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Multi-chip GPU systems are critical to scale performance beyond a single GPU chip for a wide variety of
important emerging applications. A key challenge for multi-chip GPUs though is how to overcome the
bandwidth gap between inter-chip and intra-chip communication. Accesses to shared data, i.e., data accessed
by multiple chips, pose a major performance challenge as they incur remote memory accesses possibly
congesting the inter-chip links and degrading overall system performance. This paper characterizes the shared
data set in multi-chip GPUs in terms of (1) truly versus falsely shared data, (2) how the shared data set scales
with input size, (3) along which dimensions the shared data set scales, and (4) how sensitive the shared data
set is with respect to the input’s characteristics, i.e., node degree and connectivity in graph workloads. We
observe significant variety in scaling behavior across workloads: some workloads feature a shared data set that
scales linearly with input size, while others feature sublinear scaling (following a

√
2 or 3√2 relationship). We

further demonstrate how the shared data set affects the optimum last-level cache organization (memory-side
versus SM-side) in multi-chip GPUs, as well as optimum memory page allocation and thread scheduling policy.
Sensitivity analyses demonstrate the insights across the broad design space.

CCS Concepts: • Computer systems organization → Single instruction, multiple data; • Networks →
Network on chip.
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1 INTRODUCTION
The pace of technology scaling is slowing down, imposing a limit on the number of transistors
available to build single-die monolithic Graphics Processing Unit (GPU) architectures [2]. At the
same time, the processing and memory requirements of important GPU-compute applications
such as map-reduce [9], virtual reality [10] and deep learning [15] are growing. Addressing this
mismatch by increasing GPU die sizes is unattractive because lower yield results in production costs
increasing super-linearly with die size [22]. The go-to strategy for enabling continued performance
scaling in the post-technology-scaling era is hence to revert to multi-chip GPU architectures which
provide the illusion of a single GPU while consisting of multiple GPU chips. Multi-chip GPUs
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are hence attractive as they provide the compute and memory resources required by emerging
workloads while avoiding the production cost overhead.

Multi-chip GPU architectures can be broadly classified as (i) multi-socket GPUs where the system
contains multiple GPU and memory chips that are connected with each other through the Printed
Circuit Board (PCB), and (ii) Multi-Chip Module (MCM) GPUs [2, 7], where multiple GPU and
memory dies, called chiplets, are interconnected using silicon interposers or organic substrates
within a single package [22]. Commercial examples of the former are Nvidia’s DGX systems [16, 18];
commercial examples of the latter include the Nvidia H100 [19], the AMD Instinct MI200 [1] and
the Intel Ponte Vecchio [5]. In both multi-socket and chiplet-based GPU architectures, the GPUs
are connected to each other via inter-chip links, and each GPU chip is connected to a local memory
module. The key difference is the bandwidth available between GPU chips. MCM-GPUs offer the
highest inter-chip bandwidth, but also incur the highest cost while providing limited memory
capacity. In contrast, multi-socket GPUs incur lower cost and provide higher memory capacity, but
offer lower inter-chip bandwidth.

A key challenge in multi-chip GPUs, both multi-socket GPUs and chiplet-based GPUs, is how to
best overcome the bandwidth non-uniformity in inter-chip versus intra-chip bandwidth. Because
of the bandwidth disparity, it is paramount that to unleash their high performance capabilities,
multi-chip GPUs should avoid saturating the inter-chip links. This implies that most memory
accesses should be local rather than remote, i.e., the Streaming Multiprocessors (SMs) in a GPU
should predominantly access the local memory module, and not remote memory modules, to avoid
congesting the inter-chip links. The data-parallel programming model of GPUs — in which each
kernel is divided into a grid of Cooperative Thread Arrays (CTAs) with each CTA being responsible
for performing the kernel’s computation on a subset of the input data — is hence a good fit for
multi-chip GPUs as long as the computation performed by each CTA primarily operates on a
chip’s local data and only rarely requires access to chip-remote data. This is mostly the case for a
first-touch memory page allocation policy [2], under which the GPU driver allocates a memory page
to the local memory module of the GPU chip containing the SM that first requests data from the
page. Under this policy, all memory accesses are local to a chip as long as the data is private to that
chip, i.e., no other chip is accessing the data. Because there are no remote memory accesses, only
local accesses, applications with only private data are hence the perfect workloads for multi-chip
GPUs as they provide unlimited scaling opportunities.
Unfortunately, not all workloads operate on private-only data. Many important GPU-compute

workloads operate on data that incurs remote memory accesses, i.e., a chip is accessing data in a
remote memory module. In other words, the data is shared by different chips. Shared data has a
substantial impact on multi-chip GPU performance and scalability, as we will quantify in this paper.
Intuitively speaking, if remote accesses would be equally fast as local accesses, there would be no
scalability issues. It is hence critical that architects and software developers deeply understand
how inter-chip data sharing affects performance to design architectures and develop software that
consistently achieves high performance on multi-chip GPUs.

The goal of this work is to characterize the shared data set in multi-chip GPUs. In particular, we
analyze how the shared data set varies with input size (i.e., how does the shared data set change
when scaling the input size, in both absolute and relative terms?); how the shared data set scales
across the various dimensions of the input (i.e., how does the shared data set scale along the 𝑥 ,𝑦 and
𝑧 dimensions of the input?); how the shared data set varies with varying input characteristics (i.e.,
how does the shared data set change as properties of, for example, a graph input change in terms
of the number of edges per nodes and node connectivity?). When doing so, we make a distinction
between truly shared versus falsely shared data. Truly shared data means that different chips access
the exact same cachelines; this leads to remote memory accesses and (possibly) camping effects
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when different chips access the truly shared data around the same time to a single copy in cache.
Falsely shared data on the other hand means that only a single chip is accessing the cacheline but
because it is mapped to the same memory page as another cacheline accessed by at least one other
chip, it leads to remote memory accesses.

We further demonstrate that the shared data set has a substantial impact on the optimum multi-
GPU architecture — thereby re-enforcing the importance and relevance of understanding the
shared data set in the context of multi-chip GPU systems. In particular, we compare a memory-side
last-level cache (LLC) against an SM-side LLC and demonstrate that the preference of either LLC
organization correlates strongly with a workload’s shared data set properties and size. Because a
memory-side LLC only caches data from a chip’s local memory module, all accesses to remote data
have to traverse the inter-chip links. An SM-side LLC on the other hand caches data from both
local and remote memory modules for the local chip to access. We find that both LLC organizations
perform comparably (apart from coherence overhead) if a workload only accesses private data.
However, if a workload features a non-negliglible shared data set, the SM-side LLC is the best-
performing organization if the shared data set is relatively small. In contrast, if the shared data set
is large, the memory-side LLC is the winner. We observe a monotonic shift from the SM-side to the
memory-side LLC as a function of a workload’s input and shared data set size. The reason is that
an SM-side LLC caches remote data locally, hence falsely shared data is cached closer to the SMs
operating on the data, while truly shared data is replicated across the different chips that access it.
If the shared data set is small relative to the LLC size, this turns out to be beneficial. However, if
the shared data set is too large relative to the LLC’s capacity, data replication of the truly shared
data set initiates LLC thrashing, thereby degrading overall system performance.

Finally, we show that the impact of data sharing increases with system size (i.e., the number of
chips in a multi-chip GPU system), and we find this to be the case for both strong and weak scaling
scenarios. Furthermore, the scaling bottleneck increases with workload input size. This further
illustrates the importance of understanding the shared data set as industry is moving forward
towards larger multi-chip GPU systems.

Overall, we make the following contributions in this work:

• We characterize the shared data set in multi-chip GPUs including its relationship with a
workload’s input size, dimensions, and characteristics. We make a distinction between truly
and falsely shared data, and quantify their scaling behavior. While the shared data set scales
linearly with input size for some workloads, it follows a sublinear (

√
2 or 3√2) relationship for

others. We explain these scaling trends based on the dimensionality of the workloads and
their inputs.

• We consider both uniform and non-uniform input scaling in which we scale all or selective
input dimensions proportionally with input size, respectively. This provides insight into how
input scaling affects shared data set size and performance.

• The amount of shared data is not only determined by the size of the input but also its
characteristics. We provide insight into the impact of the input characteristics (node degree
and connectivity) on data sharing by studying two graph workloads.

• We demonstrate that the shared data set has a substantial impact on the optimum LLC
organization (memory-side versus SM-side) in multi-chip GPU architectures. The SM-side
LLC is uniformly the best performing organization if the shared data set is relatively small
such that replicating the truly shared data set does not surpass the LLC’s capacity.

• We provide a variety of sensitivity analyses that confirm our findings across a range of inter-
chip and memory bandwidth settings. We also explore how memory page allocation and CTA
scheduling affect data sharing. Our analysis confirms that the state-of-the-art first-touch page
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Fig. 1. Illustrating inter-chip GPU data sharing. (1) Memory page A is allocated and accessed locally by chip 0.
(2) Memory page B is allocated in chip 1 but accessed remotely only by chip 0; although cacheline B1 is not shared,
it leads to remote accesses. (3) Memory page C is allocated in chip 2, and contains cacheline C1 accessed locally
(by chip 2) and cacheline C2 accessed remotely by chip 1 — C1 and C2 are falsely shared. (4) Memory page D
contains a truly-shared cacheline D1 accessed by both chips 2 and 3, and a falsely-shared cacheline D2 accessed
remotely by chip 1.

allocation and distributed-batched CTA scheduling policies are indeed the best performing
multi-GPU policies [2]. However, we novelly correlate and explain this result by analyzing
the impact these policies have on the shared data set.

2 MOTIVATION
Data sharing is common in GPU applications due to their nature of parallel processing. A thread
can share data with other threads within the same thread block (i.e., CTA) or in different CTAs.
When CTAs with a shared data set are allocated to different GPU chips, sharing between CTAs
results in inter-chip data sharing. We now describe the different types of inter-chip data sharing,
and we quantify its impact on performance.

2.1 Inter-Chip Data Sharing Classification
Data sharing across chips is the key reason why multi-chip GPU systems are sensitive to inter-chip
bandwidth. Akin to the well-known concept of true versus false sharing at the cacheline granularity
in CPU coherence protocols, we identify two forms of inter-chip GPU data sharing. True sharing
occurs when different chips access the same cacheline. False sharing on the other hand occurs when
different chips access different cachelines from the same memory page. In other words, a cache line
is truly shared if it is accessed by multiple chips, and a cacheline is falsely shared if it is accessed by
a single chip only, but at least one cacheline within the same memory page is accessed by another
chip. No sharing occurs when all cachelines from a given page are accessed by the same chip; this
can be a local or a remote chip.

Note that the degree of inter-chip data sharing and its impact on performance is affected by how
memory pages are allocated and how CTAs are distributed across chips. More specifically, CTA
scheduling and memory page allocation are key to eliminate no-sharing and reduce falsely shared
data by allocating CTAs and the memory pages they access to the same chip and corresponding
memory module. True sharing cannot be reduced through CTA scheduling and memory page
allocation, simply because of the difference in granularity of allocation (i.e., memory page of
4 KB) versus access (i.e., cacheline of 128 B). We consider the state-of-the-art first-touch memory
page allocation and distributed-batched CTA scheduling policies [2] throughout this work, unless
mentioned otherwise (see also Section 8 for a detailed analysis) — these policies are the best
performing ones because they eliminate no-sharing and minimize the amount of false sharing.
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Fig. 2. Performance for 4-chip GPU as a function of the inter-chip bandwidth and in comparison to an
unrealistic monolithic GPU with the same resources for our benchmarks with the 8× input. Inter-chip data
sharing significantly impacts multi-chip GPU performance when inter-chip bandwidth is limited.

The illustrative example in Figure 1 considers four memory pages A, B, C and D, allocated in
different memory partitions. Memory page A is allocated in chip-0’s memory module, and only
chip 0 accesses data from this memory page. In other words, this memory page is accessed locally
and not shared with other chips. Memory page B is allocated in chip-1’s memory module, and
only remote chips access cache lines from this memory page, e.g., only chip 0 accesses data from
memory page B. In other words, this page is accessed remotely. Memory page C is allocated in
chip-2’s memory module, and contains cachelines that are accessed locally (e.g., C1) and remotely
(e.g., C2). Note that if C would have been allocated in chip 1, C1 would be remote while C2 would
be local. In other words, no matter where page C is allocated, i.e., in chip 1 or 2, some accesses are
local while others are remote, i.e., a case of false sharing. Lastly, memory page D is allocated in
chip-3’s memory partition. D1 is accessed by both chips 2 and 3, while D2 is accessed by chip 1. D1
is truly shared by chips 2 and 3, while D2 is falsely shared.

2.2 Inter-Chip Bandwidth Sensitivity
To quantify the impact data sharing has on multi-chip GPU performance, we now analyze how
performance scales for a four-chip GPU system as a function of the aggregate inter-chip network
bandwidth ranging from 384GB/s to 12 TB/s, normalized to an unrealistic monolithic GPU with the
same compute and memory resources (i.e., aggregate SM count, cache capacity, NoC, and memory
bandwidth). We assume four chips with 64 SMs each (256 SMs in total), 4MB of memory-side LLC
per chip (16MB in total), and a local GDDR6 memory partition with 8 channels each per chip
(1.75 TB/s aggregate memory bandwidth over 32 channels). (We describe our experimental setup in
detail in Section 3.)

As shown in Figure 2, multi-chip GPU performance is highly sensitive to inter-chip bandwidth.
When the aggregate inter-chip bandwidth equals 384 GB/s, the average performance is only 40.3% of
the unrealistic monolithic GPU. To close this performance gap, the aggregate inter-chip bandwidth
needs to reach at least 6 TB/s. The high sensitivity is a result of the significant amount of inter-chip
network traffic. Indeed, if all memory accesses would be local accesses, i.e., private-only data in the
local memory partitions, then performance would be insensitive to inter-chip network bandwidth.
In contrast, we note a sharp sensitivity to inter-chip bandwidth. The reason is the shared data
set which incurs a significant amount of memory accesses to remote memory modules. The high
sensitivity of multi-chip GPU performance to inter-chip bandwidth and its relation with the shared
data set provides the motivation for this work to characterize multi-chip GPU data sharing and its
impact on performance.

3 EXPERIMENTAL SETUP
Before diving into the analysis, we first describe our experimental setup in terms of the simulated
system configuration and benchmarks.
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Parameter Value
Number of chips 4
Number of SMs 64 per chip, 256 in total
GPU frequency 1 GHz
Warp scheduler Greedy-Then-Oldest (GTO) [21]
Inter-chip Bandwidth 768 GB/s ring, 12 bidirectional links in total

6 links per chip, 64 GB/s bidirectional per link
LLC Bandwidth 64 slices, 16 TB/s in total
DRAM Bandwidth 32 channels, 1.75 TB/s in total
L1D cache size 128 KB per SM
LLC capacity 4 MB per chip, 16 MB in total
Page placement policy First-touch [2]
CTA allocation policy Distributed-batched CTA scheduler [2]

Table 1. Simulated 4-chip GPU baseline configuration.

System configuration.We extend GPGPU-sim [3] to model a GPU system with four GPU chips
as described in Table 1 and shown in Figure 1. Each GPU chip consists of 64 SMs and 16 LLC
slices providing a per-chip LLC capacity of 4 MB; this is in line with prior work [2, 14] and
recent commercial GPUs [17]. Each SM features a private L1 cache that connects with the LLC
slices through a crossbar Network-on-Chip (NoC). Each chip also contains eight GDDR6 memory
controllers for accessing the chip’s local memory partition. We consider a ring topology for the
inter-chip network in which each chip connects to two neighboring chips through six links with
64 GB/s bidirectional bandwidth each; this is similar to the second-generation NVLink [20]. The
total bandwidth between two neighboring chips amounts to 192 GB/s (three links), and the total
aggregate inter-chip network bandwidth amounts to 768 GB/s (twelve links in total). The end-points
of the inter-chip links are connected to the NoC of each chip. To balance out memory bandwidth
utilization, our baseline leverages the state-of-the-art PAE [13] randomized address mapping scheme.
We consider a number of sensitivity analyses. In Section 7, we evaluate performance sensitivity to
memory bandwidth (HBM2 and HBM3 with 2.3× and 6.9× higher memory bandwidth, respectively),
inter-chip bandwidth (4th generation NVLink with 4× higher bandwidth), and LLC capacity (64 MB
which is 4× our baseline). In Section 9, we explore the impact of system size by increasing the
number of GPU chips from 4 to 8 and 16, while also varying the inter-chip network topology (fully
connected versus ring).
The private L1 caches of each SM are write-through whereas the LLC follows a write-back

policy. We assume software coherence as is common in GPUs [2, 14]. A software coherence
protocol maintains coherence by flushing (invalidating) caches upon compiler-inserted cache
control operations (e.g., at kernel boundaries). It is sufficient to flush the private L1 caches when
the GPU adopts a memory-side LLC organization (our baseline) because the LLC slices only cache
data from the chip’s local memory partition. A data element is therefore cached in at most one LLC
slice, and LLC slices are hence always coherent with respect to each other. If the GPU adopts an
SM-side LLC organization on the other hand, the LLC slices must also be invalidated. The reason is
that the LLC slices within a chip cache data on behalf of the chip’s SMs. Shared data can hence be
replicated across chips which can cause coherence violations without invalidation, e.g., if a replica
is written to after a synchronization point.
Benchmarks.We select benchmarks from multiple widely-used benchmark suites, i.e., Rodinia [6],
Polybench [8] and Parboil [23], as shown in Table 2. The benchmarks are selected such that we cover

ACM Trans. Arch. Code Optim., Vol. xxx, No. xxx, Article 1. Publication date: January xxx.



Characterizing Multi-Chip GPU Data Sharing 1:7

Bench. Input Shared Min Input Max Input Min Shared Max Shared Min CTA Max CTA CTA Size
Set Set Set (MB) Set (MB) Count Count

3DC [8] 3D 2D (x, z) (128, 128, 128) (512, 512, 512) 0.5 6 32K 2M (8, 8, 1)
STEN [23] 3D 2D (x, z) (128, 128, 128) (512, 512, 512) 0.5 6 32K 2M (8, 8, 1)
CFD [6] 3D 2D (x, z) (48, 48, 48) (192, 192, 192) 1 13 3456 216K (8, 4, 1)
GEMM [8] 2D 2D (x, y) (1K, 1K, 1) (8K, 8K, 1) 5 269 4K 256K (32, 8, 1)
3MM [8] 2D 2D (x, y) (768, 768, 1) (6K, 6K, 1) 7 440 2304 144K (32, 8, 1)
DWT [6] 2D 2D (x, y) (768, 768, 3) (6K, 6K, 3) 3 201 27K 1728K (64, 1, 1)
LUD [6] 2D 2D (x, y) (2K, 2K, 1) (16K, 16K, 1) 9 517 1K 64K (32, 32, 1)
SRAD [6] 2D 1D (x) (1K, 1K, 1) (8K, 8K, 1) 0.2 2 4K 256K (16, 16, 1)
HOTS [6] 2D 1D (x) (1K, 1K, 1) (8K, 8K, 1) 0.2 2 4K 256K (16, 16, 1)
BFS [6] 1D 1D (x) (512K, 1, 1) (32M, 1, 1) 3 180 1K 64K (512, 1, 1)
BT [6] 1D 1D (x) (256K, 1, 1) (16M, 1, 1) 3 92 1K 64K (256, 1, 1)

Table 2. Benchmarks used in this study along with the dimensionality of the input and truly shared data set,
the minimum and maximum input set sizes, and the minimum and maximum CTA count and CTA size.

a variety in dimensionality for the input and truly shared data set. Some benchmarks, such as 3DC,
STEN and CFD, feature a 3D input, while the shared data set is a 2D data structure. Others, such as
GEMM, 3MM, DWT and LUD have a 2D input as well as a 2D shared data set. Two benchmarks,
SRAD and HOTS, feature a 2D input while the shared data set is 1D. Finally, two benchmarks
feature a 1D input with a 1D shared data set. The variety of dimensionality of input sets and shared
data sets will prove to be instrumental for the remainder of the paper.

To characterize and analyze how the shared data set scales with the input, we consider a range
of inputs from a minimum to a maximum size, as reported in Table 2. The minimum and maximum
input size denote the scale of the problem, and depending on the specific workload, this is the
number of data elements per dimension, the number of nodes in the input graph, etc. As we will
discuss in more detail later, we will consider both uniform and non-uniform input scaling in which
we scale all dimensions of the input uniformly or non-uniformly, as this leads to different scaling
behavior. We consider the smallest (minimum) input as our baseline unless mentioned otherwise.
The resulting memory footprint varies from 12 MB (for BT and its smallest input) to 1.5 GB (for
SRAD and its largest input), as we will report later in Figure 4. The memory footprint is hence
sufficiently large to stress the multi-GPU’s memory subsystem, including on-chip caches, inter-chip
network (due to remote memory partition accesses) and memory partitions. The rightmost columns
in Table 2 report the minimum and maximum number of CTAs, as well as CTA size (i.e., the
number of threads per CTA). The benchmarks are large enough in terms of the number of CTAs
to meaningfully exercise our baseline multi-GPU system with a total of 256 SMs (four chips with
64 SMs each). We run one benchmark at a time, i.e., benchmarks execute in isolation without
concurrently executing workloads.

4 SHARED DATA SET SCALING
To analyze how the shared data set scales with input size, we consider both uniform and non-uniform
input set scaling, starting with uniform scaling.

4.1 Uniform Input Scaling
Recall from Section 3 that different workloads come with different input dimensionality, i.e., some
workloads have a 1D input, others have a 2D input, and yet others have a 3D input. We first
explore the impact of uniform scaling, i.e., scaling all dimensions of the input equally. We do so
by increasing the total input size by powers of 2 from a minimum to a maximum size. For the 1D,
2D and 3D inputs, we scale each dimension by a factor of 2,

√
2, and 3√2, respectively; doing so

scales the total input size by a factor of 2. Uniform input scaling aligns well with what the inputs
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Fig. 3. Normalized performance (IPC) as a function of input size. Performance decreases with increasing input.

(a) Absolute scaling

(b) Relative scaling

Fig. 4. Data footprint scaling in (a) absolute terms and (b) relative terms as a function of input size. Both the
truly and falsely shared data sets increase in absolute terms, while remaining constant or decreasing in relative
terms.

look like in existing benchmark suites, i.e., all dimensions of the input are equal in size. Note that
because the number of CTAs along each dimension needs to be an integer number, we need to
approximate the above general scaling. For example, for 3DC which features a 3D input, when
doubling the input from the minimum 128 × 128 × 128 input, the input becomes a 160 × 160 × 160
matrix (i.e., 160 ≈ 128 × 3√2). Similarly, for GEMM which is a 2D-input workload, doubling the
minimum 1024 × 1024 matrix yields a 1536 × 1536 matrix (i.e., 1536 ≈ 1024 ×

√
2).

Performance. Figure 3 reports performance for our baseline multi-chip GPU system as a function of
input size, normalized to the smallest (1×) input. Performance is measured in number of instructions
executed per cycle (IPC). Unsurprisingly perhaps, performance degrades with input size. Indeed, a
larger input increases contention for on-chip cache capacity, leading to more misses and memory
accesses, potentially in a remote memory partition. The benchmarks on the left-hand side are more
sensitive compared to the benchmarks on the right-hand side.
Shared data set scaling. The performance trend is a result of how the shared data set scales with
input size, see Figure 4. Increasing the input leads to a commensurate increase in the absolute
footprint (in MB), see Figure 4a; indeed, we witness an approximate doubling in footprint as we
double the input. The truly and falsely shared data set tends to increase as well in absolute terms,
at least for about half the benchmarks, see the leftmost benchmarks from GEMM to BT, which are
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(a) Linear scaling (b) Sublinear 3√2 scaling (c) Sublinear
√
2 scaling

Fig. 5. Truly shared data set scaling trends as a function of input size. Different workloads exhibit different
scaling trends: linear, sublinear 3√2, and sublinear

√
2 scaling.

also the benchmarks for which performance degrades the most with increasing input size. Note
that for some of the benchmarks on the right-hand side in Figure 4a, in particular 3DC, STEN,
HOTS and SRAD, the shared data set is hardly visible. Nevertheless, as reported in Table 2, the
truly shared data set varies from a couple hundreds of KBs to several MBs from the smallest to the
largest input for these benchmarks. Because the LLC per chip equals 4MB in our baseline, this also
explains why these benchmarks are sensitive to relatively low inter-chip bandwidth as previously
reported in Figure 2.

In relative terms though, see Figure 4b, we note different scaling trends for different benchmarks.
For some benchmarks we note that the truly shared data set remains constant, see for example the
leftmost benchmarks from GEMM to LUD, while it decreases for others, see the benchmarks in
the middle from BT to STEN. We observe a similar trend for the falsely shared data set, with some
benchmarks exhibiting a constant trend and others exhibiting a decreasing trend as a function of
input size. Note though that the scaling trend for the truly and falsely shared data sets differs for
some of the benchmarks, e.g., for LUD, the truly shared data set remains (roughly) constant while
the falsely shared data set decreases in relative terms as a function of the input size.
The different scaling trends lead to interesting observations and important implications. In

particular, a shared data set that increases proportionally with input size, while remaining constant
in relative terms, suggests that the impact of shared data remains equally important irrespective of
input size. In other words, no matter how big or how small the input is, the impact of shared data is
similar. On the other hand, a shared data set that increases with input size in absolute terms, while
decreasing in relative importance, suggests that the impact of shared data becomes less significant
for bigger inputs. These findings have important implications for computer architects and software
developers trying to understand how to scale GPU system and workload performance. If the shared
data set scales proportionally with input size, one should be considerate of the impact of shared
data. If on the other hand, the shared data set scales sub-proportionally, one can be less attentive to
the shared data set and its impact on performance as we scale a workload’s input.
Analyzing the shared data set. It is interesting to dive deeper and analyze shared data set scaling
trends. To do so, we compute the size of the truly shared data set, normalized to the smallest data
set, and visualize it in a log-log plot: Figure 5 reports the logarithm (with base 2) of the normalized
shared data set size as a function of the input size on a logarithmic scale. The three subfigures
denote the different scaling trends observed across the different benchmarks. It is interesting to
relate these scaling trends to the dimensionality of the shared data set as previously reported in
Table 2. If the dimensionality of the input set is the same as the dimensionality of the shared data set,
e.g., both are 2D or both are 1D, we do note proportional scaling and a slope around one as shown
in Figure 5a for the 2D-scaling benchmarks GEMM, 3MM, DWT and LUD, and the 1D-scaling
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Fig. 6. Normalized shared data set size as we scale the inputs along different dimensions for 3DC, SRAD and
DWT. The shared data set increases as we scale along the sharing-sensitive input dimensions.

benchmarks BFS and BT. If on the other hand, the dimensionality of the shared data set is smaller
than the dimensionality of the input set, we observe sub-proportional scaling. If the input is 3D and
the shared data set is 2D, we note a slope around 2/3 as in Figure 5b for 3DC, STEN and CFD. This
implies that the shared data set scales with a factor 3√2 as a function of the input size. If the input is
2D while the shared data set is 1D, we note a slope around 1/2 as in Figure 5c for SRAD and HOTS.
This implies that the shared data set scales with a factor

√
2 as a function of the input size.

4.2 Non-Uniform Input Scaling
We now consider non-uniform input scaling, i.e., we scale the input dimensions 𝑥 ,𝑦 and 𝑧 differently,
as opposed to what we assumed in the previous section. Depending on which dimensions we scale
in the input (the “Shared Set” column in Table 2 reports along which dimensions the shared data
set scales), we observe different scaling behavior for the shared data set as shown in Figure 6 which
reports the normalized size of the shared data set as we scale along different dimensions for three
example benchmarks. (We observed similar results for the other benchmarks but these results are
omitted due to space constraints.)
For 3DC, the 2D shared data set scales along the 𝑥 and 𝑧 dimensions. As a result, scaling the

input along the 𝑥 dimension (or 𝑧 dimension) while keeping the other dimensions constant, i.e.,
1D input scaling, leads to doubling the shared data set size. For the same reason, increasing the 𝑥
and 𝑧 dimensions with a factor

√
2 while keeping the 𝑦 dimension constant, i.e., 2D input scaling,

(almost) doubles the shared data set size. On the contrary, doubling the input along the 𝑦 dimension
alone does not affect the shared data set size. Increasing the input along two dimensions including
the non-sharing-sensitive 𝑦 dimension, i.e., scaling along the 𝑥 and 𝑦 dimensions or the 𝑦 and 𝑧
dimensions, leads to a shared data set that is roughly a factor

√
2 larger. For reference, uniform

scaling leads to a shared data set that is a factor 3√2 larger.
For SRAD (recall: 2D input with 1D shared data set), the sharing-sensitive input dimension is 𝑥 .

As a result, doubling the 𝑥 dimension leads to doubling the shared data set, while doubling the 𝑦
dimension does not affect the shared data set. Increasing both dimensions uniformly leads to a

√
2

increase in shared data set. For DWT (recall: 2D input with 2D shared data set), doubling either the
𝑥 or the 𝑦 dimension leads to doubling the shared data set. Increasing both dimensions uniformly
by a factor

√
2 leads to a shared data set that is (almost) twice as big.

The significance of this analysis is that it provides insight into how the shared data set scales as
a function of input scaling. This enables computer architects to understand how non-uniform input
scaling affects shared data set size and performance. Or conversely, to understand how a particular
architecture feature interacts with shared data, the architect could purposely compose an input
that stresses the sharing degree of the input. Likewise, this analysis facilitates software developers
to understand workload scaling as a function of how and along which dimensions one may expect
the inputs to scale in the future; or, if appropriate, the software developer may want to reorganize
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Fig. 7. Normalized performance for SM-side LLC versus memory-side LLC as a function of input size. A
memory-side LLC is the preferred organization for large inputs while a SM-side LLC is preferred for small inputs.
The relative gap is larger for the benchmarks on the left-hand side due to their larger shared data sets.

the code and/or data structure to be less sensitive to data sharing for better performance scaling to
larger multi-GPU systems.

5 IMPACT ON MULTI-CHIP GPU SYSTEM ARCHITECTURE
How the shared data set scales with input size affects the optimum multi-chip GPU system ar-
chitecture, which we now illustrate. We consider two multi-chip GPU architectures featuring a
memory-side LLC versus an SM-side LLC [26], and we demonstrate that which architecture yields
the highest performance is a function of the input’s shared data set. A memory-side LLC only
caches data from the local memory partition, hence all the accesses to remote data have to go
through inter-chip links with limited bandwidth. Meanwhile, LLC slice conflict and queueing occur
when several chips access the same shared data concurrently. The alternative configuration is an
SM-side LLC, which caches data on behalf of the local chip from both the local and remote memory
partitions. By caching remote data in a local LLC, SM-side LLC helps reduce remote traffic and
increase LLC slice parallelism. However, remote data occupies extra cache lines in the SM-side LLC
and results in more memory accesses. It also brings coherence overhead, which is not the case for a
memory-side configuration.

We now explore this trade-off inmore detail while considering uniform input scaling (we obtained
similar results for non-uniform input scaling, omitted due to space constraints). Figure 7 reports
normalized performance (or speedup) for the SM-side LLC compared to the memory-side LLC. A
speedup larger than one means that the SM-side LLC is the best-performing organization, while a
speedup below one means that the memory-side LLC is the winner. We find that, while the SM-side
LLC is the best performing organization for the smallest inputs, the preferred LLC organization
shifts towards the memory-side LLC organization for larger inputs. In fact, the memory-side LLC
is uniformly the best performing organization for the largest inputs. For the smallest inputs, either
the SM-side is the best performing organization or both organizations perform comparably. This
can be understood intuitively as follows. As the input gets larger, the pressure on cache capacity
increases, and because the data no longer fits inside the caches, more requests need to access main
memory, possibly over the inter-chip network. An SM-side organization is hence preferred if the
data set fits inside the cache because it incurs fewer remote memory accesses. However, as the
input gets larger, a memory-side LLC reduces pressure on capacity by caching cachelines in only a
single cache, and is therefore the preferred organization.
What makes the analysis interesting in the context of this paper is that the performance delta

between the SM-side and memory-side LLC depends on the sharing degree: the benchmarks on
the left-hand side in Figure 7 are much more sensitive to the LLC organization compared to the
benchmarks on the right-hand side. This is to be explained based on the relative importance of the
shared data set as previously reported in Figure 4. Indeed, the truly shared data set gets replicated
in the chips’ caches in an SM-side organization, i.e., all chips are able to cache the shared data set
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locally. If the shared data set is frequently accessed and substantial in size but small enough to
fit inside the LLC, the SM-side LLC is likely to be a clear winner compared to the memory-side
LLC. This is exactly what we observe for the leftmost benchmarks, from GEMM to BT. If on the
other hand, the shared data set is small (negligible) in size, the effect of the LLC organization is
less pronounced and both organizations perform fairly similarly, as we observe for the rightmost
benchmarks, from CFD to SRAD.

6 HOW INPUT CHARACTERISTICS AFFECT DATA SHARING
So far, we solely focused on how the shared data set scales with input size. We now investigate how,
for a given input size, the input characteristics affect data sharing. Graph algorithms are a notable
example of workloads where the characteristics of the input matter, in addition to its size. We now
aim at gaining insight into the impact of the input characteristics on data sharing by studying two
graph workloads in more detail, namely Breadth-First Search (BFS) and B+ Tree (BT).

6.1 Breadth-First Search (BFS)
The BFS benchmark used in this study is taken from Rodinia [6], and visits all nodes in the input
graph following a breadth-first policy. While Rodinia provides a data set generator that creates input
sets with varying number of nodes, the node degree or the number of edges per node, is fixed to
four; and the edge policy or the policy for generating edges between nodes, is random, i.e., all nodes
are equally likely to have an edge to any other node. To study how input graph characteristics affect
data sharing, we implement support for generating input graphs with user-specified node degree
and edge policy. More specifically, our input set generator supports the continuous and adjacent
policies in addition to the default random policy. Under the continuous policy, we randomly create
edges between a target node 𝑛𝑖 and another node 𝑛 𝑗 such that the identifier 𝑗 is within a range
of 2.5% of the total number of nodes relative to 𝑖 (i.e., 𝑗 is selected within a range of 12.5 K node
identifiers around 𝑖 with our node count of 500K). The adjacent policy arranges the nodes in a
two-dimensional matrix according to their identifiers and then only considers four of its neighbors
when randomly creating edges. More specifically, we create an 𝑛 × 𝑛 matrix, allocate threads
row-wise to the matrix, and then consider the four threads (𝑖 ± 1, 𝑗 ) and (𝑖 , 𝑗 ± 1) as candidates for
edges of the thread assigned to matrix element (𝑖 , 𝑗 ). This yields a 50/50 probability for spatially
long versus spatially short edges in terms of thread identifiers since (𝑖 ± 1, 𝑗 ) are spatially close to
(𝑖 , 𝑗 ), while (𝑖 , 𝑗 ± 1) are spatially distant.
Sharing analysis. Each thread in BFS processes a single node, and the edges between nodes thus
generate inter-thread sharing. The CTA grid of BFS is one-dimensional, and each CTA contains
threads of consecutively numbered nodes. Inter-CTA sharing thus occurs when the input graph
has edges between nodes in different thread identifier intervals. Assuming 32 threads per warp,
threads 𝑇0 to 𝑇31 will be mapped to CTA0, and threads 𝑇32 to 𝑇63 will be mapped to CTA1. An edge
between 𝑇0 and 𝑇32 hence results in inter-CTA data sharing because they are part of CTA0 and
CTA1, respectively. In contrast, an edge between 𝑇0 and 𝑇1 does not result in inter-CTA sharing
because both threads are part of CTA0. Each node in BFS contains an edge list which consists of
destination_node and weight pairs as well as other fields such as visited, cost and mask. A
node shares the visited field with the nodes it has edges to, and the cost and mask fields with
the node that first visited it during the breadth-first traversal.

Inter-chip sharing occurs when CTAs share data and are mapped to different chips, e.g., a thread
in CTA𝑖 mapped to chip 0 shares the visited, cost or mask fields with a thread mapped to CTA𝑗

on chip 1. Modifying the node degree parameter hence changes the number of nodes that each
thread must access which in turn proportionally changes CTA and inter-chip sharing. Changing
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(a) Memory-side and SM-side LLC performance (b) Sharing set size

Fig. 8. Performance and shared data set of BFS for input sets with the same size but different characteristics.
(The default graph characteristics are shown with an asterisk. Performance results are normalized to a node
degree of 4, the random edge policy, and memory-side LLC.) Performance is inversely proportional to the
amount of data sharing.

the edge policy on the other hand affects the probability of inter-thread and inter-CTA sharing.
As long as nodes mostly have edges to nodes that are spatially close in terms of CTA identifiers,
inter-chip sharing is unlikely.
Sharing impact. Figure 8 shows the impact of graph characteristics on BFS performance while
keeping the number of nodes constant at 512 K. The default input set of BFS has an average node
degree of 4 and we additionally explore node degrees of 2, 8 and 16. We further explore the impact
of the edge policy by changing it from the default random to the continuous and adjacent policies.
Figure 8a reports IPC as a function of node degree and edge policy for the memory-side and SM-side
LLC organizations normalized to the default. The key take-away is that input graph characteristics,
both the node degree and edge policy, have a significant impact on performance. Figure 8b show
that the performance impact is explained by changes in the amount and nature of inter-chip data
sharing. In particular, comparing Figure 8a to 8b shows that performance is inversely proportional
to the size of the shared data set.

Figure 8a also shows that 50% higher performance is achieved with the continuous and adjacent
policies compared to the default random policy. Again, the performance improvement is caused
by significantly less sharing, i.e., Figure 8b shows that the size of the shared data set is reduced
by 77.0% and 65.5% with the continuous and adjacent policies, respectively, compared to random.
The performance for the continuous and adjacent policies is similar because they result in similar
amounts of sharing. The continuous policy mainly results in true sharing because the range that
nodes are selected from overlaps with nodes that are spatially close; it is hence likely that nodes
have edges to the same nodes. In contrast, the adjacent policy primarily results in false sharing
because nodes are likely to have edges to spatially distant nodes that are spatially close to each other
and hence in the same memory page. More specifically, node (𝑖 , 𝑗 ) has a 25% chance of generating
an edge to node (𝑖 , 𝑗 + 1), while node (𝑖 + 1, 𝑗 ) is equally probable to generate an edge to (𝑖 + 1,
𝑗 + 1). While (𝑖 , 𝑗 + 1) and (𝑖 + 1, 𝑗 + 1) are distinct nodes, they are adjacent to each other in terms
of thread identifiers and hence typically stored in the same memory page — thereby resulting in
false sharing rather than true sharing. The random policy causes significantly more sharing than
the continuous and adjacent policies because it does not take spatial proximity into account when
generating edges. The probability for inter-chip sharing is hence proportional to the number of
chips under the random edge selection policy because (i) nodes are evenly distributed across chips,
and (ii) a node is equally likely to have an edge to any other node.
Impact on architecture evaluation. Figure 8a shows input graph characteristics can impact
the conclusions of architectural evaluation. The performance impact can be significant. More
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specifically, adopting an SM-side LLC organization with a node degree of 4 yields a speedup
of 42.3% compared to a memory-side LLC because the architecture has sufficient LLC capacity
to replicate the true shared data set across chips. When the node degree increases to 8 or 16,
LLC capacity becomes insufficient and the SM-side configuration experiences substantial LLC
thrashing. This effect is so severe with node degree 16 that the memory-side LLC yields 9.1% higher
performance than the SM-side LLC.

We observe a similar effect with respect to the edge policy. For the random policy, LLC capacity
is sufficient to replicate the shared data set which results in SM-side improving performance by
42.3% compared to memory-side. For the continuous and adjacent policies on the other hand,
there is not enough sharing for replication to yield a performance benefit. The memory-side LLC
hence provides 2.7% and 4.0% higher performance than the SM-side LLC because the latter incurs
coherence overhead while the memory-side LLC does not.

6.2 B+Tree (BT)
The BT benchmark used in this work is also taken from Rodinia [6], and its specific function is
to carry out a fixed number of searches on an existing B+ tree. The main difference between a B+
tree and a standard B-tree is that a B+ tree stores copies of keys in internal nodes. The input set of
BT hence consists of (1) a number of values to store in the B+ tree, (2) the number of searches to
perform, and (3) the policy used to select the values to search for. The B+ tree built by BT contains
all integers from 0 to 𝑛 when instructed to generate a tree with 𝑛 values; 𝑛 hence determines both
the number of values and the actual values to store in the tree. In contrast to BFS, coverage is a key
parameter since BT (typically) will not search for all values in the tree. The B+ tree is self-balancing
and its structure — and hence the amount of data sharing — is thus determined by the number
of stored values. This sharing however only affects performance if the search policy searches for
values that require accessing the shared data.
Sharing analysis. Data sharing occurs in BT when the search paths traversed by threads allocated
to different CTAs overlap, i.e., they visit the same node(s) in the tree. The B+ tree stores ranges of
values in leaf nodes, and each leaf node contains up to 255 values. The B+ tree of BT allocates a
sufficient number of internal nodes such that (1) each node has between 1 and 256 child pointers,
and (2) a path exists from the root node to every leaf node. All non-leaf nodes store the ranges of
values that can be stored in each of its child sub-trees. Searching for a value hence starts at the root
node and traverses the tree by selecting the child node which stores the range of values that the
target value falls within. The search ends when reaching the leaf node with the target value.
Each thread in BT searches for a single target value, and threads share data when they access

the same nodes during the search. The root node is hence shared by all threads. Similarly, threads
with target values in the same leaf node will visit (and share) the same nodes. The root node and
higher-level intermediate nodes are therefore shared between most threads and varying the search
policy mainly affects the degree to which leaf nodes are shared. The default search policy is random
in which the target value is a random integer between 0 and 𝑛 (where 𝑛 is the maximum value
stored in the B+ tree). Under this policy, the search path taken by one thread has no specific relation
to the paths of threads that are spatially close to it. Similar to BFS, BT has a one-dimensional grid
structure, and we hence use the thread identifiers to create search policies that result in different
sharing characteristics. Similar to the continuous edge policy in BFS, the continuous search policy
randomly selects a target value close to the thread’s identifier (i.e., within the range ±2.5% × 𝑛

where 𝑛 is the maximum value stored in the tree). The adjacent policy allocates thread identifiers
row-wise to an 𝑛 × 𝑛 matrix and then randomly selects the target value of T𝑖 to be the thread
identifier of one of the four vertical or horizontal neighbors of T𝑖 .
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(a) Memory-side and SM-side Performance (b) Sharing set size

Fig. 9. Performance and sharing behavior of BT for input sets with the same number of searches but different
characteristics. Performance is approximately inversely proportional to the amount of data sharing with the
memory-side LLC, whereas the SM-side LLC is resilient to sharing when the shared data set (and replicas) fit in
the LLC.

Sharing impact. Figure 9 shows the impact of graph characteristics on BT performance when
we keep the number of searches constant at 256K. The default input set of BT has a coverage of
100%, and we additionally explore coverage values of 10%, 5% and 2.5% by scaling the number of
values stored in the tree. We further explore the impact of the search policy by changing it from
the default random policy to continuous and adjacent policies. Figure 9a reports IPC as a function
of coverage and search policy for the memory-side and SM-side LLC organizations normalized
to our default configuration. Graph coverage has a significant performance impact, e.g., reducing
coverage to 2.5% with the memory-side LLC yields 72.6% lower IPC compared to the default 100%
coverage. Figure 9b shows that the performance impact of coverage is explained by changes in
inter-chip data sharing. When comparing Figure 9a to Figure 9b, we note that performance as a
function of coverage is approximately inversely proportional to the size of the shared data set.
Figure 9a also shows that performance increases by 39.2% and 42.8% with the continuous and

adjacent policies, respectively, compared to the default random policy for the memory-side LLC
organization. Interestingly, the performance of the SM-side LLC organization is practically constant.
The reason is that the memory-side LLC is sensitive to both true and false sharing whereas the
SM-side LLC stores recently-used shared cache blocks locally and hence avoids inter-chip accesses
upon reuse. This also means that the SM-side LLC replicates truly shared cache blocks across the
LLCs of the chips that access the same shared cache block — and thereby hides the performance
impact of sharing when the LLCs have sufficient capacity to store the shared working set and all
replicas. Figure 9b shows that the truly shared data set is relatively small for all search policies, and
the cache capacity overhead of replication is hence low for this input set.
With the memory-side LLC, the higher performance with the continuous and adjacent poli-

cies is primarily due to significantly less true sharing, i.e., Figure 9b shows that the size of the
truly shared data set is reduced by 65.8% and 98.3% with the continuous and adjacent policies,
respectively, compared to random. The adjacent policy yields slightly (3%) better performance than
the continuous policy because the continuous policy has more inter-thread true sharing. More
specifically, the adjacent policy only shares data between threads that are spatial neighbors whereas
the continuous policy shares data among threads that are spatially close to each other (but not
necessarily neighbors). The falsely shared data set is also smaller for the adjacent and continuous
policies than with the default random policy because leaf node accesses become more dense, i.e.,
leaf nodes are stored contiguously in memory and the leaf nodes of spatially close threads are
hence mostly stored in the same memory page.
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Impact on architecture evaluation. Figure 9a shows that BT’s input set characteristics can
impact the conclusions of architecture studies. For example, the SM-side LLC organization improves
performance by 62.7% compared to the memory-side LLC organization when coverage is 100%
because there is sufficient LLC capacity to cache the complete shared working set in this case. A
coverage of 2.5% yields the opposite conclusion, i.e., the memory-side LLC improves performance
by 13.6% compared to the SM-side LLC. The reason is that the LLCs do not have sufficient capacity
to cache the shared working set which results in extensive thrashing in the SM-side configuration
due to replication. With respect to the search policy, the SM-side LLC consistently outperforms
the memory-side LLC because the LLCs have sufficient capacity to store the shared data set and
replicas under all policies.

7 SENSITIVITY ANALYSIS: MEMORY HIERARCHY
So far, we considered a baseline configuration with a GDDR6 memory subsystem, inter-chip links
modeled after NVLink generation-2, and an aggregate 16MB LLC. We now explore the sensitivity
of our findings to inter-chip bandwidth, memory bandwidth and LLC capacity. In particular, we
assume an inter-chip network with NVLink generation-4 link bandwidth, i.e., 256GB/s per link
and total inter-chip bandwidth of 3 TB/s, which is 4× higher than the baseline. For the memory
subsystem, we assume high-bandwidth memory HBM2 and HBM3 with 1 TB/s and 3 TB/s per
module and total aggregate memory bandwidth of 4 TB/s and 12 TB/s, respectively.
Inter-chip bandwidth. Figure 10a reports normalized performance for the various benchmarks
and three inputs (1×, 8× and 64×) for the generation-2 and -4 inter-chip network configurations.
Performance is normalized to the generation-2 configuration and the smallest input. The key take-
away is that we observe similar performance trends for both the generation-2 and -4 configurations,
and while the trend is slightly less pronounced for the generation-4 case compared to the generation-
2 case, it is still substantial. On average, performance is 41.7% lower for the largest input compared
to the smallest input for the generation-4 case, while being 51.8% lower for the generation-2 case.
In other words, while higher inter-chip bandwidth dampens the effect of inter-chip data sharing,
it still is an important factor that has a significant impact on performance. More specifically, we
note that the leftmost benchmarks, from GEMM to BT, remain highly sensitive to the inter-chip
bandwidth as the input goes from the smallest to the largest. For the rightmost benchmarks, from
CFD to SRAD, performance is less sensitive to inter-chip bandwidth. This is consistent with our
previous conclusion from Figure 7.
Memory bandwidth.We achieve similar results when increasing memory bandwidth, see Fig-
ure 10b. While the performance trend is slightly less pronounced for HBM2 and HBM3 compared
to GDDR6, it is still significant. On average, performance is 40.6% and 33.9% lower for the largest
input compared to the smallest input for HBM2 and HBM3, respectively, compared to 51.8% for
GDDR6. Again, while higher memory bandwidth dampens the effect, data sharing still significantly
impacts performance.
LLC capacity. Similarly, increasing the LLC capacity does not remove the impact inter-chip data
sharing has on performance, see Figure 10c. When the LLC capacity increases from 16MB to 64MB,
the performance decrease for the largest input compared to the smallest reduces from 51.8% to
35.8%, which is still significant.

8 MEMORY PAGE AND CTA ALLOCATION POLICIES
As aforementioned, memory page allocation and CTA scheduling affect shared data set characteris-
tics. A variety of memory page allocation and CTA scheduling policies have been proposed and
evaluated in the literature, see for example [11, 12, 24]. The purpose of this section is twofold: (1)
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(a) Inter-chip bandwidth

(b) Memory bandwidth

(c) LLC capacity

Fig. 10. Sensitivity analysis for (a) inter-chip bandwidth, (b) memory bandwidth and (c) LLC capacity.
(Performance is normalized to generation-2 inter-chip bandwidth, GDDR6, 16MB LLC and the smallest 1×
input.) Data sharing continues to have a substantial effect on multi-chip GPU performance with higher inter-chip
bandwidth, memory bandwidth, and LLC capacity.

demonstrate that our simulated configuration (first-touch page allocation and distributed-batched
CTA scheduling) is the best performing baseline, and (2) demonstrate the correlation between a
policy’s performance and the shared data set size, which to the best of our knowledge, no prior
work reported nor analyzed.

8.1 Memory Page Allocation
We first focus on memory page allocation in this section, and discuss CTA scheduling in the next.
Two commonly used page allocation policies are round-robin and first-touch [2]. Round-robin
allocates memory pages to subsequent memory partitions in a round-robin fashion. First-touch on
the other hand allocates memory pages to the memory partition local to the chip that first accesses
(touches) the memory page. A variety of memory page allocation policies have been proposed
that further enhance these two basic policies, see in particular sub-page round-robin [12], delayed
first-touch [4], local-then-balanced [29], or hand-tuned API [24]. These memory page allocation
policies have in common that they aim at optimizing the effective memory access bandwidth and
latency (i.e., allocate data to local memory partitions), while at the same time balancing out the
access distribution across all memory partitions, so that all memory partitions serve an equal share
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Fig. 11. Access distribution to the four memory partitions under first-touch (FT) and round-robin (RR) memory
page allocation. Memory accesses are fairly uniformly distributed under first-touch page allocation.

(a) Performance for RR normalized to FT (b) RPKI breakdown

Fig. 12. (a) Normalized performance and (b) the number of remote memory accesses per thousand instructions
(RPKI) for round-robin (RR) relative to first-touch (FT) page allocation (assuming distributed-batched CTA
scheduling). Round-robin page allocation leads to a higher sharing degree, which, because of the larger number of
remote memory accesses, leads to lower performance compared to first-touch.

of the total memory access stream. Unfortunately, these enhanced memory page allocation policies
either require additional hardware support [4, 12, 29] or software modifications [24], which is
undesirable in practice and which falls beyond the scope of this paper. Moreover, we find that the
access distribution under first-touch page allocation delivers high performance while achieving a
balanced access distribution across all memory partitions for our set of benchmarks, see Figure 11.
We hence limit our evaluation to the two fundamental memory page allocation policies, namely
first-touch and round-robin.

First-touch (FT) page allocation significantly outperforms round-robin (RR), see Figure 12a. The
reason is the reduced number of remote memory accesses, i.e., a larger fraction of the memory
accesses are local under first-touch compared to round-robin. Indeed, Figure 12b reports the number
of remote memory accesses (i.e., L1 misses that lead to a remote memory access) per thousand
instructions (RPKI) for the first-touch and round-robin page allocation policies. The number of
remote memory accesses correlates inversely with the relative performance difference between
RR and FT. More precisely, the performance drop under RR compared to FT is the largest for the
benchmarks with a significant number of non-shared remote accesses under round-robin (see
GEMM, 3MM, BFS, 3DC, STEN, HOTS and SRAD) or a significant increase in the number of remote
accesses to falsely shared cachelines under round-robin compared to first-touch (see BT and CFD).
Conversely, round-robin achieves relatively high performance for benchmarks with a small relative
increase in remote accesses (see DWT and LUD).
Remote accesses incur inter-chip traffic and originate from accesses to truly shared, falsely

shared, and non-shared cache lines, see Figure 12b. True sharing is frequent for several benchmarks,
see for example GEMM, 3MM, BFS and BT, and is unaffected by the memory page allocation policy.
False sharing constitutes an important fraction of the remote accesses for several benchmarks,
and is more substantial for round-robin compared to first-touch, see in particular LUD, BT, CFD,
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(a) 3×3×3 kernel (b) DB (c) RB (d) CB (e) ZB (f) RR (g) BRR,n=4

Fig. 13. CTA scheduling policies for a 3D kernel in a 2-chip GPU system. The light blue CTAs are assigned to
chip 0 and the dark blue CTAs are assigned to chip 1.

3DC and STEN. Finally, several benchmarks suffer from non-shared cache lines allocated in remote
memory partitions under round-robin, as is the case for most of the benchmarks including GEMM,
3MM, BFS, 3DC, STEN, HOTS and SRAD. Of course, first-touch lacks no-sharing.
The overall conclusion from this analysis is that memory page allocation affects the degree of

false sharing and no sharing, which in turn affects the number of remote accesses and overall
performance. Since first-touch is the best performing memory page allocation policy, we considered
it as the baseline in this paper.

8.2 CTA Scheduling
How CTAs are allocated to chips directly affects the sharing degree. To better understand how CTA
scheduling affects data sharing, we evaluate the following CTA scheduling policies proposed in
prior work, as illustrated in Figure 13:

• Distributed-Batched (DB) [2] divides the CTAs into𝐶 groups of consecutive CTAs (with𝐶 the
number of chips), and assigns the CTAs of each group to the same chip. In the illustrative
example shown in Figure 13b, this means that CTAs 0 through 13 (i.e., the fourteen light
blue CTAs with the smallest ID) are assigned to chip 0, while CTAs 14 through 26 (i.e., the
thirteen dark blue CTAs with largest ID) are assigned to chip 1.

• Dimension-Binding groups CTAs along a certain dimension, and then assigns CTA groups to
chips in turn [11]. We consider Row-Binding (RB), Column-Binding (CB) and Z-dimension
binding (ZB).1 RB assigns CTAs to chips by row (𝑦 dimension), as illustrated in Figure 13c:
CTAs in the first and third row (i.e., the eighteen light blue CTAs with the 𝑦 value equal to 0
and 2) are assigned to chip 0, while CTAs in the second row (i.e., the nine dark blue CTAs
with the 𝑦 value equal to 1) are assigned to chip 1. Similarly, CB assigns CTAs to each chip
in turn by column (𝑥 dimension), as illustrated in Figure 13d: CTAs in the first and third
columns are assigned to chip 0, while CTAs in the second column are assigned to chip 1.
We consider Z-dimension Binding (ZB) for the 3D benchmarks (CFD, 3DC and STEN) by
assigning CTAs to chips in turn along the 𝑧 dimension, as illustrated in Figure 13e.

• Round-Robin (RR) [2] allocates CTAs to chips in turn sequentially, as illustrated in Figure 13f:
even-numbered CTAs (in light blue) are assigned to chip 0, and odd-numbered CTAs (in dark
blue) are assigned to chip 1.

• Batched Round-Robin (BRR) [12, 24] first groups CTAs in batches of 𝑛 (𝑛 = 4 in our setup)
consecutive CTAs, and then allocates these batches to chips in a round-robin fashion, as
illustrated in Figure 13g.

1While the illustrative 3 × 3 × 3 example in Figure 13 might suggest that dimension-binding introduces a potential load
imbalance issue, we find this not to be the case for the benchmarks considered in this paper with many more CTAs along
the various dimensions.
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(a) Performance

(b) RPKI breakdown

Fig. 14. CTA scheduling policy evaluation: (a) performance normalized to DB, and (b) RPKI breakdown. DB is
the best performing CTA scheduling policy because it minimizes inter-chip data sharing.

Figure 14a reports how CTA scheduling affects performance assuming first-touch page allocation.
DB is the best performing policy: the other CTA scheduling policies RB, CB, RR, and BRR yield
11%, 47%, 50% and 28% less performance than DB, respectively. For the 3D benchmarks, ZB yields
52% lower performance compared to DB. It is worth correlating these performance figures against
the number of remote memory accesses (i.e., L1 misses that result in a remote access) per thousand
instructions or RPKI, and its breakdown as shown in Figure 14b. The interesting observation here is
that performance across the various CTA scheduling policies correlates inversely with the number
of remote memory accesses, i.e., the lower the RPKI, the higher performance. The breakdown
of RPKI indicates both the true and false sharing degrees. For most of the benchmarks we note
a varying degree of true sharing behavior across the different CTA scheduling policies, see for
example DWT, LUD, CFD, 3DC, STEN, HOTS and SRAD. Distributed-batched scheduling (DB)
yields the lowest true sharing degree while round-robin (RR) achieves the highest. Performance
correlates inversely with the true sharing degree because true sharing leads to inter-chip accesses
and queueing delays in front of the LLC slices if multiple chips access truly shared cache lines
around the same time. We note an inverse correlation between the degree of false sharing and
performance due to increased inter-chip link traffic, see for example GEMM, 3MM, BFS and BT.
The overall conclusion is that distributed-batched scheduling (DB) is the best performing CTA

scheduling policy, as previously reported [2], however, we novelly report how CTA scheduler
performance (negatively) correlates with the sharing degree. Because DB is the best performance
CTA scheduling policy, we considered it as our default policy.

9 SENSITIVITY ANALYSIS: SYSTEM SIZE
Having explored the shared data set for our baseline system with four GPUs, we now evaluate how
the shared data set scales with system size and how it affects system performance. In addition, we
evaluate how network topology affects these scaling trends. We consider system setups with 4, 8
and 16 GPUs with each GPU chip configured as in our baseline. We consider three benchmarks,
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(a) Strong scaling: shared data set (b) Strong scaling: performance

(c) Weak scaling: shared data set (d) Weak scaling: performance

Fig. 15. Truly-shared data set size and normalized performance as we scale the number of chips. The top row
assumes strong scaling while the bottom assumes weak scaling. The shared data set increases with system size
and input size, and so does its impact on performance, for both strong and weak-scaling workloads.

one per truly shared data set scaling category following the analysis in Figure 5, i.e., BFS (linear
scaling), 3DC ( 3√2 scaling) and HOTS (

√
2 scaling).

Chip count scaling. To evaluate how system size affects the shared data set and its impact on
performance, we consider both strong scaling and weak scaling. Strong scaling means that we keep
the workload constant while scaling the system. Weak scaling means that we scale the workload
(and its problem size) with the size of the system. We consider five input sets for both strong and
weak scaling. We use the ×4 to ×64 inputs under strong scaling, and keep the input constant as we
scale system size. Under weak scaling, we consider the ×1 to ×16 inputs for the smallest system
size with 4 GPUs, and then increase the input as we increase system size. For example, we use the
×1 input for 4 GPUs, the ×2 input for 8 GPUs, and the ×4 input for 16 GPUs; we repeat this process
for all inputs up to using the ×16 input for 4 GPUs, the ×32 input for 8 GPUs, and the ×64 input
for 16 GPUs. (Because the amount of work (number of instructions executed) does not precisely
double when doubling the input, we rescale the performance numbers under weak scaling such
that the amount of work is proportional to system size.)
Several interesting observations can be made. Under strong scaling, the truly shared data set

size remains (nearly) constant for BFS, while increasing (almost) proportionally with system size
for 3DC and HOTS, see Figure 15a. The proportional increase for 3DC and HOTS is a result of
the work being distributed across more chips. If the mapping of CTAs to chips is done along the
dimension along which sharing occurs, the shared data set increases accordingly. While the data
structure accessed by multiple CTAs remains constant in size, distributing the CTAs across multiple
GPU chips hence results in an increased truly shared data set. This is not the case for BFS where
the shared data set remains (nearly) constant because all CTAs access the same data structure(s),
hence irrespective of how CTAs are mapped to chips, this leads to a similar degree of sharing.
Under weak scaling, we note a compounding effect. First, when system size increases, so does

the input and its truly shared data set (as previously reported). Second, distributing the work across
more GPUs also increases the truly shared data set (as for strong scaling). The end result is that
the truly shared data set increases linearly for BFS, and super-linearly for 3DC and HOTS, see
Figure 15c.
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Fig. 16. Slowdown of the fully connected topology over the ring topology. The larger the shared data set, the
greater the performance degradation for the fully connected network compared to the ring.

The impact on performance is commensurate. Under strong scaling, we observe that the impact of
the shared data set increases with system size. Indeed, Figure 15b reports normalized performance,
which under perfect scaling would equal 2× and 4× for the 8-chip and 16-chip systems, respectively.
We note that the scaling behavior deteriorates with system size, e.g., for BFS and the ×64 input,
the 8-chip system achieves 88% of its maximum speedup while the 16-chip system achieves 69%
of its maximum speedup. We make a similar observation for weak scaling, see Figure 15d where
we report normalized execution time. Under perfect scaling, execution time would be constant
(i.e., normalized execution time equal to one) as we scale system size because the problem size
scales proportionally. However, we observe that execution time increases with system size, e.g., for
BFS and the ×16 input for 4 chips, execution time increases by 1.4× and 2.1× for the 8-chip and
16-chip systems, respectively. The poor scaling behavior further deteriorates with input size, for
both strong and weak scaling.

The overall conclusion from this analysis is that the shared data set increases with system size,
and so does its impact on performance. This is the case for both strong and weak-scaling workloads.
And in addition, the performance bottleneck further worsens with a workload’s input size.
Inter-chip network topology. Continuing with the three benchmarks, we now study how the
inter-chip network topology affects the impact of sharing on performance. Figure 16 reports
slowdown for the fully connected topology compared to the ring topology (our baseline) for BFS,
3DC and HOTS while varying system and input size. The fully connected topology achieves
lower performance compared to the ring because the latter achieves a higher effective inter-
chip bandwidth. Indeed, inter-chip traffic is not uniform across nodes. In fact, we observe more
communication between neighboring chips. We note further that the performance gap increases
with increasing system size and problem size, which is consistent with our earlier findings.

10 RELATEDWORK
We quantitatively compared key CTA schedulers for multi-chip GPUs in Section 8.2, and we
found that distributed-batched CTA scheduling is the top performer because it incurs the least
amount of sharing; this observation is consistent with prior work [2]. The key benefit of the CTA
scheduling algorithms that we evaluate in this paper is that they make their decision solely based
on CTA identifiers. If it is acceptable to profile the application, change the compiler or involve the
programmer, sharing can however be further reduced. For example, the Locality Descriptor [24]
lets the programmer label data structures as having intra-thread locality, inter-thread locality
or no-reuse, and then use this information at runtime to improve locality within a chip which
in turn reduces inter-chip sharing. CODA [12] on the other hand analyzes inter-thread sharing
within the compiler (to capture static sharing information) and with profiling (to capture dynamic
information), and then modifies the address translation mechanism and the CTA scheduler to (as
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much as possible) co-locate CTAs with the data they access. LADM [11] focuses on minimizing
inter-chip traffic and uses compiler analyses to categorize data structures as having no data-block
locality, DRAM row or column locality, or intra-thread locality, and then exploits these patterns to
optimize CTA scheduling.
Another line of prior work focuses on making multi-chip GPUs more resilient to shared data

by modifying the GPU memory system. CARVE [25] uses part of the chip’s local memory to
replicate remote data and thereby reduces inter-chip communication at the cost of increasing the
application’s memory footprint. Another option is to modify the cache structure, and MCM-GPU [2]
adds an additional cache between the L1 cache and the LLC that exclusively caches remote data.
In contrast, the dynamic LLC [14] allocates LLC capacity to local and remote data to optimize
bandwidth beyond the LLC, while Adaptive LLC [27] and SelRep LLC [28] replicates shared data
across LLC slices within a chip to optimize NoC bandwidth.

11 CONCLUSION
Aworkload’s shared data set incurs a substantial impact on multi-GPU system performance: remote
memory accesses possibly congest the low bandwidth inter-chip links and/or lead to camping
effects in front of a memory-side LLC, thereby degrading overall system performance. This paper
categorizes the shared data set in true versus false sharing, and quantifies how the shared data
set scales with input size, along which input dimensions the shared data set scales, and which
input properties affect the shared data set (i.e., node degree and connectivity for graph inputs). We
further note that the optimum last-level cache organization in multi-GPU systems is a function
of the shared data set. The insights provided in this paper help computer architects and software
developers better understand how inter-chip data sharing affects multi-GPU performance.
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