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Abstract

The number of active threads in a multi-core processor varies
over time and is often much smaller than the number of
supported hardware threads. This requires multi-core chip
designs to balance core count and per-core performance.
Low active thread counts benefit from a few big, high-
performance cores, while high active thread counts benefit
more from a sea of small, energy-efficient cores.

This paper comprehensively studies the trade-offs in
multi-core design given dynamically varying active thread
counts. We find that, under these workload conditions, a ho-
mogeneous multi-core processor, consisting of a few high-
performance SMT cores, typically outperforms heteroge-
neous multi-cores consisting of a mix of big and small
cores (without SMT), within the same power budget. We
also show that a homogeneous multi-core performs almost
as well as a heterogeneous multi-core that also implements
SMT, as well as a dynamic multi-core, while being less com-
plex to design and verify. Further, heterogeneous multi-cores
that power-gate idle cores yield (only) slightly better energy-
efficiency compared to homogeneous multi-cores.

The overall conclusion is that the benefit of SMT in the
multi-core era is to provide flexibility with respect to the
available thread-level parallelism. Consequently, homoge-
neous multi-cores with big SMT cores are competitive high-
performance, energy-efficient design points for workloads
with dynamically varying active thread counts.

Categories and Subject Descriptors C.1.4 [Processor Ar-
chitectures]: Parallel Architectures
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1. Introduction

The number of active threads in a processor varies over time,
and is often (much) smaller than the number of available
hardware thread contexts. This observation has been made
across different application domains. Desktop applications
exhibit a limited amount of thread-level parallelism, with
typically only 2 to 3 active threads [4]. Datacenter servers
are often underutilized and seldomly operate near their max-
imum utilization; they operate most of the time between 10
to 50 percent of their maximum utilization level [2]. Even
parallel, multi-threaded applications do not utilize all cores
all the time. Threads may be waiting because of synchro-
nization primitives (locks, barriers, etc.) and may yield the
processor to avoid active spinning [6]. Finally, in a multi-
programmed environment, jobs come and go, and hence,
the amount of available thread-level parallelism varies over
time.

Workloads with dynamically varying active thread counts
imply that multi-core chip designs should balance core count
and per-core performance. Few high-performance cores are
beneficial at low active thread counts, while a sea of energy-
efficient cores are preferred at high active thread counts. The
key question is what processor architecture is best able to
deal with dynamically varying degrees of thread-level par-
allelism. A heterogeneous single-ISA multi-core with a few
big cores and many small cores [19], might schedule threads
onto the big cores in case there are few active threads, and
only schedule threads on the small cores when the num-
ber of active threads exceeds the number of big cores. A
conventional homogeneous multi-core with Simultaneous
Multi-Threading (SMT) cores [31] might schedule threads
across the various cores if there are fewer active threads than
cores. Each thread would then have an entire core to its dis-
posal, and only when the number of active threads exceeds
total core count, could one engage SMT to improve chip
throughput. Ideally, core count and size should be dynam-
ically changed depending on the number of active threads,
and people have proposed to fuse small cores to bigger cores
as a function of the number of active threads [11, 17]. Deter-
mining the appropriate processor architecture is not only im-
portant in the context of delivering high performance under



various workload conditions, it also involves other design
concerns such as power/energy as well as cost to design and
verify the design, i.e., a heterogeneous and core fusion pro-
cessor architecture is likely more costly to design and verify
than a homogeneous multi-core.

This paper studies major multi-core design trade-offs in
the face of dynamically varying degrees of available thread-
level parallelism. Through a set of comprehensive experi-
ments, we find that a homogeneous multi-core with big SMT
cores outperforms heterogeneous designs, under the same
power envelope, when there is a varying degree of thread-
level parallelism, for both multi-program and multi-threaded
workloads. The intuition is that when there are few active
threads, they can be scheduled across the available big cores
with a few, or even a single, SMT hardware thread contexts
active, and hence achieve good single-thread performance.
We also find that a homogeneous multi-core with SMT per-
forms almost as well as a heterogeneous design that also ex-
ploits SMT, and that its performance is also close to that
of a dynamic multi-core design, in which the configuration
(number of big and small cores) can change dynamically de-
pending on the number of active threads.

The result that the performance of a homogeneous multi-
core with big SMT cores is comparable to a heterogeneous
multi-core design, we believe, is counter-intuitive. It is well-
known, and confirmed by our experimental results, that a
number of small cores achieve better aggregate performance
(throughput) than a high-performance SMT core under the
same power budget. Hence, it is to be expected that overall
performance will be higher for a homogeneous multi-core
with many small cores as well as for a heterogeneous multi-
core with a few big cores and many small cores, when
there are many active threads in the system. However, under
variable active thread workload conditions, a homogeneous
design with big SMT cores is a competitive design point
because it can more easily adapt to software diversity, and
deliver both best possible chip throughput when there are
few active threads, and comparable performance when there
are many active threads.

While we show that a homogeneous multi-core consist-
ing of all big cores with SMT is competitive to a hetero-
geneous multi-core in terms of performance, the latter has
more opportunities to save power by power-gating idle cores.
Cores can only be switched off when there are fewer active
threads than cores, resulting in fewer power-gating opportu-
nities for configurations with fewer cores. We find however,
that a heterogeneous multi-core has only a slightly better
energy-efficiency compared to a homogeneous all-big-core
configuration under variable thread-level parallelism.

The overall conclusion from this paper is that, although
SMT was designed to improve single-core throughput [31],
the real benefit of SMT in the multi-core era is to provide
flexibility with respect to the available thread-level paral-
lelism. Consequently, we find that a homogeneous multi-

core with big SMT cores is a competitive high-performance,
energy- and cost-efficient design point when the active
thread count varies dynamically in the workload.

2. Motivation
2.1 Varying thread-level parallelism

We identify at least four application domains that exhibit
varying degrees of available thread-level parallelism during
runtime.

Multi-programmed workloads. The most obvious rea-
son for having a varying degree of active threads is due
to multi-programming. Jobs come and go, and hence the
amount of thread-level parallelism varies over time. Jobs are
also scheduled out when performing I/O (disk and network
activity).

Desktop applications. A recent study by Blake et al. [4]
quantifies the amount of thread-level parallelism in contem-
porary desktop applications. They find the amount of thread-
level parallelism to be small, with typically only 2 to 3 ac-
tive threads on average, even after ten years of multi-core
processing.

Server workloads. Servers in datacenters operate be-
tween 10 to 50 percent of their maximum utilization level
most of the time according to Barroso and Holzle [2]. They
found the distribution of utilization at a typical server within
Google to have a peak around zero utilization and 30 percent
utilization. A multi-core server that is underutilized implies
that there are only few active threads.

Multi-threaded applications. Even multi-threaded ap-
plications may not have as many active threads as there are
software threads at all times during the execution. Threads
may be waiting because of synchronization due to locks, bar-
riers, etc., and may yield to the operating system to avoid
active spinning. Figure 1 quantifies the number of active
threads when running the PARSEC benchmarks [3] on a
twenty-core processor. (We refer to Section 3 for details on
the experimental setup.) Some benchmarks have 20 active
threads most of the time (blackscholes, canneal and ray-
trace), whereas others have 20 active threads only a small
fraction of the time (e.g., ferret, freqmine and swaptions).
Some benchmarks have either one or twenty active threads
(e.g., bodytrack and swaptions), others have a larger varia-
tion in the number of active threads (e.g., dedup, ferret and
fregmine). On average across all PARSEC benchmarks run-
ning on 20 cores, we find that there are 20 active threads
only half of the time, and 31% of the time, only 4 or fewer
threads are active. Note that these numbers are generated for
the parallel part of the application — the so-called region of
interest (ROI) as it is defined for the PARSEC benchmarks
— so the limited number of active threads only stems from
inter-thread synchronization during parallel execution, and
is not due to other sequential code such as initialization.
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Figure 1. Distribution of the number of active threads for
the PARSEC benchmarks on a twenty-core processor.

2.2 Multi-core design choices

There exist three major multi-core architectures: symmet-
ric or homogeneous, asymmetric or heterogeneous, and dy-
namic [10]. All cores in a homogeneous multi-core have
the same organization; examples are the Intel Sandy Bridge
CPU [25], AMD Opteron [15], IBM POWER?7 [14], etc.

Each core typically implements Simultaneous Multi-Threading

(SMT), effectively providing a many-thread architecture,
e.g., an 8-core processor with 4 SMT threads per core effec-
tively yields a 32-threaded processor.

A heterogeneous (or asymmetric) multi-core features one
or more cores that are more powerful than others. In case of
a single-ISA heterogeneous multi-core, there are so-called
big, high-performance cores and small, energy-efficient
cores. NVidia’s Kal-El [22] integrates four performance-
tuned cores along with one energy-tuned core, and ARM’s
big.LITTLE [8] combines a high-performance core with a
low-energy core.

A dynamic multi-core is able to combine a number of
cores to boost performance of sequential code sections.
Core fusion [11, 17] dynamically morphs cores to form a
bigger, more powerful core. Thread-level speculation and
helper threads [9, 28], in which assist-threads running on
other cores help speeding up another thread, could also be
viewed as a form of dynamic multi-core. Recently, Khubaib
et al. [16] propose MorphCore, which is a high-performance
out-of-order core that can morph into a many-threaded in-
order core when the demand for parallelism is high.

2.3 Goal of this paper

Given the background in workloads and the multi-core de-
sign space as just described, the following key question
arises: How to best design a single-ISA multi-core proces-
sor in light of varying degrees of thread-level parallelism
in contemporary workloads? As mentioned in the introduc-
tion, all three design options can deal with varying num-
bers of active threads, one way or the other. A homogeneous
multi-core can distribute the active threads across the vari-
ous cores and only activate SMT when there are more active
threads than cores. A heterogeneous multi-core can schedule

Big core Medium core  Small core
Frequency 2.66GHz 2.66GHz 2.66GHz
Type Out-of-Order ~ Out-of-Order  In-Order
Width 4 2 2
ROB size 128 32 N/A
Func. units 3int, 2 1d/st 2 int, 1 1d/st 2 int, 1 1d/st

1 mul/div 1 mul/div 1 mul/div

1 FP 1 FP 1 FP
SMT contexts upto6 upto3 up to 2
L1 I-cache 32KB 16KB 6KB

4-way assoc 2-way assoc 2-way assoc
L1 D-cache 32KB 16KB 6KB

4-way assoc 2-way assoc 2-way assoc
L2 cache 256KB 128KB 48KB

8-way assoc 4-way assoc
8MB, 16-way assoc
On-chip interconn. 2.66GHz, full cross-bar
DRAM 8 banks, 45ns access time

Off-chip bus 8GB/s

4-way assoc

Last-level cache

Table 1. Big, medium and small core configurations.

the active threads on the big cores and only schedule threads
on the small cores when there are more active threads than
big cores. A dynamic multi-core can form as many cores
as there are active threads. However, without a detailed and
comprehensive study, it is unclear which multi-core architec-
ture paradigm yields best performance under varying active
thread counts. This paper, to the best of our knowledge, is
the first to explore this multi-core design space and compre-
hensively compare multi-core paradigms in light of variable
active thread count. Note that specialized accelerators are not
in this paper’s scope, as we focus on single-ISA multi-cores.

3. Experimental Setup
3.1 Multi-core design space

To evaluate the various multi-core paradigms in the context
of varying thread counts, we use the following experimental
setup. We consider three types of cores: a four-wide out-of-
order core (big core), a two-wide out-of-order core (medium
core), and a two-wide in-order core (small core), see also
Table 1 for more details about these microarchitectures.

We compare all multi-core architectures under the (ap-
proximate) same power envelope. We therefore estimate
power consumption using McPAT [20] (assuming 45 nm
technology and aggressive clock gating). The big core con-
sumes approximately 1.8 times the power of the medium
two-wide OoO core on average, and 4.4 times the power of
the small two-wide in-order core. We conservatively assume
that one big core is power-equivalent to two medium cores
and five small cores. We validate later in this section that
these scaling factors result in an approximately equal power
consumption, even when the big cores execute six threads
through SMT (which leads to higher utilization and there-
fore higher dynamic power consumption). When evaluating
energy efficiency in Section 7, we assume idle cores are
power gated.



We keep total on-chip cache capacity constant when ex-
ploring the multi-core design space, in order to focus on the
impact of core types and organization, and not cache capac-
ity. This implies that we have to set the private cache size
of the medium core two times smaller compared to the big
core, and five times for the small core, see also Table 1. (We
pick numbers that are powers of two or just in between two
powers of two). The last-level cache (LLC) is shared across
all cores, and has the same size for all multi-core config-
urations (8MB). The on-chip network is a full crossbar be-
tween all cores and the shared LLC. Although not realistic, a
full crossbar ensures that the results are not skewed in favor
of the few large cores configuration, which would experi-
ence less contention in the on-chip network compared to a
many small cores configuration. We use the multi-core sim-
ulator Sniper [5] enhanced with cycle-level out-of-order and
in-order core models, as well as SMT support.

Total chip power budget is equivalent to 4 big cores or
8 medium cores or 20 small cores, plus a shared LLC. This
allows for 9 possible designs, see Figure 2. (For the hetero-
geneous designs, we only consider mixes of big cores and
medium cores or small cores; we do not consider mixes of
medium and small cores). In the remainder of the paper,
these designs are referred to as 4B, 3B2m, 3Bb5s, 2B4m,
2B10s, 1B6bm, 1B15s, 8m and 20s, as indicated in the fig-
ure. 4B, 8m and 20s are homogeneous multi-cores (all cores
of the same type), while the others are heterogeneous. With
SMT enabled, we assume that a big core is able to execute up
to six threads; a medium core can execute up to three threads;
and a small in-order core can execute up to two threads (us-
ing fine-grained multithreading), so that all configurations
can run up to 24 threads. The SMT core that we simulate
implements static ROB partitioning and a round-robin fetch
policy [24].

The average total (static plus dynamic) power consump-
tion of the three homogeneous configurations running 24
threads is 46 Watt for 4B, 50 Watt for 8m, and 45 Watt for
20s (averaged across all homogeneous multi-program work-
loads, see later). The power consumption of the heteroge-
neous configurations varies between 46 and 50 Watt. This
justifies our claim that all configurations operate more or less
under the same power envelope.

3.2 Workloads

Multi-program workloads. We consider multi-program
workloads using the SPEC CPU 2006 benchmarks with their
reference inputs. In order to limit the number of simula-
tions, we select 12 representative benchmark-input combi-
nations. The selection is based on the relative performance
of the benchmarks on the three core types. We evaluated all
55 SPEC CPU 2006 benchmark-input combinations on the
three core designs (big, medium and small) and calculated
relative performance with respect to the big core. We then
picked 12 benchmarks that cover the full performance range,
i.e., the benchmarks that have the highest and lowest rela-

3|3|3(3

B | B 382m 2B4m 1B6m
B B B B B S|(s S(S|s|s
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Figure 2. The nine power-equivalent multi-core designs
considered in this study (B=big core, m=medium core,
s=small core).

tive performance, along with in-between benchmarks picked
such as to provide good coverage.

For each benchmark, we take a 750 million instruction
single simulation point to reduce simulation time [26]. When
running a multi-program workload, we stop the simulation
when all of the programs have executed at least 750 mil-
lion instructions, thereby restarting programs that reached
the end of the 750 million instruction simulation point.
We summarize multi-program performance using the sys-
tem throughput (STP) metric [7] or weighted speedup [27],
which is a measure for the number of jobs completed per unit
of time. For computing STP, we normalize against isolated
execution on the big core. When reporting STP numbers
averaged across a set of workloads, we use the harmonic
mean because STP is a rate metric (inversely proportional to
time). We also calculate average normalize turnaround time
(ANTT [7]) to show the impact of the multi-core design on
per-program performance.

We evaluate homogeneous multi-program workloads
(multiple copies of the same benchmark) as well as het-
erogeneous multi-program workloads (different benchmarks
co-run). We vary the number of programs from 1 to 24.
For the heterogeneous multi-program workloads, we ran-
domly construct 12 two-, 12 three-, 12 four-, etc., up to 12
twenty-four-thread combinations, while making sure that ev-
ery benchmark is included an equal number of times for all
thread counts. Velasquez et al. [32] show that this balanced
random sampling technique is more representative compared
to fully random sampling.

We intentionally limit the number of active threads to 24
to reflect a (realistic) situation with a modest and variable
thread count. Given the hardware budget of 4 big cores, this
is already a considerable number of threads (6 threads per
core). Our results confirm that at a (constantly) large thread
count, a design with many small cores is optimal, but in this
study we specifically target those workloads that exhibit a
variable active thread count. Furthermore, we believe our
results are general enough to be projected to larger hardware



budgets and thread counts (e.g., 8 large cores and up to 48
threads).

Scheduling also plays an important role in multi-program
workload performance. A general principle that we maintain
is to first schedule threads on the big core(s) in a hetero-
geneous design before scheduling on the small cores. Like-
wise for SMT, we first distribute threads across cores be-
fore engaging SMT, e.g., when there are fewer active threads
than cores, we run each thread on a separate core, but when
there are more active threads than cores, we need to co-run
threads on a single core through SMT. A heterogeneous de-
sign also implies deciding which thread to execute on which
core. Similarly, in the case of SMT, we need to decide which
threads to co-run on a core, since different co-runner sched-
ules may have significant impact on performance [27]. As
exploring all possible combinations of program schedules is
infeasible because of simulation time considerations, we use
offline analysis for determining the best possible schedule.
We run each benchmark on each of the different core types
in isolation, and use this analysis to steer application-to-core
mapping for the heterogeneous design points for best perfor-
mance. Likewise for SMT, we run all possible two-, three-,
etc., up to six-program combinations on the big core (up to
four for the medium and two for the small cores), and se-
lect the best possible co-schedule. This approach ignores the
impact of resource sharing among cores to steer scheduling,
however, we do account for resource sharing (shared cache,
memory bandwidth, etc.) during detailed simulation for the
selected schedules.

Multi-threaded workloads. We also evaluate multi-threaded
workloads, using the PARSEC benchmarks [3]. We vary the
number of threads from 4 to 24 in steps of 4. We only in-
cluded the benchmarks that allow for a number of threads
that is not fixed to a power of 2. We use the medium size
input set for all benchmarks, and evaluate the execution time
for the parallel part only (the so-called region of interest
or ROI) and for the whole program (including the sequen-
tial initialization and finalization code). We report speedups
versus a four-threaded execution on the 4B configuration.

4. Multi-Program Workloads

We now evaluate the performance of the nine multi-core de-
signs for multi-program workloads, i.e., workloads consist-
ing of multiple single-threaded programs. (We will discuss
multi-threaded workloads in the next section.) We first dis-
cuss performance as a function of thread count, and subse-
quently compute aggregate performance under the assump-
tion of various active thread count distributions.

4.1 Performance as function of thread count

Figure 3 shows average performance for the nine multi-core
configurations as a function of the number of threads from
1 to 24. All designs have SMT enabled in all cores, the
non-SMT curves can be reconstructed by leveling off per-

formance as soon as thread count equals core count. The in-
teresting observation is that the homogeneous 4B configura-
tion performs well compared to the other homogeneous and
heterogeneous designs. Although the heterogeneous designs
outperform the 4B configuration for some thread counts, 4B
performs well over the full range of thread counts. When
thread count is low, 4B yields the highest performance, and
when thread count is high, 4B yields only slightly lower per-
formance compared to the many medium and small core de-
signs (8m and 20s).

It is not surprising that multi-core configuration 4B per-
forms well for low thread counts: for 4 or fewer threads, each
powerful big core has only one thread running. What is more
remarkable is that the SMT multi-core performs also rela-
tively well when thread count is high: for example, when
there are 24 threads, each core executes six threads concur-
rently, but performance is close to that of running 24 threads
on 8 medium cores (each three-way SMT) or 24 threads on
20 small cores (4 cores use 2-way SMT, the others execute
only one thread).

To explain this behavior, Figure 4 shows the same graphs
for two homogeneous workloads, which were picked to il-
lustrate the interesting diversity observed across the various
benchmarks; we found the benchmarks to roughly classify
into these two categories. Tonto (left graph) shows the in-
tuitively expected behavior: up to 8 threads, performance
of the SMT multi-core is better than or similar to the per-
formance of the heterogeneous architectures, but beyond 8
threads, its performance is inferior. Tonto clearly benefits
from the higher aggregate execution resources available in
the heterogeneous design points as well as in the homoge-
neous multi-core with all medium or small cores at high ac-
tive thread counts. For libquantum (right graph) on the other
hand, the multi-core with SMT performs approximately as
well as the other design points for high thread counts. What
happens here is that as the number of threads increases, more
and more pressure is put onto the shared resources (shared
last-level cache, memory bandwidth, DRAM banks, etc.),
upto the point that performance gets largely dominated by
shared resource contention and less by individual core per-
formance. In particular, we observe that, for libquantum,
memory access time is 4 times higher for 24 threads than
for one isolated thread for both the 20s and 4B configura-
tions due to contention on the memory bus. This tightens the
gap and flattens out the performance differences between the
various multi-core configurations.

It is interesting to note that, at high thread counts, the
performance of 4B versus the other design points is slightly
smaller for the homogeneous workloads than for the het-
erogeneous workloads, compare graphs (a) versus (b) in
Figure 3. In fact, for heterogeneous workloads and 24
threads, we notice that the performance of 4B is only
7.1% lower than the maximum (2B10s), while for homo-
geneous workloads, 4B’s performance is 11.6% lower than
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Figure 4. Performance of the nine multi-core design points for two representative benchmarks (both homogeneous multi-

program workloads): (a) tonto and (b) libquantum.

the maximum (2B10s). This is due to the fact that heteroge-
neous workloads consist of mixes of both memory-intensive
and compute-intensive benchmarks. Scheduling a memory-
intensive benchmark with compute-intensive benchmarks on
one core using SMT enables the memory-intensive bench-
mark to occupy a larger fraction of the core’s private cache
(256KB in our study), as the compute-intensive benchmarks
are less demanding for cache space. In case of a multi-core
with many small cores (20s), each core has a small pri-
vate cache (48KB in our setup), hence, a memory-intensive
benchmark would not get as much cache space. By intelli-
gently scheduling benchmarks to cores and SMT thread con-
texts, the 4B multi-core is better capable of utilizing cache
space than a multi-core with many small cores and relatively
smaller private caches.

For completeness, Figure 5 shows the average normalized
turnaround time (ANTT) for the homogeneous workloads
as a function of thread count (the results for heterogeneous
workloads are similar). At small thread counts, the 4B design
results in the lowest per-program execution time (highest
per-program performance), because all threads can run on
a big core. Per-program execution time increases as thread
count goes up, because more threads share a core through
SMT, reducing per-program performance. For the other ex-
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Figure 5. Comparing the ANTT for the nine multi-core
design points with homogeneous multi-program workloads.

treme configuration 20s, the turnaround time is larger for
low thread counts, because of the poorly performing cores,
but it remains more stable as thread count increases, due to
a smaller degree of sharing. The conclusions are similar to
that of the througput results: at low thread counts, 4B has
the highest throughput and the lowest per-program execu-
tion time, and at high thread counts, the configurations with
more and smaller cores have the highest throughput and the
lowest per-program execution time, but the 4B configuration
remains close.
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count distribution and no SMT.

We conclude this section with our first finding:

Finding #1: A homogeneous multi-core consisting of all big
SMT cores yields better performance than a heterogeneous
multi-core for a small number of threads (due to the big-
ger cores) and only slightly worse for a large number of
threads (because shared resource contention largely domi-
nates performance for workload mixes of memory-intensive
applications, and cache capacity can be used more efficiently
through intelligent scheduling).

4.2 Thread count distributions

We now compare the multi-core designs under various active
thread distributions, assuming uniform distributions as well
as distributions observed in datacenter operations.

4.2.1 Uniform distribution.

We begin with assuming a uniform distribution over 24
threads, i.e., each thread count (1 to 24 threads) has equal
probability.

No SMT. We first assume that none of the cores implement
SMT. Figure 6 shows the average performance for all of the
multi-core designs without SMT. Each core can execute only
one thread at a time, and when there are more threads than
cores, multiple threads run on one core sequentially through
time-sharing.

Clearly, the 4B configuration outperforms the other ho-
mogeneous configurations (8m, 20s). Being able to execute
faster at low thread counts is more important than achieving
a high throughput at high thread counts. This is in line with
Amdahl’s law: as parallelism increases, the performance of
the sequential part (low thread count) dominates the perfor-
mance of the program as a whole.

The most important conclusion is that the optimal de-
sign without SMT is 2B4m for homogeneous workloads and
3B5s for heterogeneous workloads — both heterogeneous
multi-core designs. Hence our second finding:

Finding #2: In the absence of SMT, heterogeneous multi-
cores outperform homogeneous multi-cores across varying
thread counts. At low thread counts, the big cores in a het-
erogeneous multi-core can be used to get high performance,

Figure 7. Average performance assuming a uniform thread
count distribution and SMT in the homogeneous configura-
tions.

normalized throughput

homogeneous workloads

heterogeneous workloads

Figure 8. Average performance assuming a uniform thread
count distribution and SMT in all configurations.

while at high thread counts, the larger amount of small cores
can be used to exploit thread-level parallelism. This is in line
with recent work that advocates single-ISA heterogeneous
multi-core processors [10, 19].

SMT in homogeneous designs. We now assume SMT is
implemented in the homogeneous designs (4B, 8m and 20s),
but not the heterogeneous designs. Figure 7 shows aver-
age performance for the various designs. It is interesting
to compare this graph against the one in Figure 6, which
showed that heterogeneous multi-cores yield higher perfor-
mance than homogeneous multi-cores when the number of
threads varies. Now, through Figure 7, we observe that by
adding SMT to the homogeneous multi-cores, the 4B design
outperforms the other designs. This leads to:

Finding #3: A homogeneous multi-core with big SMT cores
outperforms a heterogeneous multi-core (without SMT) un-
der the same power budget. Put differently, SMT outperforms
heterogeneity as a means to cope with varying thread counts.
The intuition is that, at low thread counts, the 4B design
with SMT is able to use all 4 big cores, while the number
of big cores in the heterogeneous designs is always smaller.
At high thread counts, a homogeneous multi-core with big
SMT cores allows for more concurrent threads (24 in total)
compared to heterogeneous multi-cores (at most 20 in the
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Figure 10. Datacenter distribution and average performance using the datacenter distribution and the mirrored datacenter

distribution.

20s design point), yielding higher overall throughput within
the same power budget.

SMT in all designs. Finally, Figure 8 shows average per-
formance when SMT is enabled in all cores of all designs.
For homogeneous workloads, the performance for the best
heterogeneous configuration is 5.6% higher than that of 4B
without SMT in all configurations (Figure 6), but only 0.6%
higher than with SMT in all designs (Figure 8). For hetero-
geneous workloads, the homogeneous 4B design even out-
performs the best heterogeneous design by 0.5%. Thus, in
other words:

Finding #4: The added benefit of combining heterogeneity
and SMT is limited.

It is also interesting to observe that the optimal hetero-
geneous design shifts from 2B4m without SMT to 3B2m
with SMT for the homogeneous workloads, and from 3B5s
to 3B2m for the heterogeneous workloads. Hence:

Finding #5: Adding SMT to the heterogeneous designs
makes the optimum shift towards fewer and larger cores.
This is in line with the general observation that SMT in
larger cores enables flexibility as a function of active thread
count.

Per-benchmark results. Figure 9 shows average perfor-
mance for the various multi-core configurations (SMT en-
abled in all cores) for each benchmark, assuming a uni-
form distribution. The results vary across benchmarks: for
some benchmarks (calculix, h264ref, hmmer and tonto),
4B performs worse than the best heterogeneous multi-core,
while for others it performs similarly, or even slightly bet-
ter (libquantum and mcf). Detailed analysis of the results
revealed that the latter category of benchmarks have high
memory bandwidth demands, resulting in bandwidth-bound
performance numbers for high thread counts. Section 8.2
contains results with a higher memory bandwidth setting.

4.2.2 Datacenter distributions.

Figure 10(b) shows average performance across two dif-
ferent thread count distributions, assuming heterogeneous
workload mixes. “Datacenter” is the distribution taken from [2]
for CPU utilization in a datacenter, adapted to a workload
of at most 24 threads; Figure 10(a) shows the distribution:
there is a peak at 1 thread (low utilization) and one at 7 to 9
threads (30%-40% utilization). “Mirrored datacenter” is the
same distribution, mirrored around the center. This means
that there now is a peak at 24 threads, and one around 16 to
18 threads. We use this distribution to model a more heavily
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Figure 11. Average normalized speedup for all PARSEC benchmarks.

loaded server park, with a distribution skewed to the higher
thread counts.

For the datacenter distribution, 1B6m is the best perform-
ing configuration without SMT, see Figure 10(b). This is as
expected: we have 1 big core for the peak at 1 thread, and
7 cores in total to cover the peak around 7 threads. Adding
SMT again makes the fewer but bigger cores configurations
more optimal, with the best performance for the 4B configu-
ration. For the mirrored datacenter distribution, the optimum
without SMT is 1B15s, because there is a peak at 16 threads.
For the configurations with SMT, 3B2m is optimal, with 4B
performing only 0.6% worse.

Finding #6: For distributions that are skewed to fewer
threads, the 4B configuration with SMT is optimal. For dis-
tributions that are skewed towards more active threads, 4B
with SMT becomes less optimal, but its performance is very
close to the optimum.

5. Multi-Threaded Workloads

As discussed in Section 2, multi-threaded programs can also
have a variable number of active threads. When threads have
to wait due to synchronization (e.g., a barrier), they can
be scheduled out by the operating system to free resources
for other runnable threads. Periods with low active thread
count are critical to performance, since they exhibit little
parallelism and are therefore more difficult to speed up [6].
Achieving high performance at low thread counts is there-
fore likely to be even more crucial for multi-threaded work-
loads than for multi-programmed workloads.

We use the PARSEC benchmarks in this section, and al-
ways report the maximum speedup across all possible thread
counts. Note this does not necessarily equal total core count
because of interference between threads in shared resources.
We further assume pinned scheduling which pins threads to
cores to improve data locality (as done in modern multi-core
schedulers [13]); and we execute serial phases on the big
core when reporting whole program performance results. We
limit the discussion in this section to heterogeneous designs
with a single big core as we assume pinned scheduling which
does not enable benefiting from multiple big cores. (We veri-

fied that none of the other heterogeneous designs have larger
speedups than the ones reported here.)

The results, averaged across all benchmarks, are shown
in Figure 11. We split up the results for the ROI-only and
the whole program, and show the speedups without SMT
(i.e., number of threads equal to number of cores) and with
SMT. For the ROI-only results without SMT, 8m is the
optimal design. This is because most of the applications
scale well up to 8 threads, but not beyond. Adding SMT
boosts the speedup for the 4B design, and makes its speedup
very close to that of 8m. Overall, the 4B design with SMT
performs well for benchmarks that have poor parallelism,
and performs only slightly worse for programs that scale
well.

For the whole-program results, the 4B design performs
best both without and with SMT. The 4B design performs
best for applications with limited parallelism, and close to
optimal for applications that scale better, but that have a large
initialization and finalization serial phase. Without SMT, the
heterogeneous designs perform close to the 4B configura-
tion: they speed up the serial phases, but on average, the
poorly scaling benchmarks achieve better performance on
the 4B configuration and this dominates the average. With
SMT enabled, the difference between the 4B configuration
and the heterogeneous configurations is larger, because 4B
with SMT speeds up well-scaling benchmarks more.

Figure 12 shows per-benchmark speedups. For the ROI-
only results (top graph), it clearly shows the difference
across benchmarks: 20s is optimal for well-scaling bench-
marks, while 4B or a heterogeneous design are optimal for
poorly scaling benchmarks. For the whole program results
(bottom), the optimal configuration is 4B or a heterogeneous
design for most of the benchmarks.

Finding #7: SMT is also beneficial for multi-threaded work-
loads. As for the multi-program workloads, adding SMT lets
the optimal design shift to fewer but larger cores. A homo-
geneous design with big SMT cores outperforms the best
heterogeneous design without SMT, and performs close to,
and sometimes even slightly better than, the best heteroge-
neous design with SMT.



35
2 3
T 2s
) m4B
o
815 m8m
T
£ 1 O020s
o
€05 @ 1B6m
0
H1B15s
A\QQ/ 5
< S
<‘F’é\ & ¥
N
© &
(a) ROI-only
m4B
O8m
0020s
©1B6m

E1B15s

(b) Whole program

Figure 12. Normalized speedup for the individual PARSEC
benchmarks.

6. Dynamic Multi-Cores

Dynamic multi-cores are multi-core processors with a dy-
namic configuration [11, 17]: core configuration and the
number of cores can dynamically vary between many small
cores and a few large cores, and in-between heterogeneous
configurations. Theoretical studies, such as the one of Hill
and Marty [10], show that this type of multi-core is opti-
mal in the context of varying parallelism and varying thread
count. Through dynamic adaptation, one or a few big cores
can be formed when there is low parallelism, while the con-
figuration is changed to many small cores when there are
a lot of active threads. This technique is essentially the in-
verse of SMT: an SMT core executes a single thread but
can execute multiple threads at higher active thread counts; a
dynamic multi-core executes threads on independent cores,
which can be fused to bigger cores at low active thread
counts.

To compare the abilities of a homogeneous multi-core
with big SMT cores (4B) versus a dynamic multi-core to
cope with varying active thread counts, we assume an ideal
dynamic multi-core that can be morphed without overhead
into any of the 9 multi-core configurations in Figure 2.
This ideal dynamic multi-core chooses the best perform-
ing configuration (out of the 9 possible configurations) at
each thread count for each workload. This is an optimistic
assumption in favor of dynamic multi-cores, since fusing
cores is likely to involve a non-negligible time, area and
power overhead. Figure 13 compares dynamic multi-cores
(both with and without SMT) against the 4B configura-
tion (with SMT) for the homogeneous and heterogeneous
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Figure 13. Throughput as a function of the number of
threads for the 4B configuration with SMT and the dynamic
core fusion configuration with and without SMT.

multi-program workloads. This figure shows that dynamic
multi-cores without SMT yield similar or even worse over-
all performance. Especially for heterogeneous workloads,
SMT seems to perform better than a dynamic multi-core de-
sign. The reason is that SMT enables better utilization and
higher throughput within the same power budget, especially
when the programs are complementary in their resource de-
mands. SMT also allows for more fine-grained parallelism:
for the dynamic multi-core, a big core can be split up into
2 medium cores or 5 small cores, but an SMT core can also
execute 3 and 4 threads concurrently, while fully utilizing all
resources. As a result, the 4B line in Figure 13(b) smoothly
increases, while the dynamic line (without SMT) shows mul-
tiple plateaus with jumps when the configuration changes. A
dynamic multi-core that also supports SMT performs the
best, but this will probably result in a very complex design
and an even more complex scheduling and reconfiguration
policy. We thus conclude:

Finding #8: Homogeneous multi-cores with big SMT cores
outperform (or are at least competitive to) dynamic multi-
cores as a way to cope with variable active thread counts. A
combination of both is optimal, but is also the most complex,
both with respect to design and run-time scheduling.
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7. Energy Efficiency

In the previous sections, we focused on performance under
an equal total power budget. However, power-gating can
be used to turn off idle cores, resulting in lower power
consumption at low active thread counts. Especially for the
configurations with many medium or small cores, this may
result in improved power/energy-efficiency compared to the
homogeneous configuration with a few big SMT cores.

Power consumption as a function of thread count. Fig-
ure 14 shows average power consumption for all configura-
tions (all configurations have SMT enabled in all cores) as a
function of thread count when power-gating unused cores
(averaged across all homogeneous multi-program work-
loads). It is interesting to study power consumption along
with performance as shown in Figure 3: the 4B configura-
tion consumes most power at low active thread counts while
delivering highest performance; the 20s configuration con-
sumes least power while delivering poorest performance;
on the other hand, at high thread counts, all configurations
perform nearly as well while consuming similar levels of
power.

Figure 14 also shows that activating SMT contexts in-
creases power consumption, due to the increase in resource
utilization, but not as much as the increase in power con-
sumption from activating cores (see for example the 4B con-
figuration: power consumption increases from 42 Watt for 4
threads to 46 Watt for 24 threads). Note that the numbers for
one thread (leftmost points) do not show the 1/2/5 relative
power difference for the big, medium and small cores (the
power consumption for one active core is 17.3, 13.5 and 9.8
Watt, for B, m and s, respectively). This is because the shared
L3 cache and the main memory (DRAM) are active all the
time, irrespective of active thread count — these resources
consume approximately 7 Watt. The relative difference in
power consumption for the three core types is reflected in
the slopes of the 4B, 8m and 20s configurations (part of the
curves that do not use SMT, i.e., with thread count lower
than or equal to core count).

Pareto-optimal designs. Figure 15 shows the power and
energy consumption as a function of performance for the
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Figure 15. Throughput versus power (top) and energy (bot-
tom) consumption for heterogeneous multi-program work-
loads (assuming a uniform thread count distribution).

heterogeneous multi-program workloads (assuming a uni-
form thread count distribution). There are several interest-
ing observations to be made. First, the 20s configuration
consumes the least power, but results in high energy con-
sumption due to its poor performance. In other words, a
configuration with many small cores is not energy-optimal.
Second, the 4B configuration is the best performing, but
also has higher power and energy consumption. Third, the
Pareto-optimal frontier is populated with heterogeneous de-
sign points, along with the best-performance 4B and lowest-
power 20s configurations: the Pareto-optimal frontier con-
sists of the following design points, 4B, 3B2m, 2B4m, 3Bbs,
2B10s, 1B15s and 20s, for power versus performance (top
graph in Figure 15), and 4B, 3B2m and 3Bbs, for energy
versus performance (bottom graph). In other words, hetero-
geneity trades off performance for power and energy con-
sumption. The design point with the minimum energy-delay
product (EDP) across all the designs considered is the 3B5s
configuration, yet this heterogeneous design point improves
EDP by as little as 4.1% and 1.8% over the 4B design point
for the homogeneous and heterogeneous workloads, respec-
tively. This leads to the following finding:

Finding #9: Heterogeneous multi-core designs, when power
gating idle cores, yield an (only) slightly better energy-
efficiency compared to homogeneous multi-cores with big
SMT cores under variable active thread count conditions.
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8. Alternative Multi-Core Designs

8.1 Larger caches or higher frequency for the small
cores

In Section 3, we assumed particular design decisions that
may impact the final results. One decision was to keep total
cache capacity constant across all designs. The motivation
was to evaluate the impact of core type and organization, not
cache capacity. Nevertheless, we noticed that sharing a cache
between multiple programs co-executing on an SMT core
can lead to better cache usage. We therefore now evaluate
the effect of keeping private cache sizes constant across core
types. We also evaluate the impact of increasing frequency
of the small cores to improve its performance.

Figure 16 shows average speedup for the multi-threaded
benchmarks (ROI-only). 6m_lc and 16s_lc (lc stands for
larger cache) are configurations where the private L1 and
L2 cache sizes for the medium and small cores are equal
to that of the big core. Larger caches consume more power,
leading to a different power-equivalence among core types: a
big core is now power-equivalent to 1.5 medium cores and 4
small cores, which explains the decreased core count for the
configurations with a larger cache. Further, the 6m_hf and
16s_hf configurations contain 6 medium cores or 16 small
cores with clock frequency increased from 2.66 GHz to 3.33
GHz. This increase in frequency also results in a 1 to 1.5,
and a 1 to 4 power-equivalence between the big and medium
cores, and the big and small cores, respectively.

The results in Figure 16 show that a larger cache and,
more distinctly, higher frequency leads to a higher speedup
for the small-core configuration (compare 16s_lc and 16s_hf
versus 20s). This is because many benchmarks do not scale
well up to 20 threads, and reducing core count in exchange
for more cache capacity or a higher frequency results in
higher speedup. For the medium-core configuration (8m) on
the other hand, enlarging the cache or increasing the fre-
quency has a negative impact on performance: the benefits
of a large cache or a higher frequency do not compensate for
the reduction in core count. Overall, we observe that a homo-
geneous multi-core with big SMT cores achieves best perfor-

mance for the given power budget. Hence, we conclude that:

Finding #10: Enlarging the caches or increasing the fre-
quency of the medium and small cores does not affect the
general observation that a homogeneous multi-core with big
SMT cores is close to optimal.

8.2 Higher memory bandwidth

Another decision made in our initial setup was to set the
memory bandwidth to 8 GB/s. However, as mentioned be-
fore, for some benchmarks, memory bandwidth turns out to
be a bottleneck. We therefore now double memory band-
width to 16 GB/s, see Figure 17. Comparing this Figure to
Figures 8 and 11, we observe that performance increases
for all configurations, albeit by a small margin. For the ho-
mogeneous multi-program workloads, 4B now achieves a
0.8% lower throughput than the optimum (which was 0.6%
for 8 GB/s), and a 0.4% lower throughput for the heteroge-
neous multi-program workloads (used to be 0.5% higher).
For the multi-threaded programs, considering ROI only, we
observe a speedup for 4B that is 2.9% lower than the opti-
mum (which was 1.8% before), and a 1.8% higher speedup
when considering the whole program (1.9% before). The
programs that were bandwidth-bound in the 8 GB/s setup
now achieve better performance across all configurations.
These memory-bound benchmarks especially benefit from
SMT, more so than compute-bound programs [21]. Hence,
our conclusion:

Finding #11: Even under high available memory band-
widths does the performance of a homogeneous design with
big SMT cores remain close to the heterogeneous configura-
tions.

9. Related Work

Olukotun et al. [23] make the case for multi-core process-
ing. By comparing an aggressive single-core processor (6-
wide out-of-order) and a dual-core processor consisting of
2-wide out-of-order cores, they found that parallelized ap-
plications with limited parallelism achieve comparable per-
formance on both architectures, and that applications with
large amount of coarse-grained parallelism achieve signifi-
cantly better performance on the dual-core.

Kumar et al. [19] argue that a single-ISA heterogeneous
multi-core processor covers a spectrum of workloads bet-
ter than a conventional multi-core processor, providing good
single-thread performance when thread-level parallelism is
low, and high throughput when thread-level parallelism is
high. Our results confirm this finding: the heterogeneous
multi-core configurations achieve better overall performance
compared to 4B across the broad range of active thread
counts when SMT is not enabled. However, Kumar et al.
did not consider and compare against a homogeneous multi-
core with big SMT cores, which we find to achieve a level of
performance that is competitive to a heterogeneous design
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under varying degrees of thread-level parallelism, while be-
ing less costly to design and verify.

Ipek et al. [11] and Kim et al. [17] propose to fuse
small cores to form bigger cores when there are few ac-
tive threads. By doing so, the multi-core processor becomes
more dynamic and can more easily adapt to software diver-
sity. Our results indicate that similar performance benefits
can be achieved through the opposite mechanism: instead
of fusing small cores to form a big core when there are
few active threads, one could schedule threads across big
SMT cores (and have few active SMT threads per core) in
a homogeneous multi-core. Khubaib et al. [16] build on a
similar insight when proposing MorphCore, an aggressive
out-of-order core with 2-way SMT that can morph into an
energy-efficient 8-way SMT in-order core. The idea is to
switch between the two modes of operation depending on the
amount of available thread-level parallelism: with few (one
or two) active threads, the core runs in out-of-order mode,
and switches to in-order SMT with more active threads.
Whereas Khubaib et al. focus on the proposal of an energy-
efficient core design that can switch between out-of-order
and wide-SMT in-order operation, the focus of our work is
to study the impact of variable thread-level parallelism in the
workload, and how this affects multi-core design decisions.
More specifically, we consider distributions of active thread
counts in multi-program workloads next to multi-threaded
workloads to compare homogeneous multi-cores with SMT
against heterogeneous and dynamic multi-cores. MorphCore
is complementary to our work and can be leveraged to fur-
ther improve energy-efficiency of the big SMT cores when
running multiple SMT threads.

Hill and Marty [10] evaluate the three major multi-core
processor architecture paradigms — homogeneous, hetero-
geneous and dynamic multi-core — and derive high-level
insights from Amdahl’s Law. Their model did not consider
SMT and assumed that software is either sequential or in-
finitely parallel. One of the results that they obtain is that
heterogeneous multi-cores can achieve better performance

than homogeneous multi-cores; also, they find that dynamic
processors achieve better performance than heterogeneous
multi-cores with identical functions of performance per unit
area. While this is true considering the assumptions made,
our results show that this is not necessarily the case when
the number of available threads varies over time.

A number of papers have explored how to take advan-
tage from heterogeneity to improve multi-threaded applica-
tion performance. Annavaram et al. [1] propose running se-
quential portions of a multi-threaded application at a higher
power budget, thereby significantly improving performance
while remaining within a given power budget. Intel’s Tur-
boBoost [25] offers similar functionality by boosting clock
frequency. Suleman et al. [29] accelerate the execution of
critical sections by exploiting high-performance cores in a
heterogeneous multi-core, i.e., a thread that executes a crit-
ical section is migrated to a big core in order to reduce se-
rialization time — a technique called Accelerating Critical
Sections (ACS). Joao et al. [12] generalize this principle to
other types of synchronization bottlenecks, including critical
sections, barriers and pipes. All of these approaches exploit
the fact that the number of active threads varies over time
and leverage heterogeneity to improve performance. This
paper suggests that similar performance benefits might po-
tentially be achieved through SMT on a homogeneous multi-
core. More specifically, when a thread is executing sequen-
tial code (e.g., initialization, critical section, etc.), schedul-
ing it on a single core with the other SMT threads throttled,
might achieve similar performance benefits, and does not re-
quire migrating (or marshaling [30]) data when a thread is
migrated from a small to a big core in ACS.

Li et al. [21] compare the energy-efficiency and ther-
mal characteristics of SMT versus multi-core. They report
that, assuming an equal area budget, SMT is more energy-
efficient than multi-core for memory-intensive workloads;
the inverse is true for compute-intensive workloads. Kumar
et al. [18] exploit dynamic time-varying application behav-
ior to schedule applications on the most energy-efficient core



in a heterogeneous multi-core, and they report substantial
energy savings compared to a homogeneous multi-core. In
contrast to this prior work, we explore multi-core configura-
tions under variable thread-level parallelism conditions.

10. Conclusion

The number of active threads varies over time in today’s
computer systems. This has been observed across many ap-
plication domains, ranging from multi-program systems,
desktop applications, datacenter servers, and even multi-
threaded applications. This paper studied how varying de-
grees of thread-level parallelism in the workload affect
multi-core design decisions. We considered homogeneous,
heterogeneous and dynamic multi-cores under an equal
power budget, and conclude that a homogeneous multi-core
consisting of big SMT cores achieves comparable or slightly
better performance compared to heterogeneous multi-cores
(both with and without SMT) and dynamic multi-cores. The
reason is that a homogeneous multi-core with big SMT
cores can better adapt to varying degrees of thread-level
parallelism in the workload, and achieves higher per-thread
performance at low active thread counts and competitive
throughput at high active thread counts. Finally, we also
find that heterogeneous multi-cores are (only) slightly more
energy-efficient compared to a homogeneous all-big-core
configuration with SMT, when power gating idle cores.

The overall conclusion is that, while multi-cores with
many small cores, be it homogeneous or heterogeneous ar-
chitectures, outperform homogeneous multi-cores with big
SMT cores at full utilization, the inverse is typically true un-
der variable active thread workload conditions, which makes
homogeneous multi-cores with big SMT cores an appeal-
ing, cost-effective design point for the variable active threads
workloads commonly observed in modern-day systems.
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