
Modeling Superscalar Processor
Memory-Level Parallelism

Sam Van den Steen and Lieven Eeckhout

Abstract—This paper proposes an analytical model to predict Memory-Level

Parallelism (MLP) in a superscalar processor. We profile the workload once and

measure a set of distributions to characterize the workload’s inherent memory

behavior. We subsequently generate a virtual instruction stream, over which we

then process an abstract MLPmodel to predict MLP for a particular micro-

architecture with a given ROB size, LLC size, MSHR size and stride-based

prefetcher. Experimental evaluation reports an improvement in modeling error from

16.9 percent for previous work to 3.6 percent on average for the proposedmodel.

Index Terms—Modeling, memory level parallelism (MLP), micro-architecture

Ç

1 INTRODUCTION

ANALYTICAL performance models are useful to speed up design
space exploration and provide a mental model for architects to rea-
son about application-architecture interactions. One of the impor-
tant and challenging components to model is the total time an
application spends waiting for main memory. This is a challenge in
particular because current superscalar processors hide part of the
memory access latency by exploiting Memory-Level Parallelism
(MLP), i.e., by servicing multiple memory requests in parallel [1].

The key contribution in this paper is an analytical model that
requires profiling an application of interest only once, after which
MLP can be accurately estimated for a range of superscalar proces-
sor architectures while varying reorder buffer (ROB) size, last-level
cache (LLC) size, number of Miss Status Handling Registers
(MSHR) entries, stride-based hardware prefetching, etc. This is a
non-trivial endeavor as MLP is a result of complex interactions
between an application’s inherent memory access patterns and the
available hardware resources. More specifically, characteristics
such as burstiness of misses, inter-load dependences, locality,
memory access patterns, etc. have an (in)direct effect on the
exploitable MLP. Existing models fall short in various dimensions,
as we will discuss in the next section.

TheMLPmodel proposed consists of three steps.We first collect a
number of distributions to characterize the relative positions ofmem-
ory references in the instruction stream (to model burstiness), their
dependences (dependent loads cannot be processed in parallel), their
reuse distances (to model temporal locality), and their strided access
patterns (tomodel spatial locality and their prefetchability). In the sec-
ond step, we generate a virtual instruction streamwith characteristics
following these distributions. Finally, in the third step, we estimate
MLP by processing the virtual instruction stream using an abstract
MLP model; we take burstiness, inter-load dependences, locality and
strided access patterns into account to estimate the amount ofMLP.

Our experimental evaluation reports significant improvements
over prior work. Compared to detailed simulation, the proposed
MLP model achieves an average absolute error of 3.6 percent for
predicting the total time waiting for main memory for a superscalar

processor (with a stride-based prefetcher).1 This is a significant
improvement over prior workwith a 16.9 percent average error [2].

2 PRIOR WORK

There exist a number of models to predict MLP in superscalar pro-
cessors. Karkhanis and Smith [3] consider the number of indepen-
dent cachemisseswithin an ROB-sized sequence of instructions from
the dynamic instruction stream as a measure for MLP. Chen et al. [4]
refine that model and consider pending cache hits, prefetching and
MSHR registers for estimating the time spent waiting for mainmem-
ory. A key limitation of these works is the reliance on a cache simula-
tor to generate a stream of main memory accesses. This implies that
the memory access stream needs to be re-generated whenever a
change in the cache hierarchy is considered. Our model on the other
hand requires profiling the application only once. Miftakhutdinov
et al. [5] describe hardware extensions to accuratelymeasure the time
waiting for memory on real hardware with the goal of dynamically
steering voltage and frequency for optimum energy efficiency.

The model proposed in this paper is most closely related to our
own previous work in which we model superscalar processor per-
formance from a micro-architecture independent profile [2]. This
prior model includes a fairly simple MLP model, which basically
assumes that conflict and capacity misses are uniformly distributed
across the instruction stream, and that the burstiness in cache miss
behavior results from cold misses. This paper presents a significant
improvement over this prior work.

Wang et al. [6] propose a stochastic DRAM access model which
assumes that a memory access stream from the processor side is
given. In contrast, our work focuses on the processor side; we plan
to combine our model with a model that captures the memory side
as part of our future work.

Our approach also bears some similarity with prior work in sta-
tistical simulation, see for example [7] for a paper specifically
focusing on modeling the memory data flow in superscalar pro-
cessors. In contrast to statistical simulation which generates a syn-
thetic trace that is then simulated using a detailed processor timing
model, we generate a virtual instruction stream which is then proc-
essed by an abstract analytical MLP model.

3 MLP MODEL

Our MLP model relies on a number of statistics that we capture on
a per micro-trace basis. A micro-trace is a short sequence of instruc-
tions (e.g., 1,000 instructions);2 we collect 100 micro-traces per
100 M instructions (one micro-trace per 1M instructions). The rea-
son for considering micro-traces is to reduce profiling time, and
more importantly, to be able to capture MLP burstiness—an aver-
age profile across a number of micro-traces would average out the
statistics which would compromise model accuracy.

Within each micro-trace, we measure a load-spacing distribu-
tion, inter-load dependence distribution, reuse distance distribu-
tion and stride distribution. Fig. 1 serves as an illustrative example:
It shows a trace of 32 instructions consisting of 16 loads with the
oldest instruction appearing on the left. Loads are indicated as Lx

with x indicating recurrences of the same static load instruction.
Dependences between loads are shown through arrows; the
addresses accessed are shown below the loads. We collect these
distributions for each static load in each micro-trace.3� The authors are with Ghent University, Belgium.

E-mail: {sam.vandensteen, lieven.eeckhout}@ugent.be.

Manuscript received 24 Jan. 2017; revised 19 Apr. 2017; accepted 30 Apr. 2017. Date of
publication 3 May 2017; date of current version 19 Mar. 2018.
(Corresponding author: Sam Van den Steen)
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2017.2701370

1. The model is available at https://github.com/samvandensteen.
2. We find a micro-trace of 1,000 instructions to strike a good balance between

profiling speed and model accuracy.
3. Collecting distributions requires on average 25� less disk space than

recording micro-traces.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018 9

1556-6056� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3630-2214
https://orcid.org/0000-0003-3630-2214
https://orcid.org/0000-0003-3630-2214
https://orcid.org/0000-0003-3630-2214
https://orcid.org/0000-0003-3630-2214
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
mailto:
https://github.com/samvandensteen

3.1 Load Spacing Distribution

We profile the positions of recurrences of each static load in the
micro-trace using a load spacing distribution that records a load’s
first position in the micro-trace along with the number of instruc-
tions in-between recurrences of the same static load. For load LC in
Fig. 1, the load spacing distribution equals ‘5; ð8; 3Þ’ meaning that
the first occurrence appears at position 5 and there are 8 instruc-
tions between the next three recurrences. The rationale behind the
load spacing distribution is to capture the burstiness of loads, i.e.,
load instructions that miss in the on-chip caches and that occur
within the same ROB is a necessary condition to expose MLP.

3.2 Inter-Load Dependence Distribution

The inter-load dependence distribution quantifies inter-load data
dependences in a statistical way. Inter-load dependences have an
important impact on MLP, i.e., loads that depend upon each other
(either directly or indirectly) cannot be issued simultaneously,
hence they cannot expose MLP. The inter-load dependence distri-
bution quantifies the probability that a load depends on any of the
n previous loads in the instruction stream. For example, in Fig. 1,
load LC (always) depends on load LB. Because of this dependence,
loads LB and LC will serialize their execution, and hence no MLP
can be exploited.

3.3 Reuse Distance Distribution

The reuse distance distribution quantifies temporal locality by
quantifying the number of (not necessarily unique) memory
accesses between two accesses to the same memory location. This
reuse distribution is then transformed using StatStack [8] into a
stack distance distribution, which quantifies the number of unique
accesses between two accesses to the same memory location. Once
the stack distance distribution is known, it is trivial to derive the
miss rate assuming a fully associative LRU cache of arbitrary size,
i.e., if there are more unique accesses between two accesses to the
same memory address than there are sets in the cache, the last
access to the same memory address will be a miss. Note that the
reuse distance distribution is measured per static load, hence it
enables estimating the miss rate per static load for any cache size.
Moreover, we can use the reuse distance distribution for predicting
hits and misses at all levels of cache, from the L1 cache to the LLC.

3.4 Stride Distribution

The last distribution we consider is the stride distribution. A stride
is defined as the relative memory address difference between two
subsequent recurrences of the same static load. The stride distribu-
tion collects this stride information. Whereas the reuse distance
distribution quantifies temporal locality in a statistical way, the
stride distribution is a measure for spatial locality. For example, a
load that follows a strided access pattern with stride equal to 4, i.e.,
it accesses the following stream of memory locations: 0; 4; 8; 12; . . .
will result in a cache miss for every other load assuming a cache
line size of 8 bytes. The stride distribution is also critical to model
stride-based prefetching, as we will describe in Section 5.

Memory accesses do not always follow (in fact, they rarely fol-
low) a neat stride pattern, i.e., some patterns can be a mixture of
several strides, other memory accesses may appear to be random.
We classify loads into three categories based on their access pat-
terns. The first category includes loads that follow some stride pat-
tern. The second category includes loads that occur only once in

our micro-trace. The third category includes loads that do not fit in
either of the above two categories; we refer to this category as
random-strided loads.

For the strided-load category, we search for up to four distinct
strides per load, and we use a cutoff percentage to filter out
accesses that are not part of a real stride pattern. To categorize a
load as an instruction with a single stride, one element in the stride
distribution needs to have a percentage of occurrence of at least
60 percent. For a two-strided load, their cumulative percentage
needs to exceed 70 percent, for a three-strided load 80 percent, and
for a four-strided load 90 percent. We always choose the simplest
stride pattern; this means that if the cumulative percentage of
occurrence exceeds a threshold, we stop searching for additional
strides, such that we can easily filter out random strides.

In Fig. 1, LA recurs six times and exhibits a single-strided pat-
tern with stride 8. Load LB recurs five times with memory
addresses: 48; 52; 56; 64; 72. There are two strides of 4 and two
strides of 8. Each stride thus has an occurrence equal to 50 percent,
hence this load is classified as a two-strided load.

3.5 Putting It All Together

The distributions as just described need to be collected only once
per application, from which we can predict MLP for a range of
architecture configurations. We first generate a virtual instruction
stream from these distributions; this virtual instruction stream is
built up as a data structure by the MLP modeling software. We
then hover over this virtual instruction stream with an abstract
MLP model to estimate the amount of MLP for a particular archi-
tecture. This is done for each micro-trace.

3.5.1 Virtual Instruction Stream Generation

The load spacing distribution is first used to build up a skeleton
virtual instruction stream. We position loads in the instruction
stream using the load spacing distributions which determine the
first position of each static load in the stream as well as the subse-
quent recurrences of the load; this is done for all static loads in the
micro-trace. We then use the stride distribution to assign (relative)
memory addresses for each load occurrence of the same static load.
The stride distribution points out hits and misses in the cache, at
least for those loads that exhibit a strided access pattern. We pre-
dict hits and misses at all levels in the cache hierarchy. More in par-
ticular, we mark the first access of a stride pattern as a miss and we
mark the following accesses that fit the same cache line as hits. We
use the reuse distance distribution and StatStack [8] to predict
whether an address has been used before and the respective load
will turn into a hit or a miss. We leverage the inter-load depen-
dence distribution to impose dependences between loads.

3.5.2 Abstract MLP Model

The abstract MLP model then hovers over this virtual instruction
stream to estimate MLP for a particular architecture with a specific
ROB size. MLP is defined as the number of outstanding memory
requests (LLC misses) if at least one is outstanding. The abstract
model breaks up the virtual instruction stream into ROB-sized
instruction sequences over which it estimates the available MLP.4

Fig. 1. Illustrative virtual memory access stream.

4. We considered two possibilities: An ROB that slides versus steps over the
instruction stream; both gave similar results according to our preliminary results,
hence we opt for the stepping approach which is slightly simpler to implement.

10 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018

MLP is affected by various factors including the number and burst-
iness of cache misses; inter-load dependences, i.e., two loads that
depend on each other cannot be serviced simultaneously; and the
ROB size, i.e., independent loads need to reside in the same ROB is
a necessary condition for MLP. For a given ROB-size sequence of
instructions, MLP is computed as the number of independent main
memory accesses in the ROB. MLP for the micro-trace is computed
as the average MLP across all ROB-sized instruction sequences.

4 MODELING MSHRS

The MLP model discussed so far makes a number of simplifying
assumptions. It assumes that all independent memory references
access main memory simultaneously; in addition, it does not con-
sider hardware prefetching. This section and the next discuss
extensions to the MLP model to overcome these assumptions.

Modern processors typically feature Miss Status Handling
Registers (MSHR) to coalesce multiple requests to the same cache
line. An MSHR entry is allocated upon an access to a cache line
that is not yet outstanding. Subsequent requests to an already out-
standing cache line are then coalesced, avoiding yet another
request being sent to the next level in the memory hierarchy. The
size of the Miss Status Handling Register is (obviously) limited,
and hence it may limit MLP, i.e., a memory access to a not yet out-
standing cache line may be stalled if the MSHR runs out of avail-
able entries.

In this work we consider an MSHR table at the L1 data cache
level, however, the approach can be trivially generalized to MSHRs
at other levels of cache. We predict whether the number of out-
standing L1 data cache misses in the virtual instruction stream
exceeds the number of MSHR entries. If it does, we compute a scal-
ing factor that accounts for the extra latency added to the loads
waiting for an available MSHR entry. This model differs from the
one proposed by Chen et al. [4] in which the MLP is simply capped
to an upper bound; our model puts a ‘soft’ cap on the MLP and
models partially overlapping memory accesses.

We estimate the impact of a limited number of MSHR entries as
follows. The micro-trace is split up into ROB-size sequences of
instructions of which the first instruction is a (predicted) access to
main memory and the last instruction the one that still fits within
the ROB. The first few memory accesses that miss in L1 all fit in the
MSHR table and are hence considered to execute in parallel. All
subsequent main memory accesses that would overflow the MSHR
table have to wait until one of the outstanding accesses is resolved.
Hence, they only partially overlap with the previous accesses. We
model this phenomenon by considering the time it has to wait for a
free MSHR slot. Intuitively, this means that the first part of the
latency is serialized and the remaining part is hidden underneath
another access. This results in the following formula which puts a
‘soft’ cap on the exploitable MLP

MLP ¼ DRAMMSHR þDRAMwait � TDRAM � TMSHRfree

TDRAM

with DRAMMSHR the number of main memory accesses in the
MSHR table, i.e., this is the number of parallel main memory
accesses; DRAMwait is the number of main memory accesses that
have to wait; TDRAM equals the main memory access latency and
TMSHRfree is the average time before an MSHR slot becomes avail-
able, which is computed as the weighted average access latency
across all allocated MSHR entries.

5 MODELING STRIDE-BASED HARDWARE PREFETCHING

A key feature of the proposed MLP model is that it enables estimat-
ing the performance impact of stride-based prefetching. In this
work, we consider a stride prefetcher that is able to track the stride
patterns of a number of static loads (per-PC stride prefetching) [9].

If a load exhibits a stride pattern, we mark it as a prefetchable load,
subject to a number of constraints as discussed below.

A stride prefetcher needs to keep track of previously executed
loads and their addresses to compute a load’s stride pattern. There
is obviously a limit to the number of static loads the prefetcher
is able to track. If there are more static loads than the maximum
tractable loads in the prefetch table, the load is marked non-
prefetchable.

Second, prefetchers often only prefetch within a DRAM page,
meaning that if two subsequent accesses are not part of the same
DRAM page, the second one will not be prefetched. We also model
this by considering the stride between two subsequent accesses by
the same load; if the stride exceeds a DRAM page, we mark the
load as non-prefetchable.

The third component relates to timeliness. If the prefetcher
starts fetching new data just before the data is requested, the pre-
fetch will not be timely, and the latency of the load will be hidden
only partially. We model this by assuming that a prefetch for a
load that is ROB-size instructions away in the dynamic instruction
stream, is timely. If the load appears in the same ROB-size instruc-
tion window as the prefetch, we then subtract the fraction of the
latency equal to the time it would take for the latter load to hit and
stall the ROB head.

6 EVALUATION

6.1 Experimental Setup

We consider the 29 SPEC CPU2006 benchmarks5 which we simu-
late using Sniper v6.0 [10]. We use a periodic sampling strategy to
limit experimentation time while still covering the entire bench-
mark execution. To compute the ground truth to evaluate the
model against, we fast-forward 800 M instructions, warm up the
memory hierarchy for 100 M instructions, and then simulate 100 M
instructions in detailed mode; this is repeated till the end of the
execution. We consider a similar sampling strategy for collecting
our profile: We fast-forward 900 M instructions and collect our pro-
file during the next 100 M instructions; this procedure guarantees
that the profile corresponds to the detailed simulation region. The
simulated processor is based on the Intel Nehalem architecture; see
Table 1 with our reference architecture shown underlined. We
assume a fixed memory access latency.

6.2 Accuracy W/O Prefetching

We evaluate the MLP model’s accuracy by quantifying the total
time spent waiting for DRAM. In Sniper, the DRAM cycle compo-
nent is measured as the number of cycles between a load miss
accessing main memory and blocking the head of the ROB [11]. In
our model, we estimate the DRAM component by multiplying the
estimated number of LLC misses times DRAM access latency
divided by the predicted MLP. Fig. 2 reports the model’s accuracy

TABLE 1
Reference Architecture, Based on Intel Nehalem

Core frequency 2.66 GHz
Dispatch width 4
ROB 64, 96, 128, 160, 192, 224, 256 entries
L1I and L1D 32 KB, latency = 1 and 4 cycles, respectively
L2 256 KB, latency = 8 cycles
LLC 1, 2, 4, 8, 16:MB, latency = 30 cycles
MSHR Between L1D and L2, entries = 10
Prefetcher stride prefetcher, streams = 16
Memory bus Bandwidth = 7.6 GB/s
DRAM latency = 45 ns

5. We use train inputs as we run the benchmarks to completion — using the
reference inputs would be infeasible, even with the employed sampling strategy.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018 11

against simulation. The average absolute error equals 3.3 percent.
The highest error for the new model is observed for gemsFDTD

(26.0 percent).
The new model is substantially more accurate than our previous

model [2], which essentially assumes that conflict and capacity
misses are uniformly distributed across the execution whereas cold
misses incur bursty cachemisses. The oldmodel achieves an average
absolute error of 8.2 percent and a maximum error of 39.1 percent.
Modeling the relative spacing of memory references, their depend-
ences and strides clearly leads to amore accuratemodel.6

6.3 Accuracy W/ Prefetching

The results reported so far did not consider hardware prefetching.
Fig. 3 reports the absolute prediction error assuming a stride-based
prefetcher. The new model achieves an average absolute prediction
error of 3.6 percent and at most 22.8 percent. The old model, which
does not model stride-based prefetching, leads to an absolute aver-
age prediction of 16.9 percent and absolute errors up to 118 percent.
This re-emphasizes the importance of incorporating the impact of
hardware prefetching in an analytical MLP model.

6.4 Design Space Exploration

The most obvious use case for the model is to drive design space
exploration. We consider 35 processor designs in total while vary-
ing two micro-architecture parameters that do have an immediate
effect on MLP, namely ROB size (7 sizes) and LLC size (5 sizes),
see also Table 1. This rather limited design space already takes con-
siderable simulation time—more than 5 years of single core simula-
tion time as some of the benchmarks take over one week. Profiling
the benchmarks is a one-time cost, and the proposed MLP model
(including the cost of profiling) evaluates the same design space
160� faster.

More than 90 percent of the designs have an absolute error
below 15 percent for the new MLP model, whereas for the old
model less than 80 percent of the designs have an absolute error
below 15 percent. The largest errors are typically observed for
unbalanced processor designs (e.g., a big ROB with 256 entries
along with a relatively small 1 MB LLC). If we plug the new MLP
model into the complete performance prediction model, we see an
average improvement of 2.2 percent.

7 CONCLUSIONS AND FUTURE WORK

This paper proposed a novel model for estimating MLP in a super-
scalar processor by considering a set of distributions regarding the
relative position of memory references in the instruction stream,
their dependences, reuse distances and stride behavior. Generating
a virtual instruction stream using these distributions enables
modeling the impact of the processor’s ROB size, number of

MSHR entries, LLC size and stride-based prefetching on MLP,
from a single profile. The model was shown to improve accuracy
for predicting the total time waiting for DRAM from 16.9 to
3.6 percent on average.

This paper made a number of simplifying assumptions. In par-
ticular, we focused on the processor side only and did not consider
the impact DRAM may have on the exploitable MLP. We essen-
tially assumed that all memory requests that are sent out by the
processor are serviced simultaneously by the DRAM subsystem.
We will extend the proposed model to consider a more realistic
DRAM subsystem as part of our future work. In addition, we plan
to incorporate the impact of multi-core processing and multi-
threaded workloads in the model (including interference in shared
resources, coherence, synchronization), as well as more advanced
hardware prefetchers.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive and
insightful feedback. Sam Van den Steen is supported through a
doctoral fellowship by the Agency for Innovation by Science and
Technology (IWT).

REFERENCES

[1] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations for
exploiting memory-level parallelism,” in Proc. 31st Annu. Int. Symp. Com-
put. Archit., 2004, pp. 76.

[2] S. Van den Steen, S. De Pestel, M. Mechri, S. Eyerman, T. Carlson, D. Black-
Schaffer, E. Hagersten, and L. Eeckhout, “Micro-architecure independent
analytical processor performance and power modeling,” in Proc. IEEE Int.
Symp. Perform. Anal. Syst. Softw., 2015, pp. 32–41.

[3] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in Proc. 31st Annu. Int. Symp. Comput. Archit., 2004, pp. 338.

[4] X. E. Chen and T. M. Aamodt, “Hybrid analytical modeling of pending
cache hits, data prefetching, and MSHRs,” Proc. 41st Annu. IEEE/ACM Int.
Symp. Microarchitecture, 2011, pp. 59–70.

[5] R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt, “Predicting performance
impact of DVFS for realistic memory systems,” in Proc. 45th Annu. IEEE/
ACM Int. Symp. Microarchitecture, 2012, pp. 155–165.

[6] Y. Wang, G. Balakrishnan, and Y. Solihin, “MeToo: Stochastic modeling of
memory traffic timing behavior,” in Proc. Int. Conf. Parallel Archit. Compila-
tion, 2015, pp. 457–467.

[7] D. Genbrugge and L. Eeckhout, “Chip multiprocessor design space explo-
ration through statistical simulation,” IEEE Trans. Comput., vol. 58, no. 12,
pp. 1668–1681, Dec. 2009.

[8] D. Eklov and E. Hagersten, “Statstack: Efficient modeling of LRU caches,”
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2010, pp. 55–65.

[9] J. W. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching in scalar
processors,” Proc. 25th Annu. Int. Symp. Microarchitecture, 1992, pp. 102–110.

[10] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation,” in
Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2011, Art. no. 52.

[11] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A performance
counter architecture for computing accurate CPI components,” in Proc. 12th
Int. Conf. Archit. Support Program. Languages Oper. Syst., 2006, pp. 175–184.

Fig. 2. Absolute error for predicting total time waiting for DRAM for the new and old
MLP models, assuming no hardware prefetching.

Fig. 3. Absolute error for predicting total time waiting for DRAM for the new and old
MLP models, assuming hardware stride prefetching.

6. As a side note, it is interesting to note that the new model is also much
faster to profile while consuming less memory. A typical profiling run takes
approximately 40 percent less time and consumes up to 0.5 GB less memory.

12 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

