory-
processor speed gap — accessing main memory typically takes hundreds of processor
cycles. One contributing factor to the memory gap is the amount of memory
consumed by an application, i.e., the more memory consumed, the more likely the

Contact information: Kris Venstermans, Lieven Eeckhout and Koen De Bosschere,
ELIS Department, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
Email: {kvenster,leeckhou,kdb}@elis.UGent.be
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0000-0000/2007/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, June 2007, Pages 1–0??.

2 ·

data will not fit into the processor’s cache hierarchy, the more likely the application
will have to access main memory. This is an important issue for 64-bit Java VM
implementations. A recent study by Venstermans et al. [2006a] quantified that
objects are nearly 40% larger in a 64-bit VM compared to a 32-bit VM. And about
half this increase is due to the object header doubling in size.

This paper focuses on reducing the memory consumption of 64-bit Java VM
implementations. Our approach to reducing the memory consumption of a 64-
bit VM is to completely eliminate the object header. This is done through Typed
Virtual Addressing (TVA) which means that the object type information is encoded
in the object’s virtual address, i.e., all objects of the same type are mapped to the
same contiguous memory segment. TVA enables to remove the Type Information
Block (TIB) pointer field as well as the status field from the object header. As
such, we are able to completely eliminate the 16 byte object header for non-array
objects; for array objects, we only keep the 4 byte array length field. Accessing the
TIB is then done by masking a number of bits from the object’s virtual address,
and using that as an offset in the TIB space that holds all the TIBs. Removing
the status field from the object header is done by keeping GC bits and hash bits —
1 byte per object in our implementation — in so called side arrays. Our proposal
does not apply TVA to all object types but only to a selected number of types that
are frequently allocated, hence the name Selective TVA (STVA). The reason is that
applying TVA to all object types would result in too much memory fragmentation
because of memory pages being sparsely filled with only a few objects.

The idea of typed addressing or implicit typing is not new. Typed addressing
has been proposed in the past with proposals such as Big Bag of Pages (BiBOP),
typed pointers and others [Appel 1989; Dybvig et al. 1994; Hanson 1980; Shebs and
Kessler 1987; Steele, Jr. 1997]. In fact, it was fairly popular in the 1970s, 1980s
and early 1990s in various functional and logic programming languages. However,
typed addressing has fallen into disfavor from then on because of the fact that all of
these proposals applied typed addressing for all object types. As mentioned above,
applying typed addressing to all objects results in memory fragmentation, and even-
tually performance degradation. With the advent of 64-bit Java implementations,
a well designed typed virtual addressing mechanism becomes an interesting option
for reducing the memory consumption of 64-bit Java VMs because the 64-bit vir-
tual address space is huge which facilitates the implementation of implicit typing
compared to 32-bit platforms.

In addition to removing the header for all TVA-enabled objects, we also compress
the 64-bit TIB pointers to 32-bit pointers for all TVA-disabled objects. Previous
work [Adl-Tabatabai et al. 2004] proposed pointer compression to all pointers (not
just TIB pointers) in a 64-bit VM implementation. However, the limitation of
compressing all pointers is that applications that require more than a 32-bit virtual
address space cannot benefit from this pointer compression approach. Applying
pointer compression to TIB pointers only does not suffer from this limitation; the
case where more than a 32-bit virtual address space is needed for type information
is highly unlikely.

We implement our space-efficient header approach in the 64-bit Jikes RVM and
evaluate the reduction in memory consumption and the impact on performance

ACM Journal Name, Vol. V, No. N, June 2007.

· 3

on an AIX IBM POWER4 system. (Previous work on typed addressing did not
report the impact on performance of typed addressing, and in most cases did not
even quantify the amount of reduction in memory consumption.) In addition, we
apply statistics in order to make statistically valid conclusions. We conclude that
our space-efficient Java object model reduces memory consumption by on average
15% (up to 45% for some benchmarks). On average, half the memory consumption
reduction comes from TIB pointer compression; the other half comes from STVA. In
terms of performance, the space-efficient Java object model has a net zero impact on
performance for many benchmarks. For a small number of benchmarks we observe
a statistically significant degradation in performance by only a few percent (no
more than 5%). And for a number of other benchmarks we observe statistically
significant performance speedups, up to 20%. In general though, we conclude that
the space-efficient Java object model substantially reduces memory consumption
without significantly affecting performance; however, performance improvements
are observed for some benchmarks.

This paper extends our previous work [Venstermans et al. 2006b] by proposing
an online STVA implementation; the prior work proposed an offline STVA im-
plementation which required a profiling run to determine what objects to make
TVA-enabled. This paper also extends the prior work by showing how the com-
plete header can be eliminated for TVA-enabled objects. The prior work reduced
the scalar object header from 16 bytes down to 4 bytes; the current work completely
eliminates the object header.

2. THE 64-BIT JAVA OBJECT MODEL

The object model is a key part in the implementation of an object-oriented language
and determines how an object is represented in memory. A key property of object-
oriented languages is that objects have a run-time type. Virtual method calls allow
for selecting the appropriate method at run-time depending on the run-time type
of the object. The run-time type identifier for an object is typically a pointer to a
virtual method table.

An object in an object-oriented language consists of the object data fields along
with a header. For clarity, we refer to an object as the object data plus the object
header throughout the paper; the object data refers to the data fields only. The
object header contains a number of fields for bookkeeping purposes. The object
header fields and their layout depend on the programming language, the virtual
machine, etc. In this paper we assume Java objects and we use the Jikes RVM in
our experiments. The object model that we present below is for the 64-bit Jikes
RVM, however, a similar structure will be observed in other virtual machines, or
other object-oriented languages. An object header typically contains the following
information, see Figure 1(a):

—The first field is the TIB pointer field, i.e., a pointer to the Type Information
Block (TIB). The TIB holds information that applies to all objects of the same
type. In the Jikes RVM, the TIB is a structure that contains the virtual method
table, a pointer to an object that represents the object type and a number of
other pointers for facilitating interface invocation and dynamic type checking.
The TIB pointer is 8 bytes in size on a 64-bit platform.

ACM Journal Name, Vol. V, No. N, June 2007.

4 ·

TIB pointer

forwarding pointer

status field

(a) 64-bit Java object model

object data

TIB pointer

forwarding pointer

status field

(b) shortening the TIB pointer for all objects

object data

forwarding pointer

status field

(c) eliminating the TIB pointer for TVA objects

object data

forwarding pointer

status field

(d) remapping the forwarding pointer for TVA objects

object data

forwarding pointer

(e) eliminating the status field for TVA objects

object data

Fig. 1. The Java (scalar) object models studied in this paper.

—The second field is the status field. The status field can be further distinguished
in a number of elements.

—The first element in the status field is the hash code. Each Java object has a
hash code that remains constant throughout the program execution. Depend-
ing on the chosen implementation in the Jikes RVM, the hash code can be a
10-bit hash field in the header or a 2-bit hash state.

—The second element in the status field is the lock element which determines
whether the object is being locked. All objects contain such a lock element. A
thin lock field [Bacon et al. 1998] in the Jikes RVM is 20 bits in size.

—The third element is related to garbage collection. This could be a single bit
that is used for marking the object during a mark-and-sweep garbage collection.
Or this could be a number of bits (typically two) for a copying or reference
counting garbage collector.

—The third field is the forwarding pointer. The forwarding pointer is used for
keeping track of objects during generational or copying garbage collection and
is 8 bytes in size. The forwarding pointer overwrites the hash code and lock
element in the status field, but not the garbage collection bits, see Figure 1(a).

ACM Journal Name, Vol. V, No. N, June 2007.

· 5

The garbage collection bits are chosen as the least significant bits so that they
do not get overwritten by the forwarding pointer.

So far, we considered non-array objects. For array objects there is an additional
4 bytes length field that needs to be added to the object header. As a result,
for array objects the header field requires at least 20 bytes. But given the fact
that alignment usually requires objects to start on 8 byte boundaries on a 64-bit
platform, the array object header typically uses 24 bytes of storage.

3. ELIMINATING THE HEADER IN THE 64-BIT JAVA OBJECT MODEL

We eliminate the header of 64-bit Java objects in a number of steps. Our initial
Java object model is the 16 byte header as shown in Figure 1(a) — we limit the
discussion to scalar objects for now, and will discuss array objects later.

—We first reduce the TIB pointer size from 64-bit to 32-bit through pointer com-
pression as proposed by [Adl-Tabatabai et al. 2004]. This is shown in Figure 1(b).
This object model implies that all the TIBs are allocated in a contiguous virtual
address space that is small enough to be accessed using a 32-bit offset. The TIB
pointer is then computed by adding the 32-bit TIB pointer stored in the object
header to a 64-bit TIB base pointer. TIB pointer compression is applied to all
objects.

—As a second step we apply Selective Typed Virtual Addressing (STVA) to com-
pletely eliminate the TIB pointer from the object header, see Figure 1(c). STVA
applies Typed Virtual Addressing (TVA) to a selected number of object types.

—In the third step, we map the forwarding pointer in a different way so that the
forwarding pointer overlaps with the 4 byte status field and the first four bytes
of the object data, see Figure 1(d). Note that the object data is already copied
during garbage collection whenever the forwarding pointer gets used. As such,
we can freely overwrite the first four bytes of the object data. (Obviously, this
cannot be done for data structures belonging to the garbage collector itself — this
is only of concern whenever the garbage collector (or the entire VM) is written in
Java.) This layout requires to move the GC status bits from the least significant
status field bit positions to the most significant status field bit positions so that
the GC bits are not overwritten by the forwarding pointer.

—As a final step, we remove the status field from the object header, see Figure 1(e).
The end result is that the object header is completely eliminated for all TVA-
enabled objects.

In the following sections, we discuss STVA in great detail since it is the key
enabler for completely eliminating the object header.

4. SELECTIVE TYPED VIRTUAL ADDRESSING

This section explains the idea and the implementation details behind Selective
Typed Virtual Addressing (STVA) for 64-bit Java objects. We first detail on the
TVA 64-bit Java scalar object model followed by the TVA array object model. We
then go through a number of virtual machine implementation issues that follow
from the TVA object models.

ACM Journal Name, Vol. V, No. N, June 2007.

6 ·

4.1 The scalar TVA object model

We consider two TVA Java object models: the small-header object model and the
no-header object model.

4.1.1 The small-header object model. The small-header TVA object model elim-
inates the TIB pointer from the object header and remaps the forwarding pointer
to overwrite the 4 byte status field and the first 4 bytes of the object data, see
Figure 1(d). This implies that the minimum size occupied by a TVA-enabled ob-
ject is 8 bytes: 4 bytes of object header and 4 bytes of data. We will refer to the
obtained object model in Figure 1(d) as the small-header object model throughout
the paper; this is the object model presented in our prior work [Venstermans et al.
2006b].

4.1.2 The no-header object model. The no-header object model extends on the
small-header object model by eliminating the 4 byte status field, see Figure 1(e).
This requires that we eliminate the lock, the hash and the GC elements, as well as
the forwarding pointer from the object header. This is done as follows.

—We eliminate the GC elements from the object header by storing the GC elements
in what we call a side array. We implement a side array every two pages on which
TVA-enabled objects are allocated and allocate one byte per object in the side
array. Note that depending on the garbage collector only one or two bits are
used from the allocated byte in the side array. The position in the side array
for a given object is determined by the position of the object on the memory
page. Note that this can be done because all objects in a TVA region are of the
same type and thus are equally sized. By consequence, during garbage collection,
we do not adjust the GC elements in the header for TVA-enabled objects but
we adjust the GC elements in the side arrays. The index in the side array is
computed from the object’s virtual address which incurs an additional overhead
compared to the default and small-header object models.

—Dealing with the lock element in the no-header format is done along what is
described in [Bacon et al. 2002]. Objects from a class that contains at least
one synchronized method (or at least one of the class methods contains the
synchronized(this) statement) have an additional implicit field member that
contains the lock. This is a 4 bytes field in our implementation. This implicit
lock field scheme cannot be applied to arrays or in cases where a lock is taking
on an object. In these latter cases, a lock object is then created in the lock
nursery [Bacon et al. 2002].

—The hash elements in the Java object model can take three states: unhashed,
hashed and hashed-and-moved [Bacon et al. 2002; Agesen 1999]. For the first
two states, unhashed and hashed, the hash code is calculated from the object’s
address. In case the garbage collector moves an object that is in the hashed state,
its state then changes to hashed-and-moved and the hash code is attached to the
end of the new version of the object. In the traditional Java object model as well
as in the small-header object model, these three states are encoded using two
hash bits. In the no-header object model on the other hand, we store only one
bit per TVA-enabled object in the side arrays just described. The hash bit in the
side array is zero if the object is unhashed; the hash bit in the side array is set

ACM Journal Name, Vol. V, No. N, June 2007.

· 7

if the object is hashed. When a hashed object is moved by the garbage collector,
we TVA-disable the object, i.e., the object moves from the TVA space to the
non-TVA space.

—The forwarding pointer, whenever needed during garbage collection, overwrites
the first 8 bytes of the object data. This implies that the minimum size for a
TVA-enabled object is 8 bytes — this is the same as for the small-header object
model.

4.2 The array TVA object model

The array TVA object model more or less follows the same lines as the scalar
TVA object model, however, there are some peculiarities in relation to memory
management. In case of a copying collector, the memory allocator typically uses a
bump pointer to allocate new objects, i.e., the bump pointer is incremented by the
size of the newly allocated object. In case of a mark-sweep collector, at least in the
Jikes RVM, the memory allocator works with fixed-sized cells. The choice of the
memory management method affects the array TVA object model.

4.2.1 The small-header object model. The small-header TVA array object model
has an 8 byte header consisting of a 4 bytes status field and a 4 bytes array length
field. We can select all arrays of all lengths to be TVA-enabled for a copying collec-
tor. Although selecting all arrays is also possible in case of a mark-sweep collector,
this would result in a considerable runtime overhead and memory fragmentation
because of the fixed-sized cells in the Jikes RVM implementation. As such, in case
of a mark-sweep collector, we only select a single array length to be TVA-enabled.

4.2.2 The no-header object model. The no-header TVA array object model elim-
inates the complete header for array objects except for the 4 byte array length field.
In order not to incur a large runtime overhead, we select at most one array length
on which to apply TVA for both the copying and the mark-sweep collectors. The
underlying reason is that a single array length eases accessing the side arrays; the
side array index can be computed directly from the object’s address.

4.3 Implications of the TVA object model

We now detail on a number of implications because of the TVA Java object model.
Although some of these issues are geared towards our implementation in the Jikes
RVM on an IBM AIX system, similar issues will need to be taken care of on other
systems.

4.3.1 Memory allocation. The general idea behind Typed Virtual Addressing
is to devote segments (large contiguous chunks of memory) in the virtual address
space to specific object types. This means that the object type is implicitly encoded
in the object’s virtual address. Object types that fall under TVA are then allocated
in particular segments of the virtual address space. For example, all objects of type
A get allocated in the virtual address space segment with addresses ranging from
address 0x04FF FFFE 0000 0000 to address 0x0500 0000 0000 0000; all objects
of type B then get allocated in the virtual address space segment in the range
0x0500 0000 0000 0000 to 0x0500 0002 0000 0000.

The virtual memory address of a Java object in an STVA-enabled VM imple-

ACM Journal Name, Vol. V, No. N, June 2007.

8 ·

TIB offset
(bits)t

object offset
(bits)58-t

STVA bit

AIX
(5 bits)

object offset
(58 bits)

STVA bit

AIX
(5 bits)

0

1

(a)

(b)

63 0

63 0

Fig. 2. The 64-bit virtual address for a TVA-disabled object (a) and for a TVA-enabled object
(b).

mentation is depicted in Figure 2. The five most significant bits are AIX-reserved
bits and should be set to zero. The following bit (bit 58) is the STVA bit that
determines whether the given object falls under TVA. This divides the virtual ad-
dress space in two regions, the TVA-disabled region and the TVA-enabled region.
Note that although we consume half of the virtual address range for TVA-enabled
object types, we leave 258 bytes for TVA-disabled object types. If bit 58 is set, then
the object is a TVA-enabled object, i.e., the object follows the TVA Java object
model detailed in section 4.1. If bit 58 is not set (the object type is a TVA-disabled
type), the object falls under the default Java object model from Figure 1(a). In the
latter case (a TVA-disabled object type), the least significant 58 bits determine the
object’s offset, see Figure 2(a). In case of a TVA-enabled object, see Figure 2(b),
the next t bits of the virtual address constitute the TIB offset (t equals 25 in our
implementation). The TIB offset determines in what memory segment the objects
of the given type reside. By doing so, an object type specific memory segment is
a contiguous chunk of memory of size 258−t bytes; this is 8GB in our implemen-
tation. The least (58 − t) significant bits are the object offset bits (33 bits in our
implementation). These bits indicate the object’s offset within its type specific
segment.

In order to support this memory layout, we obviously need to modify the memory
allocator to support TVA. We need to keep track of multiple allocation pointers
that point to the free space in the object type specific segments in order to know
where to allocate the next object of the given object type. The selection of an
individual allocation pointer requires an extra indirection for TVA-enabled object
types. We eliminated this additional indirection by refactoring the code, i.e., by
inlining the allocation pointer array.

Another peculiarity related to the no-header TVA memory allocators is that we
know that all objects within a type-specific segment have equal sizes. With this
knowledge we can layout fixed sized cells into the TVA-enabled regions, prior to
allocation. This layout will include proper alignment, so that we are able to remove
the alignment burden from the memory allocator.

Yet another peculiarity relates to copying collectors. A traditional copying col-
lector needs to figure out the size of the object to be allocated. This is done by

ACM Journal Name, Vol. V, No. N, June 2007.

· 9

;; R3 contains the object’s virtual address

tst R3, 0x0400 0000 0000 0000 ;; test bit 58 of virtual address

bre L2 ;; jump to L3 in case bit is not set

L1: ;; TVA-enabled object: mask the TIB offset

;; from the object’s virtual address

rsh R4, R3, (64 - FIXED_BITS - NUM_TIB_BITS)

lsh R4, R4, 3 ;; align offset to 8 bytes

add R4, TIB_BASE, R4 ;; add the TIB offset to the base TIB pointer;

;; the constant TIB_BASE equals the real base TIB

;; pointer with bit 58 equal to zero -- as an

;; optimization, bit 58 is not masked away.

jmp L3

L2: ;; TVA-disabled object: read the TIB

ld R4, R3, TIB_OFFSET ;; pointer from the object’s header

L3: ... ;; R4 contains the TIB value

Fig. 3. Computing an object’s TIB pointer in an STVA-enabled VM implementation.

accessing the TIB, reading the pointer that points to the object that represents
its class, and retrieving the object size from the class object. In our TVA-aware
copying collector, we keep track of the object sizes for the various object types in
an array structure. As such, a single array lookup yields us the object size to be
allocated.

4.3.2 TIB access. In an STVA-aware VM implementation, reading the TIB
pointer changes compared to a traditional VM implementation. In a traditional
implementation (without STVA), the TIB pointer is read from the object header
through a load instruction. In an STVA-aware VM implementation, we make a
distinction between a TVA-enabled object and a TVA-disabled object. This is il-
lustrated in pseudo-code in Figure 3. A TVA-disabled object follows the traditional
way of getting to the TIB pointer. A load instruction reads the TIB pointer from
the object header. For a TVA-enabled object, the TIB pointer is computed from
the object’s virtual address. This is done by masking the TIB offset from the vir-
tual address and by adding this TIB offset to the TIB base pointer — all the TIBs
from all object types are mapped in a limited address space starting at the TIB
base pointer. The size of the TIB space is limited to 256MB in our implementation;
this comes from the 25-bit TIB offset that we use, see Figure 2, along with a 3-bit
shift left for 8 byte alignment. Note again that this is not a hard limit and can
be easily adjusted by changing the address organization from Figure 2 in case a
256MB TIB space would be too small for a given application (which is unlikely for
contemporary applications).

Due to the conditional jump for determining the TIB pointer, see Figure 3, our
STVA-enabled implementation clearly has an overhead compared to a traditional
VM implementation. The single most impediment to a more efficient implementa-
tion is the branch that is conditionally dependent on whether the object is TVA-
enabled or TVA-disabled. Unfortunately, in our PowerPC implementation we could

ACM Journal Name, Vol. V, No. N, June 2007.

10 ·

not remove this conditional branch through predication. Nevertheless, this could
be a viable solution on ISAs that support predication, for example through the
cmov instruction in the Alpha ISA, or through full predication in the IA-64 ISA.

As an optimization to computing the TIB pointer, we limit the frequency of going
through the relatively slow TIB access path.1 This is done by marking the class
tree with the TVA-enabled object types. A subtree is marked in case all types in
this subtree are TVA-disabled. The TIB access then follows the fast TIB access
path as in a non STVA-aware VM.

Since the TIB offset is computed from an object’s virtual address, the position in
memory of the TIB is obviously related to the object type specific memory segment.
We cannot position the TIB independently from the object type specific memory
segment. To avoid this problem, we make sure we first allocate the TIB in the
TIB space. This will give us the TIB offset to be used for all objects of the given
TVA object type. Once the type specific memory segment for a TVA object type
is properly initialized, TVA-enabled objects can be allocated in it.

4.3.3 Impact on garbage collection. Implementing TVA obviously also has an
impact on garbage collection. In this section we discuss garbage collection issues
under the assumption of a generational garbage collector which is a widely used
garbage collector type. Similar issues will apply to other collectors though. In
a generational collector, there are two generations, the nursery and the mature
generation. Objects first get allocated in the nursery. When the nursery fills up,
a nursery collection is triggered and reachable objects are copied to the mature
generation. New objects then get allocated from an empty nursery. This goes on
until also the mature generation fills up. When the mature generation is full, a full
heap collection is triggered.

In the original Jikes RVM implementation with a generational collector, the nurs-
ery and mature generations consist of contiguous spaces. This means that there is
one or two contiguous spaces for the nursery and mature generations. In an STVA-
aware VM implementation, contiguous memory segments are defined for specific
object types that fall under TVA, but the union of all these memory segments is
no longer contiguous. Because the nursery and mature spaces need to fall within
all type-specific memory segments, these spaces can obviously no longer be con-
tiguous. As such, we end up with non-contiguous spaces in both the nursery and
mature generations. The nursery generation now consists of a contiguous space for
TVA-disabled object types, and a non-contiguous space for TVA-enabled object
types. The mature generation is constructed in a similar way. This is illustrated in
Figure 4.

Jikes RVM however, works with contiguous spaces. Jikes RVM identifies a space
by a SpaceDescriptor, a numerical value encoding the nature, size and starting
address of the space. In order to be able to use non-contiguous spaces in our TVA-
aware VM, we extended Jikes RVM’s implementation of a space. In our system,
we identify a space by the combination of its starting address and its mask. If we
represent a space i by Si, its mask by Mi, and its starting address as Bi, and if we

1This is only possible in the offline STVA implementation, see later for a discussion on the offline
STVA implementation.

ACM Journal Name, Vol. V, No. N, June 2007.

· 11

T
V

A
n
u
rs

e
ry

T
V

A
m

a
tu

re

T
V

A
n
u
rs

e
ry

T
V

A
m

a
tu

re

n
o
n
-T

V
A

n
u
rs

e
ry

n
o
n
-T

V
A

m
a
tu

re

...

memory segment
for TVA-disabled

object types

memory segment
for TVA-enabled

object type A

memory segment
for TVA-enabled

object type B

Fig. 4. Mapping the nursery and mature spaces in the virtual address space in a TVA-aware VM.

represent an address by A, then the following is true by definition: Bi&Mi = Bi

and A ∈ Si ⇔ A&Mi = Bi, with & being the bitwise ‘and’ operator. A mask M

consists of one or more series of ‘1’s and one or more series of ‘0’s; the following
bit patterns are examples: ‘00..011..100..0’, or ‘11..100..0’. A contiguous
space is just a special case in which the mask has a leading series of ‘1’s followed
by a trailing series of ‘0’s, i.e., the mask looks as follows: ‘11..100..0’. A non-
contiguous space has a mask of any other form that does not consist of a leading
series of ‘1’s followed by a trailing series of ‘0’s, for example ‘00..011..100..0’,
‘11..100..011.100..0’ or ‘00..011..100..011..100..0’. We also have a sim-
ple rule to check if two spaces are non-overlapping — this is needed when allocating
spaces: ¬(A ∈ Si ∧ A ∈ Sj) ⇔ (Mi&Mj 6= 0) ∧ ((Bj&Mi) 6= (Bi&Mj)), ∀i, j. Note
that the mask is part of the definition of a space. As such, each space has a dedi-
cated mask that does not need to be computed at run time; however, the mask is
part of the TVA-aware VM implementation.

It is also interesting to point out that because of the fact that there are separate
GC spaces for TVA-disabled/enabled objects, this opens up a number of opportuni-
ties for garbage collection. For example, different garbage collection strategies could
be employed in different spaces of the nursery, or the TVA-enabled objects could
be pretenured, etc. For example, Shuf et al. [2002] use non-copying collectors for
prolific object types. In this paper however, we make no change in garbage collec-
tion strategy between TVA-disabled/enabled spaces, because we want to quantify
the impact of STVA on the space efficiency of the TVA-aware Java object model,
without intrusion of other techniques. Type-specific garbage collection strategies
and related techniques will be studied in future work.

5. STVA TYPE SELECTION

As mentioned before, we do not apply TVA to all objects. Object types that are
allocated infrequently would consume memory pages that are only sparsely filled
with objects. This would result in too much memory fragmentation. As such, in
order to limit memory fragmentation we need to limit the number of object types
on to which TVA is applied. We believe that this is a key difference to prior work on
typed virtual memory addressing. Prior work applied TVA to all object types. In
this paper we propose to limit TVA to only a subset of well chosen object types in
order to control the amount of memory fragmentation while pertaining the benefits
of typed virtual addressing. We now explore two approaches to selecting object

ACM Journal Name, Vol. V, No. N, June 2007.

12 ·

types on which to apply TVA, namely an offline selection strategy and an online
selection strategy.

5.1 Offline STVA type selection

In our offline STVA implementation, we apply the following strategy for making an
object type TVA-enabled. In order to select an object type to fall under TVA, the
object type needs to apply to one of the following criteria. First, an object type
needs to be allocated frequently, and second, its instances are preferably long-lived.
In our first criterion we make a selection of object types of which a sufficient amount
of objects is allocated. Through a profiling run of the application, we collect how
many object allocations are done for each object type, and what the object size
is for each object type. Once this information is collected, we compute for each
type the total number of allocated header bytes (16 bytes per instance), and we
compute the percentage volume of these header bytes in relation to the total number
of allocated bytes. We then select object types for which this percentage volume
exceeds a given memory reduction threshold (MRT).

In our second criterion we limit the scope to long-lived objects because long-lived
objects are likely to survive garbage collections. These objects will thus remain in
the heap for a fairly long period of time. Giving preference to long-lived objects
under TVA maximizes the potential reductions in memory consumption. In order
to classify object types into long-lived and short-lived object types, we take a prag-
matic approach and inspect a profile run of the application for objects that survive
garbage collections. In these runs we use a fairly large heap in order to identify
truly long-lived objects. For those objects that survive a garbage collection, we
again compute the percentage volume of the header bytes in relation to the total
number of bytes surviving the collection. We then retain object types for which this
percentage volume exceeds the long-lived memory reduction threshold (LLMRT).

5.2 Online STVA type selection

An important disadvantage of the offline STVA type selection method is that a
profiling run is needed for determining on what object types to apply TVA. This
is not practical in a Java context. Therefore we now propose on online STVA type
selection mechanism. The mechanism that we propose is a simple but effective
approach. When re-compiling a method in the VM, we TVA enable all the ob-
ject types that are allocated within these re-compiled methods. The underlying
idea is that frequently executed methods, so called hot methods, are scheduled for
re-compilation and re-optimization; if these methods allocate objects, they will al-
locate lots of these objects. In other words, the types of the objects allocated in
methods that are scheduled for optimization, are likely to be frequently allocated
object types. By consequence, these object types are good candidates for STVA
selection. Note that objects allocated along infrequent paths, e.g., exception han-
dling, may be excluded from being selected. Infrequent paths such as exception
handling could be detected through program analysis, or as the complement of hot
paths detected through sampling. In this paper, we took a pragmatic approach by
TVA-enabling objects along both frequent and infrequent paths when recompiling
methods; this is a simple approach that yields good performance numbers.

Note that the online STVA type selection method is different from the offline

ACM Journal Name, Vol. V, No. N, June 2007.

· 13

approach. The reason is that a direct translation of the offline approach into an
online approach would be fairly complex. This translation would require that we
keep track of the amount of bytes allocated for each type at run time. In addition,
we have to determine when to convert an object type from TVA-disabled to TVA-
enabled. And once we have determined when to convert an object type, we then
have to recompile the methods allocating this object type. This is a fairly complex
mechanism. Instead we have chosen for a much simpler alternative that triggers
TVA for objects allocated in recompiled methods; this is motivated by the fact
that methods need to be recompiled anyway in order to enable TVA for objects
allocated in these methods. So, as for the when part, we choose recompilation
time for triggering TVA, and for the which object types part, instead of determining
frequently used object types, we simply select all objects allocated in hot methods.
This simple approach showed to perform well in practice, as we will demonstrate
in the evaluation section of this paper.

In case of the no-header object model, we do not select array types online because
it is difficult for an online mechanism to select what array length to support under
TVA. Also, in order to limit the total number of STVA types, we limit the number
of TVA-enabled object types to a maximum which is 80 types in our implementation
(which is about the maximum observed through our offline STVA type selection
method even under the lowest MRT thresholds, as shown in the evaluation section).
For the benchmarks that we ran, only javac ran against this limit.

Note that some object types are selected when building the TVA-aware VM.
This is the so called bootlist TVA-enabled object types. In other words, all object
types from this bootlist are TVA-enabled for all applications running on this VM.
The bootlist TVA-enabled object types were chosen as the intersection of object
types as selected through the offline STVA type selection method from the previous
subsection. In other words, the bootlist TVA-enabled object types comprise object
types that are frequently allocated across various applications as well as the VM.

6. EXPERIMENTAL SETUP

We now detail our experimental setup: the virtual machine, the benchmarks and
the hardware platform on which we perform our measurements. We also detail how
we performed our statistical analysis on the data we obtained.

6.1 Jikes RVM

The Jikes RVM is an open-source virtual machine developed by IBM Research [Alpern
et al. 2000]. We used the recent 64-bit AIX/PowerPC v2.3.5 port. We extended
the 64-bit Jikes RVM in order to be able to support the full 64-bit virtual address
range. In this paper, we use the GenCopy and GenMS garbage collectors. Gen-
Copy is a generational collector that employs a SemiSpace copying strategy during
full heap collections. GenMS is also a generational collector but uses a mark-sweep
strategy during full heap collection. Note that Jikes RVM is a rather unique VM
since it is written in Java. This affects the results presented in this paper because
the reduced header Java object models also apply to Jikes RVM objects; this will
be quantified in the evaluation section.

ACM Journal Name, Vol. V, No. N, June 2007.

14 ·

suite benchmark input

SPECjvm98

jess -s100
db -s100

javac -s100
mpegaudio -s100

mtrt -s100
jack -s100

SPECjbb2000 pseudojbb up to 8 warehouses
up to 15 warehouses

Java Grande

Forum

search large
moldyn large

crypt large
FFT large

heapSort large
LUFact large

SOR large
sparse large

Table I. The benchmarks used in this paper.

6.2 Benchmarks

The benchmarks that we use in this study come from three different sources. We
use SPECjvm98, SPECjbb2000 and the Java Grande Forum benchmarks. They are
summarized in Table I. The SPECjvm98 benchmarks model client-side workloads.
We use the -s100 input for all the benchmarks when reporting results; our profiling
runs use the -s10 input. SPECjbb2000 is a server-side benchmark that models the
middle tier (the business logic) of a three-tier system. Since SPECjbb2000 is a
throughput benchmark that runs for a fixed amount of time, we used pseudojbb

which runs for a fixed amount of work (35,000 transactions per warehouse). During
our profiling runs, pseudojbb processes 12,000 transactions per warehouse. We use
two inputs to pseudojbb in our evaluation; in our first input set, we run pseudojbb

from 1 up to 8 warehouses, and in our second input set, we run from 1 up to
15 warehouses. The reason for employing the second input set is to increase the
memory footprint. The Java Grande Forum (JGF) benchmark suite includes a set
of sequential computational science and engineering codes, as well as business and
financial models. These benchmarks typically work on large arrays and execute
significant amounts of floating-point code. We use the largest input available when
reporting final results; profiling was done using a smaller input. For the SPECjvm98
benchmarks, we set the maximum heap size to 200MB; for JGF, the maximum heap
size is 384MB; for SPECjbb2000 the heap size is set to 384MB for running up to 8
warehouses and 700MB for running up to 15 warehouses.

6.3 Hardware platform

The hardware platform on which we have done our measurements is the IBM
POWER4 which is a 64-bit microprocessor that implements the PowerPC ISA.
The POWER4 is an aggressive 8-wide issue superscalar out-of-order processor ca-
pable of processing over 200 in-flight instructions. The POWER4 is a dual-processor
CMP with private L1 caches and a shared 1.4MB 8-way set-associative L2 cache.
The L3 tags are stored on-chip; the L3 cache is a 32MB 8-way set-associative
off-chip cache with 512 byte lines. The TLB in the POWER4 is a unified 4-way
set-associative structure with 1K entries. The effective to real address translation
tables (I-ERAT and D-ERAT) operate as caches for the TLB and are 128-entry

ACM Journal Name, Vol. V, No. N, June 2007.

· 15

2-way set-associative arrays. The standard memory page size on the POWER4 is
4KB in size. Our machine contains 1GB of main memory.

In the evaluation section we will measure execution times on the IBM POWER4
using hardware performance monitors. The AIX 5.1 operating system provides
a library (pmapi) to access these hardware performance counters. This library
automatically handles counter overflows and kernel thread context switches. The
hardware performance counters measure both user and kernel activity.

6.4 Statistical analysis

In the evaluation section, we want to measure the impact on performance of the
reduced header Java object models. Since we measure on real hardware, non-deter-
minism in these runs results in slight fluctuations in the number of execution cycles.
In order to be able to take statistically valid conclusions from these runs, we employ
statistics to determine 95% confidence intervals from 15 measurement runs. These
statistics will help us in determining whether the reduced header object models
result in statistically significant or statistically insignificant performance gains or
degradations. We use the unpaired or noncorresponding setup for comparing means,
see [Lilja 2000] (pages 64–69).

7. EVALUATION

We now evaluate the reduced header Java object models using the experimental
setup detailed in the previous section.

7.1 Feasibility study of STVA

We first inspect the potential of Selective Typed Virtual Addressing by character-
izing the profile input. As mentioned in section 5, we determine whether an object
type is TVA-enabled or TVA-disabled based on two criteria for offline STVA type
selection. First, a type needs to be allocated frequently, i.e., the potential reduction
in memory consumption for the given type needs to exceed the memory reduction
threshold (MRT). Or, second, the potential reduction in memory consumption for
the given type in case it is a long-lived type needs to exceed the long-lived mem-
ory reduction threshold (LLMRT). We now study the sensitivity of the number of
selected object types and potential memory consumption reduction to the chosen
MRT and LLMRT thresholds. This is shown in Figure 5 by varying MRT from
0.05% up to 1% and by varying LLMRT over three values 0.1%, 0.5% and infinite.
Note that the data in Figure 5 is for the profile input, and only gives a rough indi-
cation of what is to be expected for the reference input. In addition, Figure 5 only
contains data concerning the nursery and mature generations. The data allocated
in the Large Object Space (LOS) — the LOS is the space in which all large objects
get allocated — is removed from this graph for clarity; STVA is expected to give
only a very marginal benefit for large objects.

The top graph in Figure 5 shows the number of selected object types. As ex-
pected, we observe that the number of selected types decreases with increasing
MRT and LLMRT. For example, an MRT of 0.05% selects on average 54 types
whereas an MRT of 0.2% selects on average 21.5 types. The number of selected
types varies over the benchmarks; for example for a 0.2% MRT, the number of
selected objects varies from 8 up to 31. Note that this is only a small fraction

ACM Journal Name, Vol. V, No. N, June 2007.

16 ·

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

d
b

c
o

m
p

re
s
s

ja
c
k

ja
v
a

c

je
s
s

m
p

e
g

a
u

d
io

m
tr

t

p
s
e

u
d

o
jb

b

c
ry

p
t

h
e

a
p

S
o

rt

L
U

F
a

c
t

m
o

ld
y
n

s
e

a
rc

h

S
O

R

s
p

a
rs

e

a
v
g

c
o

v
e

ra
g

e
(%

o
f
a

ll
o

b
je

c
ts

)

MRT = 0.05%

MRT = 0.1%; LLMRT = 0.1%

MRT = 0.1%; LLMRT = 0.5%

MRT = 0.1%

MRT = 0.2%

MRT = 0.5%

MRT = 1%

0
10
20
30
40

50
60
70
80
90

d
b

c
o

m
p

re
s
s

ja
c
k

ja
v
a

c

je
s
s

m
p

e
g

a
u

d
io

m
tr

t

p
s
e

u
d

o
jb

b

c
ry

p
t

h
e

a
p

S
o

rt

L
U

F
a

c
t

m
o

ld
y
n

s
e

a
rc

h

S
O

R

s
p

a
rs

e

a
v
g

n
u

m
s
e

le
c
te

d
o

b
je

c
t
ty

p
e

s
MRT = 0.05%

MRT = 0.1%; LLMRT = 0.1%

MRT = 0.1%; LLMRT = 0.5%

MRT = 0.1%

MRT = 0.2%

MRT = 0.5%

MRT = 1%

0%

5%

10%

15%

20%

25%

30%

35%

40%

d
b

c
o

m
p

re
s
s

ja
c
k

ja
v
a

c

je
s
s

m
p

e
g

a
u

d
io

m
tr

t

p
s
e

u
d

o
jb

b

c
ry

p
t

h
e

a
p

S
o

rt

L
U

F
a

c
t

m
o

ld
y
n

s
e

a
rc

h

S
O

R

s
p

a
rs

e

a
v
g

o
b

je
c
t
h

e
a

d
e

rs
(%

o
f
to

ta
l
b

y
te

s
)

MRT = 0.05%

MRT = 0.1%; LLMRT = 0.1%

MRT = 0.1%; LLMRT = 0.5%

MRT = 0.1%

MRT = 0.2%

MRT = 0.5%

MRT = 1%

Fig. 5. The top graph shows the number of selected object types as a function of the MRT and
LLMRT thresholds. The middle graph shows the coverage by the selected objects as a percentage
of the total number of objects. The bottom graph shows the number of allocated bytes in the
headers of the selected object types as a percentage of the total number of allocated bytes.

of the total number of object types. The total number of types allocated at least
once ranges from 450 to 650 over the various benchmarks. The middle graph in
Figure 5 shows the coverage by the selected object types, i.e., the fraction of the
total number of allocated objects that is accounted for by the selected object types.
We observe that selecting only a small number of types results in a fairly large
coverage. A 0.05% MRT yields an average coverage of 80.3%; a 0.2% MRT yields
an average coverage of 68.4%. The bottom graph in Figure 5 shows the percentage
of the total number of allocated bytes due to headers of the selected object types.
This percentage shows the potential reduction in memory consumption in case the
complete header would be removed from the selected objects for the profile input.
For example, a 0.05% MRT potentially yields an average 23.1% potential reduction
in allocated bytes, with a peak for mtrt of 36%. A 0.2% MRT yields an average
potential reduction of 20%.

7.2 Memory consumption

Figures 6 and 7 show the reduction in allocated bytes for the offline and online
header reduction techniques, respectively. Again, for the offline technique, these

ACM Journal Name, Vol. V, No. N, June 2007.

· 17

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e

a
v
g

%
re

d
u
c
ti
o
n

in
a
llo

c
a
te

d
b
y
te

s

GenCopy, small-header GenCopy, no-header GenMS, small-header GenMS, no-header

Fig. 6. Reduction in the number of allocated bytes for the offline header reduction techniques
with MRT and LLMRT set to 0.1%.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e

a
v
g

%
re

d
u
c
ti
o
n

in
a
llo

c
a
te

d
b
y
te

s

GenCopy, small-header GenCopy, no-header GenMS, small-header GenMS, no-header

Fig. 7. Reduction in the number of allocated bytes for the online header reduction techniques.

numbers are for the reference input from a cross-validation setup. We observe an
average reduction in allocated bytes of 15%. For some benchmarks we even observe
a reduction in allocated bytes of 28% (search), 29% (mpegaudio), 32% (db) and 46%
(mtrt). There are a number of important notes that we would like to make:

—Our first note relates to the data presented in Figure 6 compared to the data
presented in Figure 5 for the feasibility study. The data in Figure 6 is for the
reference runs whereas Figure 5 is for the profile input. Note that for some bench-
marks such as db and mtrt we obtain larger reductions in memory consumption
with the reference input than what we expected from the profile input, compare
Figure 6 against Figure 5. This is explained by the fact that the reference input
spends more time in the application than the profile input does. And since the
VM objects tend to be larger than application objects, it is to be understood
that the reduction in memory consumption is larger for the reference input than
for the profile input.

—A second note we would like to make is that some benchmarks, such as compress

and some of the JGF benchmarks, have a fairly low reduction in allocated bytes.
The reason is that these benchmarks allocate long arrays — reducing the header
size thus has a limited effect on the overall memory reduction. In addition, the
data in Figure 5 shows potential memory reductions in the nursery and mature
generations only, no data is included concerning the large object space (LOS).

ACM Journal Name, Vol. V, No. N, June 2007.

18 ·

benchmark offline online in common

db 35 38 35
compress 34 32 32

jack 37 43 36
javac 56 80 48

jess 41 44 38
mpegaudio 36 36 32

mtrt 47 48 46
pseudojbb 8 44 57 39
pseudojbb 15 44 64 39

crypt 33 34 32
heapSort 34 33 32

LUFact 34 32 32
moldyn 35 33 32
search 34 33 32

SOR 33 32 32
sparse 33 33 32

Table II. Number of TVA-enabled object types for offline STVA type selection, online STVA type
selection and the number of object types in common between offline and online type selection.
This includes 32 bootlist TVA-enabled object types.

The data in Figures 6 and 7 show the effective memory reduction.

—A third note is that for some benchmarks, the no-header object model allocates
more bytes than the small-header object model. There are two reasons for this.
First, in case of a copying collector, the small-header object model is applied to
arrays of all lengths whereas the no-header object model is only applied to arrays
of a single length as discussed in section 4.2. Some benchmarks suffer from the
fact that TVA cannot be applied to all array sizes. Second, when a TVA-enabled
object, on which a hashcode is taken, is moved in the no-header object model,
the object is TVA-disabled which causes the object to grow in size.

—Finally, the reduction in allocated bytes is comparable between the offline and
online header reduction techniques, in spite of the different approaches taken
for selecting TVA-enabled object types, as discussed in section 5. The reason
is that the offline and online header reduction techniques have various selected
TVA-enabled object types in common. This is quantified in Table II where the
number of TVA-enabled types are shown for offline and online type selection as
well as the number of object types in common between offline and online type
selection.

7.2.1 Reduction through TIB pointer compression versus STVA. Figure 8 shows
the reduction in allocated bytes partitioned by (i) the TIB pointer compression tech-
nique and (ii) the no-header STVA object model. We observe that approximately
half the reduction in memory consumption comes from TIB pointer compression
that is applied to all objects; the other half comes from the no-header STVA object
model that can be applied only to TVA-enabled objects.

7.2.2 Reduction in application objects versus VM objects. As mentioned in the
experimental setup in section 6, Jikes RVM is a VM that is written in Java. As
a consequence, STVA also applies to objects allocated by the VM and thus, the
results presented in this paper account for applying STVA to both VM objects and
application objects. Other VMs that are not written in Java on the other hand,
may not get similar benefits from STVA as what is presented in this paper. In order

ACM Journal Name, Vol. V, No. N, June 2007.

· 19

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e%
re

d
u
c
ti
o
n

in
a
llo

c
a
te

d
b
y
te

s TIB pointer compression no-header STVA

Fig. 8. The reduction in allocated bytes partitioned by TIB pointer compression and no-header
STVA for the GenCopy collector.

0%

5%

10%
15%

20%

25%

30%

35%
40%

45%

50%

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e

a
v
g

%
re

d
u
c
ti
o
n

in
a
llo

c
a
te

d
b
y
te

s

Jikes RVM

application

Fig. 9. Accounting the overall memory reduction to application and VM objects; this graph
assumes the GenMS garbage collector and the no-header STVA object model.

to quantify the impact of our experimental setup using Jikes RVM, we classify the
objects as VM and application objects and then compute the amount of memory
reduction for VM and application objects separately. Classifying objects as VM
and application objects is done by scanning the stack upon allocating an object
until a method is reached that is either an application method or a VM method.

Figure 9 quantifies the amount of memory reduction for the application objects
and VM objects. The important observation here is that the most significant part
of the overall 16% memory reduction is obtained through the application objects
(11% on average); about 5% is accounted for by VM objects. These results show
that other VMs that are not written in Java can also benefit significantly from
implementing STVA for reducing overall memory consumption.

7.2.3 Reduction in in-use memory pages. Figures 10, 11 and 12 show the heap
size counted as the number of pages in use on the vertical axis as a function the
number of allocations on the horizontal axis for jack, javac and pseudojbb with up
to 15 warehouses, respectively. The curves in these graphs increase as memory gets
allocated until a garbage collection is triggered after which the number of used pages
drops to the amount of reachable data at that point. This explains the shape of

ACM Journal Name, Vol. V, No. N, June 2007.

20 ·

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 50000 100000 150000 200000 250000 300000 350000 400000

pa
ge

s
in

 u
se

allocations (x 100)

_228_jack genCopy

reference

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 50000 100000 150000 200000 250000 300000 350000 400000

pa
ge

s
in

 u
se

allocations (x 100)

_228_jack genCopy no-header

STVA

Fig. 10. The heap size is shown as a function of the number of allocations for the original Jikes
RVM implementation (top graph) versus STVA (bottom graph) for jack.

ACM Journal Name, Vol. V, No. N, June 2007.

· 21

 0

 5000

 10000

 15000

 20000

 25000

 0 50000 100000 150000 200000 250000 300000

pa
ge

s
in

 u
se

allocations (x 100)

_213_javac genCopy

reference

 0

 5000

 10000

 15000

 20000

 25000

 0 50000 100000 150000 200000 250000 300000

pa
ge

s
in

 u
se

allocations (x 100)

_213_javac genCopy no-header

STVA

Fig. 11. The heap size is shown as a function of the number of allocations for the original Jikes
RVM implementation (top graph) versus STVA (bottom graph) for javac.

ACM Journal Name, Vol. V, No. N, June 2007.

22 ·

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 50000 100000 150000 200000 250000 300000 350000

pa
ge

s
in

 u
se

allocations (x 1000)

pseudojbb_15 genMS

reference

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 50000 100000 150000 200000 250000 300000 350000

pa
ge

s
in

 u
se

allocations (x 1000)

pseudojbb_15 genMS no-header

STVA

Fig. 12. The heap size is shown as a function of the number of allocations for the original Jikes
RVM implementation (top graph) versus STVA (bottom graph) for pseudojbb with up to 15
warehouses.

ACM Journal Name, Vol. V, No. N, June 2007.

· 23

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e

s
p
e
e
d
u
p

GenCopy, small-header GenCopy, no-header GenMS, small-header GenMS, no-header

Fig. 13. Speedups along with the 95% confidence intervals for offline header reduction. The MRT
and LLMRT thresholds are set to 0.1%.

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e

s
p
e
e
d
u
p

GenCopy, small-header GenCopy, no-header GenMS, small-header GenMS, no-header

Fig. 14. Speedups along with the 95% confidence intervals for online header reduction.

these graphs. There are two important observations to be made from these graphs.
First, since STVA reduces the amount of allocated bytes per allocation, garbage
collections get delayed — the STVA curve is shifted to the right compared the
original Jikes RVM curve. In other words, fewer garbage collections are required.
Second, when garbage is collected, the number of pages in use for STVA can drop
below the number of pages in use for the original Jikes RVM. The reason is that
the amount of reachable bytes is smaller under STVA because of the space-efficient
STVA object model.

7.3 Performance

Figures 13 and 14 show the speedup for the offline and online reduced header
object models, respectively. Data is shown for the small-header and no-header
object models as well as for the GenCopy and the GenMS collectors. These figures
show speedups along with the 95% confidence intervals. The offline reduced header
object models are obtained from a cross-validation setup, i.e., we use profile inputs
for selecting the TVA-enabled types, and we use reference inputs for reporting
speedups. We set MRT and LLMRT to 0.1% in these experiments based on our
previous work [Venstermans et al. 2006b].

We observe that for some benchmarks, STVA results in a statistically significant

ACM Journal Name, Vol. V, No. N, June 2007.

24 ·

performance degradation. This is the case for compress and SOR for all collectors
and object models. For a number of benchmarks, we observe performance degra-
dations for only a few collector and object model configurations. The performance
degradation that we see is generally smaller than 5%, with one exception of 7%
for jack for the online no-header object model. This suggests that the run-time
overhead introduced by STVA has a larger impact on overall performance than
the reduction in memory footprint for these benchmarks. A number of bench-
marks show a significant performance improvement: db (7%), mtrt (5%), LUFact

(4%), moldyn (3%), sparse (up to 20%) and jack for the GenMS collector (up to
10%). For these benchmarks, the reduction in memory consumption has a larger
impact on overall performance than the increased run-time overhead due to STVA
which results in a significant speedup. For all remaining benchmarks, STVA has
no statistically significant impact on overall performance. In conclusion, the space-
efficient object models do not have a negative impact on performance for most of
the benchmarks and a couple of benchmarks even show a significant speedup.

7.4 Cache and TLB performance

We now study the impact of STVA on cache and TLB performance in more detail
using hardware performance counters. Figure 15 quantifies the number of D-TLB,
L1, L2 and L3 misses per thousand instructions in the reference run for the GenMS
garbage collector; we obtained similar results for the GenCopy garbage collector.
We observe that the number of D-TLB misses does not increase for most bench-
marks. However, for a few benchmarks the number of D-TLB misses slightly in-
creases due to the increased memory fragmentation because of STVA. The number
of cache misses typically decreases, especially for the larger L2 and L3 caches; the
reason is the reduced memory consumption. For some benchmarks such as db and
sparse, the number of L3 misses decreases by 50%. This large decrease in L3 misses
explains the speedup results reported in Figures 13 and 14. Note that the reduction
in L3 cache miss rate for sparse is not due to a reduction in the amount of memory
consumed by application objects, see Figure 9. Instead, the reduction in L3 cache
miss rate primarily comes from a reduction in the amount of memory consumed by
VM objects along with a changed data layout through STVA.

7.5 STVA versus TVA

As mentioned throughout the paper, one contribution of this paper is to show that
applying TVA to a selected number of object types (i.e., STVA) results in bet-
ter performance than applying TVA to all object types. This is clearly shown in
Figure 16 where STVA is compared against TVA. TVA performs fairly well in gen-
eral and achieves similar performance as STVA for many benchmarks. However,
for a number of benchmarks, TVA results in significant performance degradations
compared to STVA. This is the case for compress, javac, mpegaudio, pseudojbb, LU-

Fact and sparse. The compress benchmark even results in a 15% overall performance
degradation; pseudojbb with 15 warehouses experiences an 8.4% performance degra-
dation under TVA. As such, we conclude that implicit typing on selected object
types outperforms implicit typing on all object types.

ACM Journal Name, Vol. V, No. N, June 2007.

· 25

D-TLB misses

0

5

10

15

20

25

30

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e

n
o
.

o
f

m
is

s
e
s

p
e
r

1
0
0
0

in
s
n
s

reference

offline, small-header

online, small-header

offline, no-header

online, no-header

L1 misses

0

10

20

30

40

50

60

70

80

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e

n
o
.

o
f

m
is

s
e
s

p
e
r

1
0
0
0

in
s
n
s

reference

offline, small-header

online, small-header

offline, no-header

online, no-header

L2 misses

0

10

20

30

40

50

60

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e

n
o
.

o
f

m
is

s
e
s

p
e
r

1
0
0
0

in
s
n
s

reference

offline, small-header

online, small-header

offline, no-header

online, no-header

L3 misses

0

5

10

15

20

25

30

35

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e

n
o
.

o
f

m
is

s
e
s

p
e
r

1
0
0
0

in
s
n
s

reference

offline, small-header

online, small-header

offline, no-header

online, no-header

Fig. 15. Evaluating the performance of the cache hierarchy under STVA: D-TLB, L1, L2 and L3
misses per thousand instructions in the reference run for the GenMS garbage collector.

ACM Journal Name, Vol. V, No. N, June 2007.

26 ·

-15%

-10%

-5%

0%

5%

10%

15%

20%

d
b

c
o
m

p
re

s
s

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

m
tr

t

p
s
e
u
d
o
jb

b
_
8

p
s
e
u
d
o
jb

b
_
1
5

c
ry

p
t

h
e
a
p
S

o
rt

L
U

F
a
c
t

m
o
ld

y
n

s
e
a
rc

h

S
O

R

s
p
a
rs

e

s
p
e
e
d
u
p

TVA offline STVA online STVA

Fig. 16. Comparing STVA versus TVA in terms of speedup for the GenCopy garbage collector.

8. RELATED WORK

Dieckmann and Hölzle [1999] present a detailed characterization of the allocation
behavior of SPECjvm98 benchmarks. Among the numerous aspects they evaluated,
they also quantified object size and the impact of object alignment on the overall
object size. This study was done on a 32-bit platform.

Venstermans et al. [2006a] compare the memory requirements for Java applica-
tions on a 64-bit virtual machine versus a 32-bit virtual machine. They concluded
that objects are nearly 40% larger in a 64-bit VM compared to a 32-bit VM. There
are three reasons for this. First, a reference in 64-bit computing mode is twice the
size as in 32-bit computing mode. Second, the header in 64-bit mode is also twice
as large as in 32-bit mode. And third, alignment issues also increase the object size
in 64-bit mode. They conclude that for non-array objects, the increased header
accounts for half the object size increase. In this paper, we propose STVA as a way
to eliminate the object header in 64-bit VMs.

Adl-Tabatabai et al. [2004] address the increased memory requirements of 64-bit
Java implementations by compressing 64-bit pointers to 32-bit offsets. They apply
their pointer compression technique to both the TIB pointer and the forwarding
pointer in the object header and to pointers in the object itself. By compressing
the TIB pointer and the forwarding pointer in the object header, they can actually
reduce the size of the object header from 16 bytes (for non-array objects) to only
8 bytes. There are three key differences with our approach. First, we eliminate
the TIB pointer completely from the object header for TVA-enabled objects; [Adl-
Tabatabai et al. 2004] only compresses the TIB pointer. The second difference
between Adl-Tabatabai et al.’s approach and our proposal is that we do not need
to compress and decompress the TIB pointer. We compute the TIB pointer from
the object’s virtual address. And finally, the approach by Adl-Tabatabai et al.
limits applications to a 32-bit address space. As such, applications that require
more than 4GB of memory cannot benefit from pointer compression. STVA and
TIB pointer compression do not suffer from this limitation. The only assumption
we make in our proposal is that we do not need more than a 32-bit virtual address
space for holding type information, however, it is highly unlikely that this would

ACM Journal Name, Vol. V, No. N, June 2007.

· 27

ever be needed in practice.

Bacon et al. [2002] present a number of header compression techniques for the
Java object model on 32-bit machines. They propose three approaches for reducing
the space requirements of the TIB pointer in the header: bit stealing, indirection
and the implicit type method. Bit stealing uses the least significant bits from a
memory address (which are typically zero) for other uses. The main disadvantage
of bit stealing is that it frees only a few bits. Indirection represents the TIB pointer
as an index into a table of TIB pointers. The disadvantages of indirection are that
an extra load is needed to access the TIB pointer, and that there is a fixed limit on
the number of TIBs and thus the number of object types that can be supported.
The approach that we propose has the advantage over these two approaches to
completely eliminate the TIB pointer from the object header. The bit stealing
and indirection methods on the other hand still require a condensed form of a TIB
pointer to be stored in the header.

The third header compression method discussed by Bacon et al. [2002] is called
the implicit type method. The general idea behind implicit types is that the type
information is part of the object’s virtual address. In fact, there are number of
ways of how to implement implicit typing. A first possibility is to have a type
tag included in the pointer to the object. The type tag is then typically stored
in the most-significant or least-significant bits of the object’s virtual address. By
consequence, obtaining the effective memory address requires masking the object’s
virtual address. Storing the type tag in the most-significant bits of the object’s
virtual address usually restricts the available address space. Storing the type tag in
the least-significant bits of the object’s virtual address on the other hand, usually
forces objects to be aligned on multiple byte boundaries. A second approach is to
use the type tag bits as a part of the address. By doing so, the address space gets
divided into several distinct regions where objects of the same type get allocated
into the same region. This is similar to the TVA implementation that we use in
this paper.

A third approach is the Big Bag of Pages (BiBOP) approach proposed by Steele,
Jr. [1997] and Hanson [1980]. In BiBOP, the type tag serves as an index into a table
where the type is stored. BiBOP views memory as a group of equal-sized segments.
Each segment has an associated type. An important disadvantage of BiBOP typing
is that the type tag that is encoded in the memory address serves as an index in a
table that points to the object’s TIB. In other words, an additional indirection is
needed for accessing the TIB. Dybvig et al. [1994] propose a hybrid system where
some objects have a type tag in the least-significant bits and where other objects
follow the BiBOP typing. The typed virtual memory addressing that we propose
here in this paper differs from this prior work on typed virtual addressing in the
following major ways. First, we propose to apply implicit typing to selected object
types only; previous work applied implicit typing to all object types. Applying
implicit typing to all object types results in significant memory fragmentation. We
argue and show how to make a good selection on what objects to apply the implicit
type method. Second, although previous work describes the implicit type method,
they do not evaluate it and do not compare it against memory systems without
typed virtual addressing. In this paper, we propose a practical method of how to

ACM Journal Name, Vol. V, No. N, June 2007.

28 ·

implement the implicit typing method for 64-bit Java VM implementations. In
addition, we quantify the performance and memory consumption impact of STVA
and compare that against traditional VM implementations without STVA.

Shuf et al. [2002] propose the notion of prolific types versus non-prolific types. A
prolific type is defined as a type that has a sufficiently large number of instances
allocated during a program execution. In practice, a type is called prolific if the
fraction of objects allocated by the program of this type exceeds a given threshold.
All remaining types are referred to as non-prolific. Shuf et al. found that only a
limited number of types account for most of the objects allocated by the program.
They then propose to exploit this notion by using short type pointers for prolific
types. The idea is to use a few type bits in the status field to encode the types of the
prolific objects. As such, the TIB pointer field can be eliminated from the object
header. The prolific type can then be accessed through a type table. A special
value of the type bits, for example all zeros, is then used for non-prolific object
types. Non-prolific types still have a TIB pointer field in their object headers. A
disadvantage of this approach is that the number of prolific types is limited by the
number of available bits in the status field. In addition, computing the TIB pointer
for prolific types requires an additional indirection. Our STVA implementation
does not have these disadvantages. The advantage of the prolific approach is that
the amount of memory fragmentation is limited since all objects are allocated in
a single segment, much as in traditional VMs. The STVA implementation that
we propose could be viewed of as a hybrid form of the prolific approach and the
implicit typed methods discussed above; we apply implicit typing to prolific types.

A number of related research studies have been done on characterizing the mem-
ory behavior of Java applications, such as [Blackburn et al. 2004; Kim and Hsu
2000; Shuf et al. 2001]. Other studies aimed at reducing the memory consumption
of Java applications, for example, using techniques such as heap compression [Chen
et al. 2003], object compression [Chen et al. 2005], pointer compression [Lattner
and Adve 2005], etc.

9. CONCLUSION

This paper proposed eliminating the header from the 64-bit Java object model
through Selective Typed Virtual Addressing (STVA). The idea of STVA is to apply
typed virtual addressing (TVA) or implicit typing to a selected number of object
types. TVA means that the object type is encoded in the object’s virtual address.
We apply TVA selectively, hence the name Selective TVA, on object types that are
frequently allocated. The end result is that the header can be eliminated completely
from the object header. The TIB pointers are stored in the TIB space and the status
field information is stored in side arrays. Accessing the appropriate TIB pointer
and status field is done through offsets computed from the object’s virtual address.
For the objects on which we do not apply TVA, we compress the TIB pointer from
64-bit to 32-bit.

We evaluated our newly proposed space-efficient Java object model in a 64-bit
Java VM implementation, namely Jikes RVM, on an AIX IBM POWER4 machine.
Our results show that the space-efficient object model yields a reduction in the num-
ber of allocated bytes by 15% on average (up to 45%). Half the reduction comes

ACM Journal Name, Vol. V, No. N, June 2007.

· 29

from STVA; the other half comes from TIB pointer compression. In terms of perfor-
mance, the space-efficient Java object model generally does not affect performance
in a statistically significant way, however, some benchmarks exhibit significant per-
formance speedups (up to 20%).

Acknowledgements

We would like to thank the anonymous reviewers for their valuable and constructive
feedback; we thank both the reviewers of our CGO-2006 paper [Venstermans et al.
2006b], as well as the reviewers of this journal extension. These review comments
greatly helped us improve the work reported in this journal paper. Kris Venster-
mans is supported by a BOF grant from Ghent University. Lieven Eeckhout is
a Postdoctoral Fellow with the Fund for Scientific Research—Flanders (Belgium)
(FWO—Vlaanderen).

REFERENCES

Adl-Tabatabai, A.-R., Bharadwaj, J., Cierniak, M., Eng, M., Fang, J., Lewis, B. T., Mur-

phy, B. R., and Stichnoth, J. M. 2004. Improving 64-bit Java IPF performance by compress-
ing heap references. In Proceedings of the Second Annual International Symposium on Code
Generation and Optimization (CGO). IEEE Computer Society, 100–110.

Agesen, O. 1999. Space and time-efficient hashing of garbage-collected objects. Theory and
Practice of Object Systems 5, 2, 119–124.

Alpern, B., Attanasio, C. R., Barton, J. J., Burke, M. G., Cheng, P., Choi, J.-D., Cocchi,

A., Fink, S. J., Grove, D., Hind, M., Hummel, S. F., Lieber, D., Litvinov, V., Mergen,

M. F., Ngo, T., Russell, J. R., Sarkar, V., Serrano, M. J., Shepherd, J. C., Smith, S. E.,
Sreedhar, V. C., Srinivasan, H., and Whaley, J. 2000. The Jalapeno Virtual Machine. IBM
Systems Journal 39, 1 (Feb.), 211–238.

Appel, A. W. 1989. A runtime system. Tech. Rep. CS-TR-220-89, Princeton University, Com-
puter Science Department, May.

Bacon, D. F., Fink, S. J., and Grove, D. 2002. Space- and time-efficient implementation of the
Java object model. In Proceedings of the Sixteenth European Conference on Object-Oriented
Programming (ECOOP). Springer, 111–132.

Bacon, D. F., Konuru, R., Murthy, C., and Serrano, M. 1998. Thin locks: Featherweight syn-
chronization for java. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation (PLDI). ACM Press, 258–268.

Blackburn, S. M., Cheng, P., and McKinley, K. S. 2004. Myths and realities: the perfor-
mance impact of garbage collection. In Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS). ACM Press, 25–36.

Chen, G., Kandemir, M., and Irwin, M. J. 2005. Exploiting frequent field values in Java objects
for reducing heap memory requirements. In Proceedings of the 1st ACM/USENIX International
Conference on Virtual Execution Environments (VEE). ACM Press, 68–78.

Chen, G., Kandemir, M., Vijaykrishnan, N., Irwin, M. J., Mathiske, B., and Wolczko, M.

2003. Heap compression for memory-constrained Java environments. In Proceedings of the
18th ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA). ACM Press, 282–301.

Dieckmann, S. and Hölzle, U. 1999. A study of the allocation behavior of the SPECjvm98 Java
benchmarks. In Proceedings of the 13th European Conference for Object-Oriented Programming
(ECOOP). Springer, 92–115.

Dybvig, R. K., Eby, D., and Bruggeman, C. 1994. Don’t stop the BIBOP: Flexible and efficient
storage management for dynamically-typed languages. Tech. Rep. 400, Indiana University
Computer Science Department. Mar.

Hanson, D. R. 1980. A portable storage management system for the Icon programming language.
Software—Practice and Experience 10, 6, 489–500.

ACM Journal Name, Vol. V, No. N, June 2007.

30 ·

Kim, J.-S. and Hsu, Y. 2000. Memory system behavior of Java programs: methodology and analy-

sis. In Proceedings of the 2000 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems. ACM Press, 264–274.

Lattner, C. and Adve, V. 2005. Automatic pool allocation: improving performance by control-
ling data structure layout in the heap. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). ACM Press, 129–142.

Lilja, D. J. 2000. Measuring Computer Performance: A Practitioner’s Guide. Cambridge Uni-
versity Press.

Shebs, S. T. and Kessler, R. R. 1987. Automatic design and implementation of language data
types. In Proceedings of the ACM SIGPLAN 1987 Conference on Programming Language
Design and Implementation (PLDI). ACM Press, 26–37.

Shuf, Y., Gupta, M., Bordawekar, R., and Singh, J. P. 2002. Exploiting prolific types for
memory management and optimizations. In Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM Press, 295–306.

Shuf, Y., Serrano, M. J., Gupta, M., and Singh, J. P. 2001. Characterizing the memory
behavior of Java workloads: a structured view and opportunities for optimizations. In Pro-
ceedings of the Joint International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS). ACM Press, 194–205.

Steele, Jr., G. L. 1997. Data representation in PDP-10 MACLISP. Tech. Rep. AI Memo 420,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Sept.

Venstermans, K., Eeckhout, L., and De Bosschere, K. 2006a. 64-bit versus 32-bit virtual
machines for java. Software—Practice and Experience 36, 1 (Jan.), 1–26.

Venstermans, K., Eeckhout, L., and De Bosschere, K. 2006b. Space-efficient 64-bit Java ob-
jects through selective typed virtual addressing. In Proceedings of the 4th Annual International
Symposium on Code Generation and Optimization (CGO). IEEE Computer Society, 76–86.

ACM Journal Name, Vol. V, No. N, June 2007.

