
Dispersing Proprietary Applications as Benchmarks through
Code Mutation

Luk Van Ertvelde Lieven Eeckhout

Department of Electronics and Information Systems (ELIS), Ghent University
St.-Pietersnieuwstraat 41, B-9000 Gent, Belgium

{lvertvel,leeckhou}@elis.UGent.be

Abstract

Industry vendors hesitate to disseminate proprietary applications
to academia and third party vendors. By consequence, the bench-
marking process is typically driven by standardized, open-source
benchmarks which may be very different from and likely not repre-
sentative of the real-life applications of interest.

This paper proposes code mutation, a novel technique that mu-
tates a proprietary application to complicate reverse engineering
so that it can be distributed as a benchmark. The benchmark mu-
tant then serves as a proxy for the proprietary application. The key
idea in the proposed code mutation approach is to preserve the pro-
prietary application’s dynamic memory access and/or control flow
behavior in the benchmark mutant while mutating the rest of the ap-
plication code. To this end, we compute program slices for memory
access operations and/or control flow operations trimmed through
constant value and branch profiles; and subsequently mutate the
instructions not appearing in these slices through binary rewriting.

Our experimental results using SPEC CPU2000 and MiBench
benchmarks show that code mutation is a promising technique that
mutates up to 90% of the static binary, up to 50% of the dynam-
ically executed instructions, and up to 35% of the at run time ex-
posed inter-operation data dependencies. The performance char-
acteristics of the mutant are very similar to those of the proprietary
application across a wide range of microarchitectures and hard-
ware implementations.

Categories and Subject Descriptors C. Computer Systems Orga-
nization [C.4 Performance of Systems]: Measurement Techniques,
Modeling Techniques

General Terms Experimentation, Measurement, Performance

Keywords Benchmark Generation, Code Mutation

1. Introduction

Benchmarking is the key tool for assessing computer system perfor-
mance. Researchers and computer engineers quantify performance
by running a set of benchmarks and by timing the benchmarks’
execution times. One use of benchmarking is to compare design
alternatives during research or development. Another use of bench-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’08, March 1–5, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-958-6/08/03. . . $5.00

marking is to compare computer systems for guiding purchasing
decisions. In order to enable a fair evaluation of computer system
performance, organizations such as EEMBC, TPC and SPEC stan-
dardize the benchmarking process, and for this purpose these orga-
nizations provide industry-standard benchmark suites. For exam-
ple, SPEC provides the CPU benchmark suite for evaluating the
performance of general-purpose processors.
These industry-standard benchmarks are typically derived from

open-source programs [11]. The pitfall and limitation though is that
these open-source benchmarks may not be representative of real-
life applications and may be very different from the application(s)
of interest. An alternative would be to use real-life applications of
interest. Unfortunately, real-life applications are very often propri-
etary, and industry hesitates to share them with academia or third
party vendors because of intellectual property issues. Nevertheless,
it would be in the industry’s interest to be able to distribute real-life
proprietary applications so that the computer systems are designed
to provide good performance for these applications.
This paper proposes code mutation, a novel technique that ad-

dresses the concern of distributing proprietary applications to third
parties. Code mutation first profiles the execution of a proprietary
application of interest to collect a variety of properties in a so-called
execution profile. This execution profile is then used for binary
rewriting the proprietary application into a benchmark mutant. The
mutant features two key properties: (i) the functional semantics of
the proprietary application cannot be revealed, or, at least, are very
hard to reveal through reverse engineering on the mutant, and (ii)
the performance characteristics of the mutant resemble those of the
proprietary application very well so that the mutant can serve as a
proxy for the proprietary application during benchmarking experi-
ments.
In this paper, we make the following contributions:

• We propose code mutation, a novel methodology for construct-
ing benchmarks that hide the functional semantics of propri-
etary applications while exhibiting similar performance charac-
teristics.

• We explore a number of approaches to code mutation at the
binary code level. These approaches differ in the way they pre-
serve the proprietary application’s memory access and control
flow behavior in the mutant.

• We propose various metrics for quantifying the efficacy of code
mutation in terms of how well the mutant hides the functional
meaning of the proprietary application.

• We demonstrate that the mutants generated as proxies for the
SPEC CPU2000 and MiBench benchmarks hide the functional
meaning well, i.e., a mutant mutates up to 90% of the instruc-
tions in the application binary, mutates up to 50% of the in-

structions in the dynamic instruction stream, and mutates up to
35% of the at run-time exposed data dependencies. These mu-
tations complicate reverse engineering using both the static bi-
nary as well as the dynamic instruction stream. In addition, we
show that the performance characteristics by the mutants corre-
late very well with the performance characteristics of the pro-
prietary application across a variety of microarchitectures and
hardware implementations.

Code mutation has the potential to become a way of develop-
ing benchmarks that can be shared among third party industry ven-
dors, as well as between industry and academia. This would make
the benchmarking process in industry both more accurate and more
straightforward — no more need to use published SPEC numbers
for doing a competitors’ analysis for driving purchasing decisions
because the benchmarking can be done using a mutant. At the same
time it would make performance evaluation in academia more real-
istic. Instead of driving research based on the performance results
obtained using SPEC CPU for example, a representative bench-
mark mutant may provide more realistic performance assessments,
which may eventually lead to more fruitful research directions. In
addition, developing benchmarks is both hard and time-consuming
to do in academia [24], for which code mutation may be a solution.

2. Code Mutation

2.1 Design options

There are a number of high-level design options that need to be cho-
sen when building a code mutation framework. Before describing
our framework in great detail, we first motivate our design choices.

Trace mutation versus benchmark mutation. A first design op-
tion is to distribute a mutant in the form of a trace or a bench-
mark. A trace, or a sequence of dynamically executed instructions,
is harder to reverse engineer than a benchmark. Techniques bor-
rowed from statistical simulation [8, 20, 21] to probabilistically in-
stantiate program characteristics in a synthetic trace, or coalescing
representative trace fragments [5, 14, 22, 23, 29] could be used to
mutate the original trace so that the functional meaning is hidden.
A major limitation for a trace mutant though is that it cannot be ex-
ecuted on execution-driven simulators or real hardware. We there-
fore choose to create benchmark mutants instead of trace mutants.

Input to be provided versus built-in input. A second design op-
tion is to mutate the proprietary application so that the resulting
mutant can still take its input at run time, or to intermingle the in-
put with the application when creating the mutant. We choose for
the latter option for three reasons: (i) intermingling the input and
the application enables more aggressive code mutations; (ii) it does
not require to distribute a potentially proprietary input; and (iii) it
prevents a malicious individual to try reverse engineer the propri-
etary application by applying different inputs to the mutant.

Binary level versus source code level mutation. Benchmark mu-
tation can be applied at the program source code level or at the
binary level. Source code level mutation has the advantage of be-
ing easier to port across platforms, and it enables distributing mu-
tants for compiler research and development. Making sure though
that the performance characteristics of the mutant correspond well
to those of the proprietary application is far from trivial because
the compiler may affect the performance characteristics differently
for the mutant than for the proprietary application, up to the point
where the mutant can no longer serve as a proxy. The latter argu-
ment made us choose for benchmark mutation at the binary level:
it is easier to maintain the proprietary application’s behavioral ex-
ecution characteristics in the mutant when applying code mutation
at the binary level.

Existing program obfuscation techniques. Code obfuscation [4]
is a growing research topic of interest which converts a program
into an equivalent program that is more difficult to understand and
reverse engineer. Benchmark mutation has some properties in com-
mon with code obfuscation, however, there are two fundamental
differences. First, code obfuscation requires that the obfuscated
program version is functionally equivalent to the original program,
and produces the same output. A mutant on the other hand does not
require to be functionally equivalent, and may even produce mean-
ingless output. Second, a mutant should exhibit similar behavioral
characteristics as the proprietary application. An obfuscated pro-
gram version on the other hand does not have this requirement, and
as a matter of fact, many code obfuscation transformations change
the behavioral execution characteristics through control flow and
data flow transformations and by consequence introduce significant
run time overheads, see for example [9]. These differences call for a
completely different approach for code mutation compared to code
obfuscation.

Bottom-up versus top-down benchmark mutation. Recent work
on synthetic benchmark generation [2, 15] extracts a number of
program characteristics from a program execution, and subse-
quently generates a synthetic benchmark from it. Although both
synthetic benchmark generation and code mutation serve the same
goal which is to distribute proprietary applications as benchmarks,
they expose different research challenges. Synthetic benchmark
generation is a bottom-up approach for which the research chal-
lenge is to identify the key program characteristics that when mod-
eled in the synthetic benchmark, resemble the original application
well. Code mutation on the other hand, is a top-down approach
that starts from the proprietary application and mutates its code to
hide its functional meaning. The advantage of synthetic benchmark
generation is that hiding functional meaning is easier, whereas
code mutation eases achieving the goal of preserving the behav-
ioral characteristics of the proprietary workload.

2.2 Framework

Figure 1 illustrates the general framework for code mutation. As a
first step, we profile the proprietary program execution, i.e., we run
the proprietary application along with a proprietary input within
an instrumentation framework for collecting a so-called execution
profile. This execution profile is then used in a second step to trans-
form the application code into a mutant through binary rewriting.
The mutant can then be distributed to third parties for benchmark-
ing purposes.

2.2.1 General idea

The challenge at hand is to transform a proprietary program so
that the functional meaning is hidden while preserving the behav-
ioral execution characteristics of the proprietary application in the
mutant. We started from the observation [16] that performance
on contemporary superscalar processors is primarily determined
by miss events, i.e., branch mispredictions and cache misses, and
to a lesser extent by inter-operation dependencies and instruction
types; inter-operation dependencies and instruction execution la-
tencies are typically hidden by superscalar instruction processing.
This observation suggests that the mutant, in order to exhibit sim-
ilar behavioral characteristics as the proprietary workload, should
mimick the branch and memory access behavior well without wor-
rying too much about inter-operation dependencies and instruction
types. In order to do so, we determine all operations that affect
the program’s branch and/or memory access behavior; we do this
through dynamic program slicing which will be explained later in
Section 2.2.3. We retain the operations appearing in these slices
unchanged in the mutant, and all other operations in the program

proprietary
application

proprietary
input

profiling through
binary

instrumentation

execution
profile

analysis and
binary rewriting

mutant

industry
vendor A

industry
vendor B

academia...

mutant distribution

Figure 1. The code mutation framework.

can be overwritten to hide the proprietary application’s functional
meaning.
We now discuss the various steps in our framework: collecting

the execution profile, program analysis and binary rewriting.

2.2.2 Collecting the execution profile

The execution profile consists of three main program execution
properties: (i) the inter-operation dependency profile, (ii) the con-
stant value profile, and (iii) the branch profile. The execution profile
will be used in the next step by the slicing algorithm for determin-
ing which operations affect the branch and/or memory access be-
havior.

Inter-operation dependency profile. The inter-operation depen-
dency profile captures the data dependencies between instructions.
Specifically, it computes the read-after-write (RAW) dependencies
between instructions through both registers and memory. The inter-
operation dependency profile then enumerates all the static instruc-
tions that a static instruction depends upon (at least once) at run
time.
For example, consider the example given in Figure 2, where

instruction (d) consumes registers r3 and r6; instruction (a) pro-
duces r3, and both instructions (b) and (c) produce r6. If it turns
out that the path shown through the tick black line (A-B-D) is al-
ways executed, i.e., basic block C is never executed, then only in-
structions (a) and (b) will appear in the inter-operation dependency
profile for instruction (d). Instruction (c) will not appear in the de-
pendency profile because basic block C is never executed in this
particular execution of the program. If, in contrast, basic block C
would be executed at least once, then (a), (b) and (c) will appear in
the dependency profile for instruction (d).

Constant value profile. For each static instruction we profile
whether the register values that it consumes and the register value
that it produces are constant over the entire program execution. In
other words, for each instruction, we keep track of the register val-

 ...

(a) add r1,r2 -> r3

 ...

 ...

(b) add r4,r5 -> r6

 ...

 ...

(c) sub r4,r5 -> r6

 ...

 ...

(d) add r3,r6 -> r3

 ...

A

B C

D

Figure 2. An example illustrating the inter-operation dependency
profile.

ues it consumes and produces, and store the constant value register
operands in the execution profile.
Value locality [17], value profiling [3], and its applications have

received research interest over the past decade. Various authors
have reported that a substantial fraction of all variables produced
by a program at run time is invariant, see for example [3]. There
are several ways of leveraging invariant (and semi-invariant or pre-
dictable) data values such as hardware value prediction, code spe-
cialization, partial evaluation, and adaptive and dynamic optimiza-
tion. We will use the constant value profiles to trim the program
slices as we will explain in Section 2.2.3.

Branch profile. The branch profile captures a number of profiles
concerning a program’s control flow behavior:

• We store the branch direction in case a conditional branch is
always taken or always not-taken.

• We store the branch target in case an indirect jump always
branches to the same target address.

• In case of an unconditional jump, we determine a condition
flag that is constant at the jump point across the entire program
execution.

• And finally, we also capture the taken/not-taken sequence
for infrequently executed conditional branches, or in case the
branch is executed less than 32 times during the entire program
execution.

The execution profile can be collected through binary instru-
mentation such as ATOM [25] or PIN [18]. We use PIN in our
framework. Dynamic binary instrumentation using PIN adds instru-
mentation code to the application code as it runs that measures the
program execution properties of interest.
Non-deterministic system calls complicate the computation of

the constant value and branch profiles: a variable in one program
run may have a different value in another program run with the
same input. We take a pragmatic solution and run each program
multiple times and then subsequently compute the constant value
profiles across these program runs. A more elegant solution may be
to record/replay system effects as done in pinSEL [19].

2.2.3 Program analysis

We use the execution profile to compute the operations that affect
the branch and memory access behavior of a program execution.
Computing these operations is done through program slicing.

Program slicing. As alluded to before, we use program slic-
ing [26, 28], a powerful technique for tracking chains of depen-
dencies between operations in a program. Program slicing is found
useful for various purposes in software development, testing and
debugging, as well as in optimizing performance through identify-
ing critical operations [32]. A program slice consists of the instruc-
tions that (potentially) affect the values computed at some point of
interest in the program execution, referred to as the slicing crite-
rion. In this work we consider backward slices, or the sequence of
instructions leading to the slicing criterion. The backward slice, or
slice for short, can be computed through a backward traversal of the
program starting at the slicing criterion. An important distinction is
to be made between a static and a dynamic slice. The former does
not make any assumptions about the program’s input whereas the
latter relies on a specific test case.
Our framework uses dynamic slicing because we have a spe-

cific proprietary input available, and because dynamic slices are
typically thinner, i.e., contain fewer instructions, than static slices.
This enables us to more aggressively apply code mutation. We use
an imprecise dynamic slicing algorithm because of the high com-
putational complexity both in time and space of precise dynamic
slicing [31], especially for computing many slices for long-running
applications. The slices produced through imprecise slicing are less
accurate than through precise slicing, nevertheless they are conser-
vative meaning that they are a superset of precise slices. We use
Algorithm II as described by Agrawal and Horgan [1] and Zhang
et al. [31]. This algorithm starts from the slicing criterion and re-
cursively builds the backward slice using the inter-operation depen-
dency profile: starting from the dependency profile for the slicing
criterion, it recursively computes prior dependencies. The compu-
tational cost for this imprecise slicing algorithm is independent of
the number of slices that need to be computed [31]. This is an im-
portant benefit for our purpose since we compute slices for all con-
trol flow operations and/or data memory accesses, as explained in
the next section.
The constant value and branch profiles help trimming both the

number of slices as well as the size of the slices that need to be com-
puted. Specifically, we do not need to compute slices for branches
that are either always taken or always not-taken. In addition, the
recursive backward dependency tracking for computing the slices
stops upon a constant value.

Code marking. In our evaluation, we consider two scenarios with
different slicing criteria.

Memory access and control flow operation (MA-CFO) slicing:
The first scenario computes slices for all control flow operations
as well as for all effective data addresses generated through
loads and stores. This scenario will ensure that the control flow
and memory access behavior of the mutant will be identical to
the proprietary application.

Control flow operation (CFO) slicing: The second scenario only
computes slices for all control flow operations. This criterion
will be less accurate than the former because it does not com-
pute slices for data memory accesses. This has the potential
benefit of enabling much aggressive code mutation at the po-
tential cost of the mutant being less representative of the pro-
prietary application.

Once the slices are computed, all the instructions not part of a
slice are marked. This includes code that is never executed as well
as code that gets executed but produces unused data (dead code). In

addition, all instruction operands (input as well as output operands)
that hold constant values at run time are marked as such.

2.2.4 Binary rewriting

Once the code marking is done, we then perform the actual code
mutation. We employ binary rewriting to mutate the proprietary ap-
plication into a benchmark mutant; we use Diablo [7] as our binary
rewriting tool. Applying mutation through binary rewriting poses
some challenges in terms of preserving the code layout. Rewriting
instructions may change the code layout and may thereby affect
the instruction cache performance. We therefore strive at keeping
the basic block size the same before and after mutation.

Control flow mutations. As mentioned before, we do not com-
pute slices for branches that have a constant branch target. Instead,
we mutate those branches to complicate the understanding of the
mutant. To do so, we use an opaque variable or predicate [4]. An
opaque variable is a variable that has some property that is known
a priori to the code mutator, but which is difficult for a malicious
person to deduce. In our work, we use as the opaque variable a
condition flag that has a constant value at the branch point during
the course of the program execution but which is different from
the condition flag in the original program. We mutate conditional
branches that are either always taken or always not-taken, indirect
jumps with a constant branch target, and we also convert uncon-
ditional branches into conditional branches. Conditional branches
that jump based on an opaque condition flag do not alter the exe-
cution flow of the mutant but complicate the understanding of the
mutant binary. In addition, control flow edges that are never taken
are altered in the mutant.

Rewriting code and breaking data dependencies. The unexe-
cuted and dead code (the marked instructions) is overwritten. The
rewriting is done by randomly reassigning an instruction type, and
register input and output operands. This random reassignment as-
sures that there is no one-to-one mapping of instruction types and
operands which makes reverse engineering impossible, or at least
very difficult. Nevertheless, for dead code, i.e., code that gets exe-
cuted but which produces unused data, we ensure that the instruc-
tion mix, i.e., the relative occurrence of instruction types, in the
mutant is similar to that in the proprietary application so that the
run time behavior characteristics of the mutant match those of the
proprietary application. Likewise, we generate inter-operation data
dependencies in such a way that the distribution of inter-operation
dependencies of the mutant is similar to the one of the proprietary
application in order to preserve the amount of ILP in the mutant.
The instruction operands that are marked as holding constant values
are replaced by immediate constants. By doing so, we break inter-
operation dependencies making it harder to understand the propri-
etary application. For the output register operands, we use non-live
register operands to make sure the inserted code mutations do not
affect the execution flow of the mutant.

Example. Figure 3 illustrates code mutation that preserves the
control flow behavior on a simple example that computes the facto-
rial of 7. The input to the function, which is ‘7’, is hold in register
%eax. Basic block A checks whether the input is larger than 12.
If yes, error handling code is executed in E; if no, the factorial is
computed and printed in B, C, and D. Figure 3(a) shows the original
code, and (b) shows the code after code mutation; the instructions
shown in bold italics in (b) are overwritten. The branch instruction
in A is a conditional branch that is never taken for the given input
‘7’: we overwrite this branch as well as the cmp instruction in its
slice. E is never executed, and by consequence, we can completely
overwrite E. Also the conditional branch in B is never taken — the
input differs from ‘1’ — and we thus overwrite the branch and the
instructions in its slice. In C, both %eax and %edx from the cmp

cmp $0xc,%eax

ja E

cmp %eax,%ebx

mov $0x1,%edx

ja D

imul %edx,%ebx

inc %edx

cmp %eax,%edx

jbe C

mov %ebx,0x8(%esp)

mov %eax,0x4(%esp)

movl $0x8096328,(%esp)

call printf

mov 0xfffffffc(%ebp),%ebx

mov $0x1,%eax

leave

ret

movl $0x8096343,(%esp)

call puts

jmp F

cmp $0x123,%eax
jge E

cmp %edx,%ecx
mov $0x1,%edx

jge E

imul %ebx,%eax
inc %edx

cmp $0x7,%edx
jbe C

movl $0x13b0,0x8(%esp)
movl $0x7,0x4(%esp)
movl $0x8096328,(%esp)

call printf

mov 0xfffffffc(%ebp),%ebx

mov $0x1,%eax

leave

ret

movl $0x8083951,(%esp)
call printf
jge F

(a) before code mutation (b) after code mutation

A

B

C

D

E

F

A

B

C

D

E

F

Figure 3. An example, the factorial function with input ‘7’, illustrating the mechanism of code mutation: (a) before code mutation, and (b)
after code mutation.

instruction appear in the slice for the conditional branch at the end
of C. However, the value for %eax is invariant for this particular ex-
ecution, and we thus overwrite the %eax argument by its constant
value which is 7. For register %edx, the slice includes the cmp and
inc instructions in C and the mov instruction in B; these instruc-
tions thus remain unchanged in the mutant. The values in %eax
and %ebx in D are constant, and are overwitten by constant values.
As a result of that, we can overwrite the imul instruction in C. The
end result of code mutation is a mutant, shown in Figure 3(b), that
looks fairly different from the original application shown in Fig-
ure 3(a). It will be very hard to reveal the functional meaning of the
original application from its mutant.

Infrequent branches. We do not compute slices for infrequent
branches, in our case, conditional branches that are executed less
than 32 times over the entire program execution. For those branch
instructions we record the branch taken/not-taken sequence in the
branch profile (as mentioned above), and replay this branch se-
quence in the mutant at run time. We refer to this transformation as
enforced control flow (ECF). ECF is illustrated in Figure 4 through
a code snippet, a basic block from the crafty benchmark. We en-
force the taken/not-taken behavior for the conditional branch by
loading the branch sequence from memory, shift left the branch se-
quence, and store it back to memory; the sign bit then determines
the branch direction, see instructions (4) through (7) in Figure 4(b).
An important benefit of ECF is that it increases the number of in-
structions eligible for code mutation. For example, in Figure 4, the
instructions (1) through (3) are mutated because of not having to
retain these instructions in the slice leading up to the conditional
branch.
Figure 5 quantifies for what fraction of branches in the static

binary we can apply ECF — we will describe the experimental
setup later in Section 4. We can apply ECF to about 18% of the
branches. Together with the on average 54% of the branches that

(a) original application: before ECF

(1) and %edx,%eax
(2) mov 0x154(%esp),%ebx
(3) mov %eax,0x150(%esp)
(4) or 0x150(%esp),%ebx
(5) jne 0x807026f

(b) benchmark mutant: after ECF

(1) xor %ebx,%eax
(2) mov 0x154(%esp),%ecx
(3) mov %ebx,0x150(%esp)
(4) mov 0x80637e9,%ecx
(5) shl %ecx
(6) mov %ecx,0x80637e9
(7) js 0x80639f6

Figure 4. Example basic block from crafty illustrating the En-
forced Control Flow approach: (a) before ECF, (b) after ECF.

are always taken or not-taken, this means that we need to compute
slices for only 28% of the branches on average.

3. Quantifying Mutation Efficacy

There are two issues when quantifying the efficacy of code muta-
tion. The first one concerns with how well the performance char-
acteristics of the proprietary application are preserved in the mu-
tant. This is straightforward to do: this can be done by comparing
performance numbers of the mutant against the proprietary applica-
tion across a number of microarchitectures and hardware platforms.
The second issue is much more challenging and concerns with how
well the functional meaning of the proprietary application is hidden

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

a
v
g

fr
a
c
ti
o
n

branches subject to slicing

branches subject to ECF

branches with constant direction

Figure 5. Fraction branches in the binary (i) with constant
taken/not-taken direction, (ii) that are subject to ECF, and (iii) that
are subject to slicing.

by the mutant. An industry vendor will only release a proprietary
application as a benchmark mutant based on a thorough efficacy
evaluation. This section discusses metrics for quantifying how well
the functional meaning of a proprietary application is hidden by the
mutant.
There exists a vast body of work on software complexity metrics

which typically count various textual properties of the source code
into a complexity measure. Code obfuscation uses some of those
metrics to quantify the efficacy of code transformations [4]. These
metrics relate to code size, data flow complexity, control flow com-
plexity, data structure complexity, etc. These metrics only partially
achieve what we want a mutation efficacy metric to measure. Recall
that the aim of code obfuscation is to complicate the understanding
of the proprietary application, however, the obfuscated program is
still functionally equivalent to the original application. This means
that the obfuscated program preserves the semantics of the original
application, and, intuitively speaking, still contains the same ‘infor-
mation’ as the original application — code obfuscation just makes
it harder to grasp the proprietary ‘information’. Code mutation goes
one step further in the sense that a mutant removes ‘information’
from the proprietary application through binary rewriting, i.e., the
mutant is no longer functionally equivalent to the proprietary ap-
plication.
These considerations call for metrics specifically targeted to-

wards quantifying how well code mutation hides the proprietary
application. We therefore develop a set of metrics to quantify mu-
tation efficacy. The first three metrics count instructions that are
mutated, i.e., the fraction instructions that appear in a different for-
mat in the mutant than in the proprietary application. The next two
count the number of data dependencies that are broken in the mu-
tant with respect to the proprietary application — hiding data de-
pendencies and introducing artificial data dependencies complicate
the understanding of the mutant. In this work, when reporting these
metrics, we only report about the application, not the libraries —
the reason is to stress code mutation in the evaluation because most
library code is only infrequently executed (if at all).

Static Instruction Ratio (SIR): The SIR computes the ratio of the
number of instructions in the binary that are mutated to the total
number of instructions in the binary.

Instruction Ratio (IR): The IR computes the ratio of the number
of instructions in the binary that are mutated and executed at
least once, relative to the number of instructions in the binary
that are executed at least once.

Weighted Instruction Ratio (WIR): The WIR computes the ratio
of the number of instructions that are mutated, weighted with
their execution frequency relative to the total dynamic instruc-
tion count. In other words, the WIR computes the fraction mu-

suite benchmark input cnt(M)

SPEC CPU2000

bzip2 lgred.source 1,417
crafty lgred 940
gap lgred 50
gzip smred.log 452
mcf lgred 87
parser lgred 288
twolf lgred 781
vpr small.arch 214

MiBench

bitcount 1125000 713
susan large 754
qsort large 371
jpeg large 85
blowfish large 973
sha large 230
fft 8 32768 298
dijkstra large 281

Table 1. Benchmarks used in this study along with their inputs and
dynamic instruction counts (in millions).

tated instructions executed relative to the dynamic instruction
count.

Dependence Ratio (DR): The DR metric computes the fraction
inter-operation data dependencies that appear at least once at
run time and that are broken.

Weighted Dependence Ratio (WDR): The WDR metric weighs
the DR metric with the execution frequency for each of the
dependencies.

The SIR is a metric that quantifies the efficacy of code mutation
for making static reverse engineering hard, i.e., reverse engineer-
ing of the proprietary application by inspecting the binary of the
benchmark mutant. The other four metrics quantify the efficacy for
making dynamic reverse engineering hard, i.e., reverse engineering
by inspecting the dynamic execution of the mutant.

4. Experimental Setup

In our evaluation we consider a number of general-purpose SPEC
CPU2000 benchmarks as well as a number of benchmarks from
the embedded MiBench benchmark suite [10]. The benchmarks are
tabulated in Table 1 along with their inputs and dynamic instruction
counts. For the SPEC CPU2000 benchmarks, we use MinneSPEC
inputs in order to limit the simulation time of complete benchmark
executions1. For MiBench, we consider the largest input available.
All the benchmarks are compiled on an x86 platform (Intel Pen-
tium 4 running Linux) using the gcc compiler version 3.2.2 with
optimization level -O3; all binaries are statically compiled.
The baseline processor configuration is tabulated in Table 2. We

model a 4-wide superscalar out-of-order processor with a three-
level cache hierarchy. The simulations are done using PTLsim [30],
an execution-driven x86 superscalar processor simulator.
We also provide real hardware performance results and consider

three Intel Pentium 4 machines. These machines differ in terms of
their clock frequency, microarchitecture, memory hierarchy, and
implementation technology; see Table 3 for the most significant
differences.

1We were unable to include all the SPEC CPU2000 integer benchmarks
because of difficulties in interoperating the various tools (PIN, Diablo and
PTLsim) in our experimental setup.

ROB 128 entries
load queue 48 entries
store queue 32 entries
issue queues 4 16-entry issue queues
processor width 4 wide fetch, decode, dispatch, issue, commit
latencies load (2), mul (3), div (20)
L1 I-cache 16KB 4-way set-assoc, 1 cycle
L1 D-cache 16KB 4-way set-assoc, 1 cycle
L2 cache unified, 128KB 16-way set-assoc, 6 cycles
L3 cache unified, 1MB 16-way set-assoc, 20 cycles
main memory 250 cycle access time
branch predictor hybrid bimodal/gshare predictor
frontend pipeline 8 stages

Table 2. Baseline processor model assumed in our simulations.

processor generation freq L2 size MEM size
machine 1 Northwood 2.0 GHz 512 KB 1 GB
machine 2 Northwood 2.8 GHz 512 KB 2 GB
machine 3 Prescott 3.0 GHz 1 MB 1 GB

Table 3. The Intel Pentium 4 machines considered in our setup.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

a
v
g

S
IR

 unreachable code

 MA-CFO

 CFO

 CFO + ECF

Figure 6. Quantifying the efficacy of benchmark mutation using
the SIR metric.

5. Evaluation

We now evaluate the proposed code mutation approaches: (i) MA-
CFO (memory access and control flow operation slicing) aiming
at preserving the memory access and control flow behavior in
the mutant, (ii) CFO (control flow operation slicing) aiming at
preserving only the control flow behavior in the mutant, and (iii)
CFO plus ECF (CFO plus enforced control flow of infrequent
branches). We evaluate the efficacy of these approaches along two
dimensions: their ability to hide functional semantics, and their
ability to preserve the performance characteristics in the mutant
with respect to the proprietary application.

5.1 Hiding functional semantics

SIR. Figure 6 quantifies the SIR metric, or the fraction of the ap-
plication binary that can be mutated, which is an indication for how
well binary mutation protects against static reverse engineering.
There are four bars in this graph. The first bar quantifies the SIR
metric by overwriting unexecuted code. On average, this results
in a 44% SIR metric. The next three bars quantify the SIR met-
ric for MA-CFO, CFO, and CFO plus ECF code mutation; these
approaches achieve a SIR metric of 56%, 60% and 62%, respec-
tively. CFO achieves a higher SIR score than MA-CFO, and CFO
plus ECF achieves a higher SIR score than CFO. The reason is that
fewer slices need to be computed which increases the number of
instructions eligible for code mutation. The relative increase is lim-

0%

10%

20%

30%

40%

50%

60%

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

a
v
g

IR

 MA-CFO

 CFO

 CFO + ECF

Figure 7. Quantifying the efficacy of benchmark mutation using
the IR metric.

0%

10%

20%

30%

40%

50%

60%

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

a
v
g

W
IR

 MA-CFO

 CFO

 CFO + ECF

Figure 8. Quantifying the efficacy of benchmark mutation using
the WIR metric.

ited though: we expected that the SIR metric would be much higher
for CFO compared to MA-CFO. However, the relatively small in-
crease seems to suggest that there is significant overlap between
the slices of memory accesses and the slices of control flow op-
erations. Not computing memory access slices does not reveal that
many additional instructions eligible for code mutation. Put another
way, by striving at preserving a program’s control flow behavior,
we also preserve most of the memory access behavior. Another in-
teresting note is that the achievable SIR is benchmark specific, and
for some benchmarks more than 90% of the application binary can
be mutated, see for example gap, susan and qsort. The high SIR
score for susan and qsort correlates well with the small number
of branches subject to slicing, see Figure 5. For other benchmarks
though, the small number of branches subject to slicing does not
translate into a high SIR score, see for example bzip2: a small
number of control flow slices cover a large fraction of the entire
program code.

IR and WIR. Figures 7 and 8 report similar results for the IR and
WIR metrics, which are measures for how well the code mutation
protects against dynamic reverse engenieering. The IR and WIR
metrics have lower values than the SIR metric: average IR andWIR
scores of 36% and 20%, respectively, compared to the average 62%
SIR score for CFO plus ECF code mutation. Also, the WIR metric
is typically lower than the IR. This suggests that code mutation
primarily mutates code in less frequently executed code regions.
The susan benchmark is an extreme example which has an SIR
metric of 95%, an IR metric of 43% and a WIR metric of 8%. For
other benchmarks on the other hand, such as qsort, code mutation
mutates frequently executed code, and achieves a WIR score (53%)
that is higher than its IR score (38%).

DR and WDR. Figures 9 and 10 show the DR and WDR metrics,
respectively. The average DR and WDR metric scores are 29% and
16%, respectively, and goes up to 40% and 35%, respectively. This
result shows that a substantial fraction of the at run-time exposed

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

a
v
g

D
R

 MA-CFO

 CFO

 CFO + ECF

Figure 9. Quantifying the efficacy of benchmark mutation using
the DR metric.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

a
v
g

W
D

R

 MA-CFO

 CFO

 CFO + ECF

Figure 10. Quantifying the efficacy of benchmark mutation using
the WDR metric.

data dependencies are broken through code mutation, which will
complicate reverse engineering.

5.2 Preserving performance characteristics

We now evaluate how well the mutant preserves the performance
characteristics of the original application. We do this in three steps.
We first consider our baseline simulated processor configuration,
and subsequently evaluate how well the mutant tracks the original
application across a microarchitecture design space. Finally, we
consider three real hardware platforms.

Simulation results. Figure 11 quantifies the execution time devi-
ation for the mutant compared to the original application. The av-
erage (absolute) performance deviation equals 0.7%, 1% and 1.2%
for MA-CFO, CO, and CFO plus ECF, respectively. The maximum
performance deviation is limited to 6%, see qsort which is also the
benchmark with the highest WIR and WDR metric values.

Microarchitecture design space. We also evaluated code muta-
tion across a microarchitecture design space in which we vary the
processor width and cache hierarchy. We vary the width from 2
up to 8, and consider four (L1/L2/L3) cache hierarchies: config
1: 8KB, 64KB, 512KB; config 2: 16KB, 128KB, 1MB; config 3:
32KB, 256KB, 2MB; and config 4: 64KB, 512KB, 4MB. The aver-
age deviation across this design space equals 0.8%, 1.3% and 1.4%
for MA-CFO, CFO, and CFO plus ECF, respectively. Figure 12 il-
lustrates this further: normalized execution time is shown across
the four cache hierarchy configurations for a four-wide superscalar
processor. The mutant tracks the performance sensitivities across
the memory hierarchy very well.

Real hardware results. The results presented so far are obtained
from simulation. Figures 13 and 14 show results obtained from
real hardware measurements on three Intel Pentium 4 machines,
see Table 3. Figure 13 quantifies the performance deviation of the
mutant with respect to the original application on the Prescott Intel
Pentium 4 (machine 3). The execution time deviation is small: 1.4%
on average; the maximum deviation 6% is observed for qsort.

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

a
v
g

e
x
e
c
u
ti
o
n
 t

im
e
 d

e
v
ia

ti
o
n

 MA-CFO

 CFO

 CFO + ECF

Figure 11. Execution time deviation for the mutant against the
original application for the baseline processor configuration.

original application

50%

60%

70%

80%

90%

100%

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

n
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t

im
e

config_1 config_2 config_3 config_4

mutant

50%

60%

70%

80%

90%

100%

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

n
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t

im
e

config_1 config_2 config_3 config_4

Figure 12. Normalized execution time for the original application
(top graph) and its mutant assuming CFO plus ECF (bottom graph)
across four cache hierarchy configurations for a four-wide super-
scalar processor.

Figure 14 shows normalized execution times across the three
Intel Pentium 4 machines for the original applications are their
mutants; the results are normalized to the execution time of the
original application on machine 3. These results show that the
mutants track the relative performance differences of the original
application very well across the different hardware platforms.

6. Related Work

Statistical simulation [8, 20, 21] collects program characteristics
from a program execution and subsequently generates a synthetic
trace from it which is then simulated on a simple, statistical trace-
driven processor simulator. The important advantage of statistical
simulation is that the dynamic instruction count of a synthetic trace
is several orders of magnitude smaller than for today’s industry-
standard benchmarks, making it a useful simulation speedup tech-
nique for quickly identifying a region of interest in a large mi-
croprocessor design space. Because the synthetic trace is gener-
ated from characteristics, it is very hard to reveal the functional

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

e
x
e
c
u
ti
o
n
 t

im
e
 d

e
v
ia

ti
o
n

Figure 13. Execution time deviation for a mutant (CFO plus ECF)
against its original application for ‘machine 3’, a 3.0 GHz Prescott
Intel Pentium 4 machine.

original application

0

0.5

1

1.5

2

2.5

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

n
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t

im
e

machine 3 machine 2 machine 1

mutant

0

0.5

1

1.5

2

2.5

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
p
r

b
it
c
o
u
n
t

s
u
s
a
n

q
s
o
rt

jp
e
g

b
lo

w
fi
s
h

s
h
a

ff
t

d
ij
k
s
tr

a

n
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t

im
e

machine 3 machine 2 machine 1

Figure 14. Normalized execution time for three real hardware
platforms for the original application (top graph) and the mutant
assuming CFO plus ECF (bottom graph); the results are normalized
to the execution time of the original application on machine 3.

semantics of the proprietary application from a synthetic trace. The
limitation of statistical simulation as a benchmark mutation ap-
proach though is that the synthetic trace cannot be simulated on
an execution-driven simulator or real hardware.
Synthetic benchmarks such asWhetstone [6] and Dhrystone [27]

are manually crafted benchmarks that aimed at representing real
workloads. Manually building benchmarks though is both tedious
and time-consuming. Therefore, recent work proposed automated
synthetic benchmark generation [2, 13, 15] which builds on the
statistical simulation approach but generates a synthetic bench-
mark rather than a synthetic trace. Synthetic benchmark generation
is a bottom-up approach whereas code mutation is a top-down ap-
proach, as discussed before.
Hoste et al. [12] take a different approach for estimating the

performance of a (proprietary) application of interest. They pro-
pose to characterize the application of interest, and compare its be-
havioral characteristics against those of a well known benchmark
suite, such as SPEC CPU. The performance of the application of
interest is then estimated by weighting the performance numbers
of the benchmarks proportional to their similarity with the applica-
tion of interest. This approach does not need to distribute the pro-
prietary application, but builds on the implicit assumption that the
application of interest is similar to (some of) the benchmarks in the
benchmark suite.

Sampled simulation theory [5, 14, 22, 23, 29] selects a num-
ber of representative samples from the dynamic instruction stream.
Simulating these samples instead of the complete dynamic instruc-
tion stream yields simulation speedups of several orders of magni-
tude. Although having only samples to analyze will complicate the
understanding the functional semantics of the proprietary applica-
tion, it may still reveal sensitive information, i.e., if the sampled
trace is representative for the entire program execution, it will most
likely reveal valuable information.

7. Summary and Future Work

Summary. This paper presented code mutation, a novel method-
ology for deriving benchmarks from proprietary applications by
hiding functional semantics while preserving performance charac-
teristics. Code mutation will be most useful for companies that of-
fer (in-house built) services to remote customers. Such companies
are reluctant to distribute their proprietary software. As an alter-
native, they can use mutated benchmarks as proxies for their pro-
prietary software. The mutated benchmarks can help drive perfor-
mance evaluation by third parties as well as guide purchasing deci-
sions of hardware infrastructure.
The best performing code mutation approach proposed in this

paper computes control flow slices for frequently executed, non-
constant branches; and mutates instructions that are not part of
any of these slices. The slices are trimmed using constant value
profiles. Our results obtained for a selection of SPEC CPU2000 and
MiBench benchmarks report that up to 90% of the binary can be
mutated, up to 50% of the dynamic executed instructions, and up to
35% of the at run time exposed inter-operation data dependencies.

Future work. We believe that code mutation is a promising tech-
nique for dispersing proprietary applications as benchmarks, and
there are various future research avenues to be explored. First, fu-
ture work could further improve the information hiding in the mu-
tant by employing novel and more aggressive program analyses and
transformations. One potential direction could be to exploit semi-
invariant program behavior (next to invariant or constant program
behavior) in order to mutate an even larger fraction of the propri-
etary application.
Second, our current framework mutates the proprietary applica-

tion at the binary code level. An alternative approach would mutate
the application at an intermediate code level or even at the source
code level, so that the mutant can be compiled and optimized for a
particular ISA of interest. This would broaden the applicability of
the mutants to compiler and code generation research and develop-
ment.
Third, the execution time of a mutant is very similar to the exe-

cution time of the original proprietary application, on purpose. This
is a viable solution for real hardware performance evaluation, but
for simulation purposes one may want to have shorter running mu-
tants. An interesting research challenge thus is to reduce the dy-
namic instruction count of the mutant while preserving the perfor-
mance characteristics of the proprietary application.
Finally, extending the code mutation concept to multi-threaded

workloads as well as applications written in type-safe managed
languages (such as Java and C#) is also part of our future work.
We believe that both are possible — the general concept of code
mutation applies to these workloads as well while posing a number
of additional constraints. In particular, multi-threaded workloads
incur an additional constraint in that accesses to shared memory
should be preserved in the mutated benchmark in order to exhibit
similar inter-thread communication in the mutant as in the original
application. As such, slices will need to be computed for shared
memory accesses, and instructions appearing in these slices should
not be overwritten through code mutation. For type-safe managed

languages, code mutation will be restricted by type safety, i.e.,
an operation can only be overwritten by another operation if both
operate on the same type.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable
feedback. This work is supported in part through the UGent-BOF
project 01J14407, FWO project G.0255.08, and HiPEAC. Lieven
Eeckhout is supported by a Postdoctoral Fellowship with the Fund
for Scientific Research – Flanders (Belgium).

References

[1] H. Agrawal and J. Horgan. Dynamic program slicing. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), pages 246–256, June 1990.

[2] R. Bell, Jr. and L. K. John. Improved automatic testcase synthesis
for performance model validation. In Proceedings of the ACM
International Conference on Supercomputing (ICS), pages 111–120,
June 2005.

[3] B. Calder, P. Feller, and A. Eustace. Value profiling. In Proceedings
of the Annual ACM/IEEE International Symposium on Microarchi-

tecture (MICRO), pages 259–269, Dec. 1997.

[4] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating
transformations. Technical Report 148, The University of Auckland,
July 1997.

[5] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss
for effective trace sampling of superscalar processors. In Proceedings
of the International Conference on Computer Design (ICCD), pages
468–477, Oct. 1996.

[6] H. J. Curnow and B. A. Wichmann. A synthetic benchmark. The
Computer Journal, 19(1):43–49, 1976.

[7] B. De Bus, D. Kaestner, D. Chanet, L. Van Put, and B. De Sutter.
Post-pass compaction techniques. Communications of the ACM,
46(8):41–46, Aug. 2003.

[8] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De Bosschere, and L. K.
John. Control flow modeling in statistical simulation for accurate
and efficient processor design studies. In Proceedings of the Annual
International Symposium on Computer Architecture (ISCA), pages
350–361, June 2004.

[9] J. Ge, S. Chaudhuri, and A. Tyagi. Control flow based obfuscation.
In Proceedings of the ACM Workshop on Digital Rights Management

(DRM), pages 83–92, Nov. 2005.

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the IEEE Annual

Workshop on Workload Characterization (WWC), Dec. 2001.

[11] J. L. Henning. SPEC CPU2000: Measuring CPU performance in the
new millennium. IEEE Computer, 33(7):28–35, July 2000.

[12] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere. Performance prediction based on inherent program
similarity. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 114–122,
Sept. 2006.

[13] C. Hsieh and M. Pedram. Micro-processor power estimation using
profile-driven program synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 17(11):1080–1089,
Nov. 1998.

[14] V. S. Iyengar, L. H. Trevillyan, and P. Bose. Representative traces
for processor models with infinite cache. In Proceedings of the
Second International Symposium on High-Performance Computer

Architecture (HPCA), pages 62–73, Feb. 1996.

[15] A. M. Joshi, L. Eeckhout, R. H. Bell Jr., and L. K. John. Performance
cloning: A technique for disseminating proprietary applications as

benchmarks. In Proceedings of the IEEE International Symposium
on Workload Characterization (IISWC), pages 105–115, Oct. 2006.

[16] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In Proceedings of the Annual International Symposium on

Computer Architecture (ISCA), pages 338–349, June 2004.

[17] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and
load value prediction. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 138–147, Oct. 1996.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proceedings
of the ACM SIGPLAN Conference on Programming Languages

Design and Implementation (PLDI), pages 190–200, June 2005.

[19] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Au-
tomatic logging of operating system effects to guide application level
architecture simulation. In Proceedings of the ACM SIGMETRICS In-

ternational Conference on Measurement and Modeling of Computer

Systems, pages 216–227, June 2006.

[20] S. Nussbaum and J. E. Smith. Modeling superscalar processors via
statistical simulation. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages
15–24, Sept. 2001.

[21] M. Oskin, F. T. Chong, and M. Farrens. HLS: Combining statistical
and symbolic simulation to guide microprocessor design. In
Proceedings of the Annual International Symposium on Computer

Architecture (ISCA), pages 71–82, June 2000.

[22] J. Ringenberg, C. Pelosi, D. Oehmke, and T. Mudge. Intrinsic check-
pointing: A methodology for decreasing simulation time through
binary modification. In Proceedings of the IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS),
pages 78–88, Mar. 2005.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of the
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 45–57, Oct.
2002.

[24] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and
V. S. Pai. Challenges in computer architecture evaluation. IEEE
Computer, 36(8):30–36, Aug. 2003.

[25] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. Technical Report 94/2, Western
Research Lab, Compaq, Mar. 1994.

[26] F. Tip. A survey of program slicing techniques. Journal of

Programming Languages, 3(3):121–189, 1995.

[27] R. P. Weicker. Dhrystone: A synthetic systems programming
benchmark. Communications of the ACM, 27(10):1013–1030, Oct.
1984.

[28] M. Weiser. Program slicing. IEEE Transaction on Software

Engineering, 10(4):352–357, July 1984.

[29] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:
Accelerating microarchitecture simulation via rigorous statistical
sampling. In Proceedings of the Annual International Symposium on

Computer Architecture (ISCA), pages 84–95, June 2003.

[30] M. T. Yourst. PTLsim: A cycle accurate full system x86-64
microarchitectural simulator. In Proceedings of the International
Symposium on Performance Analysis of Systems and Software

(ISPASS), pages 23–34, Apr. 2007.

[31] X. Zhang, R. Gupta, and Y. Zhang. Cost and precision tradeoffs of
dynamic data slicing algorithms. ACM Transactions on Programming

Languages and Systems, 27(4):631–661, July 2005.

[32] C. B. Zilles and G. S. Sohi. Understanding the backward slices of
performance degrading instructions. In Proceedings of the Annual
International Symposium on Computer Architecture (ISCA), pages
172–181, June 2000.

