
RPPM: Rapid Performance Prediction of
Multithreaded Applications on

Multicore Hardware

Sander De Pestel , Sam Van den Steen ,
Shoaib Akram, and Lieven Eeckhout

Abstract—This paper proposes RPPM which, based on a

microarchitecture-independent profile of a multithreaded application, predicts its

performance on a previously unseen multicore platform. RPPM breaks up

multithreaded program execution into epochs based on synchronization primitives,

and then predicts per-epoch active execution times for each thread and

synchronization overhead to arrive at a prediction for overall application

performance. RPPM predicts performance within 12 percent on average

(27 percent max error) compared to cycle-level simulation. We present a case

study to illustrate that RPPM can be used for making accurate multicore design

trade-offs early in the design cycle.

Index Terms—Modeling, micro-architecture, performance, multi-threaded

Ç

1 INTRODUCTION

SIMULATION is the predominant methodology for computer archi-
tects to evaluate new processor architectures. Unfortunately, simu-
lation is extremely time-consuming, especially when simulating
multicore hardware. Analytical performance modeling is an attrac-
tive alternative especially at early stages of the design cycle to
make high-level design decisions which can then later be refined
through cycle-level simulation [6], [7], [9], [12]. The current state-
of-the-art in (mechanistic) analytical performance modeling [12]
collects microarchitecture-independent characteristics of an appli-
cation, based on which it predicts performance for a range of previ-
ously unseen architectures. This prior work unfortunately is
limited to single-core processors.

Straightforward extensions of this prior work towards multi-
threaded applications running onmulticore hardware further moti-
vates this work. Predicting multi-threaded application performance
based on only the main thread or only the critical thread leads to an
average performance prediction error compared to detailed simula-
tion of 24 and 21 percent, respectively, and a maximum error above
110 percent. There are two reasons for the poor accuracy: (i) it does
not model contention in shared resources and (ii) it does not model
synchronization overhead. Prior work in multicore performance
prediction does not model these inherent multithreaded workload
properties [8] or focuses on predicting application performance
under strong scaling [10].

We propose RPPM for predicting multithreaded application per-
formance on multicore hardware. A profiler collects a set of charac-
teristics that capture the workload’s behavior in amicroarchitecture-
independent way. The profile contains per-thread characteristics, as
for the single-threaded model, as well as characteristics that affect
inter-thread interactions, including shared memory access behavior
and synchronization. The profile is then used to predict performance
on a previously unseen multicore architecture. A key feature of

RPPM is that the profile needs to be collected only once, from which
the performance of a range of multicore architectures can be pre-
dicted. Although the profile is measured during a particular multi-
threaded execution, and therefore it may be subject to a particular
inter-thread interleaving, we find it to enable accurate performance
prediction across architectures.

We evaluate the accuracy of RPPM against cycle-level simulation
for all the OpenMP multi-threaded Rodinia benchmarks. RPPM
predicts performance within 12 percent on average (27 percent max
error) for a quad-core processor. We demonstrate the usefulness of
RPPM to quickly identify the optimum among five design points
with the same peak performance (in operations per second).

2 BACKGROUND

In this section, we provide a brief background onmicroarchitecture-
independent analytical performance modeling for single-threaded
applications; we refer the reader to [12] for a more elaborate exposi-
tion. We next describe naive extensions to this prior work to predict
multithreaded application performance.

2.1 Single-Threaded Performance Model

The single-threaded model consists of two steps. In the profiling
step, we use a Pin tool to collect an application profile containing
only microarchitecture-independent statistics. In the prediction
step, these statistics are used as input to the analytical model to
predict the execution time on a particular processor configuration.
Execution time for a single thread running on an out-of-order pro-
cessor is predicted using the following equation:

C ¼ N

Deff

z}|{

Base

þmbpred � cres
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Branch

þ
X

level¼i

mILi � cLiþ1

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{

I�cache

þmLLC � cmem

MLP
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

D�cache

: (1)

We distinguish four components in the model:
Instruction-Level Parallelism. The Base component is obtained by

dividing the number of micro-ops (N) by the effective dispatch
rate (Deff). The effective dispatch rate is a function of the width of
the front-end pipeline, the available ILP in the application and the
amount of contention in the functional units.

Branch Misprediction. The Branch component quantifies the lost
cycles due to branchmispredictions and is computed as the number
of mispredictions (mbpred) times the branch resolution time (cres) or
the time between the branch being dispatched from the front-end
pipeline into the back-end (issue queue and reorder buffer), and the
branch being executed. Prior work profiles branch behavior in a
microarchitecture-independent way using the information theoretic
notion of entropy [4], and uses this entropy profile to predict the
branchmisprediction rate for a particular branch predictor.

Instruction Cache. The I�cache component quantifies the impact
of instruction cache misses and is computed as the product of the
cache miss rate at each level (mILi) and the respective miss latency
(cLiþ1). The cache miss rates are predicted based on reuse distance
distributions using StatStack [5].

Long-Latency Loads. The D�cache component quantifies the
time the core stalls waiting for main memory requests to resolve as
a result of long-latency load misses. This component is computed
as the product of the number of last-level cache misses due to load
instructions (mLLC) and the average memory access latency (cmem),
divided by the amount of memory-level parallelism (MLP) or the
average number of outstanding long-latency load misses if at least
one is outstanding. MLP is computed using a microarchitecture-
independent model as described in [11].

� The authors are with the Ghent University, Gent 9000, Belgium.
E-mail: {sander.depestel, sam.vandensteen, shoaib.akram, lieven.eeckhout}@ugent.be.

Manuscript received 4 Apr. 2018; revised 29 May 2018; accepted 19 June 2018. Date of
publication 1 July 2018; date of current version 9 Aug. 2018.
(Corresponding author: Sander De Pestel.)
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2018.2849983

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, SEPTEMBER 2018 183

1556-6056� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1553-1889
https://orcid.org/0000-0002-1553-1889
https://orcid.org/0000-0002-1553-1889
https://orcid.org/0000-0002-1553-1889
https://orcid.org/0000-0002-1553-1889
https://orcid.org/0000-0003-3630-2214
https://orcid.org/0000-0003-3630-2214
https://orcid.org/0000-0003-3630-2214
https://orcid.org/0000-0003-3630-2214
https://orcid.org/0000-0003-3630-2214
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
mailto:

2.2 Naive Extensions for Multithreaded Applications

We now discuss two naive extensions of this prior work to predict
the execution time of multithreaded applications running on a
multicore processor. In the evaluation, we will compare RPPM’s
accuracy against these approaches.

MAIN. In this approach, we only profile the main thread. We
define the main thread as the thread that gets initiated upon pro-
gram execution; this thread completes the initialization phase
before creating the other worker threads, and finalizes the execu-
tion once the worker threads have finished their execution. We
apply the single-threaded model as described above to predict the
execution time of the main thread. The predicted execution time
for the main thread is then a prediction for the overall execution
time of the multithreaded application.

CRIT. The second approach profiles all application threads sep-
arately instead of only the main thread. After using the model to
predict the execution time of every thread, the thread with the lon-
gest execution time will be marked as the critical thread. We then
use the predicted execution time of the critical thread as a predic-
tion for the overall execution time of the multithreaded application.

Both these naive extensions do not properly take synchroniza-
tion into account. Nor do they account for interference in shared
resources and cache coherence effects. RPPMmodels both synchro-
nization and shared resource interference, as we describe next.

3 RPPM

RPPM predicts multithreaded application performance using two
key components: (1) a profiler that collects microarchitecture-
independent statistics including per-thread characteristics, shared
memory access behavior and synchronization events, and (2) a
rapid prediction tool that takes these statistics as input and predicts
multithreaded execution time on a particular multicore processor
architecture. Note that RPPM assumes the same number of threads
during profiling as there are cores in the processor architecture for
which we make the prediction. However, a single profile can be
used to predict performance for a range of multicore architectures
while varying clock frequency, pipeline width and depth, window
and buffer sizes, cache sizes, etc.

3.1 Microarchitecture-Independent Profiling

Profiling is done using a Pin tool that collects a range of
microarchitecture-independent statistics. Some of these are the
same as in the single-threaded model, e.g., statistics that relate to
an individual thread’s execution such as branch behavior and ILP.
To be able to model multithreaded execution performance, we in
addition need to profile synchronization behavior as well as mem-
ory system behavior.

Synchronization. We track all synchronization events (barriers,
critical sections, etc.) by tracking specific library function calls.
More specifically, OpenMP lets the programmer mark a for loop
with a #pragma telling the OpenMP runtime to execute the loop in
parallel. The compiler will insert a function call (e.g., gomp_

team_barrier_wait) to mark a barrier. We capture these func-
tion calls in the profiler and log the location of the call in the
application’s synchronization profile. To be able to distinguish dif-
ferent synchronization events, we track the function arguments.
For example, the function gomp_team_barrier_wait will pass
the barrier (gomp_barrier_t) as a pointer, and by tracking these
function arguments we keep track of which specific barrier a
thread is waiting for.

Multithreaded StatStack. In this work we use a multithreaded
extension of StatStack [1] to estimate cache miss rates using a
multi-threaded microarchitecture-independent reuse distance pro-
file. StatStack collects a per-thread distribution of the reuse dis-
tance between two references (by any thread) to the same memory

location. The extension to multithreaded applications enables pre-
dicting both positive and negative interference in shared caches as
well as cache coherence effects. StatStack keeps track of the data
accessed by all threads to create a profile about the memory behav-
ior for each thread and how it impacts the memory behavior of
other threads through the shared cache and the coherence protocol.

Putting it Together. Fig. 1a illustrates how profiling is done. Syn-
chronization events (barriers in this example) delineate different
epochs. We collect a separate profile per epoch for each thread.
This profile then serves as input to the prediction model, which we
describe next.

3.2 Multithreaded Performance Prediction

Themultithreaded performance model itself operates in two phases.
The first phase (Fig. 1b) predicts the active execution time for each
thread in-between synchronization events. The second phase
(Fig. 1c) accounts for synchronization events and introduces pre-
dicted synchronization overhead to predict overall execution time.

Per-Epoch Active Execution Time. We use the microarchitecture-
independent profile to predict per-epoch active execution times for
each thread. To do so, we use Equation (1) from the single-threaded
model. Although we use the same equation, some of the numbers
that serve as input to the model need to be computed differently. In
particular, we need to account for the impact shared resources and
cache coherence may have on per-thread performance as interfer-
encemay have a positive or negative impact on overall performance.

As mentioned before, we leverage a multithreaded extension of
StatStack [1] to model shared caches and their impact on perfor-
mance. In particular, for estimating the number of cache misses to
a private L1 or L2 cache, StatStack checks whether the memory
locations accessed by one thread are written by any other thread
in-between the two accesses. If so, write invalidation is detected,
which results in a cache miss for the second access. Because the
access time to a private cache is relatively small, the model
assumes this latency can be hidden to some extent through out-of-
order execution, affecting the estimated effective dispatch rate
(Deff) in the base component in Equation (1).

To estimate the number of cache misses in the shared last-level
cache (mLLC), all memory accesses by all threads are taken into
account. More specifically, StatStack considers the distribution of
all reuse distances by all threads as input to predict the cache miss
rate in the LLC. This accounts for both positive interference (one
thread bringing in data for another thread, shortening average
memory access time) and negative interference (one thread evict-
ing data brought in by another thread, increasing average memory
access time).

It is worth noting that although the reuse distance distributions
used by StatStack are measured during a particular profiling run
on a particular machine—the distributions may therefore be

Fig. 1. RPPM predicts multithreaded execution time in three steps: (a) We profile
an application’s synchronization behavior and per-epoch statistics for each thread.
We then predict an application’s execution time (b) by predicting per-epoch active
execution times for each active thread, and (c) by estimating the impact of synchro-
nization on overall application performance.

184 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, SEPTEMBER 2018

subject to a particular inter-thread interleaving—StatStack models
these inter-thread interactions in a statistical way making the spe-
cific ordering during profiling less critical. Moreover, we find that
different distributions collected during different profiling runs
lead to very similar performance predictions.

Synchronization Overhead. The overall execution time of a multi-
threaded application is predicted by combining the predicted per-
epoch active execution times for each of the threads with the pre-
dicted synchronization overhead.

Algorithm 1. Estimating Synchronization Overhead

1: while not finished do
2: for Thread T in sorted(Threads, shortestTimeFirst()) do
3: if not isBlocked(T) then
4: Proceed T to next synchronization event

Estimating synchronization overhead is done usingAlgorithm 1.
We identify the thread with the shortest total execution time (active
and idle time) thus far that is not blocked by the next synchroniza-
tion event and symbolically proceed it to this next event. We emu-
late the execution behavior at each synchronization event and we
repeat this process until all threads reach the end of execution and
the application finishes. At the end of the symbolic execution, the
critical path through the execution determines the application’s exe-
cution time.

During the symbolic execution while emulating a synchroniza-
tion event, we calculate the number of cycles a thread spends wait-
ing for other threads, not making forward progress. We account
for the following synchronization events:

� Thread creation: The main thread is created at application
start-up time; all other threads are therefore initially
marked as ‘blocked’. When the main thread creates a new
thread, the thread is ‘unblocked’ and its start time is set
accordingly.

� Critical sections: A critical section is a code segment that has
to be executed atomically, by one thread at a time. We mark
accessing and leaving a critical section as a synchronization
event. Before a thread is allowed to enter a critical section,
the symbolic execution verifies that no other thread is cur-
rently executing that same critical section. If so, the thread
blocks waiting for the critical section to be released. Once
released, the thread is allowed to proceed and enter the criti-
cal section. The waiting time and the actual execution time
of the critical section determines overall execution time.

� Barriers: A barrier is a place in the code where all threads
need to wait for each other to finish the execution of their
respective code segment.When a thread arrives at a barrier it
checks whether the conditions of the barrier are met. When
the conditions are not met, the thread blocks itself and waits.
The last thread arriving at the barrier releases the barrier and
determines the execution time of the inter-barrier epoch.

� Thread joining: The behavior of a join is similar to a barrier
with two threads, i.e., the execution time of the longest run-
ning thread determines when the join happens. The

difference in execution time is added as idle time to the
shortest thread.

This is not a complete list of all possible synchronization events, but a

list of all events encountered in our benchmark suite. Nevertheless, we

are convinced that this approach will be suitable for unlisted events

like semaphores or even indirect synchronization.

This is further illustrated in Fig. 1c. Active execution time is
depicted by a box; waiting time is depicted by a dashed line; over-
all execution time is determined by the slowest thread in-between
synchronization events. In particular, the execution time of the first
inter-barrier epoch is determined by the third thread; the execution
time of the second inter-barrier epoch is determined by the second
thread; overall execution time is predicted by summing up the pre-
dicted inter-barrier execution times and the main thread’s execu-
tion times when it is running alone.

4 EXPERIMENTAL METHODOLOGY

Benchmarks. We consider all the benchmarks from the Rodinia
benchmark suite v3.1 [3]. We use the OpenMP implementations
and predict the execution time of the parallel region of interest
(ROI), which starts after initialization and ends before finalization
by themain thread; multiple threads co-execute in the ROI.

Data Inputs. We select input data sets for all benchmarks that
lead to reasonable simulation times while executing a sufficient
number of instructions in the ROI, see Table 1. Our benchmarks
execute between 50 million to 50 billion instructions in the ROI,
with LLC MPKI values ranging up to 40, and MLP ranging up to
5.3 for backprop.

Simulator. We evaluate RPPM’s accuracy as follows. We first
simulate the benchmarks using the Sniper multicore simulator [2],
which is a state-of-the-art, parallel and hardware-validated multi-
core simulator. We simulate the Base multicore configuration as
specified in Table 2, unless mentioned otherwise. These simulated
execution times results serve as the golden reference.

Profiling. We also profile the benchmarks and subsequently pre-
dict execution time for our benchmarks using RPPM for the exact
same multicore architecture that we simulated using Sniper. We
then compute the error between the simulated and predicted exe-
cution times. Profiling is done using the same number of threads
on an Intel Xeon Sandy Bridge (E5-2420).

5 EVALUATION

We compare RPPM against two naive extensions of the previously
proposed single-threaded performance model, MAIN and CRIT,
see Fig. 2. For MAIN, the execution time of the main thread is pre-
dicted and used as a prediction for overall application performance.
This leads to an average absolute prediction error of 24 percent with
several outliers above 40 percent. Predicting the execution time for
all threads and then taking the execution time of the slowest thread
(critical thread) as a prediction for overall application performance,
as done by CRIT, brings the error down to 21 percent on average.
CRIT improves prediction accuracy significantly for particlefilter

TABLE 1
Rodinia Benchmarks and Their Inputs

TABLE 2
Simulated Architecture Configurations

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, SEPTEMBER 2018 185

which is highly imbalanced with the main thread being active for
only 25 percent of the total execution time.

RPPM clearly outperforms MAIN and CRIT with an average
absolute error of 12 percent and a maximum error of 27 percent.
RPPM accurately predicts which thread is the most critical thread
between synchronization events which leads to an overall more
accurate performance prediction than MAIN and CRIT.

To help understand where the remaining error is coming from,
Fig. 3 illustrates the average per-thread cycle stacks normalized to
simulation. The remaining error is due to inaccurate predictions
for the Base component (e.g., cfd), the mem�D component (e.g.,
backprop) or both (e.g., nw). These inaccuracies originate from the
single-threaded prediction model and/or the extended memory
hierarchy model, which indirectly leads to incorrect predictions for
the synchronization component.

6 CASE STUDY

We now consider the following case study to illustrate RPPM’s use-
fulness. We profile each of the benchmarks once and predict perfor-
mance for five different configurations as listed in Table 2. We
change processor width from 2 to 6 (and scale ROB and issue queue
resources accordingly) and change clock frequency from 5 to
1.66:GHz across these design points, while keeping the maximum
number of operations that can be executed per second constant.

We use RPPM to identify the design points that are within a
bound of x% of the predicted optimum, see Table 3. If the bound is
set to 0 percent, only the best design point is identified by RPPM. If
the bound is larger then 0 percent, all design points within the
bound are identified by RPPM and simulation will select the best
one. The average deficiency (performance difference) versus the
real optimum is 1.95 percent (see bottom row) and up to 19.1 percent
for streamcluster. Setting a higher bound of 5 percent increases the
number of predicted optimum design points (up to 2 for some
benchmarks, see rightmost column) but brings down the deficiency
of the identified design points to the true optimum to at most
1.97 percent for pathfinder.

7 CONCLUSIONS

In this paper, we proposed RPPM which takes microarchitecture-
independent characteristics as input to predict performance of
multithreaded applications on a previously unseen multicore

platform. RPPM extends prior work by modeling per-epoch active
execution times per thread (including the impact of shared
resource interference and cache coherence on per-thread perfor-
mance) and synchronization overhead due to barriers and critical
sections. RPPM predicts performance within 12 percent on average
(27 percent max). A case study illustrates RPPM’s usefulness to
evaluate multicore microarchitecture trade-offs.

ACKNOWLEDGMENTS

Sander De Pestel is supported through a doctoral fellowship by the
Agency for Innovation by Science and Technology in Flanders
(IWT). Additional support is provided through the European
Research Council (ERC) Advanced Grant agreement no. 741097.

REFERENCES

[1] G. A
�
hlman, “Microarchitecture-independent data locality analysis of multi-

threaded applications on multicore processors,” Master’s thesis, Division
Comput. Syst., Uppsala Univ., Uppsala, Sweden, 2016.

[2] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An evalu-
ation of high-level mechanistic core models,” ACM Trans. Archit. Code Opti-
mization, vol. 11, no. 3, pp. 28:1–28:25, Aug. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2629677

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proc. IEEE Int. Symp. Workload Characterization, Oct. 2009, pp. 44–54.

[4] S. De Pestel, S. Eyerman, and L. Eeckhout, “Micro-architecture indepen-
dent branch prediction modeling,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw., Mar. 2015, pp. 135–144.

[5] D. Ekl€ov and E. Hagersten, “StatStack: Efficient modeling of LRU caches,”
in Proc. Int. Symp. Perform. Anal. Syst. Softw., Mar. 2010, pp. 55–65.

[6] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic per-
formance model for superscalar out-of-order processors,” ACM Trans. Com-
put. Syst., vol. 27, no. 2, pp. 42–53, May 2009.

[7] E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caruana,
“Efficiently exploring architectural design spaces via predictive modeling,”
in Proc. 12th Int. Conf. Archit. Support Program. Languages Operating Syst.,
Oct. 2006, pp. 195–206.

[8] R. Jongerius,A.Anghel, G.Dittmann,G.Mariani, E.Vermij, andH.Corporaal,
“Analyticmulti-core processormodel for fast design-space exploration,” IEEE
Trans. Comput., vol. 67, no. 6, pp. 755–770, Jun. 2018.

[9] B. Lee andD. Brooks, “Accurate and efficient regressionmodeling formicro-
architectural performance and power prediction,” in Proc. 12th Int. Conf.
Archit. Support Program. Languages Operating Syst., Oct. 2006, pp. 185–194.

[10] M. Popov, C. Akel, F. Conti, W. Jalby, and P. D. O. Castro, “PCERE: Fine-
grained parallel benchmark decomposition for scalability prediction,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., May 2015, pp. 1151–1160.

[11] S. Van den Steen and L. Eeckhout, “Modeling superscalar processor mem-
ory-level parallelism,”Comput. Archit. Lett., vol. 1, no. 2, pp. 10–13, Jun. 2018.

[12] S. Van den Steen, S. Eyerman, S. D. Pestel, M. Mechri, T. E. Carlson,
D. Black-Schaffer, E. Hagersten, and L. Eeckhout, “Analytical processor per-
formance and power modeling using micro-architecture independent char-
acteristics,” IEEE Trans. Comput., vol. 65, no. 12, pp. 3537–3551, Dec. 2016.

Fig. 2. Prediction error for MAIN, CRITand RPPM.

Fig. 3. Cycles stacks by RPPM (left) normalized to simulation (right).

TABLE 3
Case Study: Predicting the Optimum Design Point

186 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, SEPTEMBER 2018

http://doi.acm.org/10.1145/2629677

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

