1064

1

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.7, JULY 2019

Intra-Cluster Coalescing and Distributed-Block
Scheduling to Reduce GPU NoC Pressure

, Student Member, IEEE, Xia Zhao
Zhiying Wang, Member, IEEE, and Lieven Eeckhout

, Student Member, IEEE, David Kaeli
, Fellow, IEEE

Lu Wang , Fellow, IEEE,

Abstract—GPUs continue to boost the number of streaming multiprocessors (SMs) to provide increasingly higher compute
capabilities. To construct a scalable crossbar network-on-chip (NoC) that connects the SMs to the memory controllers, a cluster
structure is introduced in modern GPUs in which several SMs are grouped together to share a network port. Because of network port
sharing, clustered GPUs face severe NoC congestion, which creates a critical performance bottleneck. In this paper, we target
redundant network traffic to mitigate GPU NoC congestion. In particular, we observe that in many GPU-compute applications, different
SMs in a cluster access shared data. Sending redundant requests to access the same memory location wastes valuable NoC
bandwidth—we find on average 19 percent (and up to 48 percent) of the requests to be redundant. To remove redundant NoC traffic,
we propose distributed-block scheduling, intra-cluster coalescing (ICC) and the coalesced cache (CC) to coalesce L1 cache misses
within and across SMs in a cluster, respectively. Our evaluation results show that distributed-block scheduling, ICC and CC are
complementary and improve both performance and energy consumption. We report an average performance improvement of 15
percent (and up to 67 percent) while at the same time reducing system energy by 6 percent (and up to 19 percent) and improving the
energy-delay product (EDP) by 19 percent on average (and up to 53 percent), compared to state-of-the-art distributed CTA scheduling.

Index Terms—GPU, coalescing, CTA scheduling, inter-CTA locality, NoC pressure

4

INTRODUCTION

RAPHICS Processing Units (GPUs) are widely deployed
in modern computing systems to provide high perfor-
mance for a wide class of general-purpose applications. A
GPU-compute application typically consists of several ker-
nels that are composed of (up to hundreds of) thousands of
threads. These threads are organized into cooperative thread
arrays (CTAs) that are scheduled on streaming multiproces-
sors (SMs). To continuously increase the raw computational
power of modern GPUs, the SM count keeps increasing.
Whereas the Nvidia Fermi GPU implemented 16 SMs, the
latest Nvidia Pascal [1] and Volta GPUs [2] feature 60 and
84 SMs, respectively.
The SMs feature private L1 caches and are connected
to the L2 cache and memory controllers (MCs) through a
Network-on-Chip (NoC). With the large number of SMs we
are observing today, designing a scalable NoC poses a chal-
lenge. Typically, a crossbar is deployed as the NoC in a GPU

o L. Wang, X. Zhao, and L. Eeckhout are with the Department of Electronics
and Information Systems (ELIS), Ghent University, Gent 9000, Belgium.
E-mail: {luluwang.wang, xia.zhao, lieven.eeckhout }@ugent.be.

o 7. Wang is with the School of Computer, National University of Defense
Technology, Changsha, Hunan 410073, P.R. China.

E-mail: zywang@nudt.edu.cn.

o D. Kaeli is with the Department of Electrical and Computer Engineering,
Northeastern University, 333 Dana Research Center, Boston, MA 02115.
E-mail: kaeli@ece.neu.edu.

Manuscript received 28 June 2018; revised 21 Nov. 2018, accepted 18 Dec.
2018. Date of publication 23 Jan. 2019; date of current version 17 June 2019.
(Corresponding author: Lu Wang.)

Recommended for acceptance by A. Yakovlev.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2019.2895036

due to its low latency and high bandwidth [1]. However, a
crossbar NoC faces scalability issues as hardware costs
increase quadratically with port count.

To address the GPU NoC scalability challenge, a cluster
structure is implemented in modern-day GPUs to group
several SMs into a cluster. For example, Pascal supports 6
clusters, with each cluster consisting of 10 SMs [1]; Volta
features 14 SMs per cluster with the same number of clus-
ters [2]. By sharing NoC ports among SMs in a cluster, the
total number of ports to the network is reduced and so is
the overall hardware cost of the crossbar NoC.

Previous research has shown that NoC congestion is a
severe GPU performance bottleneck for many memory-
intensive applications [3], [4], [5]. Unfortunately, clustered
GPUs further exacerbate this performance issue. By sharing
ports among SMs in a cluster, congestion significantly
increases as SMs need to compete with each other in a cluster
for network bandwidth. This creates a new and critical
performance challenge for the NoC in clustered GPU
organizations.

We make the observation that many GPU-compute appli-
cations exhibit inter-CTA locality, as different CTAs access the
same cache line or access the same read-only data. For clus-
tered GPUs, this implies that memory requests from CTAs
executing on the same cluster will access the same cache lines.
According to our experimental results, we find that on average
19 percent (and up to 48 percent) of all L1 misses originating
from a cluster indeed access the same cache lines. These mem-
ory requests are redundant and can be eliminated.

Motivated by this observation, we propose distributed-
block scheduling. In contrast to prior work in CTA scheduling,

0018-9340 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5759-6544
https://orcid.org/0000-0001-5759-6544
https://orcid.org/0000-0001-5759-6544
https://orcid.org/0000-0001-5759-6544
https://orcid.org/0000-0001-5759-6544
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0002-5692-0151
https://orcid.org/0000-0002-5692-0151
https://orcid.org/0000-0002-5692-0151
https://orcid.org/0000-0002-5692-0151
https://orcid.org/0000-0002-5692-0151
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
mailto:
mailto:
mailto:

WANG ET AL.: INTRA-CLUSTER COALESCING AND DISTRIBUTED-BLOCK SCHEDULING TO REDUCE GPU NOC PRESSURE

distributed-block scheduling exploits cache locality at both
the cluster level and the SM level. At the cluster level, conse-
cutive CTAs are mapped to the same cluster, similar to dis-
tributed CTA scheduling [6]. At the SM level, CTAs are
allocated in groups of two to further exploit L1 cache locality,
similar to block scheduling [7]. This two-level approach max-
imizes the opportunities to exploit inter-CTA locality among
CTAs at the L1 cache within an SM by first mapping a group
of consecutive CTAs at the cluster level, and subsequently
mapping pairs of consecutive CTAs at the SM level. Inter-
CTA locality is exploited to improve L1 cache performance
(decreasing the reuse distance between accesses to the same
memory location, thereby increasing L1 cache hit rate) and to
increase the coalescing opportunities in the L1 miss status
handling registers (MSHRs).

Although distributed-block scheduling reduces the num-
ber of redundant requests at the SM level, it does not tackle
the redundant requests originating from different SMs
within a cluster. We therefore propose intra-cluster coalescing
(ICC) to exploit coalescing opportunities across SMs within a
cluster. ICC reduces GPU NoC pressure by coalescing mem-
ory requests from different SMs in a cluster to the same L2
cache line. In particular, ICC records the memory requests
sent to the NoC by all SMs in a cluster, and when subsequent
memory requests from other SMs in the cluster access the
same cache lines as an outstanding request, ICC coalesces
them. By doing so, ICC significantly reduces NoC traffic. To
extend the opportunity for coalescing beyond the time win-
dow during which a memory request is outstanding, we
complement ICC with a coalesced cache (CC) to keep track of
recently coalesced cache lines. Cache lines are added to the
CC when a coalesced cache line with multiple requesters
returns from the memory hierarchy. L1 cache misses trigger
an access to the CC, which in case of a hit, further reduces
NoC traffic.

Memory coalescing, or grouping memory accesses from
different threads to the same cache line in a single memory
request, is widely deployed in a GPU and is an effective tech-
nique to reduce NoC pressure. More specifically, intra-warp
coalescing merges L1 cache accesses across threads within a
warp [8]; WarpPool merges L1 accesses across warps within
the same SM [9]; L1 Miss Status Handling Registers (MSHRs)
merge L1 misses across warps within a single SM. However,
to the best of our knowledge, no prior work coalesces L1
misses across SMs within a cluster.

Distributed-block scheduling, intra-cluster coalescing and
the coalesced cache operate synergistically and significantly
reduce NoC pressure, which improves performance while at
the same time reducing energy consumption. We report that
distributed-block scheduling by itself improves performance
by 4 percent on average (up to 16 percent) and reduces
system energy by 1.2 percent (up to 6.5 percent) over state-
of-the-art distributed CTA scheduling [6]. Intra-cluster
coalescing further improves performance and energy
efficiency, leading to an average performance improvement
of 10 percent (and up to 28 percent), an average reduction
in system energy by 4 percent (and up to 9 percent)
and improved energy-delay product (EDP) by 13 percent
(and up to 26 percent). Finally, the coalesced cache yet
further improves performance and energy efficiency, to an
overall average 15 percent performance improvement (up to

1065

67 percent), an average 6 percent reduction in energy
consumption (up to 19 percent) and an average 19 percent
improvement in EDP (and up to 53 percent).

In this paper, we make the following contributions:

e We observe that GPU-compute applications exhibit
high degrees of inter-CTA locality. We analyze and
categorize the sources of data sharing among CTAs.

e We propose distributed-block scheduling to exploit
inter-CTA locality at the SM level by mapping
groups of consecutive CTAs at the cluster level and
then pairs of consecutive CTAs at the SM level.

e We propose intra-cluster coalescing (ICC) and the coa-
lesced cache (CC) to track and coalesce L1 cache
misses from different SMs in a cluster before sending
them across the NoC.

e We study the complementarity and interaction
between CTA scheduling, ICC and CC as a solution
to reduce GPU NoC pressure.

e We comprehensively evaluate our newly proposed
distributed-block scheduling and ICC scheme, and
report an average 15 percent (up to 67 percent) perfor-
mance improvement while simultaneously reducing
system energy by 6 percent (up to 19 percent) and
EDP by 19 percent (and up to 53 percent) over the
state-of-the-art distributed CTA scheduling policy.
The hardware cost of the ICC unit is limited to
276 bytes per cluster.

2 BACKGROUND

Before motivating the problem we are addressing in this
paper more deeply, we first summarize some background
material.

2.1 GPU Thread Hierarchy

Using Nvidia’s terminology, a GPU-compute application
consists of kernels, grids, CTAs, warps and threads, and they
are organized in a hierarchy. A kernel is a parallel code
region that runs on a GPU and consists of multiple grids,
which in turn consist of multiple CTAs. Each CTA is a batch
of threads that can coordinate with each other through syn-
chronization using a barrier instruction [10]. Threads in a
CTA share a fast, on-chip scratchpad memory called shared
memory. Since all the synchronization primitives are encap-
sulated within a CTA, different CTAs can be executed in any
order. This is an important feature that we will explore to
understand how the mapping of CTAs to clusters affects
intra-cluster locality.

2.2 GPU Architecture

Our baseline GPU architecture is shown in Fig. 1: 12 clusters
are connected via a crossbar NoC to 8 memory controllers
(MCs). Each MC has an associated L2 cache bank for the
memory partition that the MC serves, and has one network
port. Each cluster consists of 5 SMs, so there are 60 SMs in
total. Each SM has a private L1 data cache, a read-only texture
cache, a constant cache and shared memory. An L1 cache
miss triggers a request to be sent over the NoC to reach one of
the L2 cache banks; in case of an L2 cache miss, the request
proceeds to main memory. In our baseline architecture, we

1066

Cluster #1

Response Buffer
SM SM l
¥
ey ey
scheduler Subsystem scheduler
Register

Subsystem
Shared|[Const | ______. Register | |[Shared |[Const
File Mem || Cache File Mem || Cache

— Cluster #12
ALUs]| caghe || Gadhe. ALUs]| caghe || Gaghe.
| — | |[sw)-
Injection Buffer 1 ;
!
Crossbar Network
L2 cache| L2 cache
MC #1 MC #8

Fig. 1. Clustered GPU architecture: SMs within a cluster go through the
NoC to access the L2 cache and main memory to serve L1 cache misses.

assume one NoC injection port buffer that is shared by all
SMs in a cluster; the SMs are connected through a bus within
a cluster. (In the evaluation section, we will study the sensi-
tivity of our design to the number of clusters and the network
ports per SM.) Each cluster has a response FIFO queue to
hold incoming packets from the NoC; responses are directed
to one of the SMs in the cluster according to the control infor-
mation in the packet.

2.3 CTA Scheduling

Scheduling on a GPU is done in three steps. First, a kernel is
launched on the GPU. In this work, we assume that only one
kernel is active at a given time. Second, the CTA scheduler
maps CTAs to the available SMs. The baseline CTA sched-
uler follows a 2-level round-robin (RR) policy [11], which
first schedules CTAs across clusters and then across SMs
within a cluster. In particular, CTA 1 is allocated to the first
SM in cluster #1, CTA 2 is allocated to the first SM in cluster
#2, and so on. Once all clusters are assigned one CTA, the
next iteration allocates a CTA to the second SM in each clus-
ter, etc., until all SMs are assigned one CTA. If an SM has
enough resources to execute more than one CTA, additional
CTAs are assigned—this is done in a round-robin manner
similar to the procedure just described. By doing so, a two-
level RR policy balances the load among clusters and SMs, so
that all clusters and SMs have a similar number of CTAs to
execute. The maximum number of CTAs that can be sched-
uled per SM is determined by the SM’s resources. Finally,
the warp scheduler in each SM schedules warps (from one or

00.25 x NoC bandwidth @ 0.5 x NoC bandwidth @1 x NoC bandwidth
B 1.5 x NoC bandwidth B2 x NoC bandwidth

16 i 0

lorm

N S

O & & P & QO el
Fe S PSS « SRS S
& N R ©

®

Fig. 2. Quantifying the NoC bottleneck: Normalized IPC when varying
the NoC and LLC frequency from 0.25x to 2x. NoC (and LLC) bandwidth
is a severe performance bottleneck.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.7, JULY 2019

TABLE 1
GPU Coalescing Techniques and Their Scope

Technique Scope

Intra-warp coalescing [8]
WarpPool [9]

L1 MSHR [13]

Packet coalescing [14]
ICC (this work)

Across threads in a warp

L1 accesses across warps in an SM
L1 misses across warps in an SM
MC side

L1 misses across SMs in a cluster

more CTAs) to execute, which we model using a Greedy-
Then-Oldest (GTO) policy [12].

3 MOTIVATION AND OPPORTUNITY

We now further motivate the problem and describe the
opportunity.

3.1 NoC Bandwidth Bottleneck

We first demonstrate that the NoC indeed constitutes a per-
formance bottleneck in a clustered GPU architecture. In par-
ticular, we study the relationship between performance and
NoC bandwidth. Fig. 2 quantifies performance as a function
of NoC bandwidth. To ensure an overall balanced design,
we vary the LLC bandwidth proportionally as we change the
NoC bandwidth. This is done by increasing the clock fre-
quency of the NoC and LLC subsystems by the same factor.
This enables providing a meaningful measure for how sensi-
tive performance is to the available NoC (and LLC) band-
width. (Further details about our experimental setup are
given in Section 7.) We find that performance is sensitive to
NoC and LLC bandwidth for most of the benchmarks. In par-
ticular, increasing NoC/LLC bandwidth by a factor 1.5’
leads to a substantial performance benefit; doubling the
NoC/LLC bandwidth saturates the performance improve-
ment to on average 45 percent and up to 78 percent. This
illustrates that NoC bandwidth indeed is a severe bottleneck.
Limited NoC bandwidth leads to congestion within a cluster
for memory requests that need to proceed through the NoC
to reach the L2 cache and beyond.

3.2 Request Merging
GPU-compute applications exhibit various forms of locality in
the memory hierarchy. Merging memory requests is widely
deployed across the memory hierarchy in a GPU to increase
the effective memory system throughput. Table 1 provides a
comparison between existing techniques and our work.

Intra-warp locality, or different threads within the same
warp accessing the same or neighboring memory locations,
is the most common and obvious form of data locality pres-
ent in GPU-compute applications. To exploit this characteris-
tic, a memory coalescing unit merges multiple memory
accesses to the same cache line within the same warp before
sending the request to the L1 cache [8]. In other words, intra-
warp coalescing merges requests across threads within a warp.
This is easily done as different threads within a warp execute
in SIMD lockstep.

For memory-divergent applications, where different
threads in a warp request more than one cache line in a load
or store instruction, the memory coalescing unit becomes a

WANG ET AL.: INTRA-CLUSTER COALESCING AND DISTRIBUTED-BLOCK SCHEDULING TO REDUCE GPU NOC PRESSURE

@ Cache line sharing @ Data sharing

2K

Fraction redundant requests

w = zZ 0o > k= o o o o
Imzszoén—éu-mg
J o 0o o o <
(&) L o0
[a)
N

Fig. 3. Intra-cluster locality (fraction of redundant requests versus the
total number of requests in a cluster) as a function of a past window of
requests under the distributed CTA scheduling policy [6]. A distinction is
made between cache line sharing and data sharing. A substantial frac-
tion of NoC requests are redundant because of intra-cluster locality due
to cache line sharing or data sharing.

memory system throughput bottleneck because the different
memory requests now need to be serialized. Kloosterman
et al. [9] propose WarpPool which merges memory requests
across warps in an SM before accessing the L1 cache. By merg-
ing requests from different warps in an SM, they increase the
effective L1 cache bandwidth. WarpPool does not address
NoC congestion though: WarpPool reduces the number of
requests to the L1 cache, but goes no further. SMs in the same
cluster that are accessing the same address, an address that
presently is not in the L1 cache, generate multiple NoC
requests.

Miss Status Handling Registers (MSHRs) [13] are used at
the L1 cache level to track outstanding L1 cache misses and
merge multiple requests to the same cache line in the L2
cache and beyond. This avoids having to send redundant
requests over the NoC to the next level in the cache hierar-
chy. Note that L1 MSHRs eliminate redundant NoC requests
originating from a single SM. In other words, L1 cache
MSHRs are limited in scope and coalesce L1 cache misses across
warps within an SM. There may still be redundant NoC
requests originating from different SMs within a single clus-
ter, as we will demonstrate in this paper.

Packet coalescing [14] groups memory requests from dif-
ferent SMs at the memory controller (MC) side. The MC then
generates a single read reply and relies on a multicast NoC to
transfer the reply packet to the requesting SMs. Packet coa-
lescing does not reduce the number of L1 miss requests sent
over the NoC.

To summarize, although intra-warp coalescing and Warp-
Pool reduce the number of requests to the L1 cache and
although L1 MSHRs merge outstanding L1 cache misses,
there is no coalescing or merging happening for accesses to
the L2 cache. In other words, different SMs within the same
cluster may issue multiple requests to the same or neighbor-
ing data elements, which leads to redundant NoC traffic. In
this paper, we eliminate redundant NoC traffic by coalescing L1
cache misses across SMs within a cluster before sending
requests to the L2 cache. By doing so, we increase the effec-
tive NoC bandwidth.

3.3 Intra-Cluster Locality

In this paper, we observe and exploit the notion of intra-
cluster data locality in GPU-compute applications. In this
section, we first quantify intra-cluster locality, and we then
investigate its root cause.

1067

3.3.1 Quantifying Intra-Cluster Locality

To quantify the amount of intra-cluster locality, we define
the notion of a redundant request. A data request is said to be
redundant if it accesses a cache block that has been accessed
by a previous request from the same cluster; the previous
request needs to have happened recently, within a given
window size of requests prior to the current request. (We
will vary this window size when we quantify intra-cluster
locality.) We define Intra-Cluster Locality (ICL) as

no. redundant requests

ICL = D

total no. data requests

To quantify intra-cluster locality, we track all data requests
in a cluster before they are injected into the NoC, i.e., after
having accessed the L1 cache, so this includes all L1 misses.
We then calculate the ratio of redundant requests versus the
total number of data requests for different window sizes of
past memory requests. We consider window sizes ranging
from 500 to 2000 cycles. The reason for this wide range is
that we observe L1 cache miss latencies ranging up to a cou-
ple thousands of cycles, which we observe for some of our
benchmarks that suffer from severe NoC congestion.

Different applications exhibit different degrees of intra-
cluster locality, see Fig. 3. On average, for a window size of
2000 cycles, we observe that 19.4 percent of the memory
requests are redundant. For HS and DCT, up to 48 and
45.4 percent of the requests are redundant at the cluster level,
respectively. This result supports the hypothesis in this
paper that it is possible to significantly reduce NoC traffic in
clustered GPUs by coalescing memory requests within a
cluster.

3.3.2 Inter-CTA Locality

It is interesting to investigate where intra-cluster locality
comes from. Intra-cluster locality in fact stems from inter-
CTA locality because of data reuse among CTAs mapped to
SM cores in the same cluster. We analyze all the benchmarks
and identify two categories of inter-CTA locality: cache line
sharing versus data sharing. Fig. 3 quantifies their relative
contribution. For a window size of 2000 cycles, we observe
19.4 percent intra-cluster locality, with 11.2 percent due to
cache line sharing and 8.2 percent due to data sharing. We
also note that intra-cluster locality increases with increasing
window size.

1) Inter-CTA Locality due to Cache Line Sharing. Inter-CTA
locality may result from adjacent CT As accessing neighboring
data items in the same cache line—spatial locality. If one
cache line is big enough to hold the data accessed by multiple
CTAs, we may observe this form of inter-CTA locality.
The number of threads within a CTA is typically a multiple of
32. It may be the case that all threads within a CTA access less
than a cache line worth of data, e.g., 32 or 64 threads ina CTA
access 128 or fewer bytes. Hence, for a cache line of 128 bytes,
this implies that different CTAs will access the same cache
line, exhibiting inter-CTA locality through the same cache
line. A couple benchmarks feature cache line sharing pre-
dominantly, especially DCT and SRADs, see Fig. 3.

2) Inter-CTA Locality Due to Data Sharing. In many GPU-
compute applications, we observe that different CTAs access
the same (read-only) data — temporal locality. Data sharing

1068

int small_block rows =BLOCK_SIZE - border rows X 2;

int small_block cols = BLOCK SIZE - border cols x 2;

int ty = small_block rows xblockldx.y + threadIdx.y - border rows;
int tx = small_block rows x blockIdx.x + threadldx.x - border cols;
index=grid_colsxty+tx

if (0<ty<grid rows-1) && (0<tx<grid cols - 1))

power_on_cuda[ty][tx] = power[index];

Fig. 4. Code excerpt from hotspot (HS). Different threads in different
CTAs access the same data through the power [1data structure if the
index evaluates to the same value.

may result from different reuse patterns depending on how
the CTAs are organized.

We illustrate this using two benchmarks. Hotspot (HS),
see Fig. 4 for a code excerpt, is a benchmark that exhibits
high intra-cluster locality. HS has its threads and CTAs orga-
nized in a 2D structure. Different threads in different CTAs
access the same data through the power[] data structure.
The computed index is a linear combination of the two-
dimensional index of the thread and CTA. If this linear com-
bination evaluates to the same value, different threads from
different CTAs will access the same data, yielding inter-CTA
locality.

LUD is another example of a 2D application, see Fig. 5, in
which each submatrix L;; and Uj; is processed by one CTA.
One iteration (one instance of the kernel) is used to calculate
the decomposition of one row and column of the submatri-
ces. For example, in the first iteration, submatrices L; and
U,; are computed: Ly, is reused for calculating submatrices
U2 and U3 (reuse along rows), while Uy, is reused for calcu-
lating submatrices L2; and Lg; (reuse along columns).

We note that data sharing may happen between CTAs
that are relatively far apart from each other. For example,
LUD features a 6 x 6 CTA organization in which CTAs in the
same row and same column access the same data. Hence,

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.7, JULY 2019

Apr A Agz] L 0 07[U1r Uz U
Ay Azy Agz|=|Lzi L 0 0 Uz Uss
31 Asy Azzl L3y L3z Lss 0 0 Uss

First row/column sub-matrix calculation:

Ayp =Ly XUy

A A A A
Uy = 12, Uyps = 3 Ly = 2, Ly = 31
Lyg L1y U11 Uiy

Fig. 5. Data sharing in LUD. L, is reused for calculating submatrices U,
and Uy (reuse along rows), while Uy, is reused for calculating submatri-
ces Ly and Ly, (reuse along columns).

CTAs that are multiples of 6 away from each other will access
the same data, i.e., data sharing within a column. During our
workload analysis, we find that locality due to data sharing
may happen among CTAs that are relatively far apart. On
the other hand, inter-CTA locality due to cache line sharing
is typically observed among adjacent CTAs.

4 CTA SCHEDULING

Intra-cluster locality is not only a function of the algorithm or
its implementation. It is also greatly affected by how CTAs
are mapped to clusters. In order to illustrate this point, we
consider four previously proposed CTA scheduling policies,
which we illustrate using the example shown in Fig. 6. The
example assumes 10 CTAs in total; we further assume two
clusters with two SMs per cluster; each SM can execute two
CTAs.

4.1 Scheduling Algorithms

Two-level round-robin scheduling follows the strategy previ-
ously described in Section 2.3. CTAs are first distributed
across clusters; once all clusters have one CTA assigned, we
assign CTAs across SMs within a cluster; finally, when all
SMs in all clusters are assigned one CTA, we assign addi-
tional CTAs per SM—the assignment of additional CTAs is
done the same way. This CTA scheduling algorithm has the

10-CTA workload

0060000000

Initial mapping

Cluster 2 Cluster 1~ Cluster 2 Cluster 1

SM1 SM2 SM3 SM4

Cluster 1

SM1 SM2 SM3 SM4

(1) Two-level round-robin (2) Global round-robin

(3) Greedy-clustering

Cluster I~ Cluster 2
SM1 SM2 SM3 SM4

)90

44 DS

Cluster 2 Cluster |~ Cluster 2

SMI1 SM2 SM3 SM4

Mapping after CTA 1 finishes

Cluster 1~ Cluster 2 Cluster I~ Cluster 2 Cluster 1

SM1 SM2 SM3 SM4

SM1 SM2 SM3 SM4
¥

(1) Two-level round-robin (2) Global round-robin

(3) Greedy-clustering

(4) Distributed CTA (5) Distributed-block
Cluster 2 Cluster 1~ Cluster 2 Cluster I~ Cluster 2
SM1 SM2 SM3 SM4
3
4

(4) Distributed CTA (5) Distributed-block

Fig. 6. lllustrating the five CTA scheduling algorithms for a 10-CTA workload. We assume a GPU architecture with 2 clusters with 2 SMs each; we
can allocate at most 2 CTAs per SM. The top row shows the initial mapping of CTAs to clusters and SMs; the bottom row shows the mapping of the

next CTA to schedule after CTA 1 finishes its execution.

WANG ET AL.: INTRA-CLUSTER COALESCING AND DISTRIBUTED-BLOCK SCHEDULING TO REDUCE GPU NOC PRESSURE

0O 2-level round-robin @ greedy-cluster @ global round-robin B distributed CTA
14

1.2

0.6

ormalized IPC
o
o =

N
o o
[RNS

o
I

e
<
Q\@

R
F N & @

Fig. 7. Normalized IPC for two-level round-robin, greedy-clustering,
global round-robin and distributed CTA scheduling. Distributed schedul-
ing outperforms the other three policies on average.

advantage of distributing the CTAs uniformly across all
clusters and SMs in the system.

Global round-robin or one-level round-robin scheduling,
first distributes CTAs across all SMs within a cluster and
then across clusters, i.e., it assigns a CTA to the first SM and a
second CTA to the second SM in the first cluster; once all
SMs in the first cluster are assigned one CTA, we move to the
second cluster, and so forth. Once all SMs in all clusters have
one CTA assigned, we then assign additional CTAs to the
SMs. The assignment of additional CTAs per SM is done in
the same manner.

Greedy-clustering assigns as many CTAs as possible to the
first cluster before proceeding to the next, i.e., the first CTA is
assigned to the first SM and the second CTA is assigned to
the second SM in the first cluster; once all SMs in the cluster
have one CTA assigned, additional CTAs are assigned to the
cluster until all SMs can take no more additional CTAs. It
then moves to the next cluster. This greedy-clustering algo-
rithm has the advantage of fully utilizing the allocated SMs
and clusters. However, for kernels with a limited number of
CTAs, this policy may lead to imbalanced execution, i.e., not
all clusters are assigned the same workload. While this is not
a concern for GPU-compute workloads that consist of a large
number of CTAs, it may be problematic for others.

These three CTA scheduling policies share the common
limitation that they expose limited intra-cluster locality.
As mentioned before, inter-CTA locality typically occurs
between neighboring CTAs. Compared to the other two poli-
cies, greedy-clustering may be advantageous because it
assigns neighboring CTAs to the same cluster. The number
of neighboring CTAs assigned to the same cluster under
two-level round-robin and global round-robin scheduling is
more limited. However, these three polices do not make any
guarantees to exploit intra-cluster locality during the execu-
tion. In particular, when a CTA on an SM finishes execution,
a new CTA needs to be launched and this is done without
considering the locality between the new CTA and the CTAs
already executing on the cluster. This is, when CTA 1 finishes
in the example shown in Fig. 6, CTA 9 gets scheduled and
assigned to the SM previously executing CTA 1. Unfortu-
nately, there may be limited or no inter-CTA locality between
CTA 9 and the CTAs already running on the same cluster.

Distributed scheduling as proposed in MCM-GPU [6],
addresses this issue by uniformly distributing CTAs across
clusters, ie., all clusters get the same number of CTAs
assigned in a pool of CTAs. In the example in Fig. 6, there are

1069

O 2-level round-robin @ greedy-cluster O global round-robin B distributed CTA
50%

40%

30%

20%

10%

Fraction redundant requests

0% -

FESE ST

I LA
Y

Fig. 8. Intra-cluster locality for the different CTA scheduling policies. CTA
scheduling policies have a substantial impact on the exploitable intra-
cluster locality, and distributed scheduling yields the highest opportunity.

10 CTAs in total. Distributed scheduling first splits up the set
of CTAs evenly across the two clusters, i.e.,, CTAs 1 through 5
are assigned to cluster #1, and CTAs 6 through 10 are
assigned to cluster #2. In the next step, it maps a block of
neighboring CTAs to each cluster from the respective pools,
i.e.,, CTAs 1 through 4 are mapped to cluster #1, and CTAs 6
through 9 are mapped to cluster #2. This is similar to greedy-
clustering except that greedy-clustering does this from a
global pool of CTAs whereas distributed CTA scheduling
considers a per-cluster pool of CTAs. The key difference with
the other CTA scheduling policies appears when a CTA fin-
ishes its execution, e.g., CTA 1 at the bottom in Fig. 6. As men-
tioned above, two-level round-robin, global round-robin and
greedy-clustering scheduling select and assign the next CTA
from the global CTA pool, i.e., CTA 9 is selected and mapped
to the SM and cluster where CTA 1 just finished its execution,
namely the first SM in cluster #1. Distributed scheduling on
the other hand selects the next CTA from the cluster's CTA
pool,i.e., CTA5is mapped to cluster #1. This is a major differ-
ence as it enables distributed CTA scheduling to continu-
ously exploit inter-CTA locality and assign neighboring
CTAs to the same cluster during the entire execution.

4.2 Performance Analysis

Fig. 7 reports performance (IPC) normalized to two-level
round-robin. We observe that distributed scheduling is the
best performing scheduling policy. Significantly higher per-
formance is achieved for FDTD (35 percent) and a couple
other benchmarks including BT (12 percent), 2DCONV
(10 percent), NN (9 percent) and LUD (6 percent). The reason
for the higher performance is improved L1 cache locality.
Distributed scheduling achieves lower performance than the
other policies for SRAD (11 percent) and BP (4 percent)
because of workload imbalance across SMs. On average, we
report that distributed scheduling is the best performing pol-
icy, i.e., it achieves 6 percent higher performance on average
compared to two-level round-robin scheduling. Because it is
the best performing policy, we will consider distributed
scheduling as the default CTA scheduling policy for the
remainder of the paper.

The comparison becomes even more interesting as we
consider intra-cluster locality, see Fig. 8 which quantifies
intra-cluster locality as previously defined in Section 3.3 for
the different CTA scheduling policies with a time window of
2000 cycles. Intra-cluster locality is the highest for distributed
scheduling, i.e., we measure that on average 19.5 percent

1070

(and up to 48 percent for HS and 46 percent for DCT) of the
requests within a cluster are redundant. The reason is that
distributed scheduling maintains inter-CTA locality across
consecutive CTAs, not only at the beginning of the execution
but also during the execution as CTAs finish and new CTAs
get launched. This makes distributed scheduling particularly
amenable to intra-cluster coalescing, and in addition, reinfor-
ces the choice to use distributed scheduling as our baseline.

There are two possibilities to exploit the observed intra-
cluster locality. The first approach is based on the observa-
tion that a fraction of the locality across SMs within a cluster
can be captured within an SM by changing the CTA schedul-
ing policy. This is the approach taken through the newly pro-
posed distributed-block scheduling policy, which we discuss
in Section 5. The second approach is to coalesce requests to
the same cache lines across SMs in a cluster, which is the
approach taken in the newly proposed intra-cluster coalesc-
ing mechanism as discussed in Section 6.

5 DISTRIBUTED-BLOCK SCHEDULING

Among the state-of-the-art CTA scheduling strategies, dis-
tributed scheduling clearly exposes the most intra-cluster
locality. It does so by uniformly distributing CTAs across
clusters. However, CTAs are allocated following a (default)
round-robin strategy within a cluster. As a result, consecu-
tive CTAs may be allocated to different SMs in a cluster,
which may lead to reduced L1 cache performance and/or
missed opportunities to coalesce requests at the L1 cache
MSHRs. We therefore propose two-level distributed-block CTA
scheduling, or distributed-block scheduling for short, to exploit
coalescing opportunities at the cluster level and at the same
time increase locality benefits at the L1 cache level. At the
cluster level, we use distributed scheduling to maximize
intra-cluster locality. At the SM level, we leverage block CTA
scheduling (BCS) [7] which assigns a block of two CTAs to
the same SM. The intuition is to increase the opportunity for
exploiting data cache line locality across CTAs if those CTAs
get allocated to the same SM at the same time. BCS delays the
scheduling of CTAs to an SM until there are two CTA con-
texts available on the SM to simultaneously schedule two
CTAs. This has two potential benefits: (i) the L1 cache hit rate
improves because of improved locality, and (ii) there are
more coalescing opportunities in the L1 cache MSHRs
because the reuse distance between two accesses to the same
memory location is reduced. In other words, inter-CTA local-
ity gets exploited within a single SM, which leads to overall
higher performance. Note though that delayed CTA schedul-
ing may also incur some performance overhead, i.e., if an SM
only has one CTA context left, no new CTA can be allocated
until another CTA context becomes available, which leaves
SM resources underutilized.

Distributed-block scheduling is illustrated in Fig. 6. At the
cluster level, distributed-block scheduling performs the
same as distributed scheduling. We first split the CTAs
evenly and assign the first 5 CTAs to cluster #1 and the next
five CTAs to cluster #2. In the next step, rather than allocating
CTAs by using a default round-robin strategy, we allocate
CTAs at a granularity of 2 to different SMs in a cluster. CTAs
1 and 2 are allocated to the first SM in cluster 1; CTAs 3 and 4
are allocated to the second SM in cluster 1. By doing so,

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.7, JULY 2019

Cluster T T T T
Response Buffer

Memory Replies l 4

(ioon({gl :
M L cunt || || [| |

Merge Table

Address SM List Valid Bit

)

War| Memory l | I ‘
schedl?ler Subsystem ¥:L§IJ: '
Register | |[Shared |[Const MiSS Coalesced Cache>
File Mem || Cache Address Data Hit_info

Update -

L1 Texture
Cache || Cache
Memor: Re:uests 1 l ‘ |

Injection Buffer

cc

NoC NoC
Injection Ejection

Fig. 9. The intra-cluster coalescing (ICC) unit merges L1 cache misses
across SMs within a cluster. The coalesced cache (CC) keeps track of
recently coalesced cache lines.

CTAs with higher inter-CTA locality are likely to be allocated
to the same SM. Note that distributed-block scheduling fol-
lows a delayed mapping strategy once a CTA finishes its exe-
cution, as illustrated at the bottom part in Fig. 6. New CTAs
can only be allocated to an SM if at least two CTA contexts
are available. Hence, CTA 5 can be allocated to SM #1 only
when both CTAs 1 and 2 have finished their execution.

6 INTRA-CLUSTER COALESCING (ICC)

Distributed-block scheduling exploits inter-CTA locality
between adjacent CTAs within the same SM. However, it
does not exploit inter-CTA locality across SMs in a cluster.
This leaves performance and efficiency benefits on the table,
i.e., a significant fraction of data sharing within a cluster may
not come from adjacent CTAs running on the same SM.
Hence, we propose intra-cluster coalescing (ICC) to coalesce
inter-CTA locality across SMs within the same cluster. The
key idea of ICC is to merge requests from different SMs in a
cluster to the same L2 cache line before sending the request
to the NoC. By doing so, ICC decreases the number of mem-
ory transactions over the network and reduces the conten-
tion on the network port shared by multiple SMs in a cluster.

6.1 1CC Unit

Fig. 9 illustrates the overall architecture of the proposed
intra-cluster coalescing unit. The central structure of the ICC
unit is the merge table. Its goal is to track all memory requests
coming from the SMs in the cluster before injecting them into
the network. The merge table contains multiple entries. Each
entry consists of three fields, namely an address field, the SM
list and a valid bit. An entry is responsible for coalescing all
memory requests to the same L2 cache line. The merge table
is implemented as a fully-associative cache.

When an SM core wants to inject a memory request into
the network, the ICC unit first searches the merge table
using the request’s address. If there already exists an entry
for the requested cache line (merge table hit), the ICC unit
will append the ID of the requesting SM to the SM list. The
memory request will not be sent to the network—there
already is a request outstanding for that same L2 cache line.
If on the other hand, there is no entry allocated in the merge

WANG ET AL.: INTRA-CLUSTER COALESCING AND DISTRIBUTED-BLOCK SCHEDULING TO REDUCE GPU NOC PRESSURE

table for that cache line (merge table miss), the ICC unit will
allocate a new entry (if the merge table has empty entries
available) and then send the memory request to the net-
work; the SM sending this request is added to the SM list
and the valid bit is set. If, under a merge table miss, all
entries in the merge table are occupied, the memory request
will be injected into the NoC directly. ICC unit only records
read requests to the global address space; read requests to
other address spaces bypass the merge table. Write requests
also bypass the merge table in order not to complicate the
design of the merge table—including writes in the merge
table would require storing entire cache lines and imple-
menting write merging within a cache line.

When a cluster receives a reply packet from the network,
the ICC unit uses the reply address to index the merge table.
If there exists an entry for that address (a merge table hit),
the ICC unit reads the corresponding SM list and broadcasts
the memory reply to all SMs in the list. Next, the correspond-
ing entry in the merge table is set to invalid, which means
that the entry can be re-used for other memory requests. If
the address cannot be found in the merge table (a merge table
miss), the reply will be delivered to the SM based on the
destination stored in the reply packet.

ICC enjoys two performance benefits. First, by design,
the total number of transactions sent to the network is
reduced and this relieves the network bottleneck. Second,
the average memory access latency is reduced for requests
that hit in the merge table. A request to an already outstand-
ing request only sees the remaining access latency, which is
(much) smaller compared to the latency of a newly initiated
request.

6.2 Merge Table

The size of the merge table is likely to affect performance.
The larger the size, the higher the opportunity to exploit
intra-cluster locality. On the flip side, a large merge table
also implies higher hardware cost and access latency; access
latency is something to consider since it is on the critical
path for every L1 cache miss.

The maximum possible size of the merge table is deter-
mined by the maximum number of in-flight memory
requests. Memory read requests in each SM first access the
L1 cache. In case of a miss, the memory request is sent to the
next level of cache. In the L1 cache, the MSHRs track the in-
flight L1 cache misses and merge duplicate requests access-
ing the same L2 cache line. The number of MSHR entries con-
trols the number of memory requests that can be injected into
the NoC, i.e., when all MSHR entries are occupied, L1 cache
misses can no longer be serviced. Hence, the maximum size
of the merge table is bounded by the number of SMs per clus-
ter multiplied by the number of L1 MSHR entries per SM.
This amounts to a maximum size of 5 x 32 = 160 entries for
our clustered architecture.

Obviously, the size of the merge table can be set to a
smaller value to reduce the hardware cost and/or access
latency. This trade-off impacts our ability to coalesce mem-
ory requests across the NoC. We set the size of the merge
table to 48 entries in our setup. We find that whereas a maxi-
mum sized merge table can coalesce 14.5 percent of the L1
cache misses, a 48-entry merge table captures the vast major-
ity of those by coalescing 12 percent of the L1 cache misses.

1071

6.3 Coalesced Cache
A limitation of the ICC unit as just proposed is that it can only
coalesce memory requests within a limited time window,
namely while the initial memory request is outstanding.
However, as quantified in Section 3.3, there exists significant
inter-CTA locality within large time windows, beyond the
latency of a memory request. In other words, there is a high
possibility that coalesced cache lines will be accessed again in
the near future. We therefore extend the ICC unit with a coa-
lesced cache to keep track of recently coalesced cache lines.
Fig. 9 illustrates the architecture of the coalesced cache
(CCO). The CC is accessed upon an L1 cache miss. In case of a
hit in the CC, i.e,, this is an access to a previously coalesced
cache line, the cache line is simply returned, saving a
request over the NoC to the next level of cache. In case of a
CC miss, the cache line is inserted in the merge table as
previously described. Cache lines are added to the CC
upon their return from the memory hierarchy if there are
more than a single requester, i.e., the cache line is only
inserted in the CC if it is effectively a coalesced cache line as
indicated in the respective entry in the merge table.

6.4 Cost Analysis

As mentioned before, we assume a 48-entry fully-associative
merge table. For GPU-compute applications with a 48-bit
address space [12] and a 128-byte cache line size, we need
41 bits to record the address of the cache line. We further
assume 5 bits to record the SM list, i.e., the SMs waiting for
that particular cache line to come back from the memory sub-
system. The total hardware cost for the merge table amounts
to 2,208 bits or 276 bytes. We further assume a 24-entry fully-
associative coalescing cache with 41 bit tags and 128 byte
cache lines, amounting to a total size of 3.2 KB. (We find that
a larger number of entries in the coalesced cache improves
performance but we opt for 24 entries in the evaluation to
balance performance and hardware cost.) We need a merge
table and coalesced cache for each cluster. We use CACTI
6.5 [15] to compute the access latency to the merge table
and coalesced cache, and we find it to be less than one cycle
at 1.4 GHz assuming a 40 nm chip technology.

7 EXPERIMENTAL SETUP

The evaluation is done using the GPGPU-Sim 3.2.2 simula-
tor [16]. Table 2 shows the simulated baseline GPU configu-
ration. We assume a total of 12 clusters with each cluster
containing 5 SMs; hence, there are 60 SMs in total. Each SM
features a 48 KB L1 cache. The 12 clusters are connected
through a crossbar NoC to 8 memory controllers with a
512 KB L2 cache per memory controller. (We will vary the
number of clusters and the number of SMs per cluster in
the evaluation.) We further assume Greedy-Then-Oldest
(GTO) [12] as the warp scheduling policy within an SM. The
merge table in the ICC unit and coalescing cache are config-
ured to hold up to 48 entries and 24 entries respectively; we
assume a one-cycle access latency to the merge table and
coalescing cache, which we account for in our simulations.
We also model the five CTA scheduling algorithms: 2-level
round-robin, global round-robin, greedy-clustering, distrib-
uted scheduling and the newly proposed distributed-block
scheduling. Our baseline includes intra-warp coalescing in

1072
TABLE 2
Simulated GPU Configuration
Parameter Value
Clock Frequency 1.4 GHz
Number of Clusters 12
Number of SMs per Cluster 5
Numbers of MC 8
Warp Schedulers / SM 2 (GTO)
L1 Cache / SM 48 KB

128 B line, 4-way assoc
LRU, 32-entry MSHR

Shared Memory / SM 64 KB

L2 Unified Cache 512 KB per MC
128 B line, 8-way assoc
LRU, 32-entry MSHR

NoC Topology 12’ 8 crossbar

NoC Channel width 64 B

NoC Bandwidth 716.8 GB/s

DRAM Bandwidth 720 GB/s

GDDR5 DRAM 1.4 GHz

tor=12, tpp=12, t =40,
trAs=28, trep=12, trrp=6,
tcep=2, twr=12

which memory requests are coalesced across threads within
a warp before sending them to the L1 cache [8]. We further
assume 32 MSHR entries at both the L1 and L2 caches; the
MSHRs at the L1 coalesce L1 misses within an SM.

When evaluating GPU energy consumption, we use
GPUWattch [17] assuming a 40 nm chip technology. GPU-
Wattch is modified and configured to model the same GPU
configuration as the performance simulator. We account for
the extra energy consumed in the merge table and coalesced
cache, although we find it to be negligible.

Table 3 lists the workloads used to evaluate our pro-
posed solution, taken from CUDA SDK [18], Rodinia [19]
and PolyBench [20]; NN comes with GPGPUsim [16]. We
choose a mix of high intra-cluster locality and low intra-
cluster locality applications to properly evaluate the perfor-
mance impact across a broad range of workloads.

8 RESULTS

We now evaluate distributed-block scheduling and intra-
cluster coalescing. This is done in a number of steps. We start
by investigating the performance improvement and energy
consumption reduction, after which we analyze the impact
on NoC traffic and memory access latency. Finally, we

TABLE 3

Benchmarks Considered in This Study
Benchmark Suite Abbr.
hotspot Rodinia HS
b-+trees Rodinia BT
backprop Rodinia BP
bfs Rodinia BFS
srad Rodinia SRAD
lud Rodinia LUD
2Dconv Polybench 2DCONV
matrixmul SDK MM
neuralnetwork GPGPUsim NN
FDTD3d SDK FDTD
dct8'8 SDK DCT

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.7, JULY 2019

O distributed
@ distributed+ICC
M distributed+ICC+CC

W distributed-block
m distributed-block+ICC
M distributed-block+ICC+CC

1.8
1.6
14
1.2

0.8
0.6
0.4 -
0.2

Normalized IPC

Fig. 10. Normalized IPC for distributed-block scheduling, intra-cluster coa-
lescing (ICC) and coalesced cache (CC) normalized to distributed sched-
uling. Distributed-block scheduling improves performance by 4 percent
on average; ICC significantly improves performance for both CTA
scheduling policies and yields an overall average 10 percent performance
improvement; ICC along with CC yields an 15 percent performance
improvement.

provide a sensitivity analysis with respect to cluster size and
the effective number of NoC ports per SM.

8.1 Performance

Fig. 10 reports normalized performance for distributed-block
scheduling, intra-cluster coalescing (ICC) and the coalesced
cache (CC) normalized to distributed distributed scheduling
(without ICC). A couple of interesting observations can be
drawn from these results. Distributed-block scheduling out-
performs distributed scheduling for all benchmarks, and by
4 percent on average. For applications that exhibit L1 cache
locality such as FDTD, MM and 2DCONV, distributed-block
scheduling improves performance by 15, 10 and 7 percent,
respectively. This is because part of the inter-CTA locality is
captured at the L1 cache within an SM. However, for applica-
tions such as HS and DCT which exhibit high intra-cluster
locality, distributed-block scheduling does not show any IPC
improvement. In HS, the lack of improvement is due to the
high L1 cache miss rate, which under the GTO warp schedul-
ing policy leads to cache lines being replaced before being ref-
erenced again. Hence, even though two CTAs with cache-line
related locality are allocated to the same SM, this does not
result in improved L1 cache performance. The reason is dif-
ferent for DCT: this benchmark contains more writes than
reads. As a result, reducing the number of L1 read misses has
limited impact on overall performance.

Distributed-block scheduling works synergistically with
ICC to improve performance by 10 percent on average.
Intra-cluster coalescing leads to an additional performance
improvement of 6 percent on average over distributed-block
scheduling. Several benchmarks experience a substantial per-
formance improvement when combining distributed-block
scheduling with ICC, see for example LUD (28 percent), HS
(19 percent), DCT (17 percent) and 2DCONV (19 percent).
Generally speaking, benchmarks with high intra-cluster local-
ity, see Fig. 3, benefit more from ICC. However, the correla-
tion is not perfect. This is due to the fact that intra-cluster
locality quantifies the redundancy in read requests only.
Applications that have a relatively high fraction of writes ver-
susreads, e.g., DCT, do not benefit as much as the intra-cluster
locality metric would suggest (although the improvement is
still significant). Overall, we report that distributed-block
scheduling with ICC improves performance by 10 percent on
average (and up to 28 percent) compared to state-of-the-art
distributed scheduling.

WANG ET AL.: INTRA-CLUSTER COALESCING AND DISTRIBUTED-BLOCK SCHEDULING TO REDUCE GPU NOC PRESSURE

1073

= DRAM

Normalized energy consumption

QO
(618
T T
QO
QO
T ¥
[a]si]

o

.n
]
3
o
@
T

Fig. 11. Energy consumption breakdown normalized to distributed scheduling (D). Distributed-block scheduling with ICC and CC reduces system

energy by 6 percent on average.

Intra-cluster coalescing improves distributed scheduling
performance by 10 percent on average. For some benchmarks
we do observe that distributed scheduling achieves higher
performance than distributed-block scheduling, assuming
both are complemented with ICC, see for example HS, LUD
and DCT. This is due to delayed CTA launch under block
scheduling, i.e., a new CTA is only scheduled when two CTA
slots are available. For other benchmarks we observe that dis-
tributed-block scheduling outperforms distributed schedul-
ing, see for example FDTD, MM and 2DCONV. These
benchmarks benefit from improved L1 cache performance
and/or coalescing in the L1 MSHRs.

Intra-cluster coalescing when complemented with the coa-
lesced cache (CC) improves performance for both CTA
scheduling policies by 15 percent on average. The coalesced
cache extends the opportunity to benefit from coalesced
cache lines which leads to an additional average 5 percent
performance improvement beyond ICC. Some cache lines
that cannot be serviced by the ICC unit hit in the CC, avoiding
an additional access over the NoC. In particular, LUD and
2DCONV experience a substantial performance improve-
ment of up to 67 percent and 46 percent, respectively.

We further note that distributed scheduling with ICC
yields similar performance benefits as distributed-block
scheduling, with an average performance improvement of
10 percent. However, distributed-block scheduling with ICC
is a more robust solution: it leads to substantial performance
gains, larger than 10 percent for six of the benchmarks,
whereas distributed scheduling with ICC leads to similarly
high performance gains for only four of the benchmarks. The
coalesced cache effectively caches coalesced cache lines at
the cluster level, leading to an overall performance improve-
ment by 15 percent on average.

Odistributed

D@ distributed+ICC
M@ distributed+ICC+CC

W distributed-block
B distributed-block+ICC
@ distributed-block+ICC+CC

Normalized EDP

Fig. 12. Normalized EDP for distributed-block scheduling and ICC nor-
malized to distributed scheduling. Distributed-block scheduling with ICC
and CC reduces system EDP by 19 percent on average.

8.2 Energy Efficiency

ICC reduces energy consumption by coalescing L1 misses,
which reduces the number of requests over the NoC to the L2
cache. Fig. 11 quantifies the impact on the overall system (GPU
plus DRAM) energy consumption by providing a breakdown
of where energy is consumed. We report that distributed-
block scheduling by itself reduces energy consumption by
1.2 percent on average. ICC reduces energy consumption by
4 percent on average, and up to 9 percent for 2DCONV. ICC
plus CC reduces energy consumption by 6 percent on average,
and up to 19 percent for 2DCONV. The reduction in energy
consumption comes from two sources: reduced NoC energy
and reduced L2 energy. The NoC accounts for a significant
fraction of total energy consumption, for 25 percent on average
and up to 44 percent for 2DCONV and BFS. When put
together, distributed-block scheduling with ICC and CC
reduces NoC energy by 16 percent on average and up to
30 percent. The reduction in L2 cache energy is also significant
(by 10 percent on average). However, because of the smaller
contribution of the L2 cache to total system energy compared
to the NoC, the impact is relatively limited. Overall, we
observe significant system energy savings for the benchmarks
that benefit from exploiting intra-cluster locality, see for exam-
ple 2DCONV (19 percent), LUD (11 percent), FDTD (8 percent),
HS (6 percent), BT (5 percent) and HS (4 percent).

Fig. 12 quantifies the energy-delay product (EDP), a well-
established metric for energy efficiency. Distributed-block
scheduling by itself improves EDP by 5 percent on average
and up to 20 percent compared to distributed scheduling.
Distributed-block scheduling with ICC leads to an average
EDP improvement of 13 percent, and up to 26 percent. Dis-
tributed-block scheduling with ICC and CC improves EDP
by 19 percent on average, and up to 53 percent (LUD).

8.3 NoC Traffic
To investigate where the performance improvements and
energy savings are coming from, we now report the NoC
traffic, which we quantify by counting the number of read
requests through the NoC. Fig. 13 reports normalized NoC
traffic.

Distributed-block scheduling reduces NoC traffic by
7 percent on average, as a result of coalescing L1 misses in the
MSHRs within an SM. We observe a significant reduction in
NoC traffic for a number of benchmarks, including FDTD
(24 percent), DCT (15 percent), MM (10 percent) and 2DCONV
(7 percent). These benchmarks also experience a significant

1074

W distributed-block
| distributed-block+ICC
@ distributed-block+ICC+CC

O distributed
@ distributed+ICC
@ distributed+ICC+CC

Normalized NoC traffic

Fig. 13. NoC traffic (number of NoC read requests) for distributed-block
scheduling and ICC normalized to distributed scheduling. Distributed-block
scheduling with ICC and CC reduces NoC traffic by 20 percent on average.

performance improvement as previously reported in Fig. 10.
The only exception is DCT, given its high percentage of writes
versus reads. Other benchmarks such as HS and BT do not
benefit either, due to a high L1 cache miss rate (90 percent for
HS) and limited locality among consecutive CTAs (as is the
case for BT).

Some of the inter-CTA locality cannot be exploited through
the L1 cache MSHRs within an SM, but can be exploited across
SMs within a cluster through the ICC unit, further decreasing
NoC traffic by 9 percent on average. Combining distributed-
block scheduling with ICC leads to an average reduction in
NoC traffic by 15 percent. Some benchmarks experience a sig-
nificant NoC traffic reduction, including DCT (46 percent),
FDTD (27 percent), HS (18 percent), LUD (17 percent) and
2DCONV (16 percent). These benchmarks are also the work-
loads experiencing the largest performance and energy
improvements. Note though that the correlation is not per-
fect—NoC traffic reduction also depends on the fraction of
read requests. Benchmarks with more write requests than reads
do not experience an equally high reduction in NoC traffic.

The coalesced cache keeps track of coalesced cache lines
upon eviction from the merge table. This prolongs the
opportunity to exploit intra-cluster locality, reducing NoC
traffic reduction by an additional 5 percent on average. The
coalesced cache decreases NoC traffic significantly for some
benchmarks, including HS (12 percent), LUD (13 percent)
and 2DCONV (17 percent). These benchmarks are also the
workloads that are more sensitive to the time window, see
Fig. 3. Distributed-block scheduling with ICC and CC
reduces the NoC traffic by 20 percent on average. A couple
of benchmarks obtain a significant NoC traffic reduction,
including DCT (47 percent), 2DCONV (33 percent), LUD (32
percent), HS (29 percent) and FDTD (27 percent).

06 clusters (distributed-block + ICC)
@ 12 clusters (distributed-block + ICC)

[10 clusters (distributed-block + ICC)
[15 clusters (distributed-block + ICC)

60%

40%

- }E
0% -
<l S NS L Q O N Q QO 2 L @
S 3 < N 00% & N QO& %Qy & L) S\

N v
®

IPC improvement

Fig. 14. IPC improvement for distributed-block scheduling with ICC ver-
sus distributed scheduling as a function of the number of clusters while
keeping total SM count constant at 60 SMs. Distributed-block scheduling
with ICC consistently improves performance across different cluster
sizes and effective NoC port count per SM.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.7, JULY 2019

06 clusters (distributed-block + ICC + CC) M 10 clusters (distributed-block + ICC + CC)
@ 12 clusters (distributed-block + ICC + CC) B 15 clusters (distributed-block + ICC + CC)

80%

IPC improvement
B (2]
o o
SIS

0% - ‘ : : :
SRR N

v
O
®

4 O O & & ©
o(’*‘@((o‘eg?é“?’ﬁ

Fig. 15. IPC improvement for distributed-block scheduling with ICC and
CC versus distributed scheduling as a function of the number of clusters
while keeping total SM count constant at 60 SMs. Distributed-block
scheduling with ICC and CC consistently improves performance across
different cluster sizes and effective NoC port count per SM; the coa-
lesced cache improves performance consistently.

8.4 Sensitivity Analysis

Our baseline configuration assumed 12 clusters with 5 SMs
each. We now vary the number of SMs per cluster and
include configurations with 6, 10, 12 and 15 clusters. To keep
the total number of SMs constant at 60, each cluster consists
of 10, 6, 5 and 4 SMs, respectively. We assume one NoC port
per cluster, hence the effective number of NoC ports per SM
effectively increases as we increase the number of clusters.
We assume NoC bandwidth is constant across the different
configurations—note that NoC bandwidth is bounded by the
8 memory controllers. (For the configuration with 6 clusters,
we therefore increase NoC frequency to 1.9 GHz to keep NoC
bandwidth constant.) Finally, we also change the number
of merge table entries according to the number of SMs in a
cluster, i.e., we set the size of the merge table to 96, 60, 48
and 40 entries for 6, 10, 12 and 15 clusters, respectively. We
(obviously) set the number of bits in the SM_list field in the
merge table to be the same as the number of SMs in a cluster.
We assume a 24-entry coalescing cache per cluster.

Figs. 14 and 15 report IPC improvement (percentage
speedup) as a function of the number of clusters comparing
distributed-block scheduling with ICC versus distributed
scheduling; Fig. 14 considers ICC in isolation whereas Fig. 15
considers ICC plus CC. The key observation here is that dis-
tributed-block scheduling with ICC and CC is effective
across the different GPU architecture configurations. Even
with as few as 4 SMs per cluster sharing one NoC port (15
clusters in total), we still observe an average performance
improvement of 16 percent (and up to 68 percent) from dis-
tributed-block scheduling with ICC and CC. The highest per-
formance improvement is achieved for 10 clusters with 6
SMs each. We note an average 14 percent performance
improvement for distributed-block scheduling with ICC and
a 18 percent performance improvement for distributed-block
scheduling with ICC and CC.

9 RELATED WORK

To the best of our knowledge, this is the first paper to target
coalescing memory requests across SMs within a cluster to
mitigate the NoC bottleneck in GPUs. We now discuss the
most closely related work in CTA scheduling, inter-SM local-
ity, GPU NoC optimization and memory access coalescing.

CTA Scheduling. Several prior proposals exploit inter-CTA
locality to improve CTA scheduling. In particular, Lee
etal. [7] and Mao et al. [21] propose to dispatch groups of two

WANG ET AL.: INTRA-CLUSTER COALESCING AND DISTRIBUTED-BLOCK SCHEDULING TO REDUCE GPU NOC PRESSURE

consecutive CTAs onto the same SM to improve L1 cache per-
formance. Unfortunately, this exploits locality between con-
secutive CTAs located in a row only. Chen et al. [22] propose
a software-hardware cooperative design to exploit spatial
locality among different CTAs located in different rows and
columns. Li et al. [23] propose software techniques to sched-
ule CTAs with potential reuse on the same SM to exploit
inter-CTA locality on real GPU hardware. None of this prior
work explores CTA scheduling to improve intra-cluster coa-
lescing opportunities.

Exploiting Inter-SM Locality. Tarjan and Skadron [24] propose
a central sharing tracker (ST) to exploit data sharing among
SMs. They consider a GPU architecture that lacks an on-chip
last-level cache (LLC). Through the ST, L1 misses are sent to
other SMs to obtain the data from another L1 cache (if available)
instead of accessing off-chip main memory. Li et al. [25]
prioritize memory requests to data that is shared across SMs.
None of prior work considers inter-CTA locality as a potential
solution for the GPU NoC bottleneck in clustered GPUs.

GPU NoC Optimization. Two recent approaches address the
GPU NoC bottleneck by exploiting inter-SM locality. In partic-
ular, Zhao et al. [26] propose an inter-SM locality aware LLC
design to transfer few-to-many NoC traffic into many-to-
many traffic to increase the effective network bandwidth utili-
zation. Kim et al. [14] exploit packet coalescing to reduce data
redundancy in GPUs. These two prior approaches focus on a
mesh NoC. Although the latter work also exploits packet coa-
lescing, it coalesces redundant replies on each MC. This only
alleviates the MC bottleneck, but the traffic caused by a multi-
cast operation to transfer the data back to the requesting SMs
is not addressed, which may lead to serialization delays in the
NoC routers. None of this prior work considers intra-cluster
locality to reduce GPU NoC pressure.

Bakhoda et al. [3] propose a checkerboard router to reduce
the NoC cost while providing multiple input ports for the
MCs to increase the injection rate. The bandwidth-efficient
NoC design by Jang et al. [27] leverages asymmetric virtual
channel (VC) partitions to assign more VCs to reply packets
which occupy a large portion of network traffic. Ziabari
et al. [5] propose asymmetric NoCs where the reply network
features a high network bandwidth. Zhao et al. [28] propose a
ring-like NoC to provide high bandwidth for servicing reply
packets in a cost-effective way. These previous proposals only
focused on the NoC topology, but could be combined with our
intra-cluster coalescing to further improve their performance.

Memory Access Coalescing. Coalescing techniques for GPUs
have been widely investigated, see for example [8], [9], [14],
[29]. Intra-warp coalescing is widely deployed in GPUs to
group aligned memory accesses of different threads in a
warp [8]. To coalesce memory accesses from different warps,
WarpPool [9] merges requests between warps within an SM
to increase the effective L1 cache bandwidth. This prior work
only targets memory access coalescing within an SM. None
notices nor exploits the potential of coalescing redundant
memory accesses from different SMs within a cluster.

10 CONCLUSION

As the number of SMs on next-generation GPUs continues to
increase, NoC congestion quickly becomes a key design chal-
lenge to scale performance. Clustered GPUs face a severe

1075

NoC bottleneck with increasing SM count. To mitigate net-
work congestion, we propose distributed-block CTA sched-
uling, intra-cluster coalescing (ICC) and the coalesced cache
(CO) to exploit inter-CTA locality observed in many GPU-
compute applications, coalescing L1 cache misses within and
across SMs in a cluster, respectively. Distributed-block sched-
uling is a two-level CTA scheduling policy that first evenly
distributes consecutive CTAs across clusters, and subse-
quently schedules pairs of consecutive CTAs per SM to maxi-
mize L1 cache locality and L1 MSHR coalescing opportunity.
ICC groups memory requests from different SMs in a cluster
to the same L2 cache line to reduce the overall number of
requests sent over the NoC. CC extends the opportunity from
coalescing cache lines by caching them at the cluster level for
future reference. By removing redundant NoC traffic, we
find that distributed-block scheduling, intra-cluster coalesc-
ing and the coalesced cache work synergistically to improve
both performance and energy consumption.

Using execution-driven GPU simulation, we find that dis-
tributed-block scheduling with ICC and CC improves GPU
performance by 15 percent on average (and up to 67 percent)
while at the same time reducing system energy by 6 percent
(up to 19 percent) and the energy-delay product by 19 percent
(up to 53 percent) compared to the state-of-the-art distributed
CTA scheduling. The overarching contribution of this paper
is the exploitation of inter-CTA locality, an inherent GPU-
compute workload characteristic, to tackle the emerging NoC
congestion bottleneck in clustered GPUs to improve overall
system performance and reduce system energy by coalescing
memory requests both within and across SMs in a cluster.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work is supported through the European
Research Council (ERC) Advanced Grant agreement No.
741097, Research Foundation Flanders (FWO) grants No.
G.0434.16N and G.0144.17N, the National Natural Science
Foundation of China through grants No. 61572508 and
61672526, NUDT Research Project No. ZK17-03-06. Lu Wang
is supported through a CSC scholarship and UGent-BOF co-
funding. This journal submission extends the conference
paper ‘Intra-Cluster Coalescing to Reduce GPU NoC Pres-
sure’ by the same authors published at the 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS). This manuscript makes three additional contribu-
tions over the conference paper: (i) proposal of distributed-
block scheduling, (ii) proposal of the coalesced cache, and
(iii) evaluation of energy efficiency.

REFERENCES

[1] NVIDIA GP100 Pascal Architecture. NVIDIA Corporation. (2016).
[Online]. Available: https://www.nvidia.com/object/pascal-
architecture-whitepaper.html

[2] NVIDIA Tesla V100 Volta Architecture. NVIDIA Corporation. (2018).
[Online]. Available: http://www.nvidia.com/object/volta-
architecture-whitepaper.html

[3] A.Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-effective on-
chip networks for manycore accelerators,” in Proc. 43rd Int. Symp.
Microarchitecture, Dec. 2010, pp. 421-432.

[4] H.Kim,]J.Kim, W.Seo, Y. Cho, and S. Ryu, “Providing cost-effective
on-chip network bandwidth in GPGPUs,” in Proc. Int. Conf. Comput.
Des., Sep. 2012, pp. 407-412.

https://www.nvidia.com/object/pascal-architecture-whitepaper.html
https://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html

1076

[5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

A. K. Ziabari, J. L. Abellan, Y. Ma, A. Joshi, and D. Kaeli,
“Asymmetric NoC Architectures for GPU Systems,” in Proc. Int.
Symp. Netw.-on-Chip, Sep. 2015, Art. no. 25.

A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A.Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU: Multi-Chip-Module
GPUs for continued performance scalability,” in Proc. Annu. Int.
Symp. Comput. Archit., Jun. 2017, pp. 320-332.

M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving GPGPU resource utilization through alternative
thread block scheduling,” in Proc. Int. Symp. High Perform. Comput.
Archit., Feb. 2014, pp. 260-271.

J. Hestness, S. W. Keckler, and D. A. Wood, “A comparative analysis
of microarchitecture effects on CPU and GPU memory system
behavior,” in Proc. Int. Symp. Workload Characterization, Oct. 2014,
pp- 150-160.

J. Kloosterman, J. Beaumont, M. Wollman, A. Sethia, R. Dreslinski,
T. Mudge, and S. Mahlke, “WarpPool: Sharing requests with
inter-warp coalescing for throughput processors,” in Proc. Int.
Symp. Microarchitecture, Dec. 2015, pp. 433—444.

O. Kayiran, A.Jog, M. T. Kandemir, and C. R. Das, “Neither more nor
less: Optimizing thread-level parallelism for GPGPUs,” in Proc. Int.
Conf. Parallel Architectures Compilation Techn., Sep. 2013, pp. 157-166.
A. Lopes, F. Pratas, L. Sousa, and A. Ilic, “Exploring GPU perfor-
mance, power and energy-efficiency bounds with cache-aware roof-
line modeling,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. and
Softw., Apr. 2017, pp. 259-268.

T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious
wavefront scheduling,” in Proc. Int. Symp. Microarchitecture, Dec. 2012,
pp. 72-83.

D. Kroft, “Lockup-free instruction fetch/prefetch cache organ-
ization,” in Proc. Annu. Symp. Comput. Archit., May 1981, pp. 81-87.
K. H. Kim, R. Boyapati,]. Huang, Y. Jin, K. H. Yum, and E. J. Kim,
“Packet coalescing exploiting data redundancy in GPGPU
architectures,” in Proc. Int. Conf. Supercomputing, Jun. 2017, Art. no. 6.
N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to model large caches,” HP Laboratories, Palo
Alto, CA, USA, Tech. Rep. HPL-2009-85, pp. 22-31, 2009.
A.Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in
Proc. Int. Symp. Perform. Anal. Syst. Softw., Apr. 2009, pp. 163-174.
J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, “GPUWattch: Enabling energy
optimizations in GPGPUs,” in Proc. Annu. Int. Symp. Comput.
Archit., 2013, pp. 487-498.

NVIDIA CUDA SDK Code Samples. NVIDIA Corporation. (2011).
[Online]. Available: https:/ /developer.nvidia.com/cuda-downloads
S. Che, M. Boyer, J. Meng, D. Tarjan, J]. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proc. Int. Symp. Workload Characterization, Oct. 2009, pp. 44-54.
S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to GPU codes,” in Proc.
Innovative Parallel Comput., May 2012, pp. 1-10.

M. Mao,]. Hu, Y. Chen, and H. Li, “VWS: A versatile warp scheduler
for exploring diverse cache localities of GPGPU applications,” in
Proc. Des. Autom. Conf., Jun. 2015, pp. 1-6.

L.]J. Chen, H. Y. Cheng, P. H. Wang, and C. L. Yang, “Improving GPGPU
performance via cache locality aware thread block scheduling,” IEEE
Comput. Archit. Lett., vol. 16, no. 2, pp. 127-131, Jul.-Dec. 2017.

A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal,
“Locality-aware CTA clustering for modern GPUs,” in Proc. Int.
Conf. Architectural Support for Program. Languages and Operating
Syst., Apr. 2017, pp. 297-311.

D. Tarjan and K. Skadron, “The sharing tracker: Using ideas from
cache coherence hardware to reduce off-chip memory traffic with
non-coherent caches,” in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage and Anal., Nov. 2010, pp. 1-10.

D. Li and T. M. Aamodt, “Inter-core locality aware memory sched-
uling,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 25-28, Jan. 2016.
X. Zhao, Y. Liu, A. Adileh, and L. Eeckhout, “LA-LLC: Inter-core
locality-aware last-level cache to exploit many-to-many traffic in
GPGPUs,” IEEE Comput. Archit. Lett., vol. 16, no. 1, pp. 4245, Jan. 2017.
H. Jang, J. Kim, P. Gratz, K. H. Yum, and E. J. Kim, “Bandwidth-
efficient on-chip interconnect designs for GPGPUs,” in Proc. Des.
Autom. Conf., Jun. 2015, pp. 1-6.

X. Zhao, S. Ma, C. Li, L. Eeckhout, and Z. Wang, “A heteroge-
neous low-cost and low-latency ring-chain network for GPGPUs,”
in Proc. Int. Conf. Comput. Des., Oct. 2016, pp. 472—479.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.7, JULY 2019

[29] B.Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support for
address translation on GPUs: Designing memory management
units for CPU/GPUs with unified address spaces,” in Proc. 19th
Int. Conf. Architectural Support Program. Languages Operating Syst.,
2014, pp. 743-758. [Online]. Available: http://doi.acm.org/
10.1145/2541940.2541942

Lu Wang received the MS degree in computer sci-
ence from the National University of Defense
Technology (NUDT), Changsha, China, in 2016.
She is working toward the PhD degree at Ghent
University, Belgium. Her research interests include
GPGPU architecture, Network-on-Chip (NoC), reli-
able system design and performance modeling.
She is a student member of the IEEE.

Xia Zhao received the MS degree in computer
science from the National University of Defense
Technology (NUDT), Changsha, China, in 2015.
He is working toward the PhD degree at Ghent
University, Belgium. His research interests
include GPGPU architecture in general, and
multi-program execution and Network-on-Chip
(NoC) design more in particular. He is a student
member of the IEEE.

David Kaeli received the PhD degree in electrical
engineering from Rutgers University. He is a dis-
tinguished professor of Electrical and Computer
Engineering, Northeastern University. He has pub-
lished more than 350 critically reviewed publica-
tions, 7 books, and holds 12 US patents. His
current research topics include hardware security,
graphics processors, virtualization, heterogeneous
computing, and multi-layer reliability. He serves as
an associate editor of the |[EEE Transactions on
Parallel and Distributed Systems, the ACM Trans-
actions on Architecture and Code Optimization, and the Journal of Parallel
and Distributed Computing. He is a fellow of the IEEE and a distinguished
scientist of the ACM.

Zhiying Wang received the PhD degree in electri-
cal engineering from the National University of
Defense Technology (NUDT), Changsha, China,
in 1988. He is a professor with the School of
Computer, NUDT. He has contributed more than
10 invited chapters to book volumes, published 240
papers in archival journals and refereed conference
proceedings, and delivered more than 30 keynotes.
His main research fields include computer archi-
tecture, computer security, VLSI design, reliable
architecture, multicore memory system, and asyn-
chronous circuit. He is a member of the IEEE.

Lieven Eeckhout received the PhD degree in
computer science and engineering from Ghent
University, in 2002. He is a full professor at Ghent
University, Belgium. His research interests include
the area of computer architecture, with a specific
interest in performance analysis, evaluation and
modeling. He is the current editor-in-chief of IEEE
Micro (2015-2018). He is the recipient of the 2017
Maurice Wilkes Award. His research is funded
by the European Research Council under the
European Communitys Horizon 2020 Programme/
ERC Advanced Grant agreement no. 741097, as well as Research
Foundation—Flanders (FWO) grants no. G.0434.16N and G.0144.17N.
He is a fellow of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

https://developer.nvidia.com/cuda-downloads
http://doi.acm.org/10.1145/2541940.2541942
http://doi.acm.org/10.1145/2541940.2541942

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

