
Iterative Optimization for the Data Center

Yang Chen
SKL Computer Architecture ∗, China;
ICT and Graduate School, CAS, China

chenyang@ict.ac.cn

Shuangde Fang
SKL Computer Architecture∗, China;

ICT and Graduate School, CAS, China
fangshuangde@ict.ac.cn

Lieven Eeckhout
Ghent University

Belgium
lieven.eeckhout@elis.UGent.be

Olivier Temam
INRIA, Saclay

France
olivier.temam@inria.fr

Chengyong Wu
SKL Computer Architecture∗, China;

ICT, CAS, China
cwu@ict.ac.cn

Abstract
Iterative optimization is a simple but powerful approach that
searches for the best possible combination of compiler optimiza-
tions for a given workload. However, each program, if not each data
set, potentially favors a different combination. As a result, iterative
optimization is plagued by several practical issues that prevent it
from being widely used in practice: a large number of runs are
required for finding the best combination; the process can be data
set dependent; and the exploration process incurs significant over-
head that needs to be compensated for by performance benefits.
Therefore, while iterative optimization has been shown to have sig-
nificant performance potential, it is seldomly used in production
compilers.

In this paper, we propose Iterative Optimization for the Data
Center (IODC): we show that servers and data centers offer a con-
text in which all of the above hurdles can be overcome. The basic
idea is to spawn different combinations across workers and recol-
lect performance statistics at the master, which then evolves to the
optimum combination of compiler optimizations. IODC carefully
manages costs and benefits, and is transparent to the end user.

We evaluate IODC using both MapReduce and throughput
compute-intensive server applications. In order to reflect the large
number of users interacting with the system, we gather a very large
collection of data sets (at least 1000 and up to several million
unique data sets per program), for a total storage of 10.7TB, and
568 days of CPU time. We report an average performance improve-
ment of 1.48×, and up to 2.08×, for the MapReduce applications,
and 1.14×, and up to 1.39×, for the throughput compute-intensive
server applications.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers

General Terms Design, Performance

Keywords iterative optimization, compiler, MapReduce, server,
data center

∗ State Key Laboratory of Computer Architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

1. Introduction
Compilers embed a vast set of optimizations, implemented as sep-
arate passes of the global optimization strategy. Due to complex
interactions among these optimizations as well as with the appli-
cation software and the underlying architecture, it is exceedingly
difficult to find the best combination and parameterization of com-
piler optimizations. The most aggressive default optimization level,
e.g., -O3 in the GNU C compiler, corresponds to a pre-set combi-
nation of compiler optimizations, with each optimization param-
eterized using simple analytical models or heuristics. However, it
has been widely observed that there exist combinations of com-
piler optimizations that outperform the default optimization levels
for many programs by a significant margin. This observation led
to iterative optimization [1, 6, 8, 9, 13, 14, 20, 31], which is based
on a simple but powerful concept: run a program multiple times,
each time compiled with different combinations of compiler op-
timizations, in order to find the best combination. In spite of the
great potential offered by iterative optimization and the significant
amount of research done in this area over the past decade, it is still
not widely used in (both commercial and public) production com-
pilers, because it is plagued by at least three practical hurdles. (1)
In order to find the best combination of compiler optimizations for
a given program, many so-called recompilations (for different com-
binations of compiler optimizations) and training runs (running the
recompiled binaries) are required. (2) The costly overhead of re-
compilation and training runs can easily wipe out the performance
benefits of iterative optimization. (3) In most iterative optimization
studies, the training runs are performed using the same data set(s),
even though, in practice, there is no point for a user to run the same
data set multiple times.

In this paper, we demonstrate that servers and data centers
offer a context in which all of these hurdles can be overcome,
paving the way for practical use of iterative optimization in the
data center. We propose Iterative Optimization for the Data Cen-
ter (IODC), a framework which, to the best of our knowledge,
is the first to implement the idea of iterative optimization for the
server and warehouse-scale computing domain. The key idea be-
hind IODC is to carefully manage a cost versus benefit trade-off:
IODC compensates for the cost of recompilations and training runs
through the performance benefist of better performing combina-
tions of compiler optimizations. The strategy operates automati-
cally in the background, and is transparent to the end user, i.e., the
user is not aware that training runs nor recompilations occur in the
background.

We demonstrate the general applicability of IODC for both
MapReduce-style as well as contemporary throughput compute-

intensive server applications. We find the MapReduce frame-
work [11] to be a natural fit for IODC. The basic idea is to distribute
different combinations of compiler optimizations across workers,
which perform the recompilations and training runs, and which
send performance statistics back to the master, which then in turn
determines which combination yields the best performance. This
process is done repeatedly until the system evolves to the best com-
bination of compiler optimizations. Our experimental results using
five MapReduce applications demonstrate an average speedup of
1.48×, and up to 2.08×.

As a second step in the paper, we extend IODC towards non-
MapReduce, contemporary throughput compute-intensive server
applications. The basic idea here is that the IODC run-time con-
tinuously applies the iterative optimization strategy as the pro-
gram is repeatedly run on the server, possibly over long periods
of time. Considering six benchmarks representative of throughput
compute-intensive server applications, our strategy achieves an av-
erage speedup of 1.14×, and up to 1.39×.

Next to proposing and implementing iterative optimization for
the data center, we believe this paper is the first to create realistic
conditions for the evaluation of iterative optimization by avoiding
data set reuse. We emulate data center operation by considering
unique data sets across successive recompilations and training runs,
which reflects many independent users interacting with the data
center, all leading to different input data sets. In particular, for
the MapReduce applications, we consider a very large number of
unique data sets, varying between 1.55 million and 310 million
unique records; for the server applications, we consider between
28,000 and 177,000 unique data sets, and we use each data set
only once through the exploration process. By doing so, we emulate
distinct production runs in a real data center.

In this paper, we make the following contributions:

• We propose iterative optimization for the data center (IODC).
We believe that this paper is the first, to the best of our knowl-
edge, to implement iterative optimization for warehouse-scale
computing.

• We propose a novel online iterative optimization strategy that
balances overhead versus benefit, alike a savings account. Ac-
cording to our experimental results, IODC achieves average
performance improvements of 1.48×, and up to 2.08×, for a
set of MapReduce applications, and 1.14×, and up to 1.39×,
for a set of contemporary throughput compute-intensive server
applications.

• We emulate realistic conditions in the experimental setup by
considering unique data sets, and we demonstrate that IODC
can learn good combinations of compiler optimizations across
unique data sets. We believe this is the first paper to do so.

The remainder of this paper is organized as follows. In Sec-
tion 2, we illustrate the performance potential of iterative optimiza-
tions and the challenges for applying iterative optimization in prac-
tice. In Section 3, we present the IODC strategy. This is done in two
steps: we first implement IODC within the MapReduce framework,
and we then extend the strategy towards contemporary throughput
compute-intensive server applications. After explaining our exper-
imental setup in Section 4, we present the evaluation in Section 5.
Finally, we discuss related work in Section 6 and we conclude in
Section 7.

2. Motivation
Iterative optimization is a compiler technique that can be applied to
any program. Hence, it has the potential of being widely applicable
and having broad impact. In particular, given that servers and data
centers run the same set of workloads over and over again for many
different users, improving performance and/or efficiency by only
a small margin may lead to significant performance, energy and

tiff2
rgb

a
tiff2

bw lam
e

jpe
glib

_en
cod

ing

sus
an_

sm
oot

h

sus
an_

edg
e

tiffm
edi

an sha

sus
an_

cor
ner

rsy
nth
av
er
ag

e
1.0

1.2

1.4

1.6

1.8

2.0

S
p
e
e
d
u
p

3.75X

Figure 1. The performance potential of iterative optimization: The
average best performance speedup across 1000 data sets, relative
to GCC -O3.

cost gains. However, successfully applying iterative optimization in
practice is non-trivial. In order to find a good combination of com-
piler optimizations, many combinations may need to be evaluated
because of the complex optimization space. Moreover, for some
programs, the best combination may vary across data sets, making
it even harder to find a good ‘average’ combination. Finally, in spite
of its high performance potential, the benefits of iterative optimiza-
tion are not sufficient to tolerate the overhead of a massive number
of recompilations and training runs, hence, a careful trade-off be-
tween recompiling and training runs versus enjoying performance
speedups from iterative optimization is required. In this section, we
illustrate and quantify the most important challenges in iterative
optimization.

2.1 Iterative optimization: Terminology

However, before doing so, we first introduce some terminology re-
lated to iterative optimization. As stated before, iterative optimiza-
tion tries out a number of combinations of compiler optimizations
to find out the best possible combination, or at least a combina-
tion that outperforms a compiler’s best default optimization level,
e.g., GCC’s -O3. Trying out a combination involves compiling the
program with the combination of optimizations, which we refer to
as a recompilation, and running the compiled binary on real hard-
ware with a given data set, which we refer to as a training run. We
refer to the evaluation of a combination as the process of recom-
piling, doing the training run, and comparing performance against
the compiler’s best default optimization level. As will become clear
later in the paper, evaluations are done in a way transparent to the
end user. To make a distinction between training runs that drive
iterative optimization on the one hand, and runs of a program that
actually produce user output on the other hand, we refer to the latter
as production runs.

2.2 Potential of iterative optimization

The performance potential of iterative optimization is substantial,
as we will illustrate with the following experiment. We consider
a set of 300 combinations, 10 benchmark applications, each with
1000 distinct data sets, and we apply all combinations to all data
sets for all benchmark applications, 3 million runs in total. (We re-
fer to Section 4 for a detailed description of the experimental setup.)
Then, for each benchmark application and each data set, we select
the combination that provides the best performance; subsequently,
for each benchmark application, we compute the average best per-
formance across all data sets. The results are reported in Figure 1;
the benchmarks are ranked on the horizontal axis by increasing av-
erage best performance. The speedup ranges from 1.10× to 3.75×,
with an average of 1.31×. These results illustrate the maximum
performance that can be achieved using iterative optimization if
we had an oracle indicating, for each program and each input data
set, what would be the best possible combination of compiler op-
timizations. The difficulty now is to achieve similar performance
improvements in practice.

(a) susan corner

0 50 100 150 200 250 300
Combinations

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
p
e
e
d
u
p

(b) rsynth

0 50 100 150 200 250 300

Combinations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p
e
e
d
u
p

Figure 2. Cumulative distribution of the average speedup for com-
binations of compiler optimizations ranked by increasing speedup
for (a) susan corner and (b) rsynth.

tiff2bw
0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

S
p
e
e
d
u
p

comb
1
on dataset

1

comb
1
on dataset

2

comb
2
on dataset

1

comb
2
on dataset

2

Figure 3. Demonstrating data set sensitivity for iterative optimiza-
tion: Applying combinations selected using a data set to another
data set for tiff2bw.

2.3 Iterative optimization requires many runs

For some programs, the number of good combinations can be rare,
and thus difficult to find, requiring a possibly large number of com-
binations to evaluate in order to identify the best possible combina-
tion(s). Figure 2 illustrates that the number of ‘good’ combinations
varies significantly across programs. For each combination, we av-
erage the speedup over 1000 data sets, and we then rank the combi-
nations by increasing average speedup. For susan corner, more
than 15% of the combinations yield a speedup of at least 5%, and
a few combinations even yield a speedup of 60%. For rsynth on
the other hand, less than 0.4% of the combinations yield a substan-
tially large speedup. In other words, only a few combinations yield
the best possible performance, hence, finding them may require a
large number of recompilations and training runs.

2.4 Data set sensitivity

Not only do different programs favor different combinations, also
different data sets for the same program may favor different com-
binations. We illustrate this point in Figure 3 for tiff2bw, and two
data sets dataset1 and dataset2. For each of these two data sets,
we determine the best combination among a set of 300 combina-
tions. comb1 is the best combination for dataset1 (see ‘comb1
on dataset1’); comb2 is the best combination for dataset2 (see
‘comb2 on dataset2’). We subsequently apply each combination
to the other data set. In some cases, the same combination works
(fairly) well for more than one data set, see ‘comb2 on dataset1’
versus ‘comb2 on dataset2’. However, in other cases, a combi-
nation that performs best for one data set may even induce slow-
downs for other data sets, see ‘comb1 on dataset2’ versus ‘comb1
on dataset1’. These results suggest that it is challenging to find
a combination that performs well on average across a broad set
of data sets. Also, it is to be expected that the ‘average’ data set
changes over time as users come and go and solve different prob-
lems. Hence, the best combination that performs well on the av-
erage data set must be carefully selected, and the choice must be
constantly revisited.

0.01% 0.1% 0.2% 0.5% 0.6% 0.8% 1%
Percentage of training runs

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S
p
e
e
d
u
p

Figure 4. Impact of training runs on the strategy for ann.

2.5 Overhead/benefit trade-off

In order to explore and compare different combinations of compiler
optimizations, programs must be recompiled followed by a training
run. While the benefits of iterative optimization can be significant,
as demonstrated in the previous sections, they are not sufficient
enough to compensate for a careless use of training runs and re-
compilations. In fact, in order to get any overall performance bene-
fit from iterative optimization, it is essential to find the best possible
trade-off between exploring combinations and minimizing training
runs and recompilations. In Figure 4, we apply our proposed IODC
strategy and vary the total number of evaluations (recompilations
plus training runs) as a percentage of the total number of produc-
tion runs, from 0.01% to 1% for ann. Even 0.6% of training runs
are enough to wipe out any benefit from iterative optimization, and
1% of training runs results into a slowdown over no iterative opti-
mization by 13%.

2.6 Summary

In conclusion, iterative optimization has significant performance
potential, however, achieving it in practice is non-trivial for a num-
ber of reasons. (1) A potentially large number of combinations of
compiler optimizations may need to be evaluated. (2) Iterative op-
timization can be data set dependent. (3) A careful balance be-
tween benefits and costs is required for iterative optimization to
yield overall performance benefits in practice. The data center pro-
vides a context in which each of these challenges can be addressed,
as will become clear in the next section.

3. Iterative Optimization for the Data Center
We now introduce Iterative Optimization for the Data Center
(IODC) which can be applied to both MapReduce-style workloads
as well as throughput compute-intensive server workloads. We first
introduce IODC for MapReduce workloads, followed by IODC for
throughput compute-intensive server workloads.

3.1 MapReduce vs. iterative optimization

MapReduce is a paradigm and framework for processing huge data
sets on a distributed system [11]. MapReduce splits up computation
in a Map and a Reduce stage. In the Map stage, the master partitions
the input into smaller sub-problems, and distributes those to the
workers. Each worker node works on a sub-problem which in itself
consists of a number of so-called records. In our setup, the entire
problem consists of millions of records which are partitioned across
the workers in sub-problems, each consisting of on the order of at
least thousands of records. The Map function represents the work
done by the worker in the Map stage; the worker nodes produce
intermediate files. In the Reduce stage, the master assigns reduce
tasks to the worker nodes, which then produce the final output from
the intermediate files. The Reduce function specifies what a worker
needs to do during the Reduce stage.

This general concept and organization seems to be a natural
fit with how iterative optimization operates. Iterative optimization
requires that a program be executed many times, albeit compiled
differently, in order to understand which combination of compiler

Figure 5. IODC for MapReduce workloads.

optimizations yields optimum performance. In MapReduce termi-
nology, the master is running the iterative optimization strategy,
while the workers evaluate different combinations of compiler op-
timizations (recompilations and training runs), and send perfor-
mance statistics back to the master. Based on the aggregated per-
formance statistics, the iterative optimization strategy running on
the master then propagates recommendations to the workers about
which compiler combinations to employ in the future.

3.2 IODC for MapReduce

Although the overall concept of IODC seems to be an intuitive
fit for MapReduce workloads, designing an efficient strategy is
challenging. The main difficulty is to make sure that the overhead
of training runs, recompilations and communication overhead be-
tween the master and the workers do not outperform the benefits
of iterative optimization. The key principle of our approach is to
manage costs and benefits carefully. As mentioned before, eval-
uations of combinations of compiler optimizations are done on-
the-fly, in a way that is transparent to the user. Further, iterative
optimization continuously searches for better performing combina-
tions of compiler optimizations. At any point in time, IODC em-
ploys the combination that yields the best possible performance
among the combinations evaluated so far. We refer to the current
best combination as the production combination, as it is the one
currently being employed and producing output for the end user.
At the same time, IODC evaluates other possible combinations in
the background, hoping to identify a combination that yields even
better performance. The strategy initiates with the default -O3 op-
timization level as the current production combination, and evolves
towards the best possible combination over time.

IODC’s strategy uses a novel algorithm for managing costs
and benefits from iterative optimization, much alike a ‘savings ac-
count’. IODC starts off with a zero balance on the savings account,
and for each record for which the selected combination of com-
piler optimizations performs better than the default compiler opti-
mization, we consider that we achieve an execution time ‘benefit’,
increasing our savings. A training run and recompilation ‘spends’
some of the earned benefits and decreases the balance on the sav-
ings account.

Figure 5 illustrates the general flow of IODC for MapReduce
workloads. The master dispatches jobs to the workers, i.e., the
master gets the workers to execute the Map and Reduce functions
on a particular subset of the records. The master also controls
iterative optimization, and keeps track of a performance database
of previously evaluated combinations of compiler optimizations as
well as the ‘savings account’ for managing iterative optimization
overhead. We will describe IODC in more detail in the following
paragraphs.

Sampling records for evaluating combinations. The master
distributes records among the workers in a MapReduce workload.
IODC will in addition direct the workers to randomly select a sam-
ple of its assigned records, and to use these as evaluation records.
On all these evaluation records, the workers run the Map or Re-
duce functions, compiled with the default compiler optimization
(i.e., -O3). In addition, the workers will also recompile the Map
and Reduce functions and perform training runs using the eval-
uation records. The workers can then determine locally, among
all the combinations evaluated, which one is the best. Then, they
propagate this information back to the master for making a global
decision on the best combination, see also Figure 5. The evalua-
tion records are also used to detect program errors caused by com-
piler bugs during recompilation; we will discuss this further in Sec-
tion 3.5.

Estimating the performance gain by a combination. The
strategy spends only a fraction of the savings brought by good
combinations, in order to achieve a net benefit at any time during
the MapReduce run. This objective can only be met if the savings
are properly evaluated. One way to accurately evaluate the perfor-
mance benefit due to a combination is to execute each record twice,
using the default compiler optimization and the other combination,
which would introduce too high overhead. Instead, we estimate the
average performance gain using the evaluation records only, not
all records. For each of the evaluation records, the workers evalu-
ate the speedup brought by the new combinations over the default
compiler optimization, and send these results back to the master.
The master uses this information and the knowledge on the total re-
maining number of records to estimate the new savings that could
be achieved with the new anticipated production combination. This
is done through linear extrapolation, referred to as the linear esti-
mation model in Figure 5.

Based on the anticipated savings, the master decides how many
combinations can be evaluated by the workers, and directs them to
perform the corresponding number of evaluations. The principle
is to ‘invest’ only a small fraction (P%) of the total savings in
order to avoid recklessly spending the savings, we use P=20%
in our setup. The evolution of savings is illustrated in Figure 6.
Initially, with no savings, we invest only a small fraction of the total
estimated workload execution time (i.e., 1% in our experiments)
to do explorative evaluations (recompilations and training runs).
Once better combinations are found, only P% of savings brought
by these combinations are invested to initiate more evaluations
for finding even better combinations. As a result, we keep most
of the savings. Note that, in either case, as long as a program is
repeatedly executed, explorative evaluations will continue. Better
combinations will eventually be found even if they are rare in the
optimization space as in the case of Figure 2(b). In the worst case,

Figure 6. Evolution of savings.

i.e., if no better combinations are found, only a negligible loss is
incurred.

Revisiting combinations vs. evaluating new combinations.
As explained above and shown in Figure 5, the master will peri-
odically allocate a certain amount of savings to workers for explo-
ration purposes. The workers perform the explorative evaluations
in parallel. Each worker evaluates one or a few combinations. The
goal of the exploration is twofold: (i) to find new combinations that
may perform better than the current best optimization, but also (ii)
to revisit previous production combinations. The reason for both
looking for new combinations and revisiting combinations, is to be
able to continuously find the best possible optimization, even in the
presence of time-varying inputs.

The master distributes to each worker a mix of new combina-
tions and known combinations. As soon as the evaluations are per-
formed, the workers send the speedup score of each evaluated com-
bination to the master, see Figure 5 (top arrow from the workers
to the master), which maintains a probability distribution charac-
terizing the quality of each combination, based on the speedups
recorded for that combination. The master selects the best combi-
nation known so far as the production combination, and propagates
it to all the workers, see Figure 5 (bottom arrow from the master to
the workers).

Within-run IODC vs. across-run IODC. IODC can be applied
both within a single run and across runs. Within a MapReduce run,
a large number of Map and Reduce operations are dispatched by
the master to the workers, i.e., each worker operates on a set of
assigned records. Once IODC finds a better combination than the
current production combination, this better combination becomes
the new current production combination, and it is immediately used
to process the remaining records. This is referred to as within-run
IODC. Well-performing production combinations can also be used
across multiple runs of the same MapReduce workload (e.g., by
different users), and IODC can continue to optimize the production
combination across runs. Across-run IODC maintains optimization
information across runs, which allows for continuously optimizing
the production combination.

3.3 Extending IODC to any server application

While MapReduce is well suited for implementing iterative opti-
mization because of the large number of records that need to be
processed in parallel, the concept developed so far can be extended
to any application running on a server. Contemporary throughput
compute-intensive server applications (i.e., non-MapReduce batch-
style workloads) do not typically run many instances of the same
application at the same time, as is the case for MapReduce work-
loads. However, over a sufficiently long period of time, a similarly
large number of runs are performed with different data sets for each
run.

We therefore develop a modified iterative optimization strat-
egy that does not rely on multiple simultaneous runs and a mas-
ter/worker relationship, but which instead stores a history of com-
binations of compiler optimizations for each program. The strategy
is implemented as a standalone script, running on one of the server
nodes; the overhead of running the strategy script is factored in our

evaluation, though it is actually negligible. As shown in Figure 7,
the modifications to the strategy are the following.

Sample data sets. We maintain a pool of D randomly selected
data sets, which we use the same way as the evaluation records
for the MapReduce workloads: we use these evaluation data sets to
evaluate the performance of alternative combinations of compiler
optimizations. This pool is periodically refreshed as new data sets
come in, in order to adapt to the possibly changing nature of data
sets over time.

D has to be kept small, lest the overhead of the comparison is
too high, i.e., D = 3 is the default value of the strategy in our
setup. Because D is small, the comparison between the default
and an alternative combination of compiler optimizations may be
inaccurate so we check whether the mean execution times (over
the D data sets) are statistically significant. For that purpose, we
use the t-test with resampling [27]. If the comparison shows that
the new combination would bring a performance improvement of
at least 1% at a 95% confidence level, we replace the current
production combination with the new combination.

Conservative and aggressive modes. Unlike in MapReduce,
the strategy cannot estimate upfront the total savings brought by a
better combination because the total number of runs of the program
(over its entire lifetime on the server) is unknown. Therefore, explo-
ration decisions have to be revisited after each run. The amount of
exploration the strategy can afford to perform at any given time de-
pends on the accumulated savings so far, and upon the rate at which
better combinations are found. The latter criterion is the motivation
for two modes: if better combinations are frequently found, future
savings and the promise of even greater savings justify to quickly
search for new combinations; otherwise, exploration must proceed
more carefully.

The strategy toggles automatically between a ‘conservative’ and
an ‘aggressive’ mode. The only distinction between these modes is
the percentage P of savings that we are ready to spend. We use
P = 5% in conservative mode, and P = 50% in aggressive mode.
This percentage does not apply to all cumulated savings since the
beginning of the task, but only to the cumulated savings since the
last mode change. As a result, all savings accumulated till the end
of a mode are definitely won.

Consider the example of Figure 8. Initially, the strategy starts in
aggressive mode, speculatively investing future savings in order to
quickly find better combinations. In this example, we assume that
the exploration performed on the first data sets finds some better
performing combination. The strategy will decide to stay in aggres-
sive mode, postulating even better combinations can be found. Af-
ter several more combinations being evaluated without showing an
additional benefit, the strategy toggles back to conservative mode.
No exploration will take place until the overhead of the last evalu-
ations correspond to no more than 5% of the cumulated savings so
far. When that happens, a few more combinations are explored. If
that exploration is successful again, i.e., an even better combination
is found, the strategy toggles back to aggressive mode, and so on.

3.4 Implementing IODC

We now discuss a number of IODC implementation issues which
we find useful mentioning.

MapReduce. Implementing IODC in MapReduce requires that
the worker nodes know where to find the Map and Reduce functions
for recompilation. In our implementation, a new API was added so
that the user can specify the location of the source code of the Map
and Reduce functions for automatic recompilation. An alternative
approach would be to use Unix environment variables for passing
location information.

Capturing inputs and outputs. Iterative optimization uses re-
compilation and training runs to evaluate different combinations
of compiler optimizations. In order to be transparent to the users,
we need to automatically retain the inputs of evaluation runs and

IODC

Dispatch jobs

+/-

Toggle

Sample D data sets

Training runs &
recompilations

Execution time
of all runs

& recompilations

Change

Savings

aggressive

A pool of 100 data sets

Node

Server

Production
combinations

IODC

Performance
database

conservative

Local file system

CPU

Programs

Job queue

Figure 7. IODC for throughput compute-intensive server applications.

Conservative mode

Aggressive mode

Figure 8. Toggling between conservative and aggressive modes.

capture their outputs. In the MapReduce framework, the runtime
system is in charge of capturing, transferring and storing the input
and output data of user-defined Map and Reduce functions, while
the user only needs to specify the locations of input and output
through a set of framework-specific API calls. In the runtime, we
intercept messages between the master and the workers in order to
know the input location and sample them for evaluation runs. To
reduce disk seek time, we sample the input at the granularity of a
group of consecutive records, not individual records. We also mod-
ified the runtime to not transfer nor store the outputs of Map and
Reduce functions during evaluation.

Propagating recompiled code. Once the current best combi-
nation gets promoted as the next production combination, we need
to propagate this information from the master to the workers. In
the MapReduce implementation, only the combination itself is sent
to the other workers, which perform recompilations locally. In the
server implementation, IODC sends the recompiled code across the
nodes. The time required for either propagation method is factored
in our performance measurements.

IODC for server applications. For retaining the D data sets
in IODC for server applications, we leverage the replay strategy
which is commonly used in large-scale servers for fault-tolerant
computing [2, 23]. Because the failure rate in servers is high,
software infrastructures on servers embed a replay capability to
rerun a data set if the previous run did not complete. That capability

tiff2
rgb

a
tiff2

bw lam
e

jpe
glib

_en
cod

ing

sus
an_

sm
oot

h

sus
an_

edg
e

tiffm
edi

an sha

sus
an_

cor
ner

rsy
nth
av
er
ag

e
0.01%

0.1%

1%

10%

100%

%
o
f
ru
n
s
(l
o
g
s
c
a
le
)

% filtering runs % test runs

Figure 9. Percentage of runs where a compiler bug was detected
(1000 runs for each benchmark application).

requires to temporarily retain the data set, which we leverage in
IODC.

Heterogeneous servers. So far, we have assumed that all the
machines in a cluster are the same, so that results gathered on one
node can be factored in for other nodes. It is straightforward to ex-
tend the strategy to factor in heterogeneous nodes: the information
on which combinations perform best must only be partitioned into
classes, each class corresponding to a node type or configuration.

3.5 Compiler bugs

The interplay among different compiler optimizations is particu-
larly complex, up to the point where it is difficult for compiler
designers to ensure that any combination of compiler optimiza-
tions will always result in bug-free programs. Therefore, we need
to add a safeguard mechanism to check the correctness of code re-
compiled with complex combinations of compiler optimizations.

For that purpose, we leverage our evaluation records again and
the aforementioned facilities for capturing output. The output of the
evaluation records, compiled with the default compiler optimiza-
tion, are stored. Whenever a new combination is evaluated on one
of these evaluation records, the outputs are compared. If there is any
difference (or if the run crashes for that record), the combination is
flagged as potentially buggy and not authorized for production runs.

In order to illustrate how frequent the problem is, and to assess
the efficiency of our safeguard mechanism, we proceed as follows.
We generate random combinations of compiler optimizations for
the GNU C compiler, and we emulate the safeguard mechanism
by running each combination on 5 randomly selected data sets for

each of the benchmark applications; we repeat this process until we
identify 300 fault-free combinations; the experimental framework
is presented in more details in Section 4. The percentage of faulty
runs is shown in Figure 9, see the ‘% filtering runs’ bars. Any
combination found to be faulty is no longer considered, it is deemed
filtered by the safeguard. Then, in order to assess the efficiency of
the safeguard, we run the remaining, filtered, 300 combinations on
the 1000 data sets of our 10 benchmark applications, 3 million runs
in total. The fraction of invalid runs is reported in Figure 9, see
‘% test runs’. While some compiler bugs were not captured by the
filtering process, their occurrence is rare, 0.02% on average. We
repeated the same experiment with a commercial compiler, Intel
ICC, for which 3.3% of filtering runs were faulty, and for which we
found no remaining compiler bugs after filtering.

4. Methodology
Before presenting the evaluation of IODC, we first describe our
experimental setup.

4.1 Servers

We evaluate IODC on three different kinds of servers. The first
one is a 7-node DELL cluster, with 3GHz Intel Xeon dual-core
processors (E3110 family), 2GB RAM, 2x3MB L2 cache, running
CentOS release 5.3 (Final). We refer to this cluster as the Intel
cluster in the remainder of the paper. The second one contains 8
dual-core AMD Opteron processors (8218), 16GB RAM, 2x1MB
L2 cache, running Red Hat Enterprise Linux 4.4. We refer to this
cluster as the AMD cluster. The third one is a 32-node cluster
with Loongson 2F processors [22], running Red Flag Linux 6.0;
Loongson 2F is an 800MHz MIPS-compatible general-purpose
CPU, with a 512KB L2 cache and 512MB RAM. We refer to this
cluster as the Loongson cluster. In order to perform the very large
number of runs described below in a reasonable amount of time, we
partitioned our benchmarks across these three clusters as indicated
in Table 1.

4.2 Benchmarks and data sets

We consider three groups of workloads for evaluating IODC, see
also Table 1.

MapReduce applications. The first group of workloads is a set
of five MapReduce applications: minhash, ann, kmeans, knn, and
pfsp. minhash is a probabilistic clustering algorithm implemented
as a MapReduce component in the Google News service [10].
ann is a back-propagation algorithm for training the weights of
a three-layer artificial neural network [21]; kmeans and knn are
MapReduce implementations of k-means clustering [28] and the
k-nearest neighbor algorithm [17], respectively; pfsp relies upon
a genetic algorithm and a NEH-based heuristic method [24] to
solve the permutation flowshop scheduling problem, which is an
important task in industrial engineering, aiming at finding a job
sequence with minimal makespan [35].

The MapReduce implementation we use is Sector/Sphere [18],
an open-source high-performance distributed file system and paral-
lel data processing engine. We generated 1,550,000 to 310,000,000
inputs (records) for these tasks, either based on a uniform distri-
bution, or a distribution extracted from real-world data, see also
Table 1. We randomly grouped these records into 5 different data
sets of the same size, for each of the applications. We will use these
5 data sets to evaluate within-run IODC versus across-run IODC.

Compute-intensive server applications. The second group of
workloads contains six programs, five of which are extracted from
the PARSEC benchmark suite [5]: x264, ferret, freqmine,
blackscholes, and canneal; the sixth server application is
bzip2e, the well-known file compression utility. These programs
are similar to emerging compute-intensive server applications used
in several popular web services. x264 is an H264 video compres-

sion program, which is the kind of tasks run on YouTube servers,
among others. ferret performs content-based similarity on im-
ages; Google Picasa and Flickr both rely on content-based similar-
ity for identifying faces within images. freqmine is a typical data
mining program aiming at finding frequent item sets; Amazon uses
similar algorithms to recommend related books. blackscholes
is an option-pricing prediction model, popular in financial in-
stitutions; it is used for instance by Morgan Stanley and Gold-
man Sachs. canneal is a chip routing application, similar to the
place and route algorithms used by EDA companies (e.g., Xilinx).
bzip2e is a compression algorithm, broadly used in file sharing
web sites, such as the GNU FTP. For these six programs, we collect
between 28,000 to 177,119 data sets, see Table 1, corresponding to
a total storage of 9.54TB. In all experiments, we use each data set
only once, thereby emulating distinct production runs.

Benchmark applications. The third group of benchmarks are a
collection of ten relatively small applications, which are similar
to tasks running in the backbone of popular web services. These
benchmarks are taken from well-known open-source projects. We
use these benchmark applications for fine-tuning IODC in a reason-
able amount of time prior to running the more complex and long-
running MapReduce and server applications.

We consider the following benchmark applications. rsynth
performs text-to-speech conversion, as provided by the service
readthewords.com; susan corner, susan edge, and susan -
smooth (all from susan) perform standard and compute-intensive
image processing steps of image recognition applications, as in
myheritage.com; jpeglib encoding (from jpeglib), tiff2-
median, tiff2bw, tiff2rgba perform image conversions, as pro-
vided by converthub.com or go2convert .com; lame is an mp3
encoder, as provided by media.io; sha is the SHA hashing algo-
rithm, broadly used in servers [29].

Combinations of compiler optimizations. For all experiments,
we use the GNU GCC v4.4 compiler, and the optimization level
-O3 as the baseline. We selected 127 compiler options of GCC
that control inlining, unrolling, vectorization, scheduling, register
allocation, constant propagation, among other optimizations known
to have a potential impact on performance. We then create 300
randomly chosen combinations of these compiler optimizations.
We explore these combinations in random order in the experiments.
Note that other exploration methods [1, 6, 25], which may require
extensive training and/or program feature extraction, can also be
integrated into IODC.

4.3 Measurements

We measure end-to-end wall clock time, and we report speedups
over the GCC -O3 optimization level. The performance numbers
reported in the paper include all sources of overhead, including
the cost of recompilations, training runs, communication overhead
between the master and the workers, etc. The total CPU time was
110 days for the MapReduce applications, 440 days for the server
applications, and 18 days for the benchmark applications.

5. Performance Evaluation
We now evaluate IODC. This is done in a number of steps. We
first evaluate IODC for MapReduce and server workloads. We
subsequently evaluate IODC’s impact on energy consumption, and
we explore various optimizations of the IODC framework.

5.1 MapReduce

Figure 10 reports the speedup achieved by within-run IODC.
Speedups range up to 1.91×, with an average speedup of 1.29×.
There is a slight performance degradation for kmeans due to the ini-
tial ‘investment’ into the exploration of combinations which failed
to find a better combination than GCC’s default -O3 optimization
level, and which results in a 1.24% slowdown. Note though that we

Benchmark Program Data set number Data set description Cluster
suite (domain) (total file size)

minhash (probabilistic
clustering)

10830935 (6GB) Generated data sets obeying distribution extracted from MovieLens[34];
each record represents a movie history seen by one user.

Loongson [22]

ann (model training) 310000000 (222GB) Generated data sets obeying uniform distribution; each record consists of
input and output for the artificial neural network.

Loongson

MapReduce kmeans (distance-based
clustering)

4294720 (320GB) Generated data sets obeying uniform distribution; each record represents a
multi-dimension point.

Loongson

applications knn (query-based learn-
ing)

387500000 (580GB) Generated data sets obeying uniform distribution; each record consists of
an instance and its label.

Loongson

pfsp (scheduling prob-
lem)

1550000 (591MB) Generated data sets obeying uniform distribution; each record represents a
job scheduling scheme.

Loongson

bzip2e (compression) 28000 (438GB) Uncompressed tar balls of source and binary packages of various Linux
distributions.

Loongson

ferret (image similarity
search)

58430 (187GB) Groups of query images constructed using 1,166,657 JPEG files down-
loaded from 130 different web sites.

Intel

Server freqmine (data mining) 61655 (4.05TB) Lists of transactions randomly generated using IBM Quest Market-Basket
Synthetic Data Generator [3].

AMD

applications x264 (video encoding) 67571 (2.28TB) Yuv4mepg videos converted from MKV and RMVB files downloaded from
the Internet.

Loongson

canneal (electronic design
automation)

177119 (2.15TB) Netlists randomly generated with an enhanced version of the input genera-
tor provided by PARSEC.

Intel

black- scholes (financial
analysis)

43354 (434GB) Lists of options randomly generated based on the value ranges deduced
from the 1000 inputs provided by PARSEC.

AMD

Benchmark ap-
plications

10 benchmark applica-
tions

1000 each (10GB) 1000 data sets per benchmark collected from various web sites [7]. Intel

Table 1. Benchmarks, data sets and servers considered in this study.

pfsp kmeans ann minhash knn average

1.0

1.2

1.4

1.6

1.8

2.0

S
p
e
e
d
u
p

Figure 10. Speedup for the MapReduce applications for within-
run IODC.

pfsp kmeans ann minhash knn average

1.0

1.2

1.4

1.6

1.8

2.0

2.2

S
p
e
e
d
u
p

1st data set

2nd data set

3rd data set

4th data set

5th data set

Figure 11. Speedup for the MapReduce applications using both
within-run IODC (1ste data set) and across-run IODC (2nd
through 5th data set).

perform within-run IODC only in this experiment, which explains
the slowdown for kmeans.

To evaluate across-run IODC, we now consider five data sets
to emulate five consecutive runs of the same MapReduce work-
load with different inputs, see Figure 11. On average, the speedup
achieved across runs for the combined strategy is 1.48× after 5
data sets, versus 1.29× after 1 data set. The maximum speedup is
2.08×, achieved for knn after 5 data sets. Note that we now achieve
a speedup of 1.38× after 5 data sets of across-run IODC for the
kmeans which showed a 1.24% slowdown with within-run IODC.

5.2 Server applications

In Figure 12, we report the cumulated speedup for the server appli-
cations using unique data sets. The curves report how performance
speedup improves over time. At any given point in time, the cumu-
lated speedup is computed as the ratio of the wall clock time for all

runs compiled with -O3 versus all runs compiled with production
combinations. The ‘with overhead’ curve accounts for all the over-
head costs, whereas the ‘no overhead’ curve discounts any source
of overhead; the delta between both curves quantifies the overhead.

We observe that, initially, when the strategy searches for good
combinations, the cost of recompilations and training runs results
in a slowdown. However, the corresponding slowdown is on the or-
der of 1% on average. The initialization phase does not take that
long; after a couple thousand runs (2670 runs on average), IODC
yields a net performance benefit; the reason is that combinations
that outperform the default -O3 production combination can usu-
ally be found quickly. As shown in Figure 12, the proposed strat-
egy achieves a cumulated speedup of 1.39× for bzip2e, 1.12×
for blackscholes and freqmine, 1.10× for x264, 1.08× for
canneal, 1.06× for ferret, with an average of 1.14×. We also
find the overhead of IODC to be small, a few percent only.

Also note the thin marks at the bottom of each of the graphs in
Figure 12. These marks indicate when the strategy searches for a
new combination. Note that there is sometimes an inflection point
after which a much better combination is found; the cumulated
speedup stops increasing at a fast pace for a little while, and then
after the inflection point, it starts increasing faster, see ferret
for the most notable example. Right before the inflection point
reflects the aggressive mode. Once a better combination is found,
the strategy transitions back to conservative model, after which
performance benefit increases again.

In the different graphs of Figure 12, performance plateaus after
some time because we use a uniform random mix of data sets, so
the strategy will eventually end up finding a program-optimal com-
bination, i.e., a combination that performs well across many data
sets. With a less uniform mix, the choice of the best combination
has to be constantly revisited, which is described in Section 5.6.

Overall, these experiments show that, even under conditions
with unique data sets and factoring in all the overhead costs, IODC
improves the performance in a consistent way, i.e., without incur-
ring performance degradation at any time except in the initial phase.

5.3 Energy reduction

We now quantify the energy implications of IODC. Given the im-
portance of energy consumption on total cost of ownership (TCO),
reduction in energy consumption immediately translates into pro-
portional cost reductions. We use a simple linear model to esti-
mate energy consumption based on CPU utilization, as proposed

(a) bzip2e (28000 unique data sets in total) (Loongson)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S
p
e
e
d
u
p

no overhead

with overhead

0 50 100 150 200 250

wall time (in minutes)

(b) blackscholes (43354) (AMD)

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

S
p
e
e
d
u
p

no overhead

with overhead

0 100 200 300 400 500

wall time (in minutes)

(c) freqmine(61655)(AMD)

0.98

1.14

0 1000

(d) x264 (67571) (Loongson)

0.98

1.12

0 6500

(e) canneal (177119) (Intel)

0.98

1.10

0 4500

(f) ferret (58430) (Intel)

0.98

1.08

0 500

Figure 12. Cumulated speedup profiles for bzip2e, blackscholes, freqmine, x264, canneal, and ferret.

MapReduce applications server applications average
0

2%

4%

6%

8%

10%

12%

14%

16%

E
n
e
rg
y
re
d
u
c
ti
o
n

20% utilization

50% utilization

95% utilization

Figure 13. Estimating energy saving through IODC at different
system utilization levels.

0 2000 4000 6000 8000

wall time (in minutes)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

S
p
e
e
d
u
p

best

cumulated

Figure 14. Cumulated speedup profile averaged across the bench-
mark applications.

by Fan [12]:

power = Pidle + (Pbusy − Pidle) ∗ u (1)

where Pbusy is the power of the server running the most power-
intensive tasks; Pidle is the power consumption in idle state, and
it is equal to half that of Pbusy according to the results by Fan et
al. [12]; u is CPU utilization. We consider three different utiliza-
tions: 20%, 50% and 95%. We report the results in Figure 13 and
find that we can achieve energy gains ranging between 3.7% and
11% on average, depending on the level of utilization. The reason
why energy savings increase with utilization level is that there are
more energy saving opportunities for iterative optimization at high
utilization levels, i.e., the more work done by the server, the more
iterative optimization saves energy because it gets the work done
faster.

5.4 Benchmark applications

We also evaluate IODC with the benchmark applications and its
1000 data sets, albeit we reuse the data sets in these experiments.

As explained in Section 4, the motivation for these experiments
is to address several questions which would have been too time-
consuming to explore with the large number of unique data sets
using the MapReduce and server applications. Relevant questions
are: (1) How far is the strategy from the optimal performance of
iterative optimization? (2) Is there value in a strategy that factors in
the costs and benefits of multiple programs at the same time? (3)
How does the strategy perform when data sets are non-uniformly
mixed? Because we can apply all 300 combinations on all data
sets, it is possible to address all these issues for these benchmark
applications. In this section, we essentially want to validate that the
convergence profiles of the benchmark applications are similar to
the profiles of the MapReduce and server applications, suggesting
they respond similarly to IODC. We address points (2) and (3) in
the next two sections.

As reported in Figure 14, the cumulated speedup curves are
similar for the benchmark applications as for the MapReduce and
server applications, i.e., performance speedup improves over time.
The ‘best’ curve in Figure 14 corresponds to the performance ob-
tained if an oracle would choose the best combination for each
data set of each program, with all overheads (recompilations and
training runs) factored in, though. In other words, it is the maxi-
mum performance that can be achieved, in theory. We find that the
plateau performance of IODC is within 98% of this best possible
performance, in large part because IODC can keep the overhead of
recompilations and training runs small enough.

5.5 Shared budget

IODC manages the costs/savings budget for each program sep-
arately. Since multiple programs are usually run simultaneously
within servers, one could also consider a shared-budget IODC strat-
egy in which programs share their costs and savings. For instance,
if one program has many good combinations, it will quickly achieve
significant savings, and most of its latter explorations will be use-
less. On the other hand, a program with few good combinations
may require a lot of time to converge, delaying potential savings.
If these two programs were to share costs and savings, the second
program could use some of the savings of the first program to find
good combinations faster, increasing overall benefits.

We have setup an experiment to evaluate the shared-budget
idea. rsynth is a program that converges slowly, even though
it can potentially achieve a significant speedup; susan corner
converges quickly. When the programs do not share their budget,
the convergence profiles are as shown in Figure 15(a). After a little
while, susan corner converges to a speedup of 1.5, while rsynth

(a) Per-program budget

0 200 400 600 800 1000

wall time (in minutes)

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

rsynth

susan_corner

combined speedup

(b) Shared budget

0 200 400 600 800 1000

wall time (in minutes)

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

rsynth

susan_corner

combined speedup

Figure 15. Per-program vs. shared-budget IODC.

Program

group
1
size

group
2
size

tiff2bw
13
72

tiff2rgba
11
79

jpeglib_encoding
101
119

sha
17
982

susan_edge
534
242

tiffmedian
93
142

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

comb
1
on group

1

comb
1
on group

2

comb
2
on group

1

comb
2
on group

2

Figure 16. Evaluating non-uniform data sets: Applying combina-
tions, favored by one group of data sets, to another group of data
sets.

is still in the process of converging. The convergence profiles with a
shared budget are shown in Figure 15(b): rsynth converges faster
and achieves a higher speedup than with separate budgets in the
same amount of time. susan corner, which has contributed some
of its savings to rsynth, performs only slightly worse than with
separate budgets. Overall, the combined speedup is significantly
higher within the same amount of time.

5.6 Non-uniform mix of data sets

In the experiments done so far, we have assumed the data set
characteristics to be uniformly distributed over time. In the more
likely case where each user runs data sets with certain common
characteristics, data set characteristics are likely to be clustered
over time. In this section, we emulate a scenario in which data set
characteristics are clustered over time based on how they react to
combinations. We cluster the data sets into two groups (group1 and
group2) based on how they react to different combinations. We
then find the best combination comb1 based on the group1 data
sets (average performance across all group1 data sets), and comb2
only using group2 data sets. While the spirit of this experiment is
similar to the example of Section 2.4, here, we find comb1 and
comb2 using a whole group of data sets, not just one, thereby
emulating more closely the selection of combinations over multiple
data sets, and the fact that data sets characteristics can be clustered
over time.

In Figure 16, we present results for six programs. We apply
comb1 to group2 and compare against the speedups obtained with
comb2 on group2, and vice versa. For some benchmarks, comb1
performs poorly for the group2 data sets: similarly, comb2 per-

forms poorly for the group1 data sets. This confirms the need
for the continuous exploration of combinations of compiler opti-
mizations, in case data set characteristics change over time. In Fig-
ures 17 and 18, we show that IODC can adapt to the changing data
sets using susan edge and tiff2bw as example benchmarks, re-
spectively. The solid curves represent the default IODC strategy.
The dotted curves show a variant in which the exploration stops
after convergence. We start with data set group1. After both strate-
gies converged, we switch to data set group2. As shown, with con-
tinuous exploration, IODC reacts quickly to the change, resulting
in higher performance gains.

500 1000 1500 2000

wall time (in minutes)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

S
p
e
e
d
u
p

group
1

group
2

continuous
non-continuous

Figure 17. Continuous vs. non-continuous exploration with non-
uniform mix of data sets for susan edge.

Figure 18. Continuous vs. non-continuous exploration with non-
uniform mix of data sets for tiff2bw.

6. Related Work
MapReduce [11] has been applied to a broad set of algorithms since
its introduction [10, 17, 21, 28, 35]. Aside from Google’s propri-
etary implementation of MapReduce, other open-source implemen-
tations include Hadoop [33] and Sector/Sphere [18]. To the best of
our knowledge, there is no prior work on applying iterative opti-
mization to MapReduce, nor to the data center context at large.

However, there is a large body of research on iterative op-
timization. A large share of this research is dedicated to show-
ing the performance potential of iterative optimization [1, 6, 8, 9,
13, 14, 25, 30]. A substantial number of studies aim at reducing
the number of recompilations and training runs required to con-
verge [1, 6, 8, 25, 30]. Some papers [15, 26] propose to improve the
performance of iterative optimization by tuning at a finer granular-
ity than the whole program. For most studies, the goal is to find the
best possible combination, but not to find them in a cost-efficient
manner that factors in the overhead of training, nor to adapt to the
changing nature of data sets, i.e., it is assumed that iterative opti-
mization can be done offline.

Most of the prior work in iterative optimization assumes a sin-
gle or a limited number of data sets. A couple studies investigate
input data set sensitivity. Berube and Amaral study the training in-
put sensitivity of feedback-directed optimizations [4]. They collect
116 inputs in total for seven SPEC CPU benchmarks and study the
impact of different training inputs on inlining decisions. Haneda
et al. [19] investigate the input sensitivity of iterative optimization.

They perform iterative optimization using GCC and the train in-
puts on seven SPEC CPU benchmarks. The authors find that the
best combination of optimizations found using the train input
works well when applied to the ref input. Fursin et al. [14] pro-
posed MiDataSets which includes 20 data sets in total per program.
Only recently did Chen et al. [7] propose KDataSets, a suite of
1000 data sets per program, for evaluating iterative optimization
with respect to data set sensitivity. They concluded that it is pos-
sible to find a program-optimal combination of compiler optimiza-
tions that performs well compared to the best possible combination
for each specific data set. The program-optimal combination was
chosen post-mortem though, with the assumption that all data sets
are known, which we could not rely upon in the online system pro-
posed in this paper.

A number of studies employ iterative optimization to optimize
performance during run time. Voss et al. [36] propose ADAPT.
They compile code sections into different versions and select the
best performing ones during run-time in order to adapt to different
architectures and inputs. Fursin et al. [16] use MiDataSets to under-
stand how iterative optimization behaves in a more realistic setting
where input data sets vary across executions. However, because of
the limited number of input data sets, they have to reuse data sets,
in contrast to this work. Their strategy is to generate a binary with
two versions of the most time-consuming routines, each version op-
timized with a different combination. They then compare the per-
formance of the two versions in a statistical way once enough calls
to the two versions of the routines have been performed. They then
pick the best performing version as the production combination.
Stephenson [32] proposes a similar approach within a Java virtual
machine. In contrast to this collection of prior work, IODC care-
fully manages the costs versus benefits, enabling online iterative
optimization in the data center. In addition, IODC explores a larger
combination space of compiler optimizations during run time.

7. Conclusion
Implementing iterative optimization in an efficient way so that
it can be deployed in an online environment is non-trivial for a
number of reasons: a potentially large number of recompilations
and training runs may be needed to find a good combination of
compiler optimizations; the process can be data set dependent;
and the overhead of recompilations and training runs can easily
wipe out the performance benefits from iterative optimization. In
this paper, we proposed and explored Iterative Optimization for
the Data Center (IODC), and we made the case that servers and
data centers offer a context in which iterative optimization can be
implemented as an online optimization technique. The key insight
behind IODC is to carefully manage the number of recompilations
and training runs so that they do not nullify the benefits from
iterative optimization. We demonstrated that IODC can be applied
to both MapReduce workloads as well as throughput compute-
intensive server applications, and is completely transparent to the
end user. We evaluated IODC using a very large number of data sets
per benchmark, enough to use each data set (or record) only once.
We report an average performance improvement of 1.48×, and up
to 2.08×, for a set of MapReduce applications, and 1.14×, and up
to 1.39×, for a set of contemporary throughput compute-intensive
server applications.

Acknowledgments
We would like to thank the anonymous reviewers for their valuable
feedback. We also thank Xiaguang Qi, Wenting He, Dongni Han
for helping collect some of the data sets used in this paper. Lieven
Eeckhout is supported through the FWO projects G.0232.06,
G.0255.08, and G.0179.10, the UGent-BOF projects 01J14407 and
01Z04109, and the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013) /

ERC Grant agreement No. 259295. Olivier Temam is supported by
HiPEAC-2 NoE under grant European FP7/ICT 217068 and INRIA
YOUHUA associated team funding. The rest of the authors are sup-
ported by the National Natural Science Foundation of China under
grants No. 60873057, 60921002 and 61033009; the National Basic
Research Program of China under grant No. 2011CB302504; and
the National Science and Technology Major Project of China under
grants No. 2009ZX01036-001-002 and 2011ZX01028-001-002.

References
[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.

O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams. Using
machine learning to focus iterative optimization. In Proceedings of
the International Symposium on Code Generation and Optimization
(CGO), pages 295–305, March 2006.

[2] N. Aghdaie and Y. Tamir. Implementation and evaluation of transpar-
ent fault-tolerant web service with kernel-level support. In Proceed-
ings of 11th International Conference on Computer Communications
and Networks (ICCCN), pages 63–68. IEEE, October 2002.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules in Large Databases. In Proceedings of 20th International Con-
ference on Very Large Data Bases (VLDB), pages 487–499, September
1994.

[4] P. Berube and J. Amaral. Aestimo: a feedback-directed optimization
evaluation tool. In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages
251–260, March 2006.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 72–81, October 2008.

[6] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and
O. Temam. Rapidly selecting good compiler optimizations using
performance counters. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO), pages 185–197, March
2007.

[7] Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam, and
C. W. u. Evaluating iterative optimization across 1000 data sets. In
Proceedings of the ACM SIGPLAN 2010 Conference on Programming
Language Design and Implementation (PLDI), pages 448–459, June
2010.

[8] K. Cooper, P. Schielke, and D. Subramanian. Optimizing for reduced
code space using genetic algorithms. In Proceedings of the Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 1–9, July 1999.

[9] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian,
L. Torczon, and T. Waterman. ACME: adaptive compilation made
efficient. In Proceedings of the ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 69–77, July 2005.

[10] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news per-
sonalization: scalable online collaborative filtering. In Proceedings of
the 16th international conference on World Wide Web (WWW), pages
271–280, May 2007.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th Conference on Symposium
on Operating Systems Design & Implementation (OSDI), pages 107–
113, December 2004.

[12] X. Fan, W. Weber, and L. Barroso. Power provisioning for a
warehouse-sized computer. In Proceedings of the 34th annual inter-
national symposium on Computer architecture, pages 13–23, 2007.

[13] B. Franke, M. O’Boyle, J. Thomson, and G. Fursin. Probabilistic
source-level optimisation of embedded programs. In Proceedings of
the ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), pages 78–86, July 2005.

[14] G. Fursin, J. Cavazos, M. O’Boyle, and O. Temam. Midatasets:
Creating the conditions for a more realistic evaluation of iterative
optimization. In Proceedings of the International Conference on High

Performance Embedded Architectures & Compilers (HiPEAC), pages
245–260, January 2007.

[15] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A practical method
for quickly evaluating program optimizations. In Proceedings of
the 1st International Conference on High Performance Embedded
Architectures & Compilers (HiPEAC), pages 29–46, November 2005.

[16] G. Fursin and O. Temam. Collective optimization. In Proceedings of
the International Conference on High Performance Embedded Archi-
tectures & Compilers (HiPEAC), pages 34–49, January 2009.

[17] D. Gillick, A. Faria, and J. DeNero. MapReduce: Distributed comput-
ing for machine learning. Technical report, UC Berkeley, December
2006.

[18] Y. Gu and R. L. Grossman. Sector and Sphere: The Design and Imple-
mentation of a High Performance Data Cloud. In Theme Issue of the
Philosophical Transactions of the Royal Society A: Crossing Bound-
aries: Computational Science, E-Science and Global E-Infrastructure,
June 2009.

[19] M. Haneda, P. Knijnenburg, and H. Wijshoff. On the impact of data
input sets on statistical compiler tuning. In Proceedings of the 20th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 385–385, April 2006.

[20] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones.
Fast searches for effective optimization phase sequences. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 171–182, June 2004.

[21] Z. Liu, H. Li, and G. Miao. MapReduce-based backpropagation neural
network over large scale mobile data. In Proceedings of the 6th
International Conference on Natural Computation (ICNC), August
2010.

[22] Loongson 2F. http://www.loongson.cn/ .

[23] M. Marwah, S. Mishra, and C. Fetzer. Enhanced server fault-tolerance
for improved user experience. In Proceedings of the IEEE Interna-
tional Conference on Dependable Systems and Networks With FTCS
and DCC (DSN), pages 167–176, June 2008.

[24] M. Nawaz, E. E. Enscore Jr, and I. Ham. A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem. OMEGA:
International Journal of Management Science, pages 91–95, 1983.

[25] Z. Pan and R. Eigenmann. Fast and effective orchestration of compiler
optimizations for automatic performance tuning. In Proceedings of
the International Symposium on Code Generation and Optimization
(CGO), pages 319–332, March 2006.

[26] Z. Pan and R. Eigenmann. Fast automatic procedure-level perfor-
mance tuning. In Proceedings of the Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pages 173–181, September
2006.

[27] S. Patil and D. Lilja. Using Resampling Techniques to Compute Con-
fidence Intervals for the Harmonic Mean of Rate-Based Performance
Metrics. Computer Architecture Letters, pages 1–4, 2010.

[28] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for multi-core and multiproces-
sor systems. In Proceedings of the 2007 IEEE 13th International Sym-
posium on High Performance Computer Architecture (HPCA), pages
13–24, February 2007.

[29] B. Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[30] M. Stephenson and S. Amarasinghe. Predicting unroll factors using
supervised classification. In Proceedings of the International Sympo-
sium on Code Generation and Optimization (CGO), pages 123–134,
March 2005.

[31] M. Stephenson, M. Martin, and U. O’Reilly. Meta optimization:
Improving compiler heuristics with machine learning. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 77–90, June 2003.

[32] M. W. Stephenson. Automating the Construction of Compiler Heuris-
tics Using Machine Learning. PhD thesis, MIT, USA, January 2006.

[33] Apache Hadoop. http://hadoop.apache.org, 2010.

[34] MovieLens data sets. http://www.grouplens.org/node/73, 2010.

[35] A. Verma, X. Llora, D. E. Goldberg, and R. H. Campbell. Scaling
genetic algorithms using mapreduce. In Proceedings of the 9th Inter-
national Conference on Intelligent Systems Design and Applications
(ISDA), pages 13–18, November 2009.

[36] M. Voss and R. Eigenmann. ADAPT: Automated de-coupled adaptive
program transformation. In Proceedings of the International Confer-
ence on Parallel Processing (ICPP), pages 163–170, August 2000.

http://www.loongson.cn/

	Introduction
	Motivation
	Iterative optimization: Terminology
	Potential of iterative optimization
	Iterative optimization requires many runs
	Data set sensitivity
	Overhead/benefit trade-off
	Summary

	Iterative Optimization for the Data Center
	MapReduce vs. iterative optimization
	IODC for MapReduce
	Extending IODC to any server application
	Implementing IODC
	Compiler bugs

	Methodology
	Servers
	Benchmarks and data sets
	Measurements

	Performance Evaluation
	MapReduce
	Server applications
	Energy reduction
	Benchmark applications
	Shared budget
	Non-uniform mix of data sets

	Related Work
	Conclusion

