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Abstract. Power consumption has emerged as a key design concern #oeoss
entire computing range, from low-end embedded systemgtodnd supercom-
puters. Understanding the power characteristics of a pioaessor under design
requires a careful study using a variety of workloads. Thesdloads range from
benchmarks that represent typical behavior up to handdtstress benchmarks
(so called stressmarks) that stress the microprocessts éxtreme power con-
sumption.

This paper closes the gap between these two extremes byirgjudzhniques
for the automated identification of stress patterns (woaste application behav-
iors) in typical workloads. For doing so, we borrow from sdegpsimulation
theory and we provide two key insights. First, although espntative sampling
is slightly less effective in characterizing average bébrathan statistical sam-
pling, it is substantially more effective in finding stresgterns. Second, we find
that threshold clustering is a better alternative than leanseclustering, which is
typically used in representative sampling, for finding s¢rpatterns. Overall, we
can identify extreme energy and power behaviors in microgseor workloads
with a three orders of magnitude speedup with an error of affexgent on aver-
age.

1 Introduction

Energy, power, power density, thermal hotspots, voltagatran, and related design
concerns have emerged as first-class microprocessor dissiges over the past few
years. And this is the case across the entire computing rdraya low-end embed-
ded systems to high-end supercomputers. A detailed urahaisiy of these issues is of
primary importance for designing energy-aware, powerraveand thermal-aware mi-
croprocessors, their power and thermal management sigateigeir power supply unit,
and thermal package.

Understanding the power, energy and thermal charactsisfia microprocessor
under design requires appropriate benchmarking and stronlmethodologies. At the
one end of the spectrum, researchers and engineers coasatage workload behav-
ior. This is appropriate for studying a microprocessor'srage power consumption or
thermal map, however, it does not capture more extreme li@isat the other end
of the spectrum, stressmarks are being used to explore apng@essor's maximum
power consumption [9,10], maximum thermal hotspots [27[] enaximum dl/dt be-
havior [16]. These stressmarks are typically hand-tuned,@ish the microprocessor
to its extremes in order to understand the microprocessan'st-case behavior. These



stress patterns are not expected to occur during typicaiatipa, however, thegan
occur and therefore the microprocessor should be able te with them.

Microprocessors designed for maximum possible power aopsion are not cost-
effective though because of the large gap between maximuhtygical power con-
sumption. Dynamic thermal management (DTM) techniqueZ3]iseek to exploit this
gap: the microprocessor cooling apparatus is designedi@ttage less than the max-
imum power consumption, and a dynamic emergency proceduaeagtees that this
designed-for wattage level is never exceeded with minimmgdact on overall perfor-
mance. Gunther et al. [11] report that DTM techniques basedark gating permitted
a 20% reduction in the thermal design power for the Intel Rem# processor. Devel-
oping and evaluating DTM mechanisms however requires aategvaluation method-
ologies for quickly finding the extreme behaviors in typieairkloads that are subject
to DTM.

Therefore, this paper closes the gap between the two entle pbiver benchmark-
ing spectrum by studying ways of identifyistyess patternsin typical workloads, also
called ‘worst-case execution behaviors’ by Tiwari et alb][2More specifically, the
goal of this work is to find stress patterns in typical worldeavith the least possible
simulation time. Identifying stress patterns in typicalrioads is important because
these stress patterns are expected to occur regularly atiggamuch more often than
the stress patterns represented by hand-tuned stressrmagkstress patterns are the
execution behaviors that DTM emergency procedures shaldduately deal with.

We build on sampled simulation theory for identifying sggsatterns in typical
workloads. However, in contrast to sampled simulation forol the aim is to estimate
average performance or power consumption by simulating a repregmetsample of
the entire program execution, the goal in this paper is tergge sampled simulation
theory to find a sample of real program execution that incdusteess patterns witx-
treme workload behavior, e.g., max power, max energy, etc. Thezeh@ common
ways in sampled simulation, statistical sampling (as dar®MIARTS [29]) and repre-
sentative sampling (as done in SimPoint [22]). Our expenitaleesults using the SPEC
CPU2000 benchmarks confirm that statistical sampling i€gely more accurate than
representative sampling for estimating average behag@hawn in prior work [30],
however, the new insight provided in this paper is that repng¢ative sampling is sub-
stantially more effective in identifying stress pattemgyipical workloads. The intuitive
explanation is that representative sampling uses knowledgut the program struc-
ture and execution to find representative sampling unitgreds statistical sampling is
largely agnostic to any notion of program structure and eten. Sampling units se-
lected through representative sampling therefore havglehilikelihood of including
extreme workload behaviors. In addition, we find that thadditlustering is a better
clustering method than k-means clustering (which is conlynosed in representative
sampling such as SimPoint) for identifying sampling uniithvextreme workload be-
havior. The end result is that we can estimate stress patietppical workloads with a
three orders of magnitude simulation speedup comparedadettsimulation of entire
workloads with an error of at most a few percent on average.

In this paper, we make the following contributions:



— We close the gap between sampled simulation focusing orageerorkload be-
havior and hand-crafted stressmarks focusing on extrerhavi@ by identifying
stress patterns in typical workloads.

— We make the case that representative sampling is subdtamtiare effective in
finding extreme behaviors in microprocessor workloads ttatistical sampling,
although statistical sampling is (slightly) more effeetivm capturing average be-
havior.

— The results in this paper motivate changing current sinrgpractice. Not only
does representative sampling using threshold clustetignate average perfor-
mance and power nearly as accurate as statistical samphsigubstantially more
accurate when it comes to estimating stress patterns. Ahdwgh representative
sampling may be more commonly used than statistical sagircurrent sim-
ulation practice, this paper shows that threshold clusteis substantially more
effective than k-means clustering (which is typically kgeirsed) for finding stress
patterns. In other words, representative sampling witeghold clustering is both
effective at estimating average performance as well asstpatterns, whereas
prevalent techniques (representative sampling with kaaetustering and statisti-
cal sampling) are only effective for estimating averagdqgenance.

— We show that the proposed method can be used for finding m&eyatit flavors of
extreme workload behaviors, such as high cache miss ratdPi@, or low branch
predictability behaviors. These behaviors may be usefulfiaderstanding program
patterns that lead to these extremities.

We believe this work is timely as power is a primary designaan in today’s
computer systems, and we are in need for appropriate benkmgand performance
analysis methodologies. In addition, stress patternsheilome even more relevant as
we enter the multi-core era and the gap between average ahkdposver widens as
the number of cores increases. Benchmarking consortiaddageecognized the need
for energy- and power-oriented benchmarks and associatechimarking methodolo-
gies. For example, SPEC has developed the SPECpssj2008 benchmark suite [24],
which evaluates the performance and power characteratiasume server class com-
puters. Likewise, EEMBC has released the EnergyBench lmeadhsuite, which re-
ports energy consumption while running performance beracha(18].

2 Sampled simulation

In sampled simulation, only a limited numbersaimpling unitsfrom a complete bench-
mark execution are simulated in full detail. We refer to thlested sampling units col-
lectively as thesample. Sampled simulation only reports performance for the irestr
tions in the sampling units, and discards the instructiarthé pre-sampling units. And
this is where the dramatic performance improvement conmas:fonly the sampling
units, which account for only a small fraction of the totalhdynic instruction count,
are simulated in a cycle-by-cycle manner.

There are three major issues with sampling: (i) what sargplinits to select, (ii)
how to initialize a sampling unit’s architecture startingage, and (iii) how to accu-
rately estimate a sampling unit's microarchitecture gigrimage. This paper only con-



cerns the first issue because the other two issues can bectagaiily by leveraging
existing technology. For example, the architecture stgrimage (registers and mem-
ory state) can be set through fastforwarding or through kbeinting [26,28]; and the
microarchitecture starting image (caches, branch predicetc.) can be estimated with
microarchitecture state warmup techniques — there is attvedlliterature covering
this area, see for example [5,8,12,19,26,28,29].

There are basically two major ways for determining what sémgpunits to select,
namely (i) statistical sampling, and (ii) representatigenpling. We now discuss both
approaches.

2.1 Statistical Sampling

Statistical sampling takes a number of sampling units adfuswhole execution of the
program. These sampling units are chosen randomly or peslglin an attempt to
provide a representative cross-cut of the entire progragceion.

Laha et al. [20] propose statistical sampling for evalugtiache performance. They
select multiple sampling units by randomly picking intdsvaf execution.

Conte et al. [5] pioneered the use of statistical samplingrotessor simulation.
They made a distinction between sampling bias and non-sagiplas. Non-sampling
bias results from improperly constructing the microarebitire starting image prior to
each sampling unit. Sampling bias refers to how accuratsah®le is with respect to
the overall average. Sampling bias is fundamental to treceh of sampling units.

The SMARTS (Sampling Microarchitecture Simulation) aggario by Wunderlich et
al. [29] proposesystematic sampling, which selects sampling units periodically across
the entire program execution, i.e., the pre-sampling ug# & fixed, as opposed to
random sampling. The potential pitfall of systematic oripaic sampling compared
to random sampling is that the sampling units may give a skewiew in case the
periodicity present in the program execution under measarg equals the sampling
periodicity or its higher harmonics. This does not seem tealmncern in practice
though as SMARTS achieves highly accurate performancematts compared to de-
tailed entire-program simulation. The important assetatistical sampling compared
to representative sampling, is that it builds on well-foeddtatistics theory, which en-
ables computing confidence bounds at a given confidence level

2.2 Representative Sampling

Representative sampling contrasts with statistical sengph that it first analyzes the
program execution to pick a representative sampling unigéeh unique behavior. The
most well known representative sampling approach is thé?8int approach proposed
by Sherwood et al. [22]. SimPoint picks a small number of dargpunits that ac-
curately create a representation of the complete execofidghe program. To do so,
they break an entire program execution into intervals —rdaerval is a contiguous
sequence of instructions from the dynamic instructionastre— and for each inter-
val they create a code signature. The code signature is aled &asic Block Vector
(BBV) that counts the number of times each basic block is @beztin the interval,
weighted with the number of instructions per basic blockeAhormalizing the BBVs



so that the BBV elements sum up to one, they then performeariastto group intervals
with similar code signatures (BBVS) into so callglthses. BBV similarity is quantified
by computing the Manhattan distance between two BBVs. Thative notion is that
intervals of execution with similar code signatures hawgilsir architectural behavior,
and this has been shown to be the case by Lau et al. [21]. Theremly one interval
from each phase needs to be simulated in order to recreatecanate picture of the
entire program execution. They then choose a represeatsdimpling unit from each
phase and perform detailed simulation on that represeatatiit. Taken together, these
sampling units (along with their respective weights) repréa the complete execution
of a program. A sampling unit is calledsamulation point in SimPoint terminology,
and each simulation point is an interval with on the order dfioms, or tens to hun-
dreds of millions of instructions. The simulation pointsxdae used across microar-
chitectures because the BBVs, based on which the simulptiotts are identified, are
microarchitecture-independent.

The clustering step in the SimPoint approach is a crucigl ateit classifies inter-
vals into phases, with each phase representing distingr@no behavior. There exist
a number of clustering algorithms; here, we discuss k-mekussering (which is used
by SimPoint) and threshold clustering (which we advocathis paper for identifying
stress patterns in typical workloads).

K-means clustering. K-means clustering produces exadtlglusters and works as fol-
lows. Initially, k cluster centers are randomly chosen. In each iterationdigtance is
calculated for each interval to the center of each clusted, the interval is assigned
to its closest cluster. Subsequently, new cluster centers@nputed based on the new
cluster memberships. This algorithm is iterated until norenchanges are observed
in the cluster memberships. It is well known that the reséilk-sneans clustering is
dependent on the choice of the initial cluster centers. &foee, SimPoint considers
multiple randomly chosen cluster centers and uses the Bay&sormation Criterion
(BIC) [22] to assess the quality of the clustering: the d@tisg with the highest BIC
score is selected.

Threshold clustering. Classifying intervals into phases using threshold clustecan
be done in two ways, using an iterative algorithm or usingrkiterative algorithm. The
iterative algorithm selects an instruction interval asustgr center and then computes
the distance to all the other instruction intervals. If tit@hce measure is smaller than
a given threshold, the instruction interval is considered to be part of thastér. Out
of all remaining instruction intervals (not part of prevelyformed clusters), another
interval is selected randomly as a cluster center and theegtnmcess is repeated. This
iterative process continues until all instruction intdsvare assigned to a cluster/phase.
Thed threshold is expressed as a percentage of the maximum fob&nhattan dis-
tance between two intervals; the maximum Manhattan distéetween two intervals
is 2 assuming normalized BBVs, i.e., the sum across all BEvheints equals one.

The non-iterative algorithm scans all intervals from thgibaing until the end of
the dynamic instruction stream. If the interval is furthesag from any previously seen
cluster center than a given threshaldthe interval is considered the center of a new
cluster. If not, the interval is assigned to the closesttelu3 he non-iterative algorithm



is computationally more efficient and performs well for ouwrpose — we therefore
use the non-iterative approach in this paper.

The important advantage of threshold clustering is that¢daystruction, it builds
phases for which its in-phase variability (in terms of BBVhbgior) is limited to a
thresholdd. This is not the case for k-means clustering: the varighiliithin a phase
can vary across phases.

3 Experimental setup

3.1 Benchmarks and simulators

We use the SPEC CPU2000 benchmarks and all of their referepats in our exper-
imental setup. These benchmarks were compiled and optinfiieehe Alpha ISA; the
binaries were taken from the SimpleScalar website; all herarks are run to comple-
tion.

We use the SimpleScalar/Alpha v3.0 [3] superscalar ousrdér processor simu-
lator. The processor model is configured along the lines gpaal four-wide super-
scalar microprocessor such as the Alpha EV7 (21364). P@estimated using Wattch
v1.02 [2] and HotLeakage [23] assuming a 70nm technolo@¢ Bz clock frequency
and 1V supply voltage. We assume an aggressive clock gatahamism.

3.2 Sampled simulation

For statistical sampling, we use periodic sampling, as dor&ARTS [29], i.e., we
select a sampling unit eveny intervals. We will vary the sampling rate/n in the
results presented in this paper.

For representative sampling, we use SimPoint v3.0 withgfault settings. In short,
SimPoint computes a BBV per interval, and subsequentlyopes k-means clustering
on randomly projected 15-dimensional BBVs; SimPoint eatds all values ok be-
tween 1 and maxK and picks the béstind random seed pérbased on the BIC score
of the clustering. We will vary the sampling rate by varyirgtSimPoint maxK pa-
rameter. In the evaluation section of this paper, we will pane k-means clustering
versus threshold clustering. For doing so, we replace theekns clustering algorithm
with the threshold clustering algorithm while leaving thestrof the SimPoint software
untouched.

In this paper, for both statistical and representative damgpthe interval size is
set to 1M @2°) instructions unless mentioned otherwise, i.e., the stpasterns consti-
tute of 1M dynamically executed instructions. This choicesl not affect the general
conclusions in this paper though — the methodology can béegbf other interval
granularities as well. In fact, we experiment with largeteival sizes — not reported
here because of space constraints — and obtain similatsesior the 1M-instruction
interval granularity. However, for smaller interval grdauities, there may be practical
considerations that prohibit the use of representativeptiagy the reason being that the
clustering algorithm may become very time-consuming fargé number of intervals.
Addressing the computational concerns of clustering latgim sets is left for future
work.
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Fig. 1. Boxplots characterizing the distribution of power constimp at the 1M-instruction in-
terval granularity; the boxes represent the 5% and 95% igemrand the thick horizontal line in
each box represents the median.

4 Evaluation

In the evaluation section, we now compare statistical seggainst representative
sampling for finding stress patterns in microprocessor Veadts. This is done in a
number of steps: we present per-benchmark max power stagtesms, as well as pro-
cessor component power stress patterns; we also evala@rthr versus simulation
speedup trade-off; and finally, we demonstrate the efficidheproposed technique
for finding other flavors of extreme behavior, such as max @Rl cache miss rate and
max branch misprediction rate stress patterns.

4.1 Motivation

Before evaluating sampled simulation for identifying sigatterns in typical micro-
processor workloads, we first further motivate the problgrslowing that the variabil-
ity over time in power consumption is significant within agli@benchmark execution.
We therefore compute the power consumption on an intensspiae., we compute the
power consumption per interval of 1M instructions in the dgnic instruction stream.
This yields a distribution of power consumption numbergufe 1 represents this dis-
tribution as a boxplot per benchmark. The box represent$%end 95% quartiles,
i.e., 90% of the data lies between these two markers, anll Hudzontal line in the
box represents the median power consumption across the gmtigram execution.
The outliers are represented by the dashed lines that fabbfahe box; the minimum
and maximum values are represented by the bottom and topomdai lines at the ends
of the dashed lines, respectively.

The box plots clearly show that there is significant varipibver time in power
consumption, and, more importantly within the context a§ thaper, there is a large
discrepancy in median versus max power consumption. In factmany benchmarks,
the max power consumption is substantially higher than &diam power consumption,



e.g., formcf the max power consumption is more than three times as high ageidian
power consumption. And in addition, the bulk of the powersiamption numbers falls
far below the max power consumption. This illustrates thadifig stress patterns for
these benchmarks is challenging, i.e., we need to find onbeofdw intervals that
cause max power consumption out of the numerous intervatsctimstitute the entire
benchmark execution — there are typically tens or even redslof thousands of 1M-
instruction intervals per benchmark.

4.2 Per-benchmark stress patterns

We now evaluate the efficacy of sampled simulation in findingss patterns at the 1M-
instruction interval granularity. For doing so, we assum@@0 x simulation speedup
for both statistical and representative sampling comptréige simulation of the entire
program execution; we will consider other simulation spgedin Section 4.4. Simula-
tion speedup in this paper is defined as the number of ingingtn the entire bench-
mark execution divided by the number of instructions in tample. This simulation
speedup metric does not include the overhead of settingrtthétecture and microar-
chitecture starting images, as discussed in Section 2 \@yw&tate-of-the-art sampled
simulation methods use checkpointing to initialize a sangpunit's starting image,
for which the overhead only depends on the number of samplitg (to a first-order
approximation). In other words, comparing sampling sggege in terms of simulation
speedup can be done by simply comparing the number of sagnyutiits (intervals) in
the sample versus the entire program execution.

We simulate all sampling units selected by statistical amtesentative sampling,
respectively, and retain the max power consumption of antheée sampling units.
We then compare this sampled maximum against the max poweuogption ob-
served across the entire benchmark execution — this is dgrsénulating the com-
plete benchmark execution while keeping track of the maxgraensumption at the
1M-instruction interval size. The percentage differenetn®en the max power values
is called theerror, which is a smaller-is-better metric: the smaller the estore, the
closer the stress pattern identified through sampled siionlaeflects the real stress
pattern observed across the entire benchmark executigard=P shows the error in
estimating the maximum power consumption. We observe tatisscal sampling is
less effective in finding stress patterns than represertatimpling, i.e., the error can
be as high as 60% (and average error of 9.3%) for statistarapting whereas repre-
sentative sampling is much more effective. Representatiugoling with k-means clus-
tering achieves an average error of 3% (and 14% at mosteseptative sampling with
threshold clustering is even more effective with an averager of 2.3% and a maxi-
mum error of at most 11%. The reason for the difference in&ffjdoetween statistical
sampling and representative sampling is that represeatséimpling selects sampling
units based on the benchmark execution and structure @hrthe BBVs that are be-
ing collected for finding the distinct phase behaviors), is statistical sampling is
largely agnostic to any notion of program structure and bigaln other words, for
statistical sampling, the likelihood of hitting upon a sBepattern is inverse propor-
tional to the sampling rate, whereas representative sagentifies distinct program
behavior by looking into the code that is being executed.
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Fig. 2. Error in estimating max power stress patterns.

The reason why threshold clustering outperforms k-mearsteting is that thresh-
old clustering, by construction, bounds the amount of \mlitgt within a cluster, whereas
k-means clustering does not. In other words, for a given kitian speedup, i.e., for a
given number of clusters, threshold clustering will yieldma sparsely populated clus-
ters than k-means clustering; i.e., outliers in the datavieénd up in separate clusters
in contrast to k-means clustering, which may group thoskesatwith its closest, albeit
relatively far away, cluster.

The end conclusion is that representative sampling witkstiwld clustering results
in a simulation speedup of three orders of magnitude condptrentire benchmark
simulation with an error of at most a few percent on averagdifming stress pat-
terns in the SPEC CPU2000 benchmarks. And in addition, essptative sampling
with threshold clustering is more effective than repreawé sampling with k-means
clustering and statistical sampling.

4.3 Processor component stress patterns

In the previous section, the focus was on stress patternhéoentire processor. We
now look into stress patterns for individual processor congnts, such as the instruc-
tion window, functional units, caches, branch predictée, &his, in conjunction with
a microprocessor floorplan, could provide valuable infaiorain terms of power den-
sity and thermal hotspots [23]. Figures 3 and 4 quantify tiherén estimating average
and maximum per-component power consumption, respegtigée assume a000 x
simulation speedup and present average results computessadl benchmarks.) The
interesting observation from these graphs is that botfstitatl and representative sam-
pling are very accurate in estimating average processopooent power consumption
(the average error is around 1% on average), however, repies/e sampling is by far
more effective in capturing stress patterns. For represisetsampling with threshold
clustering, the processor component power error for thesstpatterns is less than 5%,
whereas representative sampling with k-means clustendgstatistical sampling lead
to an processor component power error of up to 10% and 20%ectisely.
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4.4 Error versus simulation speedup

The previously reported results assumed a simulation syeefithree orders of mag-
nitude (L000x). We now explore the trade-off between error and simulasipeedup in
more detail, see Figure 5, which shows two graphs, one fimathg average power
consumption (left graph) and another one for estimating pmaxer consumption (right
graph) — these graphs show average results across all banikchrThe vertical and
horizontal axes show percentage error and simulation sgewdth respect to simu-
lating the entire benchmark, respectively. For computhrese graphs, we simulate all
sampling units; for the left graph, we then compute the ayen@ower consumption
across all sampling units, and compare it against the treeage power consumption
computed by simulating the entire benchmark; for the righp), we retain the largest
power consumption number of any of the sampling units andpaseit against the
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Fig. 5. Statistical sampling versus representative samplingreas a function of simulation
speedup for estimating average power consumption (lefttgrand max power (right graph).

largest power consumption number observed across the gmtgram execution. For
statistical sampling, one sampling unit is selected eveimtervals; this corresponds
to a simulation speedup of a factar For representative sampling, we set a maxK
parameter o threshold for the clustering yielding clusters or sampling units; this
corresponds to &, /n Simulation speedup with,..; the number of intervals in the
entire program execution.

We observe that statistical sampling is more accurate thpresentative sampling
for estimating average power consumption, see left graghrEi5. The results in the
left graph confirm the earlier findings by Yi et al. [30] who pide a detailed compari-
son of statistical and representative sampling for estimgatverage performance: they
found that average performance is more accurately estirtateugh statistical sam-
pling, however, representative sampling has a better spesds accuracy tradeoff.

However, when it comes to estimating max power consumptépresentative sam-
pling is more effective, and threshold clustering is the neffective approach. In par-
ticular, representative sampling with threshold clustgfinds an interval with a power
consumption number around 2% on average of the max power eufobnd through
simulation of the entire benchmark at a simulation speedupree orders of magni-
tude. For the same simulation speedup, statistical sagatihieves an error of 10% on
average. Or, reversely, for an error of 2%, statistical dargmwnly achieves a simulation
speedup around a factor of 40. In other words, represeatatimpling with threshold
clustering is both faster and more effective in capturing pewer stress patterns.

4.5 Other extreme behaviors

Representative sampling with threshold clustering isatiffe at finding other flavors
of extreme behaviors as well, beyond power related streerpa. Figure 6 shows
four examples, namely max CPI, max L1 D-cache miss rate, n2agache miss rate
and max branch misprediction rate stress patterns. In afldsamples, representative
sampling with threshold clustering is the most effectivpraach; this is especially the
case for the CPI and cache miss rate extreme behaviors. €kreene behaviors can
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Fig. 6. Finding other flavors of stress patterns: max CPI (top lefgx L1 D-cache miss rate (top
right), max L2 cache miss rate (bottom left), and max bran@prediction rate (bottom right).

provide valuable insight and understanding about problenpaogram behaviors and
patterns.

5 Related work

Sress testing. In VLSI circuit design, statistically generated test vestare used to
stress a circuit by inducing maximum switching activity.[At the microarchitectural
level, engineers develop hand-crafted synthetic testscasecalled stressmarks, to es-
timate maximum power consumption of a microprocessor. Ehé®@mmon practice in
industry, see for example [9,10,27]. Recent work by Joshl.€tL7] proposes a frame-
work for automatically developing stressmarks by explgtiine workload space using
an abstract workload model.

Power phase characterization. A lot of work has been done on characterizing time-
varying program behavior, and different authors have beepgsing different ways for
doing so, such as code working sets [6], BBVs [22], procedalls [13], and perfor-
mance data [7].

Isci and Martonosi [14] propose a methodology for trackiygamic power phase
behavior in real-life applications using a real hardwareigeThey measure total pro-



cessor power consumption data using a digital multimetdrsimultaneously collect
raw performance counter data. They then use the performemaater data to esti-
mate processor component power consumption numbers, wegtsubsequently use
to identify power phase behavior at runtime using threslubldtering. Whereas the
goal of the work by Isci and Martonosi is on tracking power samption and power
phase behavior at runtime, the focus of our work is on findingss patterns to guide
processor design under extreme workload behavior, which lislated but different
problem.

In their follow-on work, Isci and Martonosi [15] compare staring based on BBVs
Versus processor component power numbers, and found bptbaghes to be effective,
but processor component power numbers to be more accurdtadking power phase
behavior. The downside of processor component power nwsrtheugh is that it re-
quires that the entire benchmark be measured in terms obitepbehavior, which
may be costly in terms of equipment (in case of a real hardestigp) or which may be
too time-consuming (in case of a simulation setup). In dolditprocessor component
power numbers are specific to one particular microprocesspiementation. A BBV
profile is both inexpensive and fast to measure through soémstrumentation, and, in
addition, is microarchitecture-independent, i.e., camsed across microarchitectures.
Since our goal is to find stress patterns to be used duringabig of a processor, we
advocate the BBV approach because of its microarchited¢tutependence, its low cost
and its fast computation.

6 Conclusion and future work

Power consumption has emerged as a key design concern evemtire range of com-
puting devices, from embedded systems up to large-scaedaters and supercomput-
ers. Understanding the power characteristics of workl@auitheir interaction with the
architecture however, is not trivial and requires an appet@ benchmarking method-
ology. Researchers and engineers currently use a rangerkloads for gaining insight
into the power characteristics of processor architect@eashe one side, typical work-
loads such as SPEC CPU and other commercial workloads aleusssess average
power consumption. On the other side, hand-crafted stradsnare being used to un-
derstand worst-case behavior in terms of a processor’'s maempconsumption. This
paper closed the gap between these two ends of the powerrbaridhg spectrum by
finding stress patterns in typical microprocessor work&ad

In this paper, we advocated and studied sampled simulati@araeans of finding
these stress patterns efficiently. Although sampled sitiomas a well studied and ma-
ture research area, the objective in this paper is compldttfierent. While the goal of
sampled simulation traditionally has been on estimatiregaye performance, the prob-
lem addressed in this paper is on estimating worst-casenpeahce rather than average
performance, i.e., the goal is to find stress patterns ircgipiorkloads without having
to simulate the complete benchmark execution. We foundatittabugh statistical sam-
pling is more effective than representative sampling fdineeting average behavior,
representative sampling is substantially more effectiamtstatistical sampling when it
comes to capturing extreme behavior. In addition, we foinad threshold clustering is



substantially more effective than k-means clustering fodifig stress patterns (which
is a frequently used clustering technique for represer@a@ampling). Our experimen-
tal results using the SPEC CPU2000 benchmarks demondiedtsttess patterns at a
million-instruction granularity can be found with an ermira few percent on average
at a simulation speedup of three orders of magnitude.

We believe that this work could lead to a new line of reseamhatds finding
stress patterns in microprocessor workloads. Sampledaiion, which was tradition-
ally used for estimating average behavior, may benefit frpetiic enhancements to-
wards stress pattern identification. One focus of futureassh may be to improve the
computational requirements of the clustering algorithmepresentative sampling so
that larger data sets and thus smaller granularity strederpa may become feasible
in practice. One example of a stress pattern that requiresadl granularity is a dl/dt
stress pattern: stress patterns with large power swingsshvet periods of time are of
interest for studying the dl/dt problem [16] as the asseciaturrent swings may lead
to ripples on the voltage supply lines, which may introduoertg errors and/or cause
circuits to fail. Existing clustering algorithms howeveedoo time-consuming when
applied to a large data set.
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