1386

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

VMT: Virtualized Multi-Threading for Accelerating
Graph Workloads on Commodity Processors

Josué Feliu™, Ajeya Naithani*, Julio Sahuquillo

Moinuddin Qureshi, Member, IEEE, and Lieven Eeckhout

Member, IEEE, Salvador Petit™, Member, IEEE,
, Fellow, IEEE

Abstract—Modern-day graph workloads operate on huge graphs through pointer chasing which leads to high last-level cache (LLC)
miss rates and limited memory-level parallelism (MLP). Simultaneous Multi-Threading (SMT) effectively hides the memory access
latencies for multi-threaded graph workloads provided that sufficient threads are supported in hardware. Unfortunately, providing a
sufficiently large number of physical threads incurs an unjustifiably high hardware cost for commodity SMT processors which typically
implement only two physical hardware threads. Ideally, we would like to achieve aggressive-SMT performance when running graph
workloads on modest commodity processors. In this paper, we propose Virtualized Multi-Threading (VMT), a low-overhead multi-
threading paradigm for accelerating graph workloads on commodity processors. Unlike prior multi-threading paradigms, VMT
virtualizes both the physical hardware threads and the architecture state: VMT maps a large number of logical software threads to a
small number of physical hardware threads, while maintaining the architecture state of the logical threads in the processor’s cache
hierarchy. Implemented on top of a quad-core 2-way SMT processor, VMT achieves an average speedup of 1.74x for a set of
representative graph workloads, while incurring minimal hardware cost (195 bytes per core to support up to 32 logical threads). VMT’s
low hardware cost paves the way for implementation in commodity processors.

Index Terms—Architecture, multi-threading, virtualization, graph workloads

1 INTRODUCTION

RAPH workloads have gained major interest from both
industry and academy, primarily due to the increasing
importance of social networks and other big data work-
loads [1], [2], [3], [4], [5], [6], [7], [8]. In addition, graph algo-
rithms have found their way to solve scientific problems
and to represent and understand unstructured data [9],
[10], [11], [12]. Intrinsic graph characteristics make graph
algorithms behave irregularly, which results in poor mem-
ory locality. This results in poor performance when running
graph workloads on commodity superscalar processors.
However, there is abundant thread-level parallelism (TLP)
to be exploited in graph workloads. In this paper, we pro-
pose a novel and low-overhead multi-threading paradigm
to significantly speed up graph workloads on commodity
processors.
Multi-threading paradigms have been widely used to
improve processor performance by exploiting TLP. Early

Josué Feliu is with the Department of Computer Engineering, Universidad
de Murcia, 30100 Murcia, Spain. E-mail: josue.f.p@um.es.

Ajeya Naithani and Lieven Eeckhout are with the Department of Electron-
ics and Information Systems, Ghent University, 9000 Ghent, Belgium.
E-mail: {ajeya.naithani, lieven.eeckhout j@ugent.be.

Julio Sahuquillo and Salvador Petit are with the Department of Computer
Engineering, Universitat Politécnica de Valéncia, 46022 Valéncia, Spain.
E-mail: {jsahuqui, spetitj@disca.upv.es.

Moinuddin Qureshi is with the Department of Computer Science, Georgia
Tech, Atlanta, GA 30332 USA. E-mail: moin@gatech.edu.

Manuscript received 3 Dec. 2020; revised 8 Apr. 2021; accepted 23 May 2021.
Date of publication 2 June 2021; date of current version 10 May 2022.
(Corresponding author: Josue Feliu.)

Recommended for acceptance by C. Li.

Digital Object Identifier no. 10.1109/TC.2021.3086069

<4

computers deployed software multi-threading (or time-
sharing) to hide I/O and storage (e.g., disk) latencies, i.e.,
these latencies were large enough to be hidden by software
context switches. Unfortunately, software multi-threading
is unable to hide idle times in the processor due to pipeline
bubbles and cache/memory accesses. Hardware multi-
threading hides these idle times by doing useful work from
another thread while experiencing a latency-causing event.
Coarse-grain multi-threaded (switch-on-event) process-
ors [13], [14] execute one thread at a time to hide long laten-
cies (such as memory accesses). Fine-grain multi-threaded
processors [15] also execute one thread at a time while con-
text switching every cycle to hide even short latencies.
Simultaneous multi-threading (SMT) [16], the most widely
deployed paradigm, can execute instructions from different
threads in the same cycle to fully exploit the available super-
scalar issue bandwidth and further improve processor
performance.

Unfortunately, all previous multi-threading paradigms
incur significant hardware overhead to maintain the archi-
tecture state' of the concurrently executing threads [17].
Increasing the number of supported threads is challenging
because the core needs to store the architecture state of all
the threads that can run simultaneously. And the largest
part of this state is in the register file, which must be accessi-
ble to the pipeline and its execution resources. Accessing
such a bigger register file incurs a cost in complexity and
can easily affect the processor cycle time. Consequently,
high degrees of multi-threading are only supported in

1. The architecture state considered in this work is defined in
Section 2.1.

0018-9340 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3017-4266
https://orcid.org/0000-0003-3017-4266
https://orcid.org/0000-0003-3017-4266
https://orcid.org/0000-0003-3017-4266
https://orcid.org/0000-0003-3017-4266
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0001-8630-4846
https://orcid.org/0000-0001-8630-4846
https://orcid.org/0000-0001-8630-4846
https://orcid.org/0000-0001-8630-4846
https://orcid.org/0000-0001-8630-4846
https://orcid.org/0000-0003-2426-4134
https://orcid.org/0000-0003-2426-4134
https://orcid.org/0000-0003-2426-4134
https://orcid.org/0000-0003-2426-4134
https://orcid.org/0000-0003-2426-4134
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
mailto:josue.f.p@um.es
mailto:ajeya.naithani@ugent.be
mailto:lieven.eeckhout@ugent.be
mailto:jsahuqui@disca.upv.es
mailto:spetit@disca.upv.es
mailto:moin@gatech.edu

FELIU ET AL.: VMT: VIRTUALIZED MULTI-THREADING FOR ACCELERATING GRAPH WORKLOADS ON COMMODITY PROCESSORS

Logical :Arch: s .
1 | «— Timeline of execution ———
threads | state |
L
SMT A B ! !
. 0
4 . W h
1 1
emT| apcpo + I | NN
RN [(e
NG : l:l : J
Vs i g ~
vt [AB.C D N (oeewmes [[|
EF . |3 1 [[
L | L2P-Map !)

Fig. 1. Contrasting Virtualized Multi-Threading against SMT and Bal-
anced Multi-Threading (BMT). VMT virtualizes the physical threads and
the architecture state, whereas BMT only virtualizes the physical
threads, and SMT virtualizes neither the physical threads nor the archi-
tecture state.

premium SMT processors for the high-end server markets,
e.g., the IBM POWERS [18] and POWERY support 8-way
SMT. Commodity processors by Intel and AMD on the other
hand feature a much lower degree of SMT, e.g., typically
two SMT threads. The reason is the prohibitive hardware
cost: in particular, IBM’s POWERS extends the register file
with a second level of so-called Software Architected Regis-
ters to keep track of the entire architecture state when con-
currently executing eight threads.

Supporting high degrees of multi-threading exacerbates
the architecture state problem or requires modifications to
software. In particular, Balanced Multithreading (BMT) [19]
virtualizes the physical (hardware) threads. BMT requires a
dedicated hardware structure to store the architecture state
for all logical threads. This so-called ‘inactive’ register file
incurs significant hardware overhead: 20.75 KB storage for
32 logical threads on the x86_64 instruction-set architecture;
supporting recent vector extensions (e.g., AVX-512)
increases the hardware cost to 68.75 KB per core, which is
prohibitive for commodity processors. Informing loads [20]
and co-routines [21] are software solutions to support high
degrees of multi-threading; unfortunately, they require sig-
nificant modifications to the source code and complex com-
piler optimizations to minimize switching latency.

This paper proposes Virtualized Multi-Threading (VMT), a
novel hardware multi-threading paradigm that virtualizes
the architecture state by storing the architecture state of
swapped-out logical threads in the (conventional) cache
hierarchy, while requiring no changes to software. Because
no dedicated structures are needed to maintain architecture
state, VMT’s hardware overhead is limited to 195 bytes per
core while supporting up to 32 logical threads. Fig. 1 illus-
trates how VMT virtualizes both the physical threads and
the architecture state (i.e., the registers), which allows VMT
to run a large number of threads without involving the OS.
In contrast to VMT, SMT does not virtualize the physical
threads, nor does it virtualize the architectural state, which
leads either to support a very small number of threads or to
incur a significant hardware cost. BMT virtualizes the phys-
ical threads but not the architecture state, thus requiring a
(large) dedicated hardware structure to store the architec-
ture state for all logical threads.

1387

Virtualizing the architecture state in the cache hierarchy
only really makes sense if it does not compromise the work-
load’s memory behavior. We find this to be the case for
graph workloads. Graph workloads align unfavorably with
superscalar out-of-order processors: they suffer from high
last-level cache (LLC) miss rates and limited memory-level
parallelism (MLP) because of pointer chasing through huge
graph structures, see Figs. 2a and 2b, respectively. (Section 3
provides details about our experimental setup.) At the same
time, there is abundant TLP to be exploited in graph work-
loads [22]. While these characteristics are well-known, we
make the new observation that graph workloads are insen-
sitive to L1 D-cache performance, see Fig. 2c: reducing the
L1 D-cache size from 32 KB to 1 KB does not degrade perfor-
mance.” In other words, graph workloads do not benefit
from a processor’s L1 D-cache.

We exploit this key observation in the VMT proposal by
virtualizing the architecture state in the processor’s cache
hierarchy. We find that VMT fits the characteristics of graph
workloads particularly well, i.e., virtualizing the logical
threads’ architecture state in the cache hierarchy does not
significantly interfere with the graph workload itself
because of its inherently poor cache locality. Experimental
results show that VMT significantly improves graph work-
load performance. For a quad-core 2-way SMT processor
resembling a current commodity processor, VMT with 16
logical threads per core improves performance by 1.74x on
average (and up to 3.17x) for a set of representative graph
workloads including graph500 [23] and the GAP bench-
mark suite [7].

In summary, this paper makes the following contributions:

e We propose virtualized multi-threading (VMT), a
novel multi-threading paradigm to support high
degrees of multi-threading (up to 32 threads) in a
commodity core at minimal hardware cost (195
bytes) by virtualizing the architecture state in the
processor’s cache hierarchy.

e We demonstrate that graph workloads fit VMT’s
architecture particularly well with average perfor-
mance improvements by 1.74x, and up to 3.17x.
Saving the architecture state in the cache hierarchy
does not significantly affect the graph workloads’
overall cache performance.

e We demonstrate that VMT’s performance benefit
comes from increased MLP. We further comprehen-
sively evaluate VMT’s mechanism, its performance
overheads, and its robustness across input graphs.
Finally, we demonstrate VMT’s ability to speed up
other parallel workloads, and we compare against a
state-of-the-art indirect memory access prefetcher
for graph workloads.

2 VIRTUALIZED MULTI-THREADING

Fig. 3 provides an overview of the virtualized multi-thread-
ing (VMT) architecture. The figure shows the different
stages and some of the main structures of the pipeline of a

2. Eliminating the L1 D-cache leads to a 16 percent average perfor-
mance degradation because of stack accesses.

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

1388
. 200 4
8
-rgu §150 3
® 5100)
£5 =
?ég £ 50 1
_& -
8 0 Q "& [o O O 0 (8] w) Q — o O O
a5 © o ﬁ + 8 e '*‘_5 o o ﬁ + 8
oo 14}
(a) Long-latency loads (b) MLP

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

@32KB m16KB O8KB Mm4KB O2KB @1KB mOKB

=
wn

c r
U =}

Norm. performance

o

o
o
o

bfs pr sssp tc
(c) L1 D-cache size sensitivity

cc g500

Fig. 2. Characterizing graph workloads in terms of (a) number of long-latency loads per 1K instructions, (b) MLP per thread, and (c) sensitivity to the
L1 D-cache size. Graph workloads feature a high number of long-latency loads and limited MLP, and almost no sensitivity to the L1 D-cache size.

Execute Write-back i Commit

LSU |—-| Data Cache
1

Fetch i Decode iRenamei Dispatch i

1 1 1 1

i i H i

i i | [i

i I_I i i Issue queue d

Fetch from

new thread Logic to save
and restore

architecture state Flush

LLC tag response
Thread scheduler

Fig. 3. VMT architecture overview. A commodity core architecture needs to be extended with a thread scheduler and a small dedicated unit containing
logic to insert load and store instructions to save and restore the logical threads’ architecture state.

commodity core. VMT requires few extensions: a thread
scheduler to orchestrate thread swapping plus logic to save
and restore the architecture state of the logical threads.
When a thread triggers an LLC miss, the thread scheduler
initiates thread swapping: it flushes the long-latency load
and subsequent instructions, saves the thread’s architecture
state, restores the architecture state of the incoming thread,
and starts fetching instructions for this thread. VMT is par-
ticularly appealing for commodity processors with either
single-threaded or SMT cores with limited degree of multi-
threading, e.g., two-way SMT. VMT is enabled only when
the workload benefits.

2.1 Virtualizing Architecture State

VMT’s key feature is to save the architecture state of the
logical threads in the processor’s cache hierarchy, mak-
ing the hardware cost to virtualize architecture state
‘virtually’ free. This is in sharp contrast to BMT [19]
which requires a dedicated hardware structure. The
architecture state per logical thread in current x86_64
architectures consists of 35 registers in total: 16 64-bits
general-purpose registers, 16 256-bit floating-point/vec-
tor registers, and 3 64-bit special-purpose registers (i.e.,
program counter, flags register, and FPU status register).
This amounts to 20.75 KB assuming 32 logical threads.
For the recent AVX-512 extension, the number of float-
ing-point/vector registers increases to 32 of 512 bits
each. Overall, at most 2.15 KB is required to store the
architectural state per thread.> Assuming 32 logical
threads, this amounts to a total of 68.75 KB architecture
state per core.

3. This assumes that the logical threads of the same process share
the extended thread state, which includes control registers (CRs) and
Model-Specific Registers (MSRs). If needed, (part of) this extended
thread state could be replicated per logical thread, and could be saved
and restored by the thread swap routine.

Note that we do not need to save all registers upon each
thread swap, i.e., we only save registers that have been writ-
ten since the last thread swap — this reduces the amount of
cache space occupied and reduces the time overhead of the
thread swap. Moreover, storing architecture state in the
cache hierarchy works synergistically with graph workloads.

2.2 Thread Swapping

Quickly swapping threads after a long-latency memory
request is key to achieve high performance. To this end, we
extend current commodity (SMT) cores with a switch-on-
event mechanism to swap out a thread that experiences a
long-latency load instruction and swap in a thread whose
memory request has already been completed. Implementing
the thread swap operation in hardware without the inter-
vention of the operating system (OS) enables fast migration
of threads, thereby hiding most of the memory access
latency.

Fig. 4 illustrates how thread swapping affects reorder
buffer (ROB) state. VMT exploits a key characteristic of
graph workloads and seeks to initiate the thread swap as
early as possible upon an LLC miss of the outgoing thread.
The reason is that there is little MLP to be exploited within a
single thread of execution. Starting the thread swap as early
as possible advances the execution of the incoming thread
and allows it to get to the next memory request faster,
improving MLP.

VMT identifies a long-latency load miss by receiving an
early miss reply upon an LLC tag lookup, which is propa-
gated from the LLC to the core. This is illustrated in Fig. 4a.
The core reacts by flushing the load miss and all younger
instructions in the ROB, while not canceling the in-flight
memory request. This action can be carried out using the
hardware that commodity cores implement to deal with
misspeculated loads or mispredicted branches. In particu-
lar, the core rebuilds the Register Alias Table (RAT) as is

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

FELIU ET AL.: VMT: VIRTUALIZED MULTI-THREADING FOR ACCELERATING GRAPH WORKLOADS ON COMMODITY PROCESSORS

; LLC miss!
|I12|I11|I10| I9| Is | I7| Iel Is | |4| I3 | 12 | I1|
Outgoing thread 0

| | | | | |I7|Ie||5||4||3||2||1|

Outgoing thread 0

Save arch. state
[[17]1s] s
Outgoing thread 0

Restore arch. state

| | |R6|R5|R4|R3|R2|R1-

Incoming thread 1 Outgoing thread 0

EERE

Incoming thread 1

(a) LLC miss detected

(b) Save architecture state
of outgoing thread

(c) Restore architecture state
of incoming thread

(d) Dispatch instructions
from incoming thread

Fig. 4. Thread swapping. Instruction 8 triggers a memory request. The
core flushes instruction 8 and all younger instructions, and dispatches
saveinstructions to store the architectural state of the outgoing thread.
Next, the core dispatches restoreinstructions of the incoming thread.
The core then continues dispatching and executing instructions from the
incoming thread.

done for mispredicted branches [24]. (See Section 3 for fur-
ther details.)

Next, the core starts executing hardware-injected store
instructions to save the architecture state of the outgoing
thread in the L1 cache, see Fig. 4b. The store instructions are
renamed as ordinary instructions and the issue logic solves
their dependencies with the instructions producing the reg-
ister values they are saving. Meanwhile, the instructions
that are older than the long-latency load that triggered the
thread swap are allowed to execute and drain the pipeline
as during normal operation.

Once the store instructions are dispatched into the ROB
and store queues, the core starts retrieving the architectural
state of the incoming thread, see Fig. 4c. These hardware-
injected load instructions are renamed and may possibly
issue before the store instructions of the outgoing thread,
reducing the overhead introduced by a thread swap.

Finally, after dispatching all restore instructions, the core
starts dispatching instructions from the incoming thread,
see Fig. 4d. The execution of these instructions may overlap
with the thread restore instructions and even with the save
instructions of the outgoing thread. In other words, VMT
does not need to have the entire architecture state of a
thread restored before restarting execution. As the restore
instructions get executed, ready instructions can be issued
(out-of-order).

Note that when a thread swap is initiated along a mispre-
dicted path, the thread swap is canceled (i.e., in-flight save
and restore instructions are flushed) and the thread state is
rolled back to the correct state after the mispredicted
branch. We find that this scenario is rare and has a negligi-
ble impact on VMT performance.

2.3 Hardware Support

VMT requires a small microprogrammed routine to insert
save and restore instructions in the pipeline, a mechanism
for early miss notification from the LLC, a reserved memory

1389

Thread Scheduler Physical Memory

VMT Control Register RMS Index
[j T] L, RMS
t vl Logical
Enable T L2kt Thread ID
Thread-Count
—1

Thread Queue

Written Bit Mask

w /e |

Thread ID

OS Visible
Memory

Dirty Bit Mask
R
T e | ——

Fig. 5. VMT thread scheduler. VMT requires a Control Register, Thread
Queue, RMS Index, and Written/Dirty Bit Masks.

Reaz;y Bit

space (RMS), and a thread scheduler that includes (i) a con-
trol register, (i) a RMS index, (iii) written and dirty register
masks, and (iv) the VMT thread queue, see Fig. 5.

VMT Control Register. VMT’s operation is controlled
through a special-purpose 16-bit control register. The regis-
ter is broken down into three fields. The first field consists
of a single Enable bit and is used to indicate whether VMT
execution is enabled for the current process. As we will dis-
cuss, applications can initiate VMT execution upon request
if deemed beneficial. The second field, Thread-Count,
denotes the number of logical threads VMT should virtual-
ize. By default, VMT virtualizes 16 logical threads per core.
However, a user or system operator, for example through
profiling-based analysis, may suggest a different number of
threads to virtualize; the Thread-Count field provides a
mechanism to do so. A 5-bit field is enough to virtualize up
to 32 threads. The last field, Logical-to-Physical Thread Map
(L2P-Map), keeps track of which logical thread is mapped to
which physical thread. For VMT implemented on top of a
single-threaded core, the L2P-Map indicates which logical
thread is currently mapped to the physical thread; all other
logical threads are swapped out. When implemented on top
of a two-way SMT core, two logical threads can be mapped
to the two physical threads available. The L2P-Map is
required to support context switching, as we will discuss in
Section 2.4. Assuming two physical threads and up to 32
logical threads, 10 bits is enough for the L2P-Map.

Reserved Memory Space. To save the architectural state of
swapped-out threads in the processor’s memory hierarchy,
we need to save its architectural registers in a dedicated
memory region. We reserve a small portion of the process-
or’s physical address space that cannot be accessed by the
OS and is otherwise unused, which we call the Reserved
Memory Space (RMS). Saving the architecture state in the
RMS instead of the OS’s memory structure for context
switches allows VMT to perform thread swaps in hardware,
without any intervention by the OS. The architecture state
of a thread in x86_64 is at most 2.15 KB as mentioned before.
For simplicity, we reserve 1 MB of the address space (for
example, in the highest address range), which is large
enough to hold up to 256 threads (conservatively) assuming
4 KB of architecture state per thread. Each thread is
assigned a 4 KB chunk in the RMS. The architecture state of
each thread starts aligned to a 4KB address (no cache block
contains architecture state of different threads) and is

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

1390

private. Therefore, it should not be evicted by other cores.
For each logical thread, we keep track of the 8-bit chunk
index in the so-called RMS Index.

Microprogrammed Routine and Register Masks. To virtualize
the architectural state of the logical threads, the hardware
needs to insert instructions to save and restore the architec-
tural state of the threads involved in a thread swap. This func-
tionality is provided by a small microprogrammed routine
(off the critical path) that iterates over the architectural regis-
ters and generates load and store instructions to save and
restore the architecture state to the RMS. These instructions
are directly inserted in the pipeline after the decode stage.

To reduce thread swap overhead, VMT minimizes regis-
ter saves and restores, as in [19]. When saving the architec-
ture state of an outgoing thread, the microcode checks a
dirty bit per architecture register which identifies whether
the architectural register has been modified during the last
execution epoch of the logical thread. Registers that are not
dirty do not need to be saved. VMT keeps a Dirty Bit Mask
per physical thread. The core sets the corresponding bit
when a thread writes a register and the entire mask gets
cleared when a thread is swapped out. A mask of written
bits per logical thread is used to determine the architectural
registers that a logical thread has ever written. A thread
needs to restore a register if it has ever written the register
or the outgoing thread wrote the register during its last
epoch (i.e., it is dirty). The Written Bit Mask is updated when
a thread is swapped out doing a logical OR operation
between the thread Dirty Bit Mask and Written Bit Mask,
and is cleared when VMT mode is initiated.

Because the save and restore operations operate on phys-
ical addresses, they bypass the TLB. Bypassing the TLB is
done using a multiplexer that selects between the memory
address provided by the instruction (for VMT save and
restore instructions) versus the translated address provided
by the TLB (for conventional load and store instructions).

Thread Queue. VMT thread scheduling requires a circular
queue, the Thread Queue (TQ), to keep track of the concur-
rently executing logical threads. Each TQ entry contains a
logical thread identifier plus a ready bit that identifies if the
memory request that triggered the thread swap has already
completed. A thread swap is started by a logical thread that
is being executed and triggers a memory request. Once the
architecture state of this thread is saved, the logical thread
is added at the TQ tail.

While the store instructions in charge of saving the archi-
tecture state of the outgoing thread are dispatched, an
incoming thread is selected. The thread at the TQ head is
selected for execution if its ready bit is set (i.e., its memory
request has completed). Otherwise, it is moved to the TQ
tail. We find that this situation is infrequent and has negligi-
ble impact on performance. If the number of logical threads
is low, the thread will be re-selected soon; if, on the other
hand, the number of logical threads is high, the probability
that its memory request is still pending is low.

Note that the thread selection logic is out of the process-
or’s critical path and does not need to select the next thread
in a single cycle as the outgoing thread requires several
cycles to insert all of its save instructions. Once this opera-
tion is completed, the incoming thread starts inserting
instructions in the pipeline to restore its architecture state.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Hardware Cost. We assume 32 logical threads and 2 physi-
cal threads per core. The VMT control register requires 2
bytes of storage, as mentioned before. The TQ incurs 24
bytes of storage as it keeps track of up to 32 logical thread
IDs and a ready bit per thread in a circular queue. The RMS
Index requires 32 bytes of storage: one byte per logical
thread. We need a 32-bit Written Bit Mask for each of the 32
logical threads, and we need a 32-bit Dirty Bit Mask for the
2 physical threads.* The microcode state machine for gener-
ating the save and restore instructions requires a counter to
iterate over the architectural registers (6 bits). Put together,
implementing VMT in a 2-way SMT core requires 195 bytes
of storage.

2.4 Operating System Support

An application requests VMT support from the OS, e.g.,
when the application reaches a parallel section. To grant
VMT support, the OS sets the Enable bit in the VMT control
register of the core. If the application requests a particular
number of logical threads to be virtualized, the Thread-
Count field is set accordingly in the control register. Other-
wise, the default number of logical threads per core is
assumed (i.e., 16). A RMS Index is set for the logical threads.
Finally, the hardware initializes the TQ with the logical
thread IDs and the ready bits are set. The Written/Dirty Bit
Masks are cleared. Once this is done, VMT is operational
and the OS returns to the application, which now spawns as
many threads as the underlying machine exposes logical
threads.

During VMT operation, logical threads are swapped in
and out without intervention of the OS. The L2P-Map keeps
track of the current logical-to-physical thread mapping.
From the OS’ perspective, all the application threads
mapped onto the core are running simultaneously as logical
threads, even though only a limited number of threads are
intermittently executing as physical threads. VMT works
with any thread scheduling policy but VMT performance is
maximized when multiple threads from the same applica-
tion are co-scheduled to maximize the exploitable MLP
across threads. Thus, we assume gang scheduling, which
co-schedules threads from the same process on the same
core. Any event that interrupts the execution of one thread
(e.g., a page fault) will context-switch all threads on that
core; the threads are re-scheduled onto the core again once
the exception or interrupt returns.

The application disables VMT, e.g., once the parallel sec-
tion terminates, by clearing the Enable bit in the VMT con-
trol register. Once VMT is disabled, the core only exposes
the physical threads to the OS.

Context Switching. The VMT control register, the TQ,
the RMS Index registers as well as the Written/Dirty Bit
Masks are stored as part of the process control block
(PCB) upon a context switch. To support context switch-
ing under VMT, the OS makes a distinction between the
logical threads that are swapped-in versus the ones that
are swapped-out. The OS does not need to save the archi-
tecture state of the swapped-out threads, because the

4. We need the masks for the 32 general-purpose registers only; the 3
special-purpose registers are always saved and restored.

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

FELIU ET AL.: VMT: VIRTUALIZED MULTI-THREADING FOR ACCELERATING GRAPH WORKLOADS ON COMMODITY PROCESSORS

architecture state of those threads has already been saved
in their respective RMS chunks. On the other hand, for
the swapped-in threads, the OS needs to save their archi-
tecture state using the conventional context switch rou-
tine. When the OS re-schedules the gang onto the core,
the OS re-installs the VMT control register, the TQ, the
RMS Index registers, and the Written/Dirty Bit Masks.
This re-enables VMT (i.e., the enable bit is set), re-sets the
number of logical threads (i.e., through the Thread-Count
field), and re-stores the latest logical-to-physical thread
mapping (i.e., through the L2P-Map).

Security Concerns. Security vulnerabilities are mitigated
with two actions. First, VMT operates at the hardware level
and only VMT save and restore instructions are allowed to
access the RMS which cannot be accessed by the OS nor
application software. Second, the OS manages the RMS
indices and, in case multiple applications co-run on differ-
ent cores in a multicore processor, the OS would need to
assign a different RMS base address to each application that
requests VMT execution to ensure that co-running applica-
tions cannot read or write each other’s chunk in the RMS.
When an application completes its VMT execution, the
threads’ state in the cache hierarchy is flushed by the hard-
ware. Only then can the OS assign a RMS region to another
application.

VMT does not increase vulnerability to recent microarch-
itectural side channel attacks such as Meltdown [25] and
Spectre [26] because it does not increase the amount of spec-
ulative work performed. Moreover, hardware countermeas-
ures are applicable to VMT-enabled processors. Other
attacks exploit lazy saving and restoring of floating-point
architectural registers during a context switch to obtain
their values [27]. VMT does not increase the vulnerability to
these attacks either since it performs lazy saving and restor-
ing of registers only when swapping threads within a given
application.

2.5 Setting the Number of VMT Threads

VMT performance scalability with logical thread count is
limited by at least three factors: (i) by the amount of
thread-level parallelism in the application (i.e., the appli-
cation by itself should scale well with thread count); (ii)
by the application’s memory intensity, or in other words,
by how quickly threads can get to the next LLC miss and
thus swap threads; and (iii) by how fast VMT can swap
threads, which depends on the number of dirty registers
that need to be saved and the number of written registers
that need to be restored. All three factors depend on the
workload and its interaction with the underlying architec-
ture. VMT performance benefits saturate with increasing
logical thread count when there is always a swapped-out
thread with its memory request completed (and thus
ready to be swapped in again) when a currently running
thread triggers a memory request. Increasing the number
of logical threads beyond this point does not further
improve performance. On the contrary, performance may
even degrade if, for example, saving and restoring the
architectural state of all threads affects cache perfor-
mance, or if the amount TLP is limited because of syn-
chronization overheads.

1391

TABLE 1
Simulated Multicore Processor Configuration

4 cores at 3.66 GHz
1 versus 2
97 / 224 entries
72 / 66 entries
dispatch: 4; issue: 6; commit: 4
8 (front-end)

168 64-bit int, 168 128-bit fp
hybrid bimodal, gshare, loop

Cores and frequency
SMT threads

Issue queue / ROB
Load / store queue
Processor width
Pipeline depth
Register file

Branch predictor

L1 I-cache 32KB, 4-way, 2 cyc

L1 D-cache 32KB, 8-way, 4 cyc, tag lookup: 1 cyc
Private L2 cache 256 KB, 8-way, 8 cyc, tag lookup: 3 cyc
Shared LLC 8 MB, 16-way, 30 cyc, tag lookup: 10 cyc
LLC prefetcher stride prefetching, 16 streams per core

L1 TLBs DTLB: 64-entry, 4-way ITLB: 128-entry, 4-way
L2 TLB shared TLB: 512-entry, 4-way

MSHR 60 entries

Memory DDR4, 51.2GB/s, 45ns

For the graph workloads and the processor architec-
ture considered in this work, we find that 16 logical
threads per core is optimal on average, as we will quan-
tify in the evaluation section. We therefore employ 16
VMT threads per core by default. However, we provide
hardware support for up to 32 VMT threads per core, as
some workloads benefit from enabling more than 16 VMT
threads per core. VMT provides support to set the num-
ber of VMT threads per core on a per-application basis. A
profile-driven VMT approach could be used to determine
the optimum number of VMT threads for each workload:
VMT performance is evaluated as a function of VMT
thread count using a training input, based on which the
optimum VMT thread count is determined. For a previ-
ously unseen production input, the VMT thread count is
then set to this optimum VMT thread count. Note that
profiling incurs a one-time cost and is paid off across mul-
tiple runs of the same application.

3 EXPERIMENTAL SETUP

We evaluate VMT using the most accurate cycle-level core
model in Sniper [28] — a parallel, fast and hardware-vali-
dated multicore simulator — which was extended to faith-
fully model a state-of-the-art multi-core SMT processor. We
consider two baseline quad-core processor configurations
with single-threaded and 2-way SMT cores (i.e., one and
two physical threads per core), respectively. A total number
of 128 and 256 threads are enabled on the chip, respectively,
assuming VMT with 32 logical threads per physical thread,
as opposed to 4 and 8 threads in the baseline configurations.
We expect that VMT provides significant performance bene-
fit for processors with several tens of cores since there is
abundant TLP to be exploited in graph workloads [22] and
memory bandwidth would only be saturated if there are
lots of independent, overlapping memory accesses, which is
not the case for graph workloads because of dependent
misses. The simulated processor configuration is summa-
rized in Table 1. Our baseline core configuration closely
resembles a commodity processor like Intel’s Skylake micro-
architecture [29] with a three-level cache hierarchy and a
stride-based LLC hardware prefetcher with 16 streams per
core. Given that graph workload performance is dominated
by irregular memory accesses with limited temporal and

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

1392

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Norm. perf.

Norm. perf.
corENNWW
ouvouvouowuw

(b) 4-core 2-way SMT processor

Fig. 6. Speedup through VMT with up to 32 logical threads per core for a single-threaded baseline core (a) and a 2-way SMT baseline core (b). VMT
yields substantial performance benefits over a conventional commodity processor.

spatial locality, VMT performance is insensitive to cache
size and replacement policy. We faithfully model VMT. The
VMT thread scheduler is notified of an LLC miss 17 cycles
after the load was issued by the core: this includes 14 cycles
of cumulative tag lookups in the L1, L2 and LLC, plus 3
additional cycles to account for the time it takes for the core
to be notified of the LLC miss through a dedicated channel.”
We also account for the time the core requires to rebuild the
RAT once it flushes the LLC-missing load and all younger
instructions: the core restores the last valid checkpoint and
traverses the ROB to update the RAT accordingly. We
assume that a checkpoint is available at the youngest branch
from which the core traverses the ROB updating the RAT at
a pace of 4 instructions per cycle until reaching the youngest
instruction in the ROB. This assumes a RAM-based
RAT [30]; a CAM-based RAT [31] would incur even lower
latency overhead since the RAT could be checkpointed on
every load instruction. Our simulation experiments report
that rebuilding the RAT takes 1.8 cycles on average (and at
most 2.9 cycles, for graph500). The fact that the LLC-miss-
ing load is frequently the oldest instruction in the ROB
when the miss is detected greatly contributes to the low
RAT recovery latency.

It is worth noting that since all logical threads mapped to
the same core share the same virtual address space, the
entries in the data and instruction TLBs do not need to be
flushed upon a thread swap. Similarly, the branch predictor
tables are also shared — we observe minimal impact on
branch prediction accuracy when sharing the branch predic-
tor across threads for most of the benchmarks.®

We consider graph500 v2.1.4 [23] and the six applica-
tions from the GAP benchmark suite [7]: Betweenness Cen-
trality (bc), Breadth-First Search (bfs), Connected
Components (cc), PageRank (pr), Single-Source Shortest

5. An alternative implement would be to notify the core via a mes-
sage sent across the NoC. In any case, we find that VMT is rather insen-
sitive to the LLC notification latency. VMT’s performance benefit is
only marginally affected by an increased LLC notification latency:
1.74x improvement (for 3-cycle latency) versus 1.70x improvement
(for 10-cycle latency).

6. Branch misprediction rate decreases from 6.7 to 3.5 percent for cc
and increases from 5.5 to 5.8 percent for sssp; the other benchmarks
are unaffected.

Path (sssp) and Triangle Count (tc). We skip the initializa-
tion of the graphs as well as the preprocessing steps. We run
each workload twice: we use the first execution to warm up
the caches, and we simulate and report timing for the second
execution. As input, we use graphs generated with the built-
in graph generator with size 21 (except for tc¢). These graphs
are formed by 22! vertices following the Kronecker distribu-
tion, complying with the graph500 specifications. The over-
all number of instructions simulated in detail ranges from
200 million for bfs to 2.7 billion for pr. tc is less memory-
intensive than the other workloads and its instruction count
grows much faster with graph size. To keep simulation time
reasonable, we simulate tc with graphs of size 19, which
results in 24.5 billion instructions. Section 4.4 analyzes VMT
performance when running real-world graphs.

4 EVALUATION

4.1 Overall Performance
Fig. 6 reports performance normalized to the baseline com-
modity quad-core processor with single-threaded (Fig. 6a)
and 2-way SMT (Fig. 6b) cores, respectively, for different
configurations of the proposed VMT architecture: (a) single-
threaded cores enhanced with VMT support and 2 to 32 logi-
cal threads per core, and (b) SMT cores enhanced with VMT
and 4 to 32 logical threads per core. Thread swap overhead is
accounted for in the results. VMT provides significant per-
formance benefits. Focusing on the 2-way SMT configuration
first, VMT improves performance by 3.17x for graph500,
2.86x for be, 1.72x for cc, and 1.53 x for pr. The highest per-
formance is typically achieved for 16 logical threads. With
this large number of threads, the number of cycles the core
has all threads stalled waiting for the memory requests to be
completed is limited. Consequently, increasing the number
of logical threads beyond 16 provides only marginal perfor-
mance benefits. For some workloads, performance even
degrades, for the reasons alluded to before. VMT also pro-
vides a significant performance boost for the single-threaded
cores, improving performance by 2.68x for graph500,
2.52x for be, 1.56x for pr, and 1.55x for cc.

We observe somewhat different behavior for tc com-
pared to the other graph workloads, for two reasons: (1) tc
is less memory-intensive, and (2) it is highly imbalanced as

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

FELIU ETAL.: VMT: VIRTUALIZED MULTI-THREADING FOR ACCELERATING GRAPH WORKLOADS ON COMMODITY PROCESSORS 1393

25

20

a 15
S

S 10

5

0

(a) 4-core single-threaded processor

30

a 20
S
=

10

8
pr

SMT 4 8

bc

16 32 |SMT 4 8

bfs

16 32 |SMT 4 8

cc

16 32 |SMT 4

16 32 |SMT 4

8
sssp

16 32 |SMT 4

8
tc

16 32 |SMT 4 8 16 32 |SMT 4
graph 500

8 16 32
average

(b) 4-core 2-way SMT processor

Fig. 7. Quantifying MLP benefits under VMT. Increased MLP strongly correlates with VMT’s performance benefits.

the first thread receives a much higher load [8]. VMT does
not improve performance for the single-threaded core
because VMT essentially serializes the execution of various
logical threads without improving MLP (as we show next).
The performance improvement observed for the 2-way
SMT core is a result of overlapping the execution of multiple
lightly loaded threads with the heavy-loaded thread.

Memory-Level Parallelism. We find that memory-level par-
allelism (MLP) is the key contributor to improved perfor-
mance, see Fig. 7 which reports MLP for the different
processor configurations: improvements in MLP strongly
correlate with the VMT performance gains. MLP improves
with an increasing number of logical threads, and for most
benchmarks, MLP tends to saturate around 8 or 16 logical
threads. The degree of MLP exposed through VMT is a
result of the workload’s memory intensity, thread swap fre-
quency, and thread swap overhead (i.e., number of save
and restore instructions). graph500 and bc reach the high-
est MLP and performance gains because of their relatively
high thread swap frequency and few save and restore
instructions per thread swap, as we will quantify in the next
section. The other workloads swap threads at a lower pace
and the MLP improvement over 8 logical threads is limited.
Increasing the number of logical threads further does not
improve MLP because the core is unable to swap logical
threads quickly enough to expose more parallel memory
requests. tc is the least memory-intensive benchmark of the
workloads considered in this study, see Fig. 2a, hence the
amount of extracted MLP is limited.

VMT Default Configuration. As noted before, the optimum
logical thread count varies across benchmarks, however, we
find that, on average, optimum VMT performance is achieved
for 16 logical threads for both the single-threaded and SMT
cores. This configuration leads to an average speedup of
1.52x (and up to 2.68x) for VMT on top of the baseline 4-core
processor with single-threaded cores, and 1.74x (and up to
3.17x) for VMT on top of the baseline 4-core processor with 2-
way SMT cores. In the remainder of this paper, we report
VMT results assuming 16 logical threads and 2 physical
threads per core, unless stated otherwise.

4.2 Saving and Restoring Architecture State
We now quantify VMT’s thread swap operation, i.e., thread
swap frequency, the number of save and restore

instructions per thread swap, and the hit rate of the restore
instructions in the cache hierarchy.

Thread Swap Frequency. A high thread swap frequency is
needed to engage VMT: the smaller the number of instruc-
tions between thread swaps, the higher the opportunity to
expose MLP. Fig. 8a quantifies the number of instructions
between two thread swaps which is a function of the work-
load’s memory intensity. The number of instructions
between thread swaps varies from 74 (graph500) to 150
instructions (bfs) on average; tc is the outlier with 3,514
instructions between thread swaps because of its relatively
low memory intensity.

Number of Save and Restore Instructions. It is important that
the overhead per thread swap is as small as possible. A first-
order metric for thread swap overhead is the number of
save and restore instructions per thread swap, see Fig. 8b.
The number of save instructions is smaller than the number
of restore instructions because the save instructions only
need to store the dirty architecture registers that were writ-
ten in the last execution epoch; the restore instructions need
to load all the architecture registers that the thread has ever
written.

Hit Rate for Restore Instructions. It is critical that the
restore instructions find the architecture state as close to the
core as possible, and preferably in the L1 data cache. Fig. 9
reports the levels in the memory hierarchy at which the
restore instructions hit when running the sssp benchmark.

200 3,514 @ Save insts. @Restore insts.
150 30
100 20
50 10
0 o 055w o« a o o
O nu O - o O Y +—
o] “_5 o o g +— % o 5 © o § %

(a) Avg. number of insts.
between thread swaps.

(b) Avg. number of save and restore
insts. involved in a thread swap.

Fig. 8. Average number of instructions between VMT thread swaps and
average number of save and restore instructions involved in a VMT
thread swap. A smaller number of instructions between thread swaps
allows for triggering them faster. A smaller number of save and restore
instructions reduces the swapping overhead.

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

o
w
©
=

OL1 ®mL2 OL3 BEMEM

1.0
0.8
0.6

0.2 H
0.0

Restores hit location
o
S
[

2 4 8 16 32| 4 8 16 32
of logical threads # of logical threads

Fig. 9. Percentage of restore instructions that hit in L1, L2, L3 and main
memory for sssp. VMT restore instructions most frequently hit in L1.

B VMT w/o written reg mask
O Idealized VMT

B VMT w/o any reg mask
BVMT

Norm performance
© o r PN
o »n O nn O

4 8 16 32 4 8 16 32
of logical threads # of logical threads
Single-thread cores 2-way SMT cores

Fig. 10. Comparing VMT variants against idealized VMT. Register masks
significantly reduce VMT overhead.

(sssp is the benchmark with the highest number of restore
instructions missing in L1.) These results show that VMT
most often restores the architectural state of the threads
from the L1 cache. The fact that graph workloads present
poor memory locality and the high pace at which threads
are swapped in and out allows for a high L1 hit rate when
restoring architecture state. Even for sssp, the hit rate in L1
only reduces notably for 32 logical threads, in which case
the L1 hit rate of the restore instructions reduces to 85 per-
cent; this increases thread swapping latency which in turn
dampens VMT’s performance benefits. Note that the archi-
tectural state never gets evicted to main memory and very
infrequently to the LLC.

4.3 VMT Performance Analysis

It is instructive to analyze VMT’s performance contributors
and its maximum potential. Fig. 10 evaluates four VMT var-
iants: (i) VMT without any register masks; (ii) VMT with the
dirty register masks (but no written register mask), (iii) VM
with both the dirty and written register masks (i.e., the pro-
posed VMT solution), and (iv) an idealized version of VMT
with an unrealistically large register file to hold the architec-
tural state for all logical threads. The latter does not trigger
any overhead for saving architecture state.

VMT without register masks outperforms the baseline 2-
way SMT processor by 1.56x. Enabling the dirty register
mask increases performance to 1.68x. Enabling both the
dirty and the written register masks increases performance
by 1.74x. The idealized VMT yields a 2.00x speedup. We
conclude that the register masks are an important compo-
nent to reduce VMT overhead. We also find that the gap
with an idealized version of VMT is considerable.

We further find that the impact of storing a thread’s
architecture state in the cache hierarchy on cache perfor-
mance is limited, see Fig. 11 which quantifies the impact of
VMT on L1 data miss rate: the L1 D-cache miss rate is not

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

EVMT O Idealized VMT

© o oo
O KB N W »

L1D miss rate

E ==

SsSsp tc g500

Fig. 11. L1 D-cache miss rate for VMT versus idealized VMT. VMT mar-
ginally impacts the L1 D-cache miss rate by saving architecture state in
the cache hierarchy.

bc bfs cc pr

3 @ Google @ Skitter M Stackoverflow [US roads O Wikipedia
Py
5 2
o
€1
o
=4

0

bc bfs cc pr sssp g500 h mean

Fig. 12. Normalized performance for VMT compared to our baseline.
VMT offers significant performance improvements across workloads
and input graphs.

significantly affected.” We thus conclude that VMT’s perfor-
mance overhead is mainly caused by the time required to
save and restore a thread’s architecture state.

4.4 Input-Graph Sensitivity

We now evaluate VMT performance across input graphs.
We evaluate different real-world graphs taking the profile-
driven VMT approach. Based on a profiling phase, i.e., per-
formance evaluation carried out using the Kronecker-based
graph, we set the optimum number of threads for each
workload as follows: 32 threads for graph500, 16 threads
for bc, bfs, cc, and pr, and 8 threads for sssp.? Fig. 12
reports VMT performance normalized to the baseline pro-
cessor across the evaluated input graphs. This includes five
real-world graphs [32]: Google, Skitter, Stackover-
flow, US-roads and Wikipedia.

The key conclusion is that VMT provides significant per-
formance benefits across the broader set of input graphs,
even though the achieved benefits vary across input graphs
(and workloads). The highest performance improvement
(1.79x) is reported for the Stackoverflow graph. The Goo-
gle and Skitter graphs result in smaller working sets,
which in turn results in lower LLC MPKIs and consequently
somewhat lower VMT speedups. On average, across all the
real-world graphs, the performance benefit of VMT com-
pared to the baseline SMT architecture amounts to 1.41x.

4.5 Other Parallel Workloads

As extensively argued, VMT fits the characteristics of graph
workloads particularly well. However, VMT can also signif-
icantly improve performance for other memory-intensive

7. We note that the graph workloads experience an L1 I-cache miss
rate of less than 1 percent. In addition, we find that VMT affects TLB
performance only marginally. Not shown here because of space
constraints.

8. tc is not evaluated here since it requires undirected graphs
whereas the real-world graphs evaluated are directed.

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

FELIU ET AL.: VMT: VIRTUALIZED MULTI-THREADING FOR ACCELERATING GRAPH WORKLOADS ON COMMODITY PROCESSORS

2.0
1.5

1.0
0.5
0.0

bfs hotspot srad

Norm. Perf.

pathfinder kmeans

Irregular workloads Rodinia workloads

Fig. 13. Normalized performance for VMT for the Rodinia benchmarks.
VMT improves performance for parallel applications other than graph
workloads. The performance improvements depend on the workload’s
TLP, memory intensity, and exploitable MLP within and across threads.

parallel workloads. The achieved benefits depend on a
workload’s memory-intensity, its TLP, and its MLP. We
evaluate VMT for two workloads that perform indirect
memory accesses: Conjugate Gradient (CG) from the NAS
Parallel Suite, which performs irregular memory accesses
on a large, sparse, and unstructured matrix; and Hash Join
(HJ) [33], a kernel that mimics database systems and per-
forms irregular memory accesses through different hash
tables. In addition, we also consider a set of Rodinia v3.1
benchmarks with an LLC MPKI above 1. Fig. 13 reports nor-
malized performance for VMT compared to the baseline
processor; benchmarks are sorted from highest to lowest
LLC MPKI. We report high speedups through VMT for the
two irregular workloads: 1.80x for CG and 1.78x for HJ.
Regarding the Rodinia benchmarks, VMT outperforms SMT
by up to 1.34x (bfs); speedup is more moderate for the
other, less memory-intensive, benchmarks.

4.6 Comparison to BMT
In addition to VMT being substantially more hardware-
efficient than BMT, as extensively argued before, there
are three other differences in the underlying mechanisms
that impact performance. (1) BMT waits for a fixed num-
ber of cycles before triggering a thread swap: the LLC
hit latency plus some additional cycles to account for
cache contention. (2) BMT waits until the LLC-missing
load is the oldest instruction in the reorder buffer (ROB)
to trigger the thread swap while VMT triggers the thread
swap as soon as the miss notification is received. (3)
BMT incurs a 10-cycle access latency to access the inac-
tive register file (IRF).’

In our implementation of BMT we trigger a thread swap
if a load does not complete its execution in 60 cycles (53
average LLC hit latency plus 7 additional cycles to account
for cache contention) and the load is the oldest instruction in
the ROB. In contrast, VMT triggers a thread swap as soon as
an LLC tag miss is detected (i.e., 14 cycles L1/L2/LLC tag
lookup plus 3 cycles to notify the core). This is motivated by
the observation that there is limited per-thread MLP for
graph workloads. In addition, we compare against BMT
with a 10-cycle IRF access latency and BMT with a more
aggressive IRF access latency of 4 cycles.

9. We assume the same access latency as in the BMT proposal even
though we consider a larger number of logical threads (12 in the origi-
nal BMT proposal versus up to 32 in our evaluation) and a bigger archi-
tectural state per thread (496 bytes in the original BMT proposal versus
664 bytes in our evaluation), which results in a 3.6 x bigger IRF. The 10-
cycle access latency is motivated in the BMT paper by its distance from
the core being similar to a 2MB L2 cache.

1395
W BMT (10-cycle IRF) @BMT (4-cycle IRF) @VMT OIMP
o 3
]
<2
£
c 1
2
0
bc bfs cc pr sssp tc g500 h mean

Fig. 14. Normalized performance for VMT, BMT with 10- and 4-cycle IRF
access latency, and IMP compared to our baseline. VMT outperforms
the original BMT proposal by 22 percent on average while incurring
much less hardware overhead (21 KB per core for BMT versus 195
bytes for VMT). VMT outperforms IMP by 49 percent: IMP’s indirect pat-
tern detection approach is less effective for aggressive out-of-order
cores.

Fig. 14 compares VMT against BMT with 10- and 4-cycle
IRF access latency. VMT achieves higher performance than
BMT. On average, VMT outperforms BMT, assuming a
latency of 10 and 4 cycles to the IRF, by 22 and 19 percent,
respectively. These results show that for graph workloads it
is important to switch threads early, i.e., there is more MLP
to be exploited across threads than within a thread.

4.7 Comparison to IMP

The Indirect Memory Prefetcher (IMP) [2] is a state-of-the-
art hardware prefetcher for graph workloads and indirect
memory accesses in the general form of A[B[ill, where
arrays A and B refer to the data and index arrays, respec-
tively. The index array (B[i]) is typically stored consecu-
tively in memory and accessed sequentially. Accesses to the
data array (A[B[i]), however, depend on the value of Bli],
and tend to touch non-consecutive memory locations. The
IMP approach is to first detect a streaming pattern to the
index array and then identify an indirect pattern. IMP there-
fore relies on a mechanism that needs to first observe an
access to the index array (B[i]), then an access to the data
array (A[B[i]]), before the next element in the index array (B
[i+1]) is accessed. While this condition is always met for in-
order cores, which is the baseline configuration assumed in
the IMP work, we observe that speculation in aggressive
out-of-order cores frequently disturbs this access pattern
(even when index array accesses hit in the L1), which com-
plicates identifying indirect memory access patterns (and
gaining confidence on the detected ones).

Fig. 14 compares the performance benefits achieved by
VMT against IMP. IMP improves performance compared to
our baseline (which includes a stride prefetcher) by 16 per-
cent but falls far from the performance benefit provided by
VMT (1.74x). The highest benefit is achieved for bfs and
pr for which IMP improves performance by 31 and 28 per-
cent, respectively.

5 RELATED WORK

Multi-Threading Paradigms. Most of the body of research in
hardware multi-threading relates to the three main para-
digms: coarse-grain, fine-grain and simultaneous multi-
threading. The fundamental innovation by VMT compared
to prior work is that it virtualizes the logical threads” archi-
tecture state.

Coarse-Grain Multi-Threading (CGMT) processors [13],
[14] switch logical threads upon miss events, e.g., a long-

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

1396

latency memory access, e.g., Intel Montecito and Sun Rock.
Fine-Grain Multi-Threading (FGMT) processors switch
between logical threads on a per-cycle basis, e.g., Cray
ThreadStorm [15]. Simultaneous Multi-Threading (SMT)
[16] is the only multi-threading paradigm that allows a core
to issue instructions from different threads in the same
cycle. SMT is implemented in many commodity and server
processors manufactured by Intel [29], AMD, and IBM [18].

Finally, Balanced Multi-Threading (BMT) [19] virtualizes
physical threads which exacerbates the problem of main-
taining the architecture state for all logical threads. In fol-
low-on work, Brown et al. [34] propose to share BMT’s
inactive register file across cores, allowing threads to swiftly
migrate across cores.

Memory-Backed Register File. Prior work has devised solu-
tions to overcome the constraints imposed by the limited
register file, particularly for multi-threading architectures.
Soundararajan et al. [35], Nuth et al. [36], Kogge et al. [37],
Oehmke et al. [38] and Li ef al. [39] present hardware mecha-
nisms to virtualize the logical registers by treating the phys-
ical register file as a cache of the much larger memory-
mapped logical register space. These proposals require a
deep redesign of the rename stage and/or register file,
which opposes to our goal of requiring minimal hardware
modifications on top of a commodity processor. Moreover,
this prior work does not describe how virtualizing the archi-
tecture state enables a novel multi-threading paradigm that
fits graph workloads well.

Tackling the same problem in a different scenario,
Huguet et al. [40] propose a combination of architectural
and compilation support to reduce the register saves and
restores across function calls. Similar support could be
added to VMT to reduce register saves and restores
involved in a thread swap.

Improving Graph Workload Performance. A selection of
prior work proposed hardware and software techniques to
improve graph workload performance. Yu et al. [2] devise
the indirect memory prefetcher (IMP), which is able to pre-
fetch specific irregular patterns but relies on an indirect
memory pattern detection mechanism that turns out to be
less effective on aggressive out-of-order cores compared to
in-order cores. We have shown that VMT outperforms IMP
by a significant margin. Kiriansky et al. [3] extend the com-
piler to transform annotated loops with indirect memory
references into batches of sequential DRAM accesses. Ains-
worth et al. [4] propose an event-triggered programmable
prefetcher that generates prefetches from annotated source
code. Mukkara et al. [41] propose HATS, a hardware-accel-
erated traversal scheduler to improve graphs locality with-
out expensive preprocessing. HATS requires changes in the
graph processing framework and its performance benefits
are related with the community structure of the graphs.
Finally, Faldu et al. [42] propose GRASP, domain-specific
LLC management for graph workloads to protect hot verti-
ces against cache thrashing. GRASP requires graphs to be
reordered to induce spatial locality; further, the set of hot
vertices it can protect is limited by the LLC size. VMT can
be applied to unmodified graphs.

Accelerators have also been proposed for graph work-
loads. Ahn et al. [5] propose a programmable processing-
in-memory accelerator to provide memory-capacity-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

proportional performance in large-scale graph processing.
Ozdal et al. [6] propose a customizable architecture opti-
mized for different access patterns and graph workloads.
Ahn et al. [5] and Zhuo et al. [43] propose Processing-In-
Memory (PIM) architectures to maximize and optimize
memory bandwidth usage.

Software Techniques to Improve MLP. Software techniques
require modifications to source code or binaries, unlike
VMT. Horowitz et al. [20] propose a new class of memory
operations, called ‘informing memory operations’, to let
software know if a memory reference suffers a cache miss.
They briefly discuss how this mechanism allows for imple-
menting a software-based approach in which a miss handler
switches threads upon cache misses. More recent software
approaches focus on improving MLP in pointer-chasing
codes. In particular, Chen et al. [44] hide the cache miss
latency associated with join operations in memory-sized
hash tables by overlapping misses with computation. Koc-
berber et al. [45] propose asynchronous memory access
chaining (AMAC) for exploiting inter-lookup parallelism to
hide the memory access latency in in-memory databases.
Psaropoulos et al. [21] propose coroutines to interleave
among different instruction streams upon cache misses. The
compiler encodes the different stages of a lookup within the
coroutine and separates them with suspension/resumption
points on potentially LLC-missing loads marked by the
user. Unlike VMT, coroutines require rewriting the code
and cannot be used in existing binaries. Nevertheless, com-
paring VMT against this software approach could be an
interesting avenue for future work.

6 CONCLUSION

Graph workloads highly benefit from thread-level parallel-
ism as different threads can issue independent memory
requests, exposing MLP and improving performance.
Multi-threading architectures are therefore an excellent fit
for emerging graph workloads. Unfortunately, all existing
multi-threading designs require dedicated hardware struc-
tures for storing the architecture state of all logical threads.
This leads to an unjustifiably high hardware cost for com-
modity processors.

This paper proposes Virtualized Multi-Threading, a novel
hardware multi-threading paradigm for commodity SMT
processors to accelerate graph workloads at minimal hard-
ware cost. VMT virtualizes an SMT’s physical thread con-
text among a large number of logical threads that are
swapped in and out upon long-latency memory requests.
VMT’s key innovation is to virtualize the logical threads’
architecture state by saving the architecture state in the pro-
cessor’s cache hierarchy, to minimize hardware cost. We
further find that graph workloads are insensitive to L1 D-
cache performance, in addition to having TLP, high LLC
miss rate and low MLP, hence they are a particularly good
fit for VMT. Our experimental results report that VMT
achieves an average speedup of 1.74x (and up to 3.17x) for
a set of representative graph workloads, while incurring a
minimal hardware cost of 195 bytes per core and limited
additional logic.

The overall conclusion is that VMT is a promising para-
digm to dramatically speed up graph workload performance.

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

FELIU ET AL.: VMT: VIRTUALIZED MULTI-THREADING FOR ACCELERATING GRAPH WORKLOADS ON COMMODITY PROCESSORS

Its extremely low hardware cost paves the way for adoption in
current commodity processors. At the meta level, this work
demonstrates a promising direction to innovate general-pur-
pose processors through small hardware modifications with
substantial performance improvements for important and
emerging classes of workloads.

ACKNOWLEDGMENTS

This work was supported in part by the Spanish MCIU and
AEI, Spain, as well as European Commission FEDER funds,
under grants RTI2018-098156-B-C53 and RT12018-098156-B-
C51. The work of Josué Feliu was supported by a Juan de la
Cierva Formacion Contract under Grant FJC2018-036021-1.
The work of Lieven Eeckhout was supported in part by the
European Research Council Advanced Grant agreement no.
741097 and in part by the Flanders Research Council under
Grant G.0144.17N.

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

(7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthuk-
rishnan, “One trillion edges: Graph processing at Facebook-scale,”
Proc. Int. Conf. Very Large Data Bases, vol. 8, no. 12, pp. 1804-1815,
Sep. 2015.

X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect
memory prefetcher,” in Proc. Annu. IEEEJACM Int. Symp. Micro-
architecture, Dec. 2015, pp. 178-190.

V. Kiriansky, Y. Zhang, and S. Amarasinghe, “Optimizing indirect
memory references with MILK,” in Proc. Int. Conf. Parallel Archit.
Compilation, Sep. 2016, pp. 299-312.

S. Ainsworth and T. M. Jones, “An event-triggered programmable
prefetcher for irregular workloads,” in Proc. Int. Conf. Archit.
Support Program. Lang. Operating Syst., Mar. 2018, pp. 578-592.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable proc-
essing-in-memory accelerator for parallel graph processing,” in
Proc. Int. Symp. Comput. Archit., Jun. 2015, pp. 105-117.

M. M. Ozdal et al., “Energy efficient architecture for graph analyt-
ics accelerators,” in Proc. Int. Symp. Comput. Archit., Jun. 2016,
pp- 166-177.

S. Beamer, K. Asanovi¢, and D. Patterson, “The GAP benchmark
suite,” May 2017, arXiv:1508.03619.

S. Eyerman, W. Heirman, K. D. Bois, J. B. Fryman, and 1. Hur,
“Many-core graph workload analysis,” in Proc. Int. Conf. High Per-
form. Comput., Netw., Storage, Anal, Nov. 2018, pp. 22:1-22:11.

R. F. Mihalcea and D. R. Radev, Graph-Based Natural Language
Processing and Information Retrieval. Cambridge, U.K.: Cambridge
Univ. Press, 2011.

M. J. Wainwright and M. L. Jordan, “Graphical models, exponen-
tial families, and variational inference,” Found. Trends Mach.
Learn., vol. 1, no. 1-2, pp. 1-305, Jan. 2008.

T. Aittokallio and B. Schwikowski, “Graph-based methods for
analysing networks in cell biology,” Briefings Bioinf., vol. 7, no. 3,
pp- 243-255, Sep. 2006.

T. Er6s, D. Schmera, and R. S. Schick, “Network thinking in river-
scape conservation — a graph-based approach,” Biol. Conservation,
vol. 144, no. 1, pp. 184-192, Jan. 2011.

W.-D. Weber and A. Gupta, “Exploring the benefits of multiple
hardware contexts in a multiprocessor architecture: Preliminary
results,” in Proc. Annu. Int. Symp. Comput. Archit., Jun. 1989, pp.
273-280.

A. Agarwal et al., “The MIT Alewife machine: Architecture and
performance,” in Proc. Annu. Int. Symp. Comput. Archit., Jun. 1995,
pp- 2-13.

A. Kopser and D. Vollrath, “Overview of the next generation Cray
XMT,” in Proc. Cray User Group Meeting, May 2011, pp. 1-10.

D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multi-
threading: Maximizing on-chip parallelism,” in Proc. Annu. Int.
Symp. Comput. Archit., Jun. 1995, pp. 392-403.

M. Nemirovsky and D. M. Tullsen, Multithreading architecture, ser.
Synthesis Lectures on Computer Archit.. San Rafael, CA, USA:
Morgan and Claypool Publishers, 2013.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

1397

B. Sinharoy et al, “IBM POWERS processor core micro-
architecture,” IBM |. Res. Develop., vol. 59, no. 1, pp. 2:1-2:21, Jan.
2015.

E. Tune, R. Kumar, D. Tullsen, and B. Calder, “Balanced multi-
threading: Increasing throughput via a low cost multithreading
hierarchy,” in Proc. Annu. Int. Symp. Microarchit., Dec. 2004,
pp- 183-194.

M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith,
“Informing memory operations: Providing memory performance
feedback in modern processors,” in Proc. Annu. Int. Symp. Comput.
Archit., May 1996, pp. 260-270.

G. Psaropoulos, T. Legler, N. May, and A. Ailamaki, “Interleaving
with coroutines: A practical approach for robust index joins,”
Proc. VLDB Endowment, vol. 11, no. 2, pp. 230-242, Oct. 2017.

F. Checconi and F. Petrini, “Traversing trillions of edges in real
time: Graph exploration on large-scale parallel machines,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., May 2014, pp. 425-434.

R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang,
“Introducing the Graph 500,” in Proc. Cray User Group Meeting,
2010, pp. 45-74.

H. Akkary, R. Rajwar, and S. T. Srinivasan, “Checkpoint process-
ing and recovery: Towards scalable large instruction window pro-
cessors,” in Proc. Annu. IEEEJACM Int. Symp. Microarchit.,
Dec. 2003, pp. 423-434.

M. Lipp et al., “Meltdown: Reading kernel memory from user
space,” in Proc. USENIX Secur. Symp., Aug. 2018, pp. 973-990.

P. Kocher et al., “Spectre attacks: Exploiting speculative exe-
cution,” in Proc. IEEE Symp. Secur. Privacy, May 2019, pp. 1-19.

J. Stecklina and T. Prescher, “Lazyfp: Leaking FPU register
state using microarchitectural side-channels,” May 2018, arXiv:
1806.07480.

T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout,
“An evaluation of high-level mechanistic core models,”
ACM Trans. Archit. Code Optim., vol. 11, no. 3, Aug. 2014,
pp. 28:1-28:25.

J. Doweck et al., “Inside 6th-generation Intel Core: New micro-
architecture code-named Skylake,” IEEE Micro, vol. 37, no. 2,
pp- 52-62, Mar. 2017.

E. Safi, P. Akl, A. Moshovos, A. Veneris, and A. Arapoyianni, “On
the latency, energy and area of checkpointed, superscalar register
alias tables,” in Proc. Int. Symp. Low Power Electron. Des., Aug.
2007, pp. 379-382.

E. Safi, A. Moshovos, and A. Veneris, “A physical level study and
optimization of cam-based checkpointed register alias table,” in
Proc. Int. Symp. Low Power Electron. Des., Aug. 2008, pp. 233-236.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” Jun. 2014. [Online]. Available: http://snap.
stanford.edu/data B

C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu, “Main-mem-
ory hash joins on multi-core cpus: Tuning to the underlying
hardware,” in Proc. IEEE Int. Conf. Data Eng., Apr. 2013, pp. 362—
373.

J. A. Brown and D. M. Tullsen, “The shared-thread multiproc-
essor,” in Proc. Annu. Int. Conf. Supercomput., Oct. 2008, pp. 73-82.
V. Soundararajan and A. Agarwal, “Dribbling registers: A mecha-
nism for reducing context switch latency in large-scale multiproc-
essors,” in Proc. MIT Tech. Rep., Oct. 1994, pp. 1-21.

P. R. Nuth and W. J. Dally, “The named-state register file: Imple-
mentation and performance,” in Proc. IEEE Symp. High-Perform.
Comput. Archit., Jan. 1995, pp. 4-13.

P. M. Kogge, J. B. Brockman, D. T. Harper III, B. Smith, and
I. C. D. Callahan, “Computer systems with lightweight multi-
threaded architectures,” U.S. Patent US 7584332 B2, Sep. 2009.

D. W. Oehmke, N. L. Binkert, T. Mudge, and S. K. Reinhardt,
“How to fake 1000 registers,” in Proc. Annu. IEEE/ACM Int. Symp.
Microarchit., Nov. 2005, pp. 7-18.

S. Li, S. Kuntz, J. Brockman, and P. Kogge, “Lightweight chip
multi-threading (LCMT): Maximizing fine-grained parallelism
on-chip,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 7, pp. 1178-
1191, Oct. 2011.

M. Huguet and T. Lang, “Architectural support for reduced regis-
ter saving/restoring in single-window register files,” ACM Trans.
Comput. Syst., vol. 9, no. 1, pp. 66-97, Feb. 1991.

A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting locality in graph analytics through hardware-acceler-
ated traversal scheduling,” in Proc. Annu. IEEE[ACM Int. Symp.
Microarchit., Oct. 2018, pp. 1-14.

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

1398

[42]

[43]

[44]

[45]

P. Faldu, J. Diamond, and B. Grot, “Domain-specialized cache
management for graph analytics,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit., Feb. 2020, pp. 234-248.

Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and
X. Qian, “Graphq: Scalable pim-based graph processing,” in Proc.
Annu. IEEE/ACM Int. Symp. Microarchit., Oct. 2019, pp. 712-725.

S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry,
“Improving hash join performance through prefetching,” ACM
Trans. Database Syst., vol. 32, no. 3, pp. 116-127, Apr. 2007.

O. Kocberber, B. Falsafi, and B. Grot, “Asynchronous memory
access chaining,” Proc. VLDB Endowment, vol. 9, no. 4, pp. 252—
263, Dec. 2015.

Josué Feliu received the MSc and PhD degrees
in computer engineering from UPV, Spain, in
2012 and 2017, respectively. He was a visiting
postdoc with Ghent University for one year. He is
currently a postdoc researcher with University of
Murcia. His research interests include scheduling
strategies and microarchitecture for multicore
and multi-threaded processors. He was the recip-
ient of the IEEE TCSC Outstanding PhD Disser-
tation Award in 2017.

Ajeya Naithani received the MS degree in com-
puter science from the University of Arizona in
2011 and the PhD degree in computer science
and engineering from Ghent University in 2019.
He is currently a postdoctoral researcher with
Ghent University. His research interests include
the area of computer architecture with an empha-
sis on designing novel techniques to improve
performance, energy-efficiency, and reliability of
modern processors.

Julio Sahuquillo (Member, IEEE) received the
BS, MS, and PhD degrees in computer engineer-
ing from UPV, Spain. He is currently a full professor
with the Department of Computer Engineering,
UPV. He has authored more than 150 refereed
conference and journal papers. His current
research interests include multi- and manycore
processors, memory hierarchy design, cache
coherence, GPU architecture, and architecture-
aware scheduling. He is a member of the IEEE
Computer Society.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Salvador Petit (Member, IEEE) received the PhD
degree in computer engineering from the UPV,
Spain. Since 2009, he has been an associate pro-
fessor with the Computer Engineering Depart-
ment, UPV. He has authored more then 100
refereed conference and journal papers. His cur-
rent research interests include multithreaded and
multicore processors, memory hierarchy design,
GPU architecture, and resource management. He
is a member of the IEEE Computer Society. He
was the recipient of the the Intel Early Career Fac-
ulty Honor Program Award.

Moinuddin Qureshi (Member, IEEE) received
his PhD and MS degrees from the University of
Texas at Austin. He is currently a professor of
computer science with Georgia Tech. His
research interests include computer architecture,
memory systems, hardware security, and quan-
tum computing. He is a member of the Hall of
Fame for ISCA, MICRO, and HPCA. His research
has been recognized with the Best Paper Award
at MICRO 2018 and HiPC 2014, and two awards
at IEEE MICRO Top Picks. His ISCA 2009 paper
on Phase Change Memory was awarded the 2019 Persistent Impact
Prize. He was the Program Chair of MICRO 2015 and Selection Commit-
tee Co-Chair of Top Picks 2017.

Lieven Eeckhout (Fellow, IEEE) received the PhD
degree in computer science and engineering from
Ghent University, in 2002. He currently is a full pro-
fessor with Ghent University, Belgium. His research
interests include computer architecture, with a spe-
cific interest in performance analysis, evaluation
and modeling, as well as dynamic resource man-
agement and CPU/GPU microarchitecture. He was
the recipient of the 2017 ACM SIGARCH Maurice
Wilkes Award, the 2017 ACM SIGPLAN OOPSLA
Most Influential Paper Award, two IEEE Micro Top
Picks selections, and was elevated to IEEE Fellow in 2018. He was the
editor-in-chief of IEEE Micro from 2015 to 2018, and the Program Chair of
ISPASS 2009, CGO 2013, HPCA 2015, and ISCA 2020.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Gent. Downloaded on July 04,2022 at 08:27:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

