
“bxh103” — 2005/6/20 — page 451 — #1

© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

Advance Access published on May 20, 2005 doi:10.1093/comjnl/bxh103

BLRL: Accurate and Efficient
Warmup for Sampled Processor

Simulation
Lieven Eeckhout

1
, Yue Luo

2
, Koen De Bosschere

1
and Lizy K. John

2

1Department of Electronics and Information Systems, Ghent University, Belgium
2Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA

Email: leeckhou@elis.UGent.be

Current computer architecture research relies heavily on architectural simulation to obtain insight
into the cycle-level behavior of modern microarchitectures. Unfortunately, such architectural
simulations are extremely time-consuming. Sampling is an often-used technique to reduce the
total simulation time. This is achieved by selecting a limited number of samples from a complete
benchmark execution. One important issue with sampling, however, is the unknown hardware state
at the beginning of each sample. Several approaches have been proposed to address this problem
by warming up the hardware state before each sample. This paper presents the boundary line reuse
latency (BLRL) which is an accurate and efficient warmup strategy. BLRL considers reuse latencies
(between memory references to the same memory location) that cross the boundary line between the
pre-sample and the sample to compute the warmup that is required for each sample. This guarantees
a nearly perfect warmup state at the beginning of a sample. Our experimental results obtained
using detailed processor simulation of SPEC CPU2000 benchmarks show that BLRL significantly
outperforms the previously proposed memory reference reuse latency (MRRL) warmup strategy.
BLRL achieves a warmup that is only half the warmup for MRRL on average for the same level

of accuracy.

Received 13 July 2004; revised 1 March 2005

1. INTRODUCTION

Current microarchitectural research relies heavily on cycle-
level architectural simulations that model the execution of
a benchmark on a microprocessor. Cycle-level simulations
model a microarchitecture at a fairly detailed level. The price
paid for such detailed simulations obviously is simulation
speed. Simulating a full benchmark execution can take days
or even weeks to complete. If we take into account that during
microarchitectural research a multitude of design alternatives
need to be evaluated, we easily end up with months or even
years of simulation. As such, detailed simulation of full
benchmark executions is infeasible.

Several approaches have been proposed in the recent
literature to address this problem. One particular approach
is sampled simulation. Sampled simulation means that a
selected number of execution intervals, called samples, are
simulated from a complete benchmark execution. Since the
number of samples and their sizes are limited, significant
simulation speedups are obtained. However, there is one
particular issue that needs to be dealt with, namely the cold-
start problem. The cold-start problem refers to the unknown
hardware state at the beginning of each sample. An attractive
solution to the cold-start problem is to simulate a number

of instructions from the pre-sample without computing
performance metrics. This is to warmup large hardware
structures so that the hardware state at the beginning of the
sample is a close estimate of the hardware state in case of
detailed full benchmark simulation. Owing to an extremely
long history in the microarchitectural state (e.g. in large
caches), the warmup phase needs to be proportionally long.
Since warm simulation can be a significant part of the total
sampled simulation time, it is important to study efficient but
accurate warmup strategies. Reducing the warmup length
can yield significant simulation speedups.

This paper presents the boundary line reuse latency
(BLRL) as a highly accurate and efficient warmup strategy.
BLRL uses the reuse latencies (between two memory
references accessing the same memory location) that cross
the boundary line between the pre-sample and the sample
to determine the warmup length per sample. By doing
so, a nearly perfect warmup state is guaranteed at the
beginning of each sample. We also compare BLRL with
the previously proposed state-of-the-art memory reference
reuse latency (MRRL) warmup strategy and conclude that
BLRL significantly outperforms MRRL. Our experimental
results using SPEC CPU2000 benchmarks show that BLRL

The Computer Journal Vol. 48 No. 4, 2005

“bxh103” — 2005/6/20 — page 452 — #2

452 L. Eeckhout et al.

samplewarm-up

h
o

t

w
a

rm

co
ld

h
o

t

w
a

rm

co
ld

h
o

t

w
a
rm

co
ld

original trace

FIGURE 1. Sampled processor simulation.

achieves about half the warmup time of MRRL for the same
level of accuracy to estimate the average number of cycles
per instruction (CPI). This paper extends the paper published
in [1] by (i) considering detailed processor simulation instead
of cache simulation and (ii) comparing BLRL with MRRL.
The original paper considered cache simulation and did not
provide a comparison with the existing state-of-the-art.

The remainder of this paper is organized as follows. The
next section gives an introduction to sampled processor
simulation, after which we discuss existing warmup strategies
in Section 3. Section 4 proposes our new warmup strategy,
called BLRL. Section 5 details our experimental setup. In
Section 6 we present and discuss our results. Finally, we
conclude in Section 7.

2. SAMPLED PROCESSOR SIMULATION

In sampled processor simulation, a number of samples are
chosen from a complete benchmark execution (Figure 1).
The instructions between two samples are part of the pre-
sample. Sampled simulation uses only the instructions in
the sample to report performance results; instructions in the
pre-sample are not considered.

There are basically two issues with sampling. The
first issue is the selection of representative samples. The
problem is to select samples in such a way that the sampled
execution is an accurate picture of the complete execution
of the program. As such, it is important not to limit
the selection of samples to the initialization phase of the
program execution. This is a manifestation of the more
general observation that a program goes through various
phases of execution and that the sampling should reflect this
notion. In other words, samples should be chosen in such
a way that all major phases are represented in the sampled
execution. Several approaches have been described in the
recent literature to select such samples: random sampling by
Conte et al. [2], profile-driven sampling by scaling the basic
block execution counts by Dubey and Nair [3], by selecting
basic blocks with representative context information using
the R-metric by Iyengar et al. [4, 5], periodic selection as
done in SMARTS [6], selection based on clustering similarly
behaving intervals as done by Lafage and Seznec [7] as well
as in SimPoint [8, 9, 10].

The second issue is the correct hardware state at the
beginning of each sample. This is well known in the literature

as the cold-start problem. At the beginning of a sample,
the correct hardware state is unknown since the instructions
preceding the sample are not simulated during sampled
processor simulation. Several techniques have been proposed
in the literature to address this important issue (see the next
section for a detailed discussion). Most of these use a number
of instructions preceding the sample to warm up the hardware
state before each sample. Under such a warmup strategy,
sampled simulation consists of three steps (Figure 1). The
first step is cold simulation in which the program execution
is fast-forwarded, i.e. functional simulation without updating
microarchitectural state. In case of trace-driven simulation,
the instructions under cold simulation can even be discarded
from the trace, i.e. need not be stored on disk. The second
step is warm simulation which updates the microarchitectural
state. This is typically done for large hardware structures
such as caches, translation lookaside buffers and branch
predictors. Under warm simulation, no performance metrics
are calculated. It is important to note that the warm simulation
phase can be very long since the microarchitectural state
can have an extremely long history. The third step is
hot simulation which includes detailed processor simulation
while computing performance metrics, e.g. calculating cache
and branch predictor miss rates, number of instructions
retired per cycle and so on. These three steps are repeated
for each sample.

Obviously, cold simulation is faster than warm simulation
and warm simulation is faster than hot simulation. Austin
et al. [11] report simulation speeds for the various simulation
tools in the SimpleScalar ToolSet. They report that
sim-fast, which corresponds to cold simulation, attains
a simulation, speed of 7 million instructions per second
(MIPS). Warm simulation, which is a combination of
sim-bpred and sim-cache, attains ∼3 MIPS. Hot
simulation is the slowest way of simulation with a speed of
0.3 MIPS. Owing to the fact that sampled execution only
simulates a small fraction (typically <3%) of the complete
program execution in full detail at the cycle level (under
hot simulation), the total simulation time under sampled
simulation is largely determined by the simulation speed
under cold and warm simulation. As such, shortening
the total time spent under warm simulation, i.e. trading
warm simulation for cold simulation, can yield significant
simulation speedups. To clarify this, we first compute
the total simulation time as a function of the number of

The Computer Journal Vol. 48 No. 4, 2005

“bxh103” — 2005/6/20 — page 453 — #3

BLRL: Accurate and Efficient Warmup for Sampled Processor Simulation 453

instructions under cold, warm and hot simulation. The
total simulation time Texec for execution-driven simulation
is proportional to

Texec ∼ fc · 1

7 MIPS
+ fw · 1

3 MIPS
+ fh · 1

0.3 MIPS
, (1)

where fc, fw and fh are the fractions of instructions
under cold, warm and hot simulation respectively. In
practice, the value for fh can be >2%—we obtained
this number from the SimPoint data (http://www.cs.ucsd.
edu/∼calder/simpoint) [8, 9, 10]. If we consider the fact that
a 1M instruction sample requires 10–20M warm simulation
instructions on average to guarantee accurate warmup (as
will be demonstrated in this paper), fw then ranges from
20 to 40%. As a result, shortening the warm simulation
fraction fw by 50%—which is the average reduction obtained
according to our results if an appropriate warmup strategy is
chosen—can decrease the total simulation time by 8–15%.
For trace-driven simulation, the total simulation time Ttrace is
proportional to

Ttrace ∼ fw · 1

3 MIPS
+ fh · 1

0.3 MIPS
. (2)

Reducing the warm simulation phase by 50% reduces the total
simulation time by 33–50%. Because of these significant
simulation time reductions, it is important to study efficient
but accurate warmup techniques.

3. WARMUP STRATEGIES

3.1. Previously proposed strategies

This section gives a detailed description of previously
proposed warmup strategies.

• The cold or no warmup scheme [12, 13] assumes
an empty cache at the beginning of each sample.
Obviously, this scheme will overestimate the cache miss
rate. However, the bias can be small for large samples.

• Another option is to checkpoint [14] or to store the
hardware state at the beginning of each sample and
impose this state during sampled simulation. This
approach yields a perfectly warmed up hardware state.
However, the storage needed to store these checkpoints
can explode in case of many samples. In addition,
the hardware state needs to be stored for each specific
hardware configuration. For example, for each cache
and branch predictor configuration a checkpoint needs
to be made. Obviously, the latter constraint implies that
the complete program execution needs to be simulated
for these various hardware structures.

• Stitch [13] approximates the hardware state at the
beginning of a sample with the hardware state at the
end of the previous sample.

• The prime-xx% method [13] assumes an empty
hardware state at the beginning of each sample and uses
xx% of each sample to warm up the cache. Actual
simulation then starts after these xx% instructions. The
warmup scheme prime-50% is also called half in the
literature.

• A combination of the two previous approaches was
proposed by Conte et al. [2]: the hardware state at
the beginning of each sample is the state at the end of
the previous sample plus warming up using a fraction
of the sample.

• Another approach proposed by Kessler et al. [13, 15]
is to assume an empty cache at the beginning of each
sample and to estimate which cold-start misses would
have missed if the cache state at the beginning of the
sample was known.

• Nguyen et al. [16] use W instructions to warm
up the cache which is calculated as follows:
W = (C/L)/(m · r), where C is the cache capacity, L is
the line size, m is the cache miss rate and r is the mem-
ory reference ratio. The problem with this approach is
that the cache miss rate m is unknown; this is exactly
what we are trying to approximate through sampling.

• No-state-loss (NSL) [17] scans the pre-sample and
records the latest reference to each unique memory
location. These references are subsequently used to
warm up the caches. NSL guarantees perfect warmup
for caches with least-recently used replacement. This
approach was proposed in the context of sampled
cache simulation; however, extending this approach to
a warmup strategy for sampled processor simulation
(with, e.g. branch predictor warmup) is not easily done.

• Minimal subset evaluation (MSE) proposed by Haskins
and Skadron [18] determines the warmup length as
follows. First, the user specifies the desired probability
that the cache state at the beginning of the sample
under warmup equals the cache state under perfect
warmup. Second, the MSE formulas are used to deter-
mine how many unique references are required during
warmup. Third, using a memory reference profile of
the pre-sample it is calculated where exactly in the
pre-sample the warmup should be started in order to
cover these unique references.

The problem with most of these methods, except for NSL
and MSE, is that they do not guarantee a (nearly) perfect
hardware state at the beginning of each sample. In the
following subsection we will discuss one warmup method in
more detail that alleviates this problem and is considered as
the current state-of-the-art in efficient and accurate warmup
strategies, namely MRRL [19]. MRRL is a continuation of
the work by Haskins and Skadron on MSE [18]. As stated
in the introduction, we will compare our newly proposed
BLRL with MRRL in more detail in Section 6. We do
not compare BLRL with NSL and MSE because extending
NSL to processor simulation is non-trivial and MSE was
superseded by MRRL.

3.2. Memory reference reuse latency

Haskins and Skadron [19] propose MRRL for accurately
warming up the hardware state at the beginning of each
sample. As suggested, MRRL refers to the number of
instructions between consecutive references to the same
memory location, i.e. the number of instructions between

The Computer Journal Vol. 48 No. 4, 2005

http://www.cs.ucsd

“bxh103” — 2005/6/20 — page 454 — #4

454 L. Eeckhout et al.

pre-sample sample

0 N -1B,P N -1BL insnsB c0 cN - 1B,P
N -1-kB,P

warmup

ck

FIGURE 2. Determining warmup using MRRL.

pre-sample sample

0 N -1B,P N -1BL insnsB c0 CN - 1
B,P

N -1-kB,P ck

instruction i

boundary line

reuse latency x

pre-sample reuse latency

FIGURE 3. Determining warmup using BLRL.

a reference to address A and the next reference to A. For
their purpose, they divide the pre-sample–sample pair into
NB non-overlapping buckets each containing LB contiguous
instructions; in other words, the total pre-sample–sample pair
consists of NB · LB instructions (Figure 2). The buckets
receive an index from 0 to NB −1 in which index 0 is the first
bucket in the pre-sample. The first NB,P buckets constitute
the pre-sample and the remaining NB,S buckets constitute the
sample; obviously, NB = NB,P + NB,S .

The MRRL warmup strategy also maintains NB counters
ci(0 ≤ i < NB). These counters, ci , will be used to build
the histogram of MRRLs. Through profiling, the MRRL is
calculated for each reference and the associated counter is
updated accordingly. For example, for a bucket size LB =
10,000 (as used by Haskins and Skadron [19]) an MRRL
of 124,534 will increment counter c12. When the complete
pre-sample–sample pair is profiled, the MRRL histogram
pi, 0 ≤ i < NB , is computed. This is done by dividing
the bucket counters with the total number of references in
the pre-sample–sample pair, i.e. pi = ci/

(∑NB−1
j=0 cj

)
. As

such, pi = Prob[i · LB < MRRL ≤ (i + 1) · LB − 1].
Not surprisingly, the largest pis are observed for small
values of i owing to the notion of temporal locality in
computer program address streams. Using the histogram pi ,
Haskins and Skadron calculate the bucket corresponding to a
given percentile K%, i.e. bucket k for which

∑k−1
m=0 pm <

K% and
∑k

m=0 pm ≥ K%. This means that of all the
references in the current pre-sample–sample pair, K% have
a reuse latency that is smaller than k · LB . As such, Haskins
and Skadron define these k buckets as their warmup buckets.
In other words, warm simulation is started k ·LB instructions
before the sample.

An important disadvantage of MRRL is that if there is a
mismatch in the MRRL behavior in the pre-sample versus
the sample, it might result in a suboptimal warmup strategy

in which the warmup is either too short to be accurate or too
long for the attained level of accuracy. For example, if the
reuse latencies are generally larger in the sample than in the
pre-sample–sample pair, the warmup will be too short and,
by consequence, the accuracy might be poor. Conversely, if
reuse latencies are generally shorter in the sample than in the
pre-sample–sample pair, the warmup will be too long for the
attained level of accuracy. One way of solving this problem is
to choose a large enough percentile K%. The result is that the
warmup will be longer than needed for the attained accuracy.

4. BOUNDARY LINE REUSE LATENCY

BLRL is quit1e different from MRRL although it is also
based on reuse latencies. In BLRL, the sample is scanned for
reuse latencies that cross the pre-sample–sample boundary
line, i.e. a memory location is referenced in the pre-sample
and the next reference to the same memory location is in
the sample. For each of these cross boundary line reuse
latencies, the pre-sample reuse latency is calculated. This
is done by subtracting the distance in the sample from the
MRRL. For example, if instruction i has a cross boundary
line reuse latency x, the pre-sample reuse latency then is
x − (i −NB,P ·LB) (Figure 3). A histogram is built up using
these pre-sample reuse latencies. As is the case for MRRL,
BLRL uses NB,P buckets of size LB to limit the size of the
histogram. This histogram is then normalized to the number
of reuse latencies crossing the pre-sample–sample boundary
line. The required warmup length is then computed to include
a given percentile K% of all reuse latencies that cross the pre-
sample–sample boundary line.

There are three key differences between BLRL and MRRL.
First, BLRL considers reuse latencies for memory references
originating from instructions in the sample only whereas
MRRL considers reuse latencies for memory references

The Computer Journal Vol. 48 No. 4, 2005

“bxh103” — 2005/6/20 — page 455 — #5

BLRL: Accurate and Efficient Warmup for Sampled Processor Simulation 455

TABLE 1. The SPEC CPU2000 integer benchmarks
used in this study along with their input (all inputs are
reference inputs); the rightmost column shows µerror
under no warmup or no warm simulation during the
pre-sample.

Benchmark Input µerror(%)

vpr route 24.05
gcc 166 7.96
crafty ref 0.91
gap ref 1.06
gzip graphic 4.09
bzip2 source 19.86
vortex lendian1 3.97
twolf ref 2.93
eon cook 0.22
mcf ref 1.57

originating from instructions in both the pre-sample and
sample. Second, BLRL considers only reuse latencies
that cross the pre-sample–sample boundary line; MRRL
considers all reuse latencies. Third, in contrast to MRRL
which uses the reuse latency to update the histogram,
BLRL uses the pre-sample reuse latency.

We expect BLRL to be highly accurate and efficient since
it tracks the individual cross boundary line reuse latencies.
These cross boundary reuse latencies in fact point to the
memory locations that need to be warmed up. There is,
however, one potential scenario in which BLRL will attain
poor performance. Consider the case that the number of cross
boundary line reuse latencies is relatively small compared
with the size of the sample and that these reuse latencies
have a very long pre-sample reuse latency. This will result
in a long warmup; however, it will not contribute to the
attained accuracy since the number of cross boundary line
reuse latencies is small. As such, the warmup will be too
long for the given level of accuracy. However, we expect this
scenario to be rare. This is supported by the experimental
results from Section 6 which show that BLRL is both more
accurate and leads to shorter warmup than MRRL.

5. EXPERIMENTAL SETUP

For the evaluation we use 10 SPEC CPU2000 integer
benchmarks (http://www.spec.org; Table 1). The bina-
ries, which were compiled and optimized for the Alpha
21264 processor, are taken from the SimpleScalar web-
site (http://www.simplescalar.com). All measurements pre-
sented in this paper are obtained using the MRRL soft-
ware (http://www.cs.virginia.edu/∼jwh6q/mrrl-web/) which
in turn is based on the SimpleScalar software [20]. The
baseline processor simulation model is given in Table 2.

In this paper we consider a sample size of 1M instruc-
tions. This sample size is in the range of sample sizes that
are likely to benefit the most from efficient warmup strate-
gies. Larger sample sizes, e.g. 100M instruction samples,
do not need warmup. No warmup, i.e. only cold simulation
during the pre-sample, is sufficient to faithfully estimate the

performance for 100M instruction samples. Smaller sample
sizes on the other hand, e.g. 1000 and 10,000 instruction sam-
ples as used in SMARTS [6], require thousands of samples to
obtain accurate performance predictions. In such sampling
scenarios, the pre-sample sizes are generally smaller than the
observed reuse latencies. An example scenario for SMARTS
uses 3000 periodically chosen 1000 instruction samples
from a 100B instruction program execution. As such, the
pre-sample size is ∼30,000 instructions on average. The
reuse latencies that we observe in this study often exceed
30,000 instructions. As such, full warmup simulation of
caches and branch predictors during each pre-sample, as is
done in SMARTS [6], is a practical solution for small sample
sizes. Shortening this warmup could help, but the benefit
of doing it is probably limited. Note that a 1M instruction
sample is also the one chosen in [19] for evaluating MRRL.

We consider 50 samples (each containing 1M instructions).
We select a sample for every 100M instructions. These
samples were taken from the beginning of the program
execution to limit the simulation time while evaluating the
various warmup strategies with varying percentiles K%.
Taking samples deeper down the program execution would
have been too time-consuming given the large fast forwarding
needed. However, we believe this does not affect the
conclusions from this paper, since the warmup strategies that
are evaluated in this paper can be applied to any collection of
samples. Once a set of samples is provided, either warmup
strategy can be applied to it.

We quantify the performance of a warmup strategy using
two metrics: accuracy and warmup length. The warmup
length is defined as the number of instructions under warm
simulation. The accuracy is quantified as follows. We first
measure the CPI for each sample under full warmup, i.e. by
assuming warm simulation during the complete pre-sample.
We then compute the CPI for each sample under a given
warmup strategy. Using these two CPI numbers we compute
the CPI prediction error on a per-sample basis. This is done
as follows:

CPI prediction error = |CPI short − CPI full|
CPI full

, (3)

where CPI short and CPI full are the CPI under shortened
and full warmup respectively. As such, we obtain 50 CPI
prediction errors. We subsequently compute the average
per-sample CPI prediction error, µerror. The reason why
we use average per-sample CPI prediction errors instead of
aggregate CPI prediction errors—by comparing the overall
CPI under shortened warmup versus full warmup—is that the
latter approach might hide inaccuracies in particular samples
from the aggregate CPI numbers. For example, a positive
CPI prediction error in one sample can be compensated for
by a negative CPI prediction error in another sample. Using
the average per-sample CPI prediction error, µerror, alleviates
this problem.

In its rightmost column, Table 1 shows µerror under the
no-warmup strategy, i.e. no warm simulation during the pre-
sample. These data show that warmup is clearly needed to
address the cold-start problem. Note that this error is to be

The Computer Journal Vol. 48 No. 4, 2005

http://www.spec.org
http://www.simplescalar.com
http://www.cs.virginia.edu/

“bxh103” — 2005/6/20 — page 456 — #6

456 L. Eeckhout et al.

TABLE 2. Baseline processor simulation model.

Instruction cache 8 KB, 2-way set-associative, 32-byte block, 1 cycle access latency
Data cache 16 KB, 4-way set-associative, 32-byte block, 2 cycles access latency
Unified L2 cache 1 MB, 4-way set-associative, 64-byte block, 30 cycles access latency
I-TLB and D-TLB 32-entry 8-way set-associative with 4 KB pages
Memory 300 cycle round trip access
Branch predictor 8 K-entry hybrid predictor selecting between an 8 K-entry bimodal predictor and

a two-level (8 K × 8 K) local branch predictor xor-ing the local history with
the branch’s PC, 512-entry 4-way set-associative BTB and 64-entry RAS

Speculative update At dispatch time
Branch misprediction penalty 10 cycles
IFQ 32-entry instruction fetch queue
RUU and LSQ 128 entries and 64 entries respectively
Processor width 8 issue width, 8 decode width (fetch speed = 2), 8 commit width
Functional units 8 integer ALUs, 4 load/store units, 2 fp adders, 2 integer and 2 fp mult/div units

considered on top of the sampling error. Indeed, the overall
CPI error (theoretically) is the sum of the sampling error
plus the error due to inaccurate warmup. Perelman et al. [9]
report average CPI sampling errors ranging from 2 to 4%.
These errors are due to sampling inaccuracies only since they
assume perfect warmup in their experiments. As such, the
additional error due to the cold-start problem should be small
enough not to increase the overall CPI error too much.

Next to benchmark-specific information, we will also
report the average numbers over all benchmarks. More
specifically, we will average the warmup length and the
average per-sample CPI prediction error, µerror over all
benchmarks. This will be done using the arithmetic
average for the following reasons. For the warmup length,
the arithmetic average is directly proportional to the total
simulation time spent in warmup when simulating the
complete benchmark suite. For the CPI prediction error,
µerror, the arithmetic average penalizes large inaccuracies
more than the geometric average would do. For example,
if one particular benchmark has a larger error than the
other benchmarks, the arithmetic average error will be larger
than the geometric average error. This makes sense for
our purpose since we want the prediction errors for all
benchmarks to be low.

6. RESULTS

Table 3 shows the results of comparing BLRL and MRRL.
This is done for different values of the percentile K%.
For BLRL, we use K = 85%, K = 90% and K =
95%; for MRRL, we use K = 99.5% and 99.9%. To
compare the performance of a warmup strategy, we take
both the warmup length and the CPI prediction error into
account. We observe that BLRL performs significantly
better than MRRL on average. For example, compare
BLRL-90% versus MRRL-99.9%: BLRL-90% attains a
higher accuracy than MRRL-99.9% (µerror = 0.30%
versus 0.43% respectively) with a shorter warmup length
(589M versus 896M instructions respectively). In other
words, the error is reduced by 30% while having a 34%
shorter warmup. Or, when comparing BLRL-85% versus

TABLE 3. Comparison of BLRL versus MRRL.

BLRL MRRL

85% 90% 95% 99.5% 99.9%

Average per-sample CPI prediction error, µerror
bzip 2 1.09 0.57 0.21 1.37 1.02
crafty 0.12 0.07 0.04 0.48 0.09
eon 0.02 0.02 0.02 0.02 0.01
gap 0.20 0.11 0.11 0.61 0.40
gcc 0.34 0.27 0.25 0.49 0.42
gzip 0.18 0.13 0.06 0.17 0.09
mcf 0.05 0.05 0.05 0.08 0.08
twolf 0.14 0.09 0.05 0.56 0.14
vortex 1.57 1.39 1.27 2.74 1.92
vpr 0.55 0.29 0.18 1.36 0.12
avg 0.43 0.30 0.22 0.79 0.43

Warmup length (in millions)
bzip2 1215 1422 1672 1253 2323
crafty 371 733 1785 24 306
eon 110 124 137 78 149
gap 71 96 109 3 69
gcc 130 189 254 135 347
gzip 285 312 338 353 425
mcf 110 145 788 1213 2119
twolf 232 328 440 383 658
vortex 402 640 1569 47 235
vpr 1609 1897 2455 945 2325
avg 453 589 955 443 896

MRRL-99.9%, we observe that BLRL attains the same
accuracy as MRRL with a warmup length that is 49% shorter
(453M versus 896M respectively). Note that although the
error rate reductions seem significant in relative terms, they
are not that significant in absolute terms. Haskins and
Skadron [19] showed, based on statistical tests, that the per-
sample CPI numbers obtained through MRRL are statistically
insignificant from the per-sample CPI numbers obtained
through full warmup. Therefore, the improvement in terms
of accuracy demonstrated here through BLRL is to be seen
within this margin of error. Therefore, we conclude that
BLRL achieves a similar level of accuracy as MRRL but

The Computer Journal Vol. 48 No. 4, 2005

“bxh103” — 2005/6/20 — page 457 — #7

BLRL: Accurate and Efficient Warmup for Sampled Processor Simulation 457

TABLE 4. Obtained CPI prediction error reduction and warmup length reduction of BLRL-90% versus MRRL.

BLRL MRRL MRRL–BLRL

KBLRL% µerror(%) Warmup KMRRL% µerror(%) Warmup µerror(%) Warmup

bzip2 90 0.57 1422 99.9 1.02 2323 0.45 901
crafty 90 0.07 733 99.95 0.05 749 −0.02 16
eon 90 0.02 124 99 0.02 19 0.00 −105
gap 90 0.11 96 99.95 0.22 101 0.11 5
gcc 90 0.27 189 99.95 0.29 461 0.02 272
gzip 90 0.13 312 99.5 0.17 353 0.04 41
mcf 90 0.05 145 99.95 0.06 2171 0.01 2026
twolf 90 0.09 328 99.95 0.11 793 0.02 465
vortex 90 1.39 640 99.96 1.39 683 0.00 43
vpr 90 0.29 1897 99.7 0.26 1452 −0.03 −445

achieves this level of accuracy with a significantly shorter
warmup length—the warmup length under BLRL is nearly
half the warmup length under MRRL.

Table 4 compares BLRL with a fixed percentile KBLRL =
90% versus MRRL with a variable percentile KMRRL% for
1M instruction samples on a per-benchmark basis. The
motivation for such an analysis is to quantify how much
shorter the warmup is for BLRL than for MRRL to yield the
same level of accuracy. For this table, we have run a large
number of experiments with varying percentiles KMRRL% for
MRRL. For each benchmark a different percentile KMRRL%
is chosen so that the the CPI prediction error for MRRL
is close to that for BLRL. In its two rightmost columns,
Table 4 presents the reduction in CPI prediction error
(in percentage point) and warmup length (in millions of
instructions). Positive values indicate that BLRL yields
better accuracy and shorter warmup than MRRL. These data
show that for 7 out of the 10 benchmarks, BLRL attains
smaller errors and shorter warmup than MRRL. For four
benchmarks, the reduction in warmup length over MRRL
is very large: bzip2 (39%), gcc (59%), twolf (59%) and
mcf (93%). For one benchmark, namely vpr, MRRL attains
a smaller error and a shorter warmup than BLRL. For
two benchmarks (crafty and eon), BLRL and MRRL are
comparable.

Another way of looking at the performance of warmup
strategies is to plot the average CPI prediction error, µerror,
versus warmup length. Figure 4 shows such a graph for
four benchmarks: twolf, gcc, bzip2 and vpr. The different
points for each curve correspond to different values of the
percentiles KBLRL% and KMRRL%. Obviously, increasing
percentiles K% correspond to increasing warmup lengths
and decreasing CPI prediction errors. This graph shows that
for twolf, gcc and bzip2, BLRL is significantly better than
MRRL. We observed similar graphs for most of the other
benchmarks. For vpr on the other hand, MRRL seems to
outperform BLRL.

In order to understand where the (small) CPI prediction
errors come from, we have performed an error analysis.
For this purpose we have collected various metrics under
BLRL-85% and MRRL-99.9%: the L1 I-cache miss rate, the

L1 D-cache miss rate, the unified L2-cache miss rate and the
branch misprediction rate (Table 5). The error rates shown
in this table are absolute error rates which are computed
as follows:

Mprediction error = |Mshort − Mfull|, (4)

where M short and M full denote a metric M under shortened
and full warmup respectively. We use this absolute error
rate instead of the relative error rate since the miss rates are
small numbers—a relative error rate would enlarge small
differences for small numbers without providing a useful
meaning. We conclude from Table 5 that the error rates for the
L1 I and D caches are zero in nearly all cases. For the branch
misprediction rates we observe higher error rates, but these
errors are still <0.11%. The highest error rates are observed
for the L2-cache miss rates. For example, for bzip2 the error
rates are 2.94 and 2.28% for MRRL and BLRL respectively;
for vortex the error rates are 0.86 and 0.84% for MRRL and
BLRL respectively. Note that the higher error rates for the
L2 caches for these two benchmarks result in higher error
rates in overall CPI (Table 3).

7. CONCLUSION

Architectural simulation is an essential tool for micro-
architectural research to obtain insight into the cycle-level
behavior of current microprocessors. Unfortunately, these
architectural simulations are extremely time-consuming,
especially if industry standard benchmarks need to be
simulated to completion. Sampled simulation is an often-
used solution to drastically reduce the total simulation time.
In sampled simulation, a well-chosen set of samples is
selected such that they represent an accurate picture of the
complete benchmark execution.

An important problem with sampling, however, is the
unknown hardware state at the beginning of each sample.
To accurately estimate this hardware state researchers
have proposed various warmup strategies. This is done
by simulating additional instructions from the pre-sample
without computing performance metrics; this is particularly

The Computer Journal Vol. 48 No. 4, 2005

“bxh103” — 2005/6/20 — page 458 — #8

458 L. Eeckhout et al.

twolf

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 200 400 600 800 1,000

warmup length (millions)

a
ve

ra
g
e
 C

P
I
p
re

d
ic

tio
n
 e

rr
o
r MRRL

BLRL

bzip2

0.0%

0.5%

1.0%

1.5%

2.0%

- 500 1,000 1,500 2,000 2,500 3,000

warmup length (millions)

av
er

ag
e

C
P

Ip
re

di
ct

io
n

er
ro

r MRRL

BLRL

vpr

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

0 1,000 2,000 3,000 4,000

warmup length (millions)

av
er

ag
e

C
P

Ip
re

di
ct

io
n

er
ro

r

MRRL

BLRL

gcc

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0 100 200 300 400 500 600

warmup length (millions)

a
ve

ra
g
e
 C

P
I
p
re

d
ic

tio
n
 e

rr
o
r MRRL

BLRL

FIGURE 4. Average CPI prediction error µerror versus warmup length for twolf, gcc, bzip2 and vpr.

TABLE 5. Error rates between BLRL-85 and MRRL-99.9% versus full warmup: L1 I-cache miss
rate, L1 D-cache miss rate, L2-cache miss rate and branch misprediction rate.

BLRL−85% MRRL−99.9%

IL1(%) DL1(%) L2(%) bpred(%) IL1(%) DL1(%) L2(%) bpred(%)

bzip2 0.00 0.00 2.28 0.01 0.00 0.00 2.94 0.01
crafty 0.01 0.00 0.03 0.03 0.01 0.00 0.02 0.03
eon 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
gap 0.00 0.00 0.04 0.04 0.00 0.00 0.07 0.02
gcc 0.00 0.00 0.03 0.11 0.00 0.00 0.03 0.08
gzip 0.00 0.00 0.08 0.01 0.00 0.00 0.05 0.01
mcf 0.00 0.00 0.03 0.00 0.00 0.00 0.07 0.00
twolf 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.02
vortex 0.01 0.00 0.84 0.05 0.01 0.00 0.86 0.04
vpr 0.00 0.00 0.19 0.01 0.00 0.00 0.02 0.01

useful for large hardware structures such as caches and branch
predictors. Since warm simulation has a significant impact
on the overall sampled simulation time, it is important to
study efficient but accurate warmup strategies. In this paper
we proposed BLRL which uses reuse latencies (between
memory references to the same memory location) that cross
the boundary line between the pre-sample and the sample.
BLRL uses a percentage (e.g. 90%) of these reuse latencies
to calculate the warmup length per sample. This paper
also compared BLRL with the previously proposed MRRL.
Our experimental results using SPEC CPU2000 and detailed
processor simulation showed that BLRL outperforms MRRL
significantly. BLRL achieves a warmup that is nearly half the

size, on average, of the warmup under MRRL for the same
level of accuracy.

ACKNOWLEDGEMENTS

Lieven Eeckhout is a Postdoctoral Fellow of the Fund for
Scientific Research, Flanders, Belgium (F.W.O. Vlaanderen).
This research is sponsored by Ghent University and the
Institute for the Promotion of Innovation by Science and
Technology in Flanders (IWT). This research is also partially
supported by the National Science Foundation under grant
number 0113105, by IBM through a CAS award and a SUR
grant, and by AMD, Intel and Microsoft corporations.

The Computer Journal Vol. 48 No. 4, 2005

“bxh103” — 2005/6/20 — page 459 — #9

BLRL: Accurate and Efficient Warmup for Sampled Processor Simulation 459

REFERENCES

[1] Eeckhout, L., Eyerman, S., Callens, B. and De Bosschere, K.
(2003) Accurately warmed-up trace samples for the evaluation
of cache memories. In Proc. 2003 High Performance
Computing Symposium (HPC-2003), Orlando, FL, March 30–
April 3, pp. 267–274. SCS, San Diego, CA.

[2] Conte, T. M., Hirsch, M. A. and Menezes, K. N. (1996)
Reducing state loss for effective trace sampling of superscalar
processors. In Proc. 1996 International Conference on
Computer Design (ICCD-96), Austin, TX, October 7–9, pp.
468–477. IEEE CS, Los Alamitos, CA.

[3] Dubey, P. K. and Nair, R. (1995) Profile-driven Sampled
Trace Generation. Technical Report RC 20041, IBM Research
Division, T. J. Watson Research Center.

[4] Iyengar, V. S. and Trevillyan, L. H. (1996) Evaluation and
Generation of Reduced Traces for Benchmarks. Technical
Report RC 20610, IBM Research Division, T. J. Watson
Research Center, Yorktown, NY.

[5] Iyengar, V. S., Trevillyan, L. H. and Bose, P. (1996)
Representative traces for processor models with infinite
cache. In Proc. Second Int. Symp. on High-Performance
Computer Architecture (HPCA-2), San Jose, CA, February
3–7, pp. 62–73. IEEE Computer Society, Los Alamitos, CA.

[6] Wunderlich, R. E., Wenish, T. F., Falsafi, B. and Hoe, J. C.
(2003) SMARTS: accelerating microarchitecture simulation
via rigorous statistical sampling. In Proc. 30th Annual Int.
Symp. on Computer Architecture (ISCA-30), San Diego,
CA, June 9–11, pp. 84–95. IEEE Computer Society, Los
Alamitos, CA.

[7] Lafage, T. and Seznec, A. (2000) Choosing representa-
tive slices of program execution for microarchitecture sim-
ulations: a preliminary application to the data stream. In
Proc. IEEE 3rd Annual Workshop on Workload Charac-
terization (WWC-2000) held in conjunction with the Int.
Conf. on Computer Design (ICCD-2000), Austin, TX,
September 16, Kluwer International Series in Engineering
and Computer Science Series Archive. Kluwer, Norwell, MA,
pp. 145–163.

[8] Sherwood, T., Perelman, E., Hamerly, G. and Calder, B.
(2002) Automatically characterizing large scale program
behavior. In Proc. Tenth Int. Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-X), San Jose, CA, October 5–9, pp. 45–57. ACM,
New York, NY.

[9] Perelman, E., Hamerly, G. and Calder, B. (2003) Picking
statistically valid and early simulation points. In Proc. 12th Int.
Conf. on Parallel Architectures and Compilation Techniques

(PACT-2003), New Orleans, LA, September 27–October 1,
pp. 244–256. IEEE Computer Society, Los Alamitos, CA.

[10] Sherwood, T., Perelman, E. and Calder, B. (2001) Basic
block distribution analysis to find periodic behavior and
simulation points in applications. In Proc. 2001 Int. Conf. on
Parallel Architectures and Compilation Techniques (PACT-
2001), Barcelona, Spain, September10–12, pp. 3–14. IEEE
Computer Society, Los Alamitos, CA.

[11] Austin, T., Larson, E. and Ernst, D. (2002) SimpleScalar: an
infrastructure for computer system modeling. IEEE Computer,
35, 59–67.

[12] Crowley, P. and Baer, J.-L. (1999) Trace sampling for desktop
applications on Windows NT. In Workload Characterization:
Methodology and Case Studies. IEEE Computer Society Press.

[13] Kessler, R. E., Hill, M. D. and Wood, D. A. (1994) A
comparison of trace-sampling techniques for multi-megabyte
caches. IEEE Trans. Comput., 43, 664–675.

[14] Lauterbach, G. (1993) Accelerating Architectural Simulation
by Parallel Execution of Trace Samples. Technical Report
SMLI TR-93-22. Sun Microsystems Laboratories Inc.

[15] Wood, D. A., Hill, M. D. and Kessler, R. E. (1991) A
model for estimating trace-sample miss ratios. In Proc.
1991 SIGMETRICS Conf. on Measurement and Modeling of
Computer Systems, San Diego, CA, May 21–24, pp. 79–89.
ACM, New York, NY.

[16] Nguyen, A.-T., Bose, P., Ekanadham, K., Nanda, A. and
Michael, M. (1997) Accuracy and speed-up of parallel trace-
driven architectural simulation. In Proc. 11th Int. Parallel
Processing Symp. (IPPS’97), Geneva, Switzerland, April 1–5,
pp. 39–44. IEEE Computer Society, Los Alamitos, CA.

[17] Conte, T. M., Hirsch, M. A. and Hwu, W. W. (1998) Combining
trace sampling with single pass methods for efficient cache
simulation. IEEE Trans. Comput., 47, 714–720.

[18] Haskins, J. W. Jr. and Skadron, K. (2001) Minimal subset
evaluation: Rapid warm-up for simulated hardware state. In
Proc. 2001 Int. Conf. on Computer Design (ICCD-2001),
Austin, TX, September 23–26, pp. 32–39. IEEE Computer
Society, Los Alamitos, CA.

[19] Haskins, J. W. Jr. and Skadron, K. (2003) Memory
reference reuse latency: accelerated warmup for sampled
microarchitecture simulation. In Proc. 2003 IEEE Int.
Symp. on Performance Analysis of Systems and Software
(ISPASS-2003), Austin, TX, March 6–8, pp. 195–203. IEEE,
Piscataway, NJ.

[20] Burger, D. C. and Austin, T. M. (1997). The SimpleScalar
Tool Set. Computer Architecture News. Available at http://
www.simplescalar.com.

The Computer Journal Vol. 48 No. 4, 2005

http://

