
CD-Xbar: A Converge-Diverge Crossbar
Network for High-Performance GPUs

Xia Zhao , Sheng Ma , Zhiying Wang,Member, IEEE,

Natalie Enright Jerger , Senior Member, IEEE, and Lieven Eeckhout , Fellow, IEEE

Abstract—Modern GPUs feature an increasing number of streaming multiprocessors (SMs) to boost system throughput. How to

construct an efficient and scalable network-on-chip (NoC) for future high-performance GPUs is particularly critical. Although a mesh

network is a widely used NoC topology in manycore CPUs for scalability and simplicity reasons, it is ill-suited to GPUs because of the

many-to-few-to-many traffic pattern observed in GPU-compute workloads. Although a crossbar NoC is a natural fit, it does not scale to

large SM counts while operating at high frequency. In this paper, we propose the converge-diverge crossbar (CD-Xbar) network with

round-robin routing and topology-aware concurrent thread array (CTA) scheduling. CD-Xbar consists of two types of crossbars, a local

crossbar and a global crossbar. A local crossbar converges input ports from the SMs into so-called converged ports; the global crossbar

diverges these converged ports to the last-level cache (LLC) slices and memory controllers. CD-Xbar provides routing path diversity

through the converged ports. Round-robin routing and topology-aware CTA scheduling balance network traffic among the converged

ports within a local crossbar and across crossbars, respectively. Compared to a mesh with the same bisection bandwidth, CD-Xbar

reduces NoC active silicon area and power consumption by 52.5 and 48.5 percent, respectively, while at the same time improving

performance by 13.9 percent on average. CD-Xbar performs within 2.9 percent of an idealized fully-connected crossbar.

We further demonstrate CD-Xbar’s scalability, flexibility and improved performance per Watt (by 17.1 percent) over state-of-the-art

GPU NoCs which are highly customized and non-scalable.

Index Terms—Graphics processing unit (GPU), network-on-chip (NoC), crossbar

Ç

1 INTRODUCTION

GRAPHICS Processing Units (GPUs) are widely deployed
in high-performance computing systems and data cen-

ters for massive data processing. A GPU-compute applica-
tion typically consists of a number of kernels that are
composed of (up to hundreds of) thousands of threads.
These threads are organized into cooperative thread arrays
(CTAs) and are scheduled on streaming multiprocessors
(SMs). To continuously boost raw computational power in
modern high-performance GPUs, the number of SMs keeps
increasing. For example, while the Nvidia Fermi GPU inte-
grated 16 SMs, the latest Nvidia Pascal [1] and Volta
GPUs [2] feature 60 and 80 SMs, respectively.

The increasing number of SMs puts critical pressure on
the Network-on-Chip (NoC) that connects the SMs to the
last-level cache (LLC) slices and memory controllers (MCs).

How to design a scalable area- and power-efficient GPU
NoC is a major challenge. As reported by previous work, the
NoC in manycore processors incurs substantial chip area
and power consumption [3], [4], [5]; for example, network
power accounts for 19 percent of total chip power for a recent
manycore processor [6].

Scalable NoC topologies have been proposed, including
mesh, Clos and butterfly. These network topologies were
conceived for CPU systems in which the different CPUs
need to communicate with each other to support cache
coherence. However, these networks are poorly suited to
GPUs because of the many-to-few-to-many traffic pattern in
which communication only exists between SMs on the one
side and LLC slices (and memory controllers) on the other
side [7]. There is no communication between SMs, i.e., coher-
ence at the SM-side L1 cache is achieved through software
issuing flush operations to the shared last-level cache. Scal-
able CPU topologies lead to underutilized links and are thus
both power- and area-inefficient when deployed in a GPU. A
crossbar NoC on the other hand is a natural fit by only pro-
viding links to connect the SMs to the LLC slices and vice
versa; there are no links to connect the SMs among them-
selves. However, scaling a crossbar NoC to large SM counts
at high clock frequency is problematic because of long propa-
gation delays [8], [9], [10], [11].

In this paper, we propose the Converge-Diverge Crossbar
(CD-Xbar), a scalable, area- and power-efficient GPU NoC.
CD-Xbar consists of two types of switch nodes, a local cross-
bar and a global crossbar. Instead of directly connecting the
SMs to the LLC slices, CD-Xbar uses local crossbars to connect

� X. Zhao and L. Eeckhout are with the Department of Electronics and
Information Systems, Ghent University, Gent 9000, Belgium.
E-mail: {xia.zhao, lieven.eeckhout}@ugent.be.

� N. Enright Jerger is with the Edward S. Rogers Sr. Department of Electrical
and Computer Engineering, University of Toronto, Toronto, ON M5S,
Canada. E-mail: enright@ece.utoronto.ca.

� S. Ma and Z. Wang are with the School of Computer, National University
of Defense Technology, Changsha 410073, China.
E-mail: {masheng, zywang}@nudt.edu.cn.

Manuscript received 5 Sept. 2018; revised 28 Jan. 2019; accepted 13 Mar.
2019. Date of publication 24 Mar. 2019; date of current version 15 Aug. 2019.
(Corresponding author: Xia Zhao and Sheng Ma.)
Recommended for acceptance by D. Gizopoulos.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2019.2906869

IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 9, SEPEMBER 2019 1283

0018-9340� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0001-6479-9200
https://orcid.org/0000-0003-1710-4060
https://orcid.org/0000-0003-1710-4060
https://orcid.org/0000-0003-1710-4060
https://orcid.org/0000-0003-1710-4060
https://orcid.org/0000-0003-1710-4060
https://orcid.org/0000-0002-0526-2080
https://orcid.org/0000-0002-0526-2080
https://orcid.org/0000-0002-0526-2080
https://orcid.org/0000-0002-0526-2080
https://orcid.org/0000-0002-0526-2080
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
mailto:
mailto:
mailto:

the SMs to a set of converged ports. These converged ports are
then diverged to the LLC slices through a global crossbar. For
example, instead of having one monolithic fully-connected
80� 16 crossbar to connect 80 SMs to 16 LLC slices, CD-Xbar
features 8 local 10� 3 crossbars that each connect 10 SMs to 3
converged ports and a global 24� 16 crossbar to connect the
24 converged ports (8 local crossbars� 3 converged ports per
local crossbar) to the 16 LLC slices. By doing so, CD-Xbar
enables high-frequency operation while preserving area- and
power-efficiency.

The converged ports pose a routing challenge as different
input nodes have several converged ports to choose from.
Existing routing policies such as source-based routing and
adaptive routing are ineffective because they make the rout-
ing decision locally without considering the requests from
the different nodes. We instead propose round-robin routing
which assigns converged ports to incoming packets in a
round-robin way across the different nodes to reduce flit
contention. A key benefit of the round-robin routing policy is
that it provides a simplemechanism to guarantee path diver-
sity through the converged ports.

CD-Xbar achieves similar performance as a fully-connected
crossbar when network traffic is balanced among the different
local crossbars, which is typically the case as CTAs exhibit
similar execution characteristics [12]. However, unbalanced
traffic may exist in two scenarios: (i) a small GPU kernel
may not occupy all SMs, and (ii) a spatially multitasking GPU
may co-execute a memory-intensive and a compute-intensive
kernel on different sets of SMs. In both scenarios, some local
crossbars would receive most of the network traffic while
other local crossbars would remain idle, which could severely
hurt overall system performance. To solve the unbalanced
NoC problem, we propose topology-aware CTA scheduling to
balance network traffic among the different local crossbars.

We make the following contributions in this paper:

� We show that because of a GPU’s unique traffic pat-
tern, a crossbar topology is inherently more area- and
power-efficient than other NoCs including mesh,
Clos and butterfly, however it faces scalability chal-
lenges with increasing SM count.

� We propose CD-Xbar, a converge-diverge crossbar
that delivers scalable performance at low chip area
and power cost. CD-Xbar provides routing path
diversity through the converged ports.

� We devise round-robin routing, a critical component
to mitigate contention in converged ports, and topol-
ogy-aware CTA scheduling to balance network traf-
fic among the local crossbars.

� Wereport that CD-Xbar reducesNoCactive silicon area
by 52.5 percent andpower consumption by 48.5 percent
while improving performance by 13.9 percent com-
pared to a mesh network. CD-Xbar performs within
2.9 percent of an idealized fully-connected crossbar.
Finally, CD-Xbar improves performance per Watt by
17.1 percent on average over state-of-the-art GPU
NoCs while being more flexible and better scalable.

2 MOTIVATION

How to construct a high-performance cost-effective GPU
NoC with an increasing number of SMs is a major challenge.
In this section, we evaluate the area- and power-efficiency as
well as the maximum operating frequency for four different
NoC topologies that are well explored in the CPU domain,
including mesh, Clos, butterfly and crossbar, plus one NoC
topology that is optimized for the GPU, namely S-mesh. This
will allow us to more clearly describe the goal of this work.

2.1 NoC Topologies

We consider the following five NoC topologies.
Crossbar. A crossbar (Fig. 1a) connectsm inputs (the SMs)

to n outputs (the LLC slices) via anm� n crosspoint switch.
Mesh. An n� n mesh network (Fig. 1b) consists of n2

routers with each router consisting of five input ports (i.e.,
four neighbors and the node itself). Each router consists of a
5� 5 crossbar.

Clos. The Clos network (Fig. 1c) is a multistage network.
Here, we assume a 3-stage Clos network characterized by
the triple ðm;n; rÞ: m denotes the number of middle-stage
switches; n is the number of input and output ports of the
first and last stage switches, respectively; r is the number of
the switches in the first and last stage. An ðm;n; rÞ Clos net-
work can support r� n SMs andmemory nodes.

Butterfly. The butterfly network (Fig. 1d) is another multi-
stage interconnection network. A k-ary n-fly is implemented
by using n stages of switches. Each stage consists of kn�1

switches and each switch has a radix of kwhich means it has
k input and output ports. The k-ary n-fly network can sup-
port kn SMs and memory nodes. Here, we assume a 2-stage
butterfly.

S-Mesh. S-Mesh is a mesh NoC optimized for GPUs [13].
Due to a GPU’s unique traffic pattern, i.e., there is no com-
munication between SMs, some links and buffers in a tradi-
tional mesh are not used. As a result, the 5� 5 crossbar
architecture of a router can be simplified. S-mesh removes
these unused resources to reduce hardware cost.

2.2 Area Analysis

To understand how NoC topology affects chip area, one has
to consider its constituting components. Links and routers
are the two important components of a NoC. Links connect
the input and output ports of neighboring routers. For each
router, the input buffers and the crossbar switch are the major
components consuming chip area (and power). The overhead
of these components is affected by the node degree (the num-
ber of input and output ports of the router). As the number of
ports increases, the associated buffers, allocator logic and
crossbar area also need to increase.We assume input-buffered
routers in this work.

Fig. 1. NoC topologies: (a) crossbar, (b) mesh, (c) Clos and (d) butterfly.

1284 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 9, SEPEMBER 2019

We compare the specific NoC configurations shown in
Table 1. We assume a channel width of 32 bytes across all
configurations, and every input port has 4 virtual channels
(VCs) and 4 flits per VC. We further assume 8 memory con-
trollers and 2 LLC slices per memory controller, for a total of
16 LLC slices. We use DSENT [14] to compute NoC area,
power consumption (assuming a 0.1 injection rate) and clock
frequency. (See Section 4 for further details about the experi-
mental setup.) Table 2 provides a detailed component break-
down for the five topologies.#Routers is the total number of
routers in the request and reply networks. #Buffers is the
total number of VC buffers located in the input ports across
all routers (in both networks). #Crossbars is the number of
crossbar switches and their configurations. #Links is the
total number of links to connect the routers. To provide a fair
comparison between the different topologies, we take the
input/output links into consideration.

We assume two physically separate networks, a request
network and a reply network, to avoid protocol deadlock.
This is sufficient as GPUs exploit software-based coherence
and network packets only constitute of read/write requests
and replies. Note that we assume two physically separate
networks for the mesh topology as well, as done in prior
work [13], [15], [16], [17]. This allows for separate and asym-
metric optimizations for the different networks based on
their respective traffic characteristics and load, see the S-
Mesh proposal [13] in particular. The alternative approach of
exploiting two virtual networks on one physical network can
reduce the hardware cost of a mesh network considerably.
However, it loses the opportunity for asymmetric optimiza-
tion opportunities. Moreover, even in the ideal case where
two virtual networks would yield similar performance
as two physical networks, performance would still be worse
than CD-Xbar, as the evaluation section in this paper shows
that CD-Xbar significantly outperforms a mesh topology
with two physical networks.We further assume one network
port per SM and do not consider concentration [18], which is
a one-time solution that can be exploited by all networks that
we evaluate here.

Fig. 2 breaks down the area cost for the five topologies for
a GPU architecture with 80 SMs and 16 LLC slices. The
breakdown includes network area due to buffers, crossbars,
allocators and links. Interestingly, the crossbar is muchmore
area-efficient than the (S-)mesh, Clos and butterfly networks.
In particular, the mesh topology requires 4,000 input buffers
and 200 5 � 5 crossbars (Table 2). This leads to more than 4
times the active silicon area cost of the crossbar topology.
The Clos, butterfly and S-mesh topologies exhibit similar
area inefficiencies. The fundamental reason is that a fully-
connected crossbar only provides connections from the SMs
to the LLC slices and vice versa, i.e., there are no connections
in-between SMs nor in-between LLC slices. In contrast, other
topologies provide connections between SMs, by construc-
tion. This leads to a large number of under-utilized routers,
which induces unnecessary chip area overhead.

2.3 Scalability Analysis

Although the crossbar is more area-efficient, the other topol-
ogies are known to be better scalable with node count. Fig. 3
quantifies chip area, power consumption and operating fre-
quency for the five topologies as we scale the number of
SMs. (We keep the number of LLC slices constant but we
scale memory bandwidth and LLC capacity proportionally
with SM count.) The key observation is that while the cross-
bar is substantiallymore area- and power-efficient across SM
count, operating it a high frequency becomes problematic as
we scale the number of SMs.

As port count increases, a crossbar cannot operate at high
frequency. A typical matrix-style crossbar consists of a col-
lection of switches that route the data, plus an arbiter to con-
figure the crossbar. The physical size of the crossbar grows
quadratically with port count. This not only increases propa-
gation delay, it also complicates the arbiter logic [8], [9], [11].
Although designs such as swizzle-switch [11] distribute the
arbitration logic across the crossbar crosspoints—swizzle-
switch was shown to operate at high frequency with 64 ports
and a 16-byte channel width—the propagation delay prob-
lem caused by the crossbar size still persists. For GPUs that
require high bandwidth, the channel width is typically
higher and GPUs are expected to grow to hundreds of SMs
in the next few years [19]. These considerations all preclude
a fully-connected crossbar as a scalable GPUNoC.

2.4 Goal

The mesh, Clos and butterfly topologies offer good scalabil-
ity, however, they do not fit a GPU’s unique traffic pattern

TABLE 1
NoC Configurations

Topology 20 SMs 80 SMs 120 SMs 180 SMs

Mesh 6�6 10�10 12�12 14�14
Butterfly (6-ary, 2-fly) (10, 2) (12, 2) (14, 2)
Clos (4, 6, 6) (8, 10, 10) (8, 12, 12) (8, 14, 14)
Crossbar 20�16 80�16 120�16 180�16
S-Mesh 6�6 10�10 12�12 14�14

TABLE 2
NoC Component Breakdown in Terms of the Number
of Routers, Buffers, Crossbar Switches and Links

Topology #Routers #Buffers #Crossbars #Links

Crossbar 1�2 384 2 (80�16) 192 (L)
Mesh 100�2 4,000 200 (5�5) 912 (S)
Clos 28�2 2,080 40 (10�8), 16 (10�10) 512 (L)
Butterfly 20�2 1,600 40 (10�10) 392 (L)
S-Mesh 100�2 3,000 200 (4�4) 732 (S)

Fig. 2. NoC area breakdown for the five network topologies assuming 80
SMs and 16 LLCs. A crossbar topology is inherently more area-efficient.

ZHAO ETAL.: CD-XBAR: A CONVERGE-DIVERGE CROSSBAR NETWORK FOR HIGH-PERFORMANCE GPUS 1285

and are therefore power- and area-inefficient. For GPUs, the
crossbar is the most cost-efficient NoC by only supporting
communication between SMs and LLC slices, and not
among SMs nor LLC slices. Unfortunately, a crossbar faces
a major scalability problem with increasing SM count.

One possible solution is to tailormulti-stageNoCs, i.e., but-
terfly and Clos, to GPUs by only providing communication
paths between SMs and LLC slices. The idea of removing
unusedpaths is similar to the previously proposedpartial cas-
caded crossbar network [20]. Unfortunately, such solutions
pose significant problems. In particular, a tailored 2-stage but-
terfly as well as a partial cascaded crossbar do not provide
path diversity, which severely degrades performance when
network traffic is imbalanced. Although a tailored Clos net-
work can provide path diversity, it leads to a high hardware
cost as it relies on middle-stage switches to provide different
routing paths. Moreover, it also requires a complex adaptive
routing policy to choose the least congested path.

Our goal is to devise a novel GPU NoC topology that
achieves the best of both worlds. We want the GPU NoC
topology to provide path diversitywithout relying onmiddle-
stage routers. Moreover, instead of making the routing
adaptive, wewant a simple routing policy that can still exploit
path diversity. In the next section, we show how we achieve
this goal by proposing CD-Xbar with converged ports to pro-
vide path diversity. Converged ports bridge the gap between
the large number of SMs and the relatively small number of
LLC slices.

3 CD-XBAR

In this section, we first discuss the inherent limitation of a
fully connected GPU crossbar, which provides an opportu-
nity that we exploit in this work. We then introduce the CD-
Xbar NoC, after which we propose a solution for the routing
and load balancing problem.

3.1 Opportunity

In a conventional crossbar GPU NoC, the request network
connects all the SMs to all the LLC slices through a fully-
connected crossbar; the reply network does the inverse: it con-
nects all the LLC slices to all the SMs. The fully-connected
crossbar here only provides a communication path between
SMs and LLC slices. Due to the huge gap between the SM
count and LLC slice count, a full crossbar exhibits the
inherent limitation that a significant fraction of the network is
underutilized—only a limited number of links are effectively
used in each cycle. For example, in a GPU architecturewith 16
LLC slices and 80 SMs, at most 16 links are used at any given
point in time. In reality, the number of active links, or the
number of flits transferred per cycle is even smaller (Fig. 4).
For the request network, we observe an average of only 2.8
flits per cycle. For the reply network, we observe an average
of 9.7 flits per cycle. (The number of flits transferred over the
reply network is higher than the request network because a
reply typically consists of a long data block transmitted as
several flits.) The key take-awaymessage is thatmany links in
a crossbar NoC are underutilized. This provides an opportu-
nity to devise a converge-diverge NoC topology that achieves
much better hardware utilization while achieving similar
performance as a fully-connected crossbar.

3.2 CD-Xbar NoC

The key idea of the Converge-Diverge Crossbar is to first
converge and then diverge NoC traffic to maximize band-
width efficiency. CD-Xbar consists of several local crossbars
and a global crossbar (Fig. 5). SMs are connected to the local
crossbars whereas LLC slices are connected to the global
crossbar. The key feature of the converge-diverge topology

Fig. 3. Comparing GPU NoC topologies as a function of the number of SMs. A crossbar is fundamentally more area- and power-efficient than a mesh,
Clos or butterfly network, however, maintaining high clock frequency at high SM counts is impossible.

Fig. 4. Average number of flits transferred per cycle in a full crossbar. The
number of utilized links is small.

Fig. 5. CD-Xbar architecture. In the request network, CD-Xbar con-
verges requests from the SMs through a local crossbar to a number of
converged ports which are then diverged to the LLCs and memory con-
trollers through the global crossbar. The inverse happens in the reply
network.

1286 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 9, SEPEMBER 2019

is the use of converged ports as intermediate ports. The total
number of converged ports is a balance between the number
of SMs and LLC slices: there are fewer converged ports than
SMs to improve hardware utilization; and there are more
converged ports than LLC slices to avoid congestion.

CD-Xbar clusters SMs into several groups and all SMs in
a single group use a local crossbar to connect to the global
crossbar. The local and global crossbars are input-queued
crossbar switches. In the request network, a converged port
is the output port of a local crossbar and the input port to
the global crossbar. We use uni-directional links to connect
the converged ports of the local and global crossbars. The
link direction is from SM to LLC in the request network. In
the reply network, a converged port connects an output
port of the global crossbar to an input port of a local cross-
bar; the link direction is from LLC to SM.

CD-Xbar applies wormhole switching where packets are
subdivided into a number of flits of fixed length equal to the
channel width. Credit-based flow control guarantees that
there is always available buffer space in the downstream
crossbar before sending a packet. Note that each flit needs to
travel exactly two hops from source to destination. This
increases the transfer latency per packet compared to an ide-
alized full crossbar butwewill show that this has a negligible
impact on overall performance. GPU-compute workloads
consist of thousands of concurrent threads, hence the GPU
can easily switch to a ready warp when the current one is
stalled. Finally, note that CD-Xbar has the same bisection
bandwidth as a fully-connected crossbar.

There are different ways to scale CD-Xbar to larger SM
counts. In this paper, we scale CD-Xbar by increasing the
number of SMs per local crossbar while keeping the number
of local crossbars and the number of converged ports
per local crossbar unchanged. Alternative scaling solutions
would be to increase the number of local crossbars (while
keeping the number of converged ports per local crossbar
constant) and/or increase the number of converged ports
per local crossbar as each local crossbar groups more SMs.
Either alternative scaling solution would increase the total
number of converged ports which may lead to scaling issues
for the global crossbar. The former scaling approach—
increasing the number of SMs per local crossbar while keep-
ing the number of local crossbars and the number of con-
verged ports per local crossbar constant—thus is the better
option. As shown in the evaluation section, CD-Xbar, with
this scaling solution, scales to GPUswith up to 180 SMs.

We want to emphasize that CD-Xbar exhibits a unique
feature compared to multi-stage NoCs such as the butterfly
and Clos networks. In particular, butterfly does not offer
path diversity whereas Clos relies on the middle-stage
switch to provide different paths between each pair of nodes.
Unlike these two designs, CD-Xbar does not have middle-
stage switches, yet it provides path diversity through the
converged ports. Moreover, the converged ports also bridge
the gap between the SMs and the LLC slices by first shrinking
many SM ports to a few converged ports through a local
crossbar which are then diverged through the global cross-
bar to the LLC slices.

It is also worth noting that the converged ports not only
provide path diversity, they are all productive ports. This is
unlike a mesh network where some router ports are not

productive. We will exploit this feature when describing
our newly proposed round-robin routing scheme.

CD-Xbar does pose a number of new challenges in terms
of routing and CTA scheduling, which we discuss in the
next section.

3.3 CD-Xbar Routing Problem

How to route packets is important for load balancing and
for minimizing network latency. In particular, if different
memory nodes want to send packets to different SMs con-
nected to the same local crossbar, how we route packets to
the converged ports can have a significant impact on perfor-
mance. Possible routing algorithms include oblivious rout-
ing and adaptive routing. However, both face challenges.

Oblivious routingmakes the routing decision based on the
source or destination node [21], [22]. Each node makes its
routing decisions locally and independently from other
nodes, which makes it a simple and fast routing policy. One
possible implementation of oblivious routing in CD-Xbar is
source-based routing, which deterministically selects the
converged port based on the source node ID, as shown in
the formula below:

PortID ¼ SourceID % # Ports:

Although oblivious routing is easy to implement, it faces the
obvious shortcoming that when a node makes its routing
decision, it does not consider whether other nodes also want
to send packets to the same port or not, which may lead to
congestion. In addition, oblivious routing does not consider
the status of the network. A network port that is already
over-utilized may still be chosen even though other less-
congested portsmight be a better option.

Adaptive routing [21], [23] takes network contention into
account by choosing the least contended port, e.g., the port
with the most free VC buffer entries. A problem arises if dif-
ferent nodes want to send packets to the same group of ports
in the same cycle as adaptive routing would choose the same
least-contended port for all requests which leads to severe
contention on that particular port. To solve this problem, pre-
vious work [23] proposed a randomized version of adaptive
routing which, for each input port, first randomly chooses
several outputs and then adaptively chooses the one with
the least congestion. When evaluating randomized adaptive
routing in CD-Xbar, we randomly select two out of the three
converged ports, and then send the packet to the least con-
gested port out of these two ports. Randomization reduces
congestion to some extent by spreading requests across the
different ports, although there is still a significant probability
that the same congested port is selected for two input ports.
Round-robin routing reduces congestion beyond random-
ized adaptive routing by assigning network ports in a
round-robin fashion, as we describe in the next section.

3.4 Round-Robin Routing

To avoid converged port contention, we propose round-robin
(RR) routingwhich strives at routing packets to different con-
verged ports. Round-robin routing considers all packets that
need to be sent and routes packets so as to minimize conten-
tion on the converged ports. Note that sending a packet to
any of the converged ports brings the packet closer to its

ZHAO ETAL.: CD-XBAR: A CONVERGE-DIVERGE CROSSBAR NETWORK FOR HIGH-PERFORMANCE GPUS 1287

destination—as mentioned before, all converged ports are
productive ports. For each crossbar, we consider a round-
robin unit that calculates the routing path for all the inputs
that send packets to the converged ports. Fig. 6 provides an
example to illustrate how the round-robin routing unit
works along with its microarchitecture. In Fig. 6a, there are
five inputs sending packets to three converged ports.
Round-robin routing first chooses three out of the five pack-
ets in a first-come, first-served (FCFS) way, and then assigns
them to the three converged ports in a round-robin way.
Fig. 6b shows the microarchitecture of the round-robin unit
which consists of several arbiters, where arbiter count equals
the number of converged ports. Each arbiter can be imple-
mented as a low-cost/high-frequency matrix arbiter and the
number of arbiters is small. The round-robin routing unit
incurs negligible hardware cost and can operate at high fre-
quency. In fact, the round-robin policy can be integrated
with the switch allocator, which makes our design low-cost
by integrating multiple functions within a single unit. We
provide a round-robin unit in the local crossbars in the
request network, and we provide a round-robin unit in the
global crossbar in the reply network.

3.5 Topology-Aware CTA Scheduling

An implicit assumption underlying the CD-Xbar proposal is
that network traffic is balanced among the different local
crossbars. This is typically the case as CTAs of a kernel exhibit
similar execution characteristics [12]. Conventional round-
robin CTA scheduling [24], [25] first distributes CTAs across
all SMs in a round-robin way, and once all SMs have one
CTA assigned, it repeats the assignment process until an SM
runs out of hardware resources to accept more CTAs. When
more than one kernel is scheduled on a multitasking GPU,
the SMs are evenly partitioned among the co-executing
kernels.

Round-robin CTA scheduling may lead to imbalanced
execution in two specific scenarios. First, a small kernel, due
to algorithmic limitations or due to a small input data
set [26], [27], [28], may occupy only a subset of the SMs and
may lead to imbalance across the SMs, i.e., some SMs are
assignedmore CTAs than others. Second, when co-executing
multiple kernels through spatial multitasking, some local
crossbars may be over-utilized while others are under-
utilized. Consider for example the case where a memory-
intensive kernel is assigned to one half of the SMs while a
compute-intensive kernel is assigned to the other half. The
former would suffer from heavy contention while the other
is under-utilized.

We propose topology-aware CTA scheduling to balance
network traffic across the different local crossbars. For a sin-
gle workload, topology-aware CTA scheduling first distrib-
utes CTAs across local crossbars and then across SMs within
a crossbar. Once all local crossbars are assigned one CTA,
the next batch of CTAs gets assigned to the second SM in
each local crossbar, etc., until all SMs are assigned one CTA.
This process repeats until the SMs run out of resources to
accept more CTAs, or the workload runs out of CTAs. This is
illustrated in Fig. 7a.

For a multitasking GPU, topology-aware CTA scheduling
first assigns CTAs of the first kernel to the first SM in each
local crossbar, and then switches to the second kernel and
assigns CTAs to the second SM in each local crossbar. This
process continues until all SMs across all local crossbars are
occupied, or until one kernel has no more CTAs to assign. In
the latter case, if the other kernel still has CTAs to schedule,
the remaining CTAs are assigned as in the single-workload
case which distributes CTAs across local crossbars and then
across SMs within a local crossbar. This is illustrated in
Fig. 7b.

In summary, topology-aware CTA scheduling aims at
distributing network traffic across all crossbars and SMs,
irrespective of the characteristics of the particular workload.

3.6 CD-Xbar Layout

We rely on a state-of-the-art and widely used architectural
NoC analysis tool, namely DSENT [14], to evaluate the effec-
tiveness and feasibility of the CD-Xbar architecture. We
motivate and complement DSENT results with a preliminary
chip layout, as well as a discussion of DSENT’s validity
based on previously published hardware validation studies
of high-radix NoC designs. Fig. 8 provides a preliminary
chip layout of CD-Xbar while considering the placement of
SMs and LLC slices based on a die photo of the recent Nvidia
Pascal GPU [29]. The local crossbars (LC) are distributed
across the chip and are located near a respective cluster of

Fig. 6. Round-robin routing. Round-robin routing minimizes contention
on the converged ports.

Fig. 7. Topology-aware CTA scheduling. Balancing network traffic in sin-
gle- and multi-workload scenarios.

1288 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 9, SEPEMBER 2019

SMs. The global crossbar (GC) is located in the center of the
GPU die and is connected to the local crossbars on the one
hand and the LLC slices on the other hand. This layout sug-
gests that wire congestion can be avoided by spreading out
the local crossbars across the chip while locating the global
crossbar at the center. This figure also illustrates that assum-
ing the long links in the high-radix topologies to be half the
die size, as wewill describe in Section 4, is a reasonable (even
conservative) assumption for our design; in fact, many links
are shorter than half the die.

To further increase our confidence in the results obtained
using DSENT, we now compare DSENT’s timing predictions
against real hardware implementations of high-radix routers.
Passas et al. [9], [10] propose a 128-radix crossbarwith a 32-bit
width that operates at 750 Mhz in a 90 nm technology. Relat-
ing this design against our results obtained using DSENT is
non-trivial, however, we can make some first-order approxi-
mations as follows. A crossbar’s critical path is determined by
the propagation delay and allocator delay [11]. For large
crossbars that are highly optimized, see for example [9], [10],
[11], it is reasonable to assume that propagation delay occu-
pies a large portion of the critical path. For wires with repeat-
ers, propagation delay scales approximately linearly with
wire length. As a result, propagation delay scales with the
square root of crossbar size. Meanwhile, crossbar size scales
exponentially with technology node [30], radix and channel
width [7]. Hence, as a first-order approximation, we assume
that timing scales with the ratio of technology nodes, channel
width and radix. For the Passas et al. design, this means
that—by shrinking the radix to 80, increasing the channel
width to 32 byte and considering a 22 nm technology node—
the operating frequency of an 80-radix full crossbar is approx-
imated to be 613 MHz (¼ 750 MHz� 128

80 � 32 bits
32 bytes � 90 nm

22 nm).

This is similar to the DSENT results as reported in Fig. 3c for
the full crossbarwith 80 SMs.

Swizzle switch [11] is an another highly-optimized high-
radix crossbar design to scale to high radices. Swizzle switch
with a radix of 64 and 16-byte channel width was shown to
operate at 1.5 GHz in a 32 nm technology. Assuming the
above first-order approximation, we estimate an 80-radix
full crossbarwith a 32-byte channelwidth in a 22 nm technol-
ogy to operate at a frequency of 872.7 MHz, which is some-
what higher than DSENT’s predictions for an 80-radix full
crossbar with a 32-byte channel width in a 22 nm technology.
This discrepancy can be explained by the fact that swizzle
switch is specifically designed and optimized to operate at
high frequencies.

4 EXPERIMENTAL SETUP

Simulated System.We use GPGPU-sim v3.2.2 [35] to evaluate
the proposed CD-Xbar NoC architecture. Table 3 lists the
configuration for our baseline GPU architecture. We con-
sider 4-stage pipeline routers for all the NoCs evaluated in
the paper. We use DSENT v0.91 [14] to evaluate the area and
power cost for the different NoC designs, assuming a 22 nm
technology node. For power, we collect activity counters
through timing simulation using GPGPU-simwhichwe then
use to estimate power using DSENT. For area, we consider
active silicon area versus global wire area. For the links,
repeater area is included in active silicon area whereas the
wires are attributed to the global wire area as they can be
routed in the higher metal layers. In the evaluation, we
assume that short links measure 3:3 mm (SM size is esti-
mated to be 10:9 mm2 from the Pascal die size [1]); the long
links in the high-radix topologies are assumed to be 12:3 mm
long (half the die size).1In CD-Xbar, unless mentioned other-
wise, we assume 8 local crossbars with 3 converged ports
each; a local crossbar connects to 10 SMs. A sensitivity analy-
sis regarding CD-Xbar’s configuration is provided in the
evaluation. We assume topology-aware CTA scheduling
throughout the evaluation unlessmentioned otherwise.

GPU NoCs. We compare CD-Xbar against three state-of-
the-art GPUNoC proposals, namely S-Mesh [13], cfNoC [16]
and HRCnet [17]. All three topologies exploit the notion
that, in a GPU, communication only exists between SMs
and LLC slices. S-Mesh removes unused links and input
buffers in a traditional mesh. cfNoC and HRCnet focus on
the request and reply network, respectively. cfNoC pro-
vides exclusive subnets of SMs to eliminate packet conflicts
through a token-based mechanism in the many-to-few
request network. HRCnet proposes a ring-like topology to
eliminate conflicts in the few-to-many reply network; a high
channel width is assumed in the ring-like reply network to
improve performance. Conflict elimination enables a simpli-
fied router design which reduces hardware cost. It is impor-
tant to note that cfNoC and HRCnet require special
(physical) placement of memory nodes in the network.
Because cfNoC optimizes the request network and HRCnet
optimizes the reply network, these two NoC optimizations
are incompatible. As we will observe in the evaluation,

Fig. 8. CD-Xbar preliminary chip layout. Local crossbars (LCs) connect
to neighboring SMs while the global crossbar (GC) connects the local
crossbars with the LLC slices.

TABLE 3
Baseline GPU Architecture

Parameter Value

SM 80 SMs, 1400MHz, 1536 threads/SM,
32768 registers/SM, 2 GTO schedulers/SM,
48KB shared memory/SM, SIMD width 32

L1 data cache/SM 16KB, 4-way, LRU, 128B line
2 L2 slices/MC (8 MCs total) 128KB, 8-way, LRU, 128B line
Interconnection network Crossbar, 32B channel width

4-stage router, VC/switch allocator – Islip
4 VCs per port – 4 flits/VC

DRAMmodel and bandwidth FR-FCFS, 16 banks/MC, 700.0GB/s
GDDR5 timing tCL=12, tRP=12, tRC=40, tRAS=28,

tRCD=12, tRRD=6, tCCD=2, tWR=12

1. The length for a long link is a conservative estimate which can be
reduced through optimized floorplanning [36], [37], [38].

ZHAO ETAL.: CD-XBAR: A CONVERGE-DIVERGE CROSSBAR NETWORK FOR HIGH-PERFORMANCE GPUS 1289

cfNoC and HRCnet are area-efficient; S-Mesh, although it
significantly reduces chip area compared to a traditional
mesh, still incurs a significant hardware cost. A major issue
with the cfNoC and HRCnet proposals though is that they
impose very strict requirements on the number of SMs and
LLC slices, and their placement in the network, which
severely limits their flexibility.

Workloads. We consider a broad set of CUDA GPU-
compute benchmarks from a range of application domains.
These benchmarks are selected from Rodinia [31], Par-
boil [34], CUDA SDK [28], GPGPU-sim [35] and other two
sources [32], [33] (Table 4). We divide these applications into
two categories depending on their NoC intensity. In particu-
lar, we classify an application as a high-NoC demand work-
load if performance degrades by more than 5 percent when
halving the NoC bandwidth. In the evaluation section, we
consider the high-NoC bandwidth benchmarks unless men-
tioned otherwise. When evaluating different CTA schedul-
ing policies, we pair high-NoC demand applications with
low-NoC demand applications to construct heterogeneous
multi-program workloads; and we use small data sets as
input to obtain small kernels.

Performance Metrics.We use instructions per cycle (IPC) to
quantify single-application performance; and we simulate
one billion instructions, or to completion, whichever occurs
first [39]. System throughput (STP) and average normalized
turnaround time (ANTT) are used to evaluate multiprogram
performance [40]. For the multiprogram workloads, we

simulate for two million cycles, which is in line with prior
GPUmultitasking research [41], [42].

5 EVALUATION

The evaluation is done in a number of steps. We first
compare against state-of-the-art GPU NoC proposals and
evaluate performance, power and chip area (Sections 5.1
through 5.3). This comparison assumes a specific number of
SMs (56) and LLC slices (8) because of the limitations in the
previously proposed GPU NoCs that we compare against.
The second half of the evaluation (Sections 5.4 through 5.6)
compares CD-Xbar against idealized and realistic fully-
connected crossbar designs. We also perform various
sensitivity and scalability analyses assuming the default SM
count (80) and LLC slices (16).

5.1 Performance per Watt

Previous work has assumed a baseline mesh network upon
which it provides various optimizations to exploit the unique
GPU traffic pattern [7], [15], [16], [17], [43]. In this section, we
compare CD-Xbar against three state-of-the-art mesh-based
GPU NoC proposals, namely S-Mesh [13], cfNoC [16] and
HRCnet [17], see also Table 5. As the latter two designs
require a specific number of memory nodes versus compute
nodes, we assume 56 SMs and 8 memory controllers (MC)
with one LLC slice per MC. cfNoC and HRCnet focus on the
request and reply networks, respectively. As they both
require specific placement of memory nodes, which is differ-
ent for both topologies, these designs are incompatible. To
construct the best possible baseline networks to compare CD-
Xbar against, we use S-Mesh for cfNoC’s reply network; simi-
larly, we assume S-Mesh for HRCnet’s request network. We
complement cfNoC and HRCnet with an S-mesh network,
and deliberately do not compare against cfNoC and HRCnet
complemented with a conventional mesh network, in order
to compare against the best possibleNoC configuration based
on prior work in the literature. For CD-Xbar, we assume 4
local crossbars with 3 converged ports each; each local cross-
bar connects to 14 SMs. To enable a fair comparison, we keep
the bisection bandwidth unchanged across all the NoCs in
the comparison.

Fig. 9 reports performance, power efficiency (1 / NoC
power) and performance per Watt for the various NoC
designs, normalized to the baseline mesh network. CD-Xbar
and HRCnet are the best performing NoCs, i.e., CD-Xbar

TABLE 4
Benchmarks Considered in This Paper

Benchmark Abbr. NoC Demand

K-means [31] KMEANS High
PageViewCount [32] PVC High
B+TREE Search [31] B+TREE High
InvertedIndex [32] II High
StringMatch [32] SM High
2DConvolution [33] 2DCONV High
Leukocyte [31] LEU High
Euler3d [31] CFG High
Histogram [34] HIST High
3DConvolution [33] 3DCONV High
Fdtd2d [33] FDTD2D High
MatrixMultiply [28] MM High
Breadth First Search [31] BFS High
SRAD [31] SRAD High
WordCount [32] WC High
Two Point Angular Corre-Function [34] TPACF Low
DXTC [28] DXTC Low
CP [35] CP Low
Pathfinder [31] PF Low
N-Queens Solver [35] NQU Low
Magnetic Resonance Imaging - Q [34] MRI-Q Low
QuasiRandomGenerator [28] QRG Low
MergeSort [28] MS Low

TABLE 5
Mesh-Based GPU NoCs

Network Configuration

Mesh Request network: Mesh / Reply network: Mesh
S-Mesh Request network: S-Mesh / Reply network: S-Mesh
cfNoC Request network: cfNoC / Reply network: S-Mesh
HRCnet Request network: S-Mesh / Reply network: HRCnet

Fig. 9. Performance, NoC power efficiency, and performance/Watt rela-
tive to a mesh NoC. CD-Xbar achieves the highest performance per
Watt compared to state-of-the-art GPU NoCs. HRCnet achieves similar
performance as CD-Xbar but is not scalable.

1290 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 9, SEPEMBER 2019

improves performance by 13.9 percent whereas HRCnet
improves performance by 14.6 percent on average over a
mesh network. CD-Xbar consumes the least NoC power, fol-
lowed by cfNoC and HRCnet. CD-Xbar achieves the highest
performance per Watt: an average improvement of 17.1 per-
cent over HRCnet, the best performing state-of-art GPUNoC.
Note that in addition to not being as power-efficient, HRCnet
is less flexible and less scalable than CD-Xbar. To achieve a
conflict-free design, HRCnet can only operate with a specific
number of memory nodes and compute nodes [17]. More-
over, scalability is limited byHRCnet’s ring-like topology.

5.2 Per-Application Performance

Fig. 10 reports per-benchmark performance results. S-Mesh
and cfNoC achieve similar performance as the default mesh
network. S-Mesh removes unused links, input buffers and
simplifies the crossbar, with no measurable impact on per-
formance. cfNoC also achieves similar performance to a
mesh network. cfNoC uses exclusive subnets for each col-
umn of compute nodes to eliminate packet conflicts. Subnets
with sliced channel width increase the serialization latency
of the request packets; however, most request packets are
short read requests that can be transferred as a single flit in
the cfNoC subnetwork. Moreover, cfNoC reduces the per-
hop latency in the request network by exploiting a conflict-
free router design.

HRCnet and CD-Xbar significantly improve performance
due to the efficient utilization of the available network band-
width. Because of the GPU’s unique traffic pattern, the actual
achieved bandwidth is (much) less than the bisection band-
width for a mesh topology. In particular, in the reply net-
work, only few memory nodes can inject packets, which
leaves many links under-utilized. In contrast, HRCnet and
CD-Xbar can achieve the maximum bisection bandwidth
when all memory nodes are injecting packets into the net-
work. We observe variable performance benefits across dif-
ferent applications in Fig. 10; this is because of the NoC
bottleneck occupying different fractions of the SM stall cycles.

5.3 Power Efficiency and Chip Area

Fig. 11a breaks down NoC power consumption into its four
components: buffer, crossbar, links and other. Buffer power is
the largest contributor. Compared to a conventionalmesh net-
work, S-Mesh reduces power consumption by 18.7 percent by
removing the input buffers of unused ports. Compared to
S-Mesh, cfNoC and HRCnet reduce power consumption
by removing all input buffers from the request and reply

networks thanks to the conflict-free design. In cfNoC, the
larger ‘other’ component is caused by the large ejection-buffer
size. HRCnet has much higher link power consumption com-
pared to the other three designs as it uses high channel width
links for the ring-like network. Compared to the mesh net-
work, CD-Xbar reduces power consumption by 48.5 percent
as many input buffers are removed. Link power increases
because of the long links to connect the SMs and LLC slices to
the local and global crossbars, respectively.

Figs. 11b and 11c report chip area for the different designs
in terms of NoC active silicon area and global wire area,
respectively. cfNoC, HRCnet and CD-Xbar incur similar
active silicon area. cfNoC and HRCnet reduce active silicon
area by featuring a simplified router architecture in the
request and reply networks, respectively. Compared to
cfNoC and HRCnet, although CD-Xbar reduces the buffer
area, this is offset by the increase in crossbar area. CD-Xbar
and HRCnet both consume more global wire area than the
other three designs (Fig. 11c). InHRCnet, high channel width
links are used to construct the ring-like reply network. In
CD-Xbar, long links are used to connect the SMs and LLC sli-
ces to the NoC. Note that long wires are typically routed in
the upper metal layers, hence they do not contribute to chip
area [44] (apart from the repeaters which we account for as
active silicon area, as mentioned before).

Conclusion. CD-Xbar achieves similar performance, simi-
lar area cost and higher power efficiency compared to
HRCnet (the best performing prior work). However, a key
problemwith the HRCnet proposal is that it imposes restric-
tions on the number of SMs, LLC slices and their placement,
which severely limits HRCnet’s flexibility. In contrast, CD-
Xbar can be implemented for any arbitrary number of SMs
and LLC slices. Moreover, the ring network in HRCnet has
limited scalability with increasing SM and LLC slice count.

Fig. 10. Per-application performance. CD-Xbar and HRCnet improve
performance by 13.9 and 14.6 percent on average, respectively.

Fig. 11. NoC comparison in terms of (a) power consumption, (b) active
silicon area and (c) global wire area. cfNoC, HRCnet and CD-Xbar are
low-power, low-cost designs, although HRCnet and CD-Xbar increase
global wire area but these long wires can be routed in the upper metal
layers.

ZHAO ETAL.: CD-XBAR: A CONVERGE-DIVERGE CROSSBAR NETWORK FOR HIGH-PERFORMANCE GPUS 1291

In the evaluation, we adopt 56 SMs and 8 LLC slices as in the
original HRCnet paper [17], which is a sweet spot for
HRCnet. Even in its best case, CD-Xbar still outperforms
HRCnet in performance perWatt by 17.1 percent.

5.4 Crossbar Alternatives

So far, we benchmarked CD-Xbar against mesh-based net-
works.We now compare CD-Xbar against a number of cross-
bar NoC alternatives. We compare against a fully-connected
crossbar (FC), which is commonly assumed in research stud-
ies considering GPUs with a relatively small number of
SMs [45], [46], [47]. Note though that a full crossbar incurs a
substantially higher hardware cost (26.9 percent higher
active silicon area cost) than CD-Xbar. We also compare
against crossbar networks that exploit external concentra-
tion [18] by grouping several SMs to share one network port.
External concentration can be regarded as a special case of
the CD-Xbar design inwhich there is only a single converged
port per local crossbar. Concentration reduces the number of
ports to the crossbar, hence it enables operating the NoC at
high frequency without incurring extra latency. In this sec-
tion we assume 80 SMs and 16 LLC slices and consider the
following fully connected crossbar configurations:

� FC-Ideal: Full 80� 16 crossbar is assumed to operate
at high frequency with no extra latency. This is an
idealized fully connected crossbar.

� FC-Real: Full 80� 16 crossbar incurs a one cycle extra
latency. This is an optimistic assumption given that,
according to Fig. 3, an 80� 16 crossbar can operate
at approximately 600MHz compared to the rest of
the GPU that is assumed to operate at 1.4GHz. This
optimistic assumption for our baseline puts our pro-
posed solution, CD-Xbar, at a disadvantage.

� FC-16ports: 5 SMs are grouped to share one concen-
trated network port of a full 16� 16 crossbar.

� FC-24ports: 3 (or 4) SMs are grouped to share one
concentrated network port of a full 24� 16 crossbar.

Fig. 12 reports performance for the different crossbar
NoCs. Compared to the idealized full crossbar, the realistic
crossbar degrades performance by 34.4 percent on average.
The extra cycle latency in the switch and VC allocators
increases the number of cycles that a flit occupies the switch
and VC resources, which in its turn increases NoC contention
substantially. External concentration with 16 ports and 24
ports leads to a performance gap of 24.8 and 13.2 percent,

respectively, compared to the idealized full crossbar. Decreas-
ing the number of SMs per local crossbar and only assigning
one converged port to connect to the global crossbar increases
contentionwhen network traffic is unbalanced. Increasing the
number of converged ports per local crossbar reduces port
contention. This enables CD-Xbar to achieve performance
that is within 2.9 percent of an idealized crossbar, while out-
performing a realistic, fully connected crossbar with 24 ports
by 10.3 percent.

5.5 Sensitivity Analyses

We now perform sensitivity analyses with respect to the
number of converged ports, the routing policy, and CTA
scheduling policy.

Number of Converged Ports. The number of converged ports
poses a performance-cost trade-off. Increasing the number of
converged ports per local crossbar reduces port contention,
improving performance. On the other hand, this also incurs
higher hardware cost. Fig. 13 evaluates CD-Xbar per-
formance as a function of the number of converged ports
assuming 8 local crossbars. Initially, performance improves
steeply as we increase the number of converged ports, e.g.,
performance improves by 60 percent on average as we
increase from 1 to 2 converged ports. However, the perfor-
mance improvement gradually decreases as we further
increase converged port count, e.g., from 3 to 4 ports, perfor-
mance improves by only 5.2 percent. Performance saturates
around 3 converged ports per local crossbar, which is what
we assume throughout the paper.

Routing Policy.We previously discussed different routing
policies including source-based routing, randomized adap-
tive routing and the newly proposed round-robin routing.
Here, we evaluate their performance impact, see Fig. 14.
Round-robin routing improves performance by 10.0 and
8.5 percent compared to source-based and randomized
adaptive routing, respectively. When multiple packets tra-
verse through a local crossbar, both source-based and adap-
tive routing may route packets to the same converged port
even though other converged ports remain under-utilized.
This incurs flit contention as only one flit can be transferred
per converged port per cycle. For example, as there are only
three converged ports per local crossbar, the randomized
version of adaptive routing first randomly chooses two con-
verged ports and then chooses the least congested port.
However, with only three converged ports per local crossbar,
even with randomization, two incoming packets may still be
sent to the same port (probability of 2=3), as previously

Fig. 12. Comparing CD-Xbar against idealized and realistic crossbar
designs. CD-Xbar performs within 2.9 percent on average of an idealized
fully connected crossbar, while significantly outperforming realistic alter-
native crossbar designs.

Fig. 13. Performance as a function of the number of converged ports in
CD-Xbar. Performance improves with increasing port count and satu-
rates around 3 converged ports per local crossbar.

1292 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 9, SEPEMBER 2019

described in Section 3.3. Such contention does not happen in
round-robin routing as it assigns the converged ports to
incoming packets in a round-robin way.

CTA Scheduling. Fig. 15a compares topology-aware
scheduling against traditional round-robin CTA scheduling.
Topology-aware scheduling improves single-task perfor-
mance by 10.1 percent on average by balancing NoC traffic
among the different local crossbars. Fig. 15b reports STP
and ANTT improvement curves for the multitasking work-
loads. STP improves by 15.4 percent on average. The highest
improvements are obtained for mixed workloads, i.e.,
workload mixes in which a high-NoC demand application
co-executes with a low-NoC demand application. Topol-
ogy-aware CTA scheduling for such mixed workloads bal-
ances the NoC traffic by the high-NoC demand application
across the different converged ports. When co-running two
high-NoC demand applications in a multiprogram setup,
topology-aware CTA scheduling yields similar performance
as traditional round-robin CTA scheduling because network
traffic is balanced across all local crossbars for both schedul-
ing policies.We note that for someworkloads, per-application
performance suffers under topology-aware CTA scheduling.
This is the case when a high-NoC demand application puts
significant pressure on the converged ports, which decreases

the network bandwidth utilization and the performance of a
co-executing application with limited TLP to hide memory
access latency. Although some applications experience some
performance degradation, we report a significant average
ANTT improvement of 12.4 percent.

5.6 Scalability Analysis

We now evaluate CD-Xbar’s scalability with the number of
SMs.While increasing SM count, we keep the number of con-
verged ports unchanged and increase the number of SMs per
local crossbar. For example, with 120 SMs, we maintain 8
local crossbars (same number as for the default 80 SMs) and
we maintain 3 converged ports per local crossbar; hence the
number of SMs per local crossbar increases from 10 to 15.
Note that scaling the number of SMs per local crossbar does
not affect the timing of the overall NoC. In particular, the crit-
ical component in CD-Xbar is the global crossbar which is a
24� 16 full crossbar, i.e., this crossbar connects 24 ports (8
local crossbars and 3 converged ports per local crossbar) to
16 ports (16 LLC slices). The global crossbar remains the criti-
cal component in CD-Xbar as we scale the number of SMs.
The reason is that we keep the number of local crossbars con-
stant at 8 and the number of converged ports per local cross-
bar at 3, hence the total number of ports to connect to the
global crossbar is constant at 24. So, even for the largest con-
figuration with 180 SMs, the global crossbar is a 24� 16 full
crossbar, whereas the local crossbars include four 22� 3 full
crossbars and four 23� 3 full crossbars. Timing for CD-Xbar
is determined by the size of the largest crossbar, i.e., the
global crossbar. In other words, timing is not affected when
scaling the number of SMs.

To demonstrate the performance potential with increas-
ing SM count, we report raw performance across all applica-
tions including the NoC bandwidth-limited and bandwidth-
unlimited applications. Fig. 16 reports performance for CD-
Xbar and the default mesh network as we scale SM count.
(We assume the same bisection bandwidth for the mesh and
CD-Xbar networks.) There are two take-away messages.
First, increasing the number of SMs leads to a significant per-
formance improvement [48], [49]. For example, increasing
the SM count from 80 to 180 improves performance by 62
percent, i.e., IPC increases from 1514 to 2,450. Second, CD-
Xbar achieves good scalability and in fact the performance
improvement over the mesh network increases with increas-
ing SM count as a result of better NoC bandwidth utilization.

6 RELATED WORK

We now discuss related work in GPU NoCs, CPU NoCs and
CTA scheduling.

Fig. 14. Performance for different routing policies. Round-robin (RR)
routing outperforms source-based and randomized adaptive routing.

Fig. 15. Evaluating topology-aware CTA scheduling performance for (a)
single-task and (b and c) multi-tasking workloads relative to round-robin
CTA scheduling. Topology-aware CTA scheduling outperforms tradi-
tional round-robin scheduling.

Fig. 16. Scalability analysis. CD-Xbar scales better than a mesh NoC
with increasing SM count.

ZHAO ETAL.: CD-XBAR: A CONVERGE-DIVERGE CROSSBAR NETWORK FOR HIGH-PERFORMANCE GPUS 1293

GPU NoC. Prior work in GPU NoCs primarily focuses on
how to optimize a mesh network because of its inherent
simplicity and scalability. In particular, Bakhoda et al. [7]
propose checkboard routing and a simplified crossbar struc-
ture to reduce the router area. Kim et al. [15] propose the
DA2mesh network to achieve a low-cost conflict-free design
by exploiting the few-to-many traffic pattern in a GPU’s
reply network. Ziabari et al. [13] explore different GPU NoC
designs and show that an asymmetric concentrated mesh
provides the highest power efficiency. Jang et al. [43]
explore MC placement and combine the reply and request
network into one network. They further propose asymmet-
ric VC partitioning by assigning more VCs to reply packets.
Two recent works, cfNoC [16] and HRCnet [17], optimize
the request and reply network, respectively, as previously
described in the paper. We propose the CD-Xbar NoC
which better fits a GPU’s unique traffic pattern while being
more area- and power-efficient than and similarly scalable
as mesh-based NoCs. Moreover, CD-Xbar is better scalable
and more flexible than the state-of-the-art cfNoC and
HRCNet topologies while improving performance per Watt
by 17 percent.

CPU NoC. A GPU NoC bears essential differences and
opportunities compared to a multicore CPU NoC. Next to
connecting all CPU cores with the LLC slices and memory
controllers, a CPU NoC also needs to connect all CPU cores
with each other to support cache coherence, memory consis-
tency and synchronization [50]. Scalable CPUNoC solutions,
such as mesh, Clos or butterfly, are suboptimal solutions for
GPUs in terms of chip area and power consumption because
of the unique GPU traffic pattern, as detailed in this paper.
Other CPU NoCs such as CNoC [36], Slim NoC [38], Flat-
tened Butterfly [51], Kilo-Core [52], concentrated mesh [53]
and Kilo-NoC [54], all face similar issues in the context of a
GPU. The many-to-few-to-many GPU traffic suggests a
crossbar network topology, however, scaling a crossbar to
large SM counts and a large number of memory nodes is
problematic. Buffered and pipelined crossbars have been
proposed [10], [55]; swizzle-switch improves crossbar
scalability by distributing the centralized arbiter to each
crosspoint [11]. However, these proposals assume a fully
connected crossbar which GPUs do not need to support the
many-to-few-to-many traffic pattern. Various routing poli-
cies have been proposed for CPUs [23], [51], however round-
robin routing exploits the characteristics of the CD-Xbar
topology and is shown to outperform previously proposed
routing policies including source-based and (randomized)
adaptive routing.

CTA Scheduling. Recent work focuses on increasing the
number of SMs beyond a single chip. The Multi-Chip Mod-
ule GPU design (MCM-GPU) aggregates several GPU mod-
ules in a single package [48]. NUMA-aware GPUs achieve
performance scalability by exploiting a multi-socket GPU
design [49]. How to connect the SMs to the LLC slices and
memory controllers within a chip in a scalable way remains
unexplored in this prior work. Several proposals optimize
CTA scheduling to control thread-level parallelism per
SM [25], to fit the multi-GPU system [56] or to exploit inter-
CTA locality [24], [57]. None of these prior proposals how-
ever notice that traditional CTA scheduling policies may
cause unbalanced network traffic in GPUs.

7 CONCLUSION

The increasing number of SMs in modern-day GPUs poses a
major challenge for the network-on-chip that connects the
SMs to the LLC slices and memory controllers. In this paper,
we propose the converge-diverge crossbar network by
exploiting the observation that, because of the many-to-few-
to-many traffic pattern, there is no need to directly connect all
SMs to the LLC slices as done in a fully-connected crossbar.
CD-Xbar features local crossbars that connect a group of SMs
to a smaller number of converged ports, which are then con-
nected to the LLC slices through a global crossbar. Converged
ports provide routing path diversity; round-robin routing is
employed to reduce flit contention on the converged ports.
Topology-aware CTA scheduling balances network traffic
among the different local crossbars. Our experimental results
report that CD-Xbar improves performance by 13.9 percent
on average compared to a mesh with the same bisection
bandwidth, while at the same time reducing NoC active sili-
con area and power consumption by 52.5 and 48.5 percent,
respectively. We find that CD-Xbar performs within
2.9 percent of an idealized fully-connected crossbar. In addi-
tion, we demonstrate CD-Xbar’s scalability, flexibility, and
improved performance per Watt (by 17 percent on average)
compared to state-of-the-art, highly-customizedGPUNoCs.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work is supported by the European Research
Council (ERC) AdvancedGrant agreement No. 741097, FWO
projects G.0434.16N and G.0144.17N, Natural Science and
Engineering Research Council of Canada, NSFC under Grant
No. 61572508, 61672526 and 61802427, NUDT Research
Project No. ZK17-03-06, Science and Technology Innovation
Project of Hunan Province under Grant 2018RS3083. Xia
Zhao is supported through a CSC scholarship and UGent-
BOF co-funding.

REFERENCES

[1] Nvidia. NVIDIA GP100 Pascal Architecture. White paper. 2016.
[Online]. Available: http://www.nvidia.com/object/pascal-
architecture-whitepaper.html

[2] Nvidia. NVIDIA Tesla V100 GPU Architecture The Worlds Most
AdvancedData Center GPU.White paper. 2017. [Online]. Available:
http://www.nvidia.com/object/volta-architecture-whitepaper.
html

[3] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A
5-GHz mesh interconnect for a teraflops processor,” IEEE Micro,
vol. 27, no. 5, pp. 51–61, Sep. 2007.

[4] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski,
“Catnap: Energy proportional multiple network-on-chip,” in Proc.
Int. Symp. Comput. Archit., Jun. 2013, pp. 320–331.

[5] S. Borkar, “Thousand core chips: A technology perspective,” in
Proc. Des. Autom. Conf., Jun. 2007, pp. 746–749.

[6] B. K. Daya, C. H. O. Chen, S. Subramanian, W. C. Kwon, S. Park,
T. Krishna, J. Holt, A. P. Chandrakasan, and L. S. Peh, “SCORPIO:
A 36-core research chip demonstrating snoopy coherence on a
scalable mesh NoC with in-network ordering,” in Proc. Int. Symp.
Comput. Archit., Jun. 2014, pp. 25–36.

[7] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-effective
on-chip networks for manycore accelerators,” in Proc. Int. Symp.
Microarchitecture, Dec. 2010, pp. 421–432.

[8] G. Chen, M. Anders, and H. Kaul, “Scalable crossbar apparatus and
method for arranging crossbar circuits,” U.S. Patent 9,577,634,
Feb. 21, 2017. [Online]. Available: https://www.google.com/
patents/US9577634

1294 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 9, SEPEMBER 2019

http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
https://www.google.com/patents/US9577634
https://www.google.com/patents/US9577634

[9] G. Passas, M. Katevenis, and D. Pnevmatikatos, “VLSI micro-
architectures for high-radix crossbar schedulers,” in Proc. Int. Symp.
Netw.-Chip, May 2011, pp. 217–224.

[10] G. Passas, M. Katevenis, and D. Pnevmatikatos, “A 128 x 128 x
24Gb/s crossbar interconnecting 128 tiles in a single hop and occu-
pying 6% of their area,” in Proc. Int. Symp. Netw.-Chip, May 2010,
pp. 87–95.

[11] K. Sewell, R. G. Dreslinski, T. Manville, S. Satpathy, N. Pinckney,
G. Blake, M. Cieslak, R. Das, T. F. Wenisch, D. Sylvester, D. Blaauw,
and T. Mudge, “Swizzle-switch networks for many-core systems,”
IEEE J. Emerging Sel. Topics Circuits Syst., vol. 2, no. 2, pp. 278–294,
Jun. 2012.

[12] J. Lee and H. Kim, “TAP: A TLP-aware cache management policy
for a CPU-GPU heterogeneous architecture,” in Proc. Int. Symp.
High Perform. Comput. Archit., Feb. 2012, pp. 1–12.

[13] A. K. Ziabari, J. L. Abell�an, Y. Ma, A. Joshi, and D. Kaeli,
“Asymmetric NoC architectures for GPU systems,” in Proc. Int.
Symp. Netw.-Chip, Sep. 2015, pp. 25:1–25:8.

[14] C. Sun, C. H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal,
L. S. Peh, and V. Stojanovic, “DSENT - A tool connecting emerg-
ing photonics with electronics for opto-electronic networks-
on-chip modeling,” in Proc. Int. Symp. Netw.-Chip, May 2012,
pp. 201–210.

[15] H. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Providing cost-
effective on-chip network bandwidth in GPGPUs,” in Proc. Int.
Conf. Comput. Des., Sep. 2012, pp. 407–412.

[16] X. Zhao, S. Ma, Y. Liu, L. Eeckhout, and Z. Wang, “A low-cost con-
flict-free NoC for GPGPUs,” in Proc. Des. Autom. Conf., Jun. 2016,
pp. 34:1–34:6.

[17] X. Zhao, S. Ma, C. Li, L. Eeckhout, and Z. Wang, “A heterogeneous
low-cost and low-latency ring-chain network for GPGPUs,” in Proc.
Int. Conf. Comput. Des., Oct. 2016, pp. 472–479.

[18] P. Kumar, Y. Pan, J. Kim, G. Memik, and A. Choudhary,
“Exploring concentration and channel slicing in on-chip network
router,” in Proc. Int. Symp. Netw.-Chip, May 2009, pp. 276–285.

[19] N. Agarwal, D. Nellans, E. Ebrahimi, T. F. Wenisch, J. Danskin, and
S. W. Keckler, “Selective GPU caches to eliminate CPU-GPU HW
cache coherence,” in Proc. Symp. High Perform. Comput. Archit.,
Mar. 2016, pp. 494–506.

[20] M. Jun, D. Woo, and E. Chung, “Partial connection-aware topology
synthesis for on-chip cascaded crossbar network,” IEEE Trans.
Comput., vol. 61, no. 1, pp. 73–86, Jan. 2012.

[21] L.M.Ni and P. K.McKinley, “A survey of wormhole routing techni-
ques in direct networks,” Comput., vol. 26, no. 2, pp. 62–76, Feb.
1993. [Online]. Available: http://dx.doi.org/10.1109/2.191995

[22] M. H. Cho, M. Lis, K. S. Shim, M. Kinsy, T. Wen, and S. Devadas,
“Oblivious routing in on-chip bandwidth-adaptive networks,” in
Proc. Int. Conf. Parallel Archit. Compilation Techn., Sep. 2009,
pp. 181–190.

[23] J. Kim,W. J. Dally, andD.Abts, “Adaptive routing in high-radix clos
network,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., Nov. 2006, pp. 7:1–7:11.

[24] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving GPGPU resource utilization through alternative
thread block scheduling,” in Proc. Int. Symp. High Perform. Comput.
Archit., Feb. 2014, pp. 260–271.

[25] O. Kay{ran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more
nor less: Optimizing thread-level parallelism for GPGPUs,” in
Proc. Int. Conf. Parallel Archit. Compilation Techn., Sep. 2013,
pp. 157–166.

[26] Y. Ukidave, C. Kalra, D. Kaeli, P. Mistry, and D. Schaa, “Runtime
support for adaptive spatial partitioning and inter-kernel communi-
cation on GPUs,” in Proc. Int. Symp. Comput. Archit. High Perform.
Comput., Oct. 2014, pp. 168–175.

[27] J. T. Adriaens, K. Compton, N. S. Kim, andM. J. Schulte, “The case
for GPGPU spatial multitasking,” in Proc. Symp. High-Perform.
Comput. Archit., Feb. 2012, pp. 1–12.

[28] NVIDIA CUDA SDK code samples, [Online]. Available: https://
developer.nvidia.com/cuda-downloads. NVIDIA Corporation,
May 2011.

[29] AnandTech. Hot Chips 2016: Nvidia GP100 Die Shot Released.
2016. [Online]. Available: https://www.anandtech.com/show/
10588/hot-chips-2016-nvidia-gp100-die-shot-released

[30] A. Ceyhan, M. Jung, S. Panth, S. K. Lim, and A. Naeemi, “Impact
of size effects in local interconnects for future technology nodes:
A study based on full-chip layouts,” in Proc. IEEE Int. Interconnect
Technol. Conf., May 2014, pp. 345–348.

[31] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. Int. Symp. Workload Characterization, Oct. 2009,
pp. 44–54.

[32] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars:
A MapReduce framework on graphics processors,” in Proc. Int.
Conf. Parallel Archit. Compilation Techn., Oct. 2008, pp. 260–269.

[33] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to GPU codes,” in Proc.
Innovative Parallel Comput.,May 2012, pp. 1–10.

[34] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-M. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput
computing,” Center for Reliable and High-Performance Computing,
vol. 127, 2012.

[35] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and
T. M. Aamodt, “Analyzing CUDAworkloads using a detailed GPU
simulator,” in Proc. Int. Symp. Perform. Anal. Syst. Softw., Apr. 2009,
pp. 163–174.

[36] Y. H. Kao,N. Alfaraj, M. Yang, andH. J. Chao, “Design of high-radix
clos network-on-chip,” in Proc. Int. Symp. Netw.-Chip, May 2010,
pp. 181–188.

[37] L. Chen, L. Zhao, R. Wang, and T. M. Pinkston, “MP3: Minimizing
performance penalty for power-gating of Clos network-on-chip,” in
Proc. Symp. High Perform. Comput. Archit., Feb. 2014, pp. 296–307.

[38] M. Besta, S. M. Hassan, S. Yalamanchili, R. Ausavarungnirun,
O. Mutlu, and T. Hoefler, “Slim NoC: A low-diameter on-chip net-
work topology for high energy efficiency and scalability,” in Proc.
23rd Int. Conf. Archit. Support Program. Lang. Operating Syst.,
Mar. 2018, pp. 43–55.

[39] G. Koo, Y. Oh, W. W. Ro, and M. Annavaram, “Access pattern-
aware cache management for improving data utilization in GPU,”
in Proc. Int. Symp. Comput. Archit., Jun. 2017, pp. 307–319.

[40] S. Eyerman and L. Eeckhout, “System-level performancemetrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53,
May/Jun. 2008.

[41] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Simultaneous multikernel GPU: Multi-tasking throughput pro-
cessors via fine-grained sharing,” in Proc. Symp. High Perform.
Comput. Archit., Mar. 2016, pp. 358–369.

[42] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-
slicer: Efficient intra-SM slicing through dynamic resource partition-
ing for GPU multiprogramming,” in Proc. 43th Int. Symp. Comput.
Archit., Jun. 2016, pp. 230–242.

[43] H. Jang, J. Kim, P. Gratz, K. H. Yum, and E. J. Kim, “Bandwidth-
efficient on-chip interconnect designs for GPGPUs,” in Proc. Des.
Autom. Conf., Jun. 2015, pp. 9:1–9:6.

[44] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “NOC-Out: Microarchi-
tecting a scale-out processor,” in Proc. Int. Symp. Microarchitecture,
Dec. 2012, pp. 177–187.

[45] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic
warp formation and scheduling for efficient GPU control flow,” in
Proc. Int. Symp. Microarchitecture, Dec. 2007, pp. 407–420.

[46] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi,
C. J. Rossbach, and O. Mutlu, “Mosaic: A GPU memory manager
with application-transparent support for multiple page sizes,” in
Proc. Int. Symp. Microarchitecture, Oct. 2017, pp. 136–150.

[47] A. ElTantawy and T. Aamodt, “Warp scheduling for fine-grained
synchronization,” in Proc. Symp. High Perform. Comput. Archit.,
Feb. 2018, pp. 375–388.

[48] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU:Multi-chip-module
GPUs for continued performance scalability,” in Proc. Int. Symp.
Comput. Archit., Jun. 2017, pp. 320–332.

[49] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel,
A. Ramirez, and D. Nellans, “Beyond the socket: NUMA-aware
GPUs,” in Proc. Int. Symp. Microarchitecture, Oct. 2017, pp. 123–135.

[50] N. E. Jerger, T. Krishna, and L. Peh, On-Chip Networks: Second Edi-
tion. San Mateo, CA, USA: Morgan and Claypool Publishers, 2017.

[51] J. Kim,W. J. Dally, andD. Abts, “Flattened butterfly: A cost-efficient
topology for high-radix networks,” in Proc. Int. Symp. Comput.
Archit., Jun. 2007, pp. 126–137.

[52] N. Abeyratne, R. Das, Q. Li, K. Sewell, B. Giridhar, R. G. Dreslinski,
D. Blaauw, and T. Mudge, “Scaling towards kilo-core processors
with asymmetric high-radix topologies,” in Proc. Int. Symp. High
Perform. Comput. Archit., Feb. 2013, pp. 496–507.

ZHAO ETAL.: CD-XBAR: A CONVERGE-DIVERGE CROSSBAR NETWORK FOR HIGH-PERFORMANCE GPUS 1295

http://dx.doi.org/10.1109/2.191995
https://developer.nvidia.com/cuda-downloads. NVIDIA Corporation
https://developer.nvidia.com/cuda-downloads. NVIDIA Corporation
https://www.anandtech.com/show/10588/hot-chips-2016-nvidia-gp100-die-shot-released
https://www.anandtech.com/show/10588/hot-chips-2016-nvidia-gp100-die-shot-released

[53] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip
networks,” in Proc. Int. Conf. Supercomput., Jun. 2006, pp. 187–198.

[54] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-NOC: A
heterogeneous network-on-chip architecture for scalability and
service guarantees,” in Proc. 38th Annu. Int. Symp. Comput. Archit.,
Jun. 2011, pp. 401–412.

[55] G. Kornaros, “BCB: A buffered CrossBar switch fabric utilizing
shared memory,” in Proc. EUROMICRO Conf. Digital Syst. Des.:
Archit. Methods Tools, Aug. 2006, pp. 180–188.

[56] G.Kim,M. Lee, J. Jeong, and J. Kim, “Multi-GPU systemdesignwith
memory networks,” in Proc. Int. Symp. Microarchitecture, Dec. 2014,
pp. 484–495.

[57] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal,
“Locality-aware CTA clustering formodernGPUs,” in Proc. Int. Conf.
Archit. Support Program. Lang. Oper. Syst., Apr. 2017, pp. 297–311.

Xia Zhao received theMS degree in computer sci-
ence from the National University of Defense
Technology (NUDT), Changsha, China, in 2015.
He is working toward the fourth year PhD degree
at Ghent University, Belgium. His research inter-
ests include GPGPU architecture in general, and
multi-program execution and Network-on-Chip
(NoC) designmore in particular.

Sheng Ma received the BS and PhD degrees in
computer science and technology from theNational
University of Defense Technology (NUDT), in 2007
and 2012, respectively. He visited the University of
Toronto, from2010 to 2012. He is currentlyan asso-
ciate professor with the College of Computer. His
research interests includemicroprocessor architec-
ture, on-chip networks, SIMD architectures, and
arithmetic unit designs. He was a recipient of the
Young Talent Development Program of the China
Computer Federation, in 2016.

Zhiying Wang received the PhD degree in electri-
cal engineering from the National University of
Defense Technology (NUDT), Changsha, China, in
1988. He is a professor with the School of Com-
puter, NUDT. He has contributed more than 10
invited chapters to book volumes, published 240
papers in archival journals and refereed confer-
ence proceedings, and deliveredmore than 30 key-
notes. His main research fields include computer
architecture, computer security, VLSI design, reli-
able architecture, multicore memory system, and
asynchronous circuit. He is an IEEEmember.

Natalie Enright Jerger received the PhD degree
in electrical engineering from the University of
Wisconsin-Madison. She is the Percy Edward
Hart professor of Electrical and Computer Engi-
neering, University of Toronto. Her research inter-
ests include computer architecture, approximate
computing, interconnection networks, and hard-
ware acceleration of machine learning. She is a
senior member of the IEEE and a distinguished
member of the ACM.

Lieven Eeckhout received the PhD degree in
computer science and engineering from Ghent
University, in 2002. He is a full professor at Ghent
University, Belgium. His research interests are in
the area of computer architecture, with specific
interests in performance analysis, evaluation and
modeling, and dynamic resource management.
He is the recipient of the 2017 Maurice Wilkes
Award and the 2007 OOPSLA Most Influential
Paper Award. He served as editor-in-chief of the
IEEE Micro (2015-2018), program chair of HPCA

2015, CGO 2013 and ISPASS 2009, associate editor of the IEEE Trans-
actions on Computers, the IEEE Computer Architecture Letters and the
ACMTransactions on Architecture and CodeOptimization. He is an IEEE
Fellow.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1296 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 9, SEPEMBER 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

