
Delegated Replies: Alleviating Network Clogging in Heterogeneous Architectures

Xia Zhao
Artificial Intelligence Research Center

Academy of Military Science
Beijing, China

zhaoxiahust@gmail.com

Lieven Eeckhout
ELIS Department
Ghent University
Ghent, Belgium

lieven.eeckhout@ugent.be

Magnus Jahre
Department of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

magnus.jahre@ntnu.no

Abstract—Heterogeneous architectures with latency-sensitive
CPU cores and bandwidth-intensive accelerators are attractive
as they deliver high performance at favorable cost. These archi-
tectures typically have significantly more compute cores than
memory nodes. The many bandwidth-intensive accelerators
hence overwhelm the few memory nodes, resulting in subopti-
mal accelerator performance — as their bandwidth needs are
not met — and poor CPU performance — because memory
node blocking creates high latencies. We call this phenomenon
network clogging. Since network clogging is a widespread issue
in heterogeneous architectures, we first investigate if existing
state-of-the-art approaches can address it. We find that the
most effective prior approach, called Realistic Probing (RP), is
suboptimal because it searches the local caches of other cores
for missing data.

We propose Delegated Replies which lets memory nodes
speculatively delegate the responsibility of replying to last-level
cache hits to the private cache that last accessed the requested
cache block, hence avoiding the search that fundamentally
limits RP. Moreover, Delegated Replies uses the (typically)
under-utilized request network for delegation; it is the reply
network links of the memory nodes that commonly clog because
replies include complete cache blocks in addition to metadata.
We evaluate Delegated Replies in the context of heterogeneous
architectures with latency-sensitive CPU cores and bandwidth-
intensive GPU cores and find that it improves GPU (CPU)
performance by 14.2% (5.2%) and 25.7% (8.8%) on average
compared to RP and our baseline, respectively.

Keywords-Network on Chip (NoC); heterogeneous architec-
ture; multi-core processor; Graphics Processing Unit (GPU).

I. INTRODUCTION

Heterogeneous architectures that integrate CPUs and accel-
erators on a single chip are attractive because they provide
high performance while limiting cost, power consumption,
and physical size [48], [57]. Moreover, heterogeneous ar-
chitectures provide low-overhead accelerator invocation as
they avoid explicitly or implicitly copying input/output data
at accelerator invocation and completion [59]. For these
reasons, heterogeneous architectures have become popular:
see Apple’s M1 [7], Intel’s Skylake series [21], AMD’s
Accelerated Processing Units (APUs) [55], NVIDIA’s Tegra-
family [48], and Xilinx’s Adaptive Compute Acceleration
Platform (ACAP) [23].

Compute cores typically outnumber memory nodes in

single-chip architectures (due to pin restrictions [9]) and
multi-chip modules (due to high integration costs [39]). While
many CPU applications are latency-sensitive, accelerators
typically hide memory latencies by combining streaming pro-
gramming models with highly parallel compute architectures
— making them both bandwidth-intensive and bandwidth-
sensitive [19], [34]. Single-chip integration of bandwidth-
intensive and latency-sensitive cores exposes a difficult trade-
off to the memory system, i.e., it must maximize bandwidth
for accelerator requests and simultaneously minimize latency
for CPU requests. Furthermore, accelerators and CPUs ex-
hibit completely different Network-on-Chip (NoC) injection
characteristics. In particular, accelerator cores inject massive
bursts of requests into the NoC while CPU cores inject
relatively few requests. This leads to a fundamental problem,
which we call network clogging, where requests from the
many compute cores clog the links leaving the few memory
nodes [3], [33], [58]. Clogging typically occurs in the reply
links of the memory nodes because (i) accelerators typically
load more data than they store, and (ii) load replies contain
both metadata and a complete cache line (while load requests
only contain metadata).

NoC clogging is undesirable for bandwidth-sensitive
accelerators as they are severely performance-limited by
the bandwidth of the bottleneck links. Moreover, clogging
is independent of network topology since each memory
node has a single reply network link in contemporary
topologies [17], [41], [42]. Clogging also has a second-
order effect on CPU performance as the flood of accelerator
requests delay CPU requests. To minimize the latency of
CPU requests, our baseline architecture (i) gives priority to
CPU traffic over accelerator traffic, and (ii) carefully places
memory controllers to minimize interference (see Section V
for a detailed analysis). Unfortunately, clogging frequently
causes the reply network interface of the memory nodes
to block due to full injection buffers. Giving CPU traffic
high priority is insufficient because blocking denies it from
entering the buffer. The scheduler is hence unaware of the
CPU requests and cannot prioritize them.

Since NoC clogging is such an ubiquitous issue in
heterogeneous architectures, it is natural to expect that state-
of-the-art approaches would address it effectively. We hence

Magnus Jahre
Copyright 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

take great care in designing an efficient baseline and then
implement and evaluate state-of-the-art approaches that we
expect could potentially alleviate network clogging, including
various NoC topologies [41], [42] as well as the DC-L1 [30]
and DynEB [29] L1 cache sharing schemes. (We describe
this endeavor in detail in Section III.) Perhaps surprisingly,
we find that existing approaches are either too costly or
ineffective because they attempt to overcome NoC clogging
within the cache subsystem or the NoC. Cache-centric
approaches (e.g., [5], [13], [28], [29], [30], [31]) rely solely
on inter-core locality, but are fundamentally limited as they
either (i) incur the complexity and overhead of precisely
tracking sharers for correctness (either at the level of a cache
block [5], [28] or across memory regions as in coarse-grain
coherence [13]); (ii) deliver suboptimal effective bandwidth
to applications with (large) shared data sets (as in shared
L1 caches [29], [30]); or (iii) must search for potential
sharers (as in Realistic Probing (RP) [31]). In contrast,
NoC-centric approaches (e.g., [22], [33], [37], [45]) attempt
to address clogging through (selective) overprovisioning or
advanced network policies. Within the NoC, performance
is fundamentally constrained by the clogged links and can
only be improved by providing more bandwidth. This is
unfortunately too costly; doubling NoC bandwidth alleviates
clogging but increases NoC area by 2.5×.

Our extensive analysis leads to our key insight: Effectively
addressing NoC clogging requires carefully co-designing the
cache subsystem and the NoC — which we proceed to do
with Delegated Replies. In the cache subsystem, Delegated
Replies leverages inter-core locality by enabling memory
nodes to speculatively delegate the responsibility of providing
data to an accelerator core that is likely to have the requested
data in its local cache — thereby transforming the few-to-
many access pattern into a more favorable many-to-many
access pattern at the cost of increased latency. The streaming
compute model commonly used in accelerators means that
the effective bandwidth improvement significantly outweighs
its latency overhead. To identify a core that is likely to have
the requested data, we store a pointer in the Last-Level Cache
(LLC) to the core that last accessed it; a simple yet accurate
heuristic (74.5% average hit rate). By imprecisely tracking
sharers, we significantly reduce complexity compared to
coarse-grain coherence [13] (which has to track shared-
memory regions precisely for correctness), retain the low-
complexity private L1 cache organization (unlike shared L1
caches [29], [30]), and avoid searching for (potential) sharers
(unlike RP [31]).

Delegated Replies’ NoC component (i) only invokes
speculative delegation when memory nodes cannot inject
reply traffic into the NoC, and (ii) uses the (typically)
under-utilized request network to delegate replies. Since
the delegated reply message only contains metadata while a
regular reply contains metadata and a complete cache line,
Delegated Replies effectively deflects traffic away from the

clogged links. More specifically, a request occupies a single
flow control unit (flit) while a reply occupies 9 flits in our
setup. Each delegated reply hence reduces the bandwidth
demand on the bottleneck link by 9×. Delegated Replies
is applicable to any NoC topology that has core-to-core
links between accelerator nodes. Although we use the mesh
topology in our baseline, Delegated Replies performs equally
well with other topologies such as the crossbar, flattened
butterfly [41] and Dragonfly [42] (see Section VII).

Our evaluation focuses on heterogeneous architectures with
CPU and GPU cores, but our observations are relevant to any
heterogeneous architecture that combines latency-sensitive
cores (CPUs) with bandwidth-intensive cores (GPUs and
other accelerators). We find that RP [31], which (selectively)
searches the L1 caches of other cores for the missing data, is
the only state-of-the-art approach that reduces NoC clogging.
Unfortunately, RP is suboptimal. On multi-programmed
CPU-GPU workloads, Delegated Replies improves GPU
performance by 14.2% (up to 30.6%) and 25.7% (up to
65.9%) compared to RP and our baseline, respectively,
because RP searches for sharers whereas Delegated Replies
accesses a single likely sharer. Delegated Replies effectively
moves traffic from the clogged memory-node links to less-
utilized inter-GPU links and thereby improves the effective
data bandwidth delivered to the GPU cores by 26.5% on
average compared to the baseline. By effectively draining
the injection buffers of the memory-node routers, Delegated
Replies allows CPU traffic to enter the buffer and hence be
prioritized — thereby improving average CPU performance
by 5.2% (up to 12.8%) and 8.8% (up to 19.8%) compared
to RP and the baseline, respectively, across the workloads
where the GPU cores clog the memory nodes. We find that
the only effective NoC-centric approach is to double NoC
bandwidth, but Delegated Replies has much lower overhead.
More specifically, Delegated Replies only incurs 5% of the
area overhead of the double-bandwidth NoC.

In summary, we make the following key contributions:

• We analyze the network clogging problem in heteroge-
neous architectures consisting of bandwidth-intensive
and latency-sensitive cores. Clogging occurs because
cost constraints result in compute cores outnumbering
memory nodes which is fundamentally conflicted with
the high bandwidth demands imposed by accelerators.

• We carefully analyze core layout in heterogeneous
architectures and find that interference between CPU
and accelerator traffic can be reduced by (i) placing
memory nodes in a column/row between the CPUs
and accelerators, (ii) giving CPU requests priority
over accelerator requests, and (iii) routing traffic along
minimally interfering paths.

• We qualitatively and quantitatively investigate a wide
range of architectural optimizations that presumably
should address NoC clogging. We find that while cache-

(a) Baseline (b) Layout B (c) Layout C (d) Layout D

Figure 1: The high-level integrated CPU-GPU architectures
considered in this work. The CPU cores are colored green,
the GPU cores are yellow, and the memory nodes are red.

centric RP [31] improves GPU (CPU) performance
relative to our baseline by 10.1% (3.5%) on average,
it is suboptimal. Doubling NoC bandwidth alleviates
clogging but increases NoC area by 2.5× and is hence
too costly.

• We propose Delegated Replies which, in contrast to
state-of-the-art RP, effectively alleviates NoC clogging
by carefully co-designing the cache subsystem and the
NoC. More specifically, Delegated Replies improves
GPU (CPU) performance by 14.2% (5.2%) and 25.7%
(8.8%) on average compared to RP and our baseline,
respectively, while only incurring 5% of the area
overhead of the double-bandwidth NoC.

II. EXPLAINING DELEGATED REPLIES

Understanding network clogging. Our baseline hetero-
geneous architecture balances CPU, GPU, and memory
capabilities as well as minimizes interference between CPU
and GPU traffic. We focus on a 64-node system with 40
GPU cores, 16 CPU cores, and 8 memory nodes. The GPU
cores consist of a Streaming Multiprocessor (SM) and a
local cache, the CPU nodes consist of a processor and a
local cache, and the memory nodes include a slice of the
shared Last Level Cache (LLC) and a memory controller.
Our baseline features a mesh NoC with a 358 GB/s bisection
bandwidth and a 236 GB/s DRAM system. We consider a
mesh topology because of its scalability and wide deployment
in SoC systems, but Delegated Replies is equally applicable
to other topologies such as the flattened butterfly [41], the
Dragonfly [42], and the crossbar with inter-core links. Details
about our experimental setup are provided in Section VI, and
Section VII presents various sensitivity analyses with respect
to network topology and bandwidth, chip layout, and routing
policies.

Our baseline minimizes interference between CPU and
GPU traffic by (i) placing the memory controllers in a column
of the mesh between the CPUs and GPUs, (ii) prioritizing
CPU requests over GPU requests (since GPU applications are
typically latency-tolerant), and (iii) employing state-of-the-art
Class-based Deterministic Routing (CDR) [3] (see Figure 1a
and Section V). CDR is a Dimension-Order Routing (DOR)
scheme that chooses a different dimension-order for requests
and replies to better balance traffic across links. The baseline

0%

50%

100%

P
e

rc
e

n
ta

g
e

 o
f
L

1
 m

is
s
e

s

Available in remote L1 Not available in remote L1

Figure 2: Inter-core locality. More than 57% of the L1 cache
misses are duplicated in the L1 caches of remote GPU cores.

uses a light-weight software-based coherence protocol for the
GPU caches which flushes the private cache when necessary
(e.g., on a kernel boundary) as is common in GPUs [8], [44].
(We discuss coherence in detail in Section III.)

Even if we have taken great to minimize network clogging
in our baseline, all of the memory node’s GPU-side NoC-
links are heavily loaded (i.e., have over 60% utilization on
average); note that 100% single-link utilization is unattainable
in practice because different traffic streams interleave in
downstream routers. Clogging exerts significant back-pressure
on the memory nodes which results in blocking rates between
72.3% and 78.8% on average — effectively reducing NoC
bandwidth to the capacity of the clogged links. In other
words, the GPU cores overwhelm the reply capability of the
memory nodes which results in suboptimal performance for
the GPU workloads as they receive insufficient bandwidth.
At the same time, clogging creates sufficient back-pressure
to deny CPU requests access to the buffers of the memory
nodes, causing high latencies which in turn reduces CPU
performance.

Addressing network clogging hence requires reducing the
bandwidth demand on the GPU-side links of the memory
nodes. Fortunately, Figure 2 shows that GPU-compute
applications have significant inter-core locality. On average,
over 57% of the cache lines missing in the local L1 cache are
available in at least one remote L1 cache (see Section VI for
more details regarding our benchmarks). The key challenge
is hence to retrieve data from remote L1 caches rather than
the LLC for the subset of cache misses for which remote L1
copies exist without incurring excessive overhead — thereby
deflecting traffic away from the clogged links of the memory
nodes.

Network clogging mechanisms. We now show how Del-
egated Replies addresses NoC clogging by speculatively
delegating the responsibility of responding to a GPU request
to an L1 cache that is likely to have the requested data.
Since clogging occurs in the GPU-side links of the memory
nodes, Figure 3 focuses on the injection buffer of the memory
node and its reply and request routers. Although we assume
physically separate request and reply networks in our baseline,
Delegated Replies is equally applicable to systems that use
Virtual Channels (VCs) to implement logically separate
networks (see Section VII).

Figure 3: Network clogging example.

When a request has been satisfied by the LLC (or memory),
the memory node places the reply data and metadata in its
injection buffer. Figure 3 shows the state of the injection
buffer and memory node routers in a given cycle. Here, GPU
replies GB, GC, GD, and GE are available in the injection
buffer and ready to be inserted into the reply network (see
1). Since replies are larger than the NoC link width, they
are divided into flow control units (flits), and a reply leaves
the injection buffer when all of its flits have been injected
into the network; our NoC does not drop flits. In our setup,
a response contains 9 (5) flits because each GPU (CPU)
response consists of a header flit and 8 (4) data flits (our
link width is 16 bytes and the L1 cache lines are 128 (64)
bytes).

We employ wormhole flow control [35] which means that
the flits of a single reply can be distributed across multiple
routers. For the purpose of this example, we assume that each
router can store four flits internally and contains a single VC;
our simulated baseline NoC supports 2 VCs that each can
buffer 4 flits. When a flit arrives at the router, it is placed
in the VC buffer. Then, the switch arbitrates access to the
router’s crossbar. The crossbar is fully connected and can
hence transfer any flit that does not (i) come from the same
input port, or (ii) requires the same output port in parallel. To
minimize latency for CPU traffic, we give it higher priority
than GPU traffic throughout the memory system (including
the switch allocator). Hence, the flits of CPU reply CA are
given priority over the flits of GPU reply GB (see 2). In
this example, we assume single-cycle link traversal, VC
allocation, and crossbar traversal (our experiments faithfully
model a 4-cycle router).

CPU traffic uses the west-ward links of the routers
and GPU traffic uses the east-ward links in our baseline
core layout (see Figure 1a). Unfortunately, the many-to-few
access pattern leads to the memory node’s injection buffer

Figure 4: Delegated Replies example.

quickly filling up with GPU replies. The first-order effect
of this behavior is that the flits of request GB occupy all
of the buffer space in the reply router and hence delay
the other ready replies (i.e., GC, GD, and GE) at 2 . We
denote requests/replies from CPUs and GPUs as C and G,
respectively; the subscript denotes the memory address, and
the superscript is the flit identifier.

The second-order effect of clogging is that the memory
node blocks as it has no place to store replies (see 3). Hence,
CPU request C1

I cannot proceed beyond the VC buffer of the
request router as the memory node cannot accept requests
when it is blocked (see 4). Giving CPU requests high priority
is hence insufficient in isolation. Memory node blocking also
creates back-pressure that propagates through the NoC and
eventually results in CPU and GPU stalls because (i) they
cannot proceed without the requested data, or (ii) they run
out of space in their injection buffers or MSHRs (see 5).

Delegated Replies. Figure 3 also shows that the request path
from the memory node to the GPUs (i.e., the east router) is
underutilized (see 6), and we now illustrate how Delegated
Replies exploits this resource to re-balance network load. As
aforementioned, Delegated Replies requires the LLC to store
a pointer to the GPU core that most recently accessed each
cache line (say core A). If a different core than A, say core
B, sent the current cache-hit request, we define the reply as
delegatable. When the memory node cannot inject traffic into
the reply network, it delegates the responsibility of replying
to B’s delegatable reply to core A as it most likely still has
the data in its local L1 cache. Repeated LLC accesses to the
same cache block from a single GPU core can occur when
the core has recently evicted this cache line from its local
cache. Note that all decision-making in Delegated Replies is
done at the end-points (i.e., memory nodes or GPU cores)
since they have the necessary information available, whereas
the NoC routers treat delegated replies as any other request.

Figure 4 shows the memory node injection buffer and the
relevant state of the request and reply routers. Replies GC,
GD, and GE are delegatable (and hence marked D). Since
GC is delegatable and the reply router is full, the memory
node issues a delegated reply for GC in cycle 1. In cycle
2, the reply router is still clogged and the memory node

delegates GD. In cycle 3, the last flit of GB (i.e., G9
B) has

entered the reply router’s VC buffer and the reply network
can accept additional traffic. The memory node hence decides
to not delegate GE even if it is delegatable. The reason is
that delegated replies incur a latency overhead. Although
GPUs are inherently latency-tolerant, we do not want to
unnecessarily expose the cores to overhead.

Delegating GC and GD has made space available in the
injection buffer which immediately unblocks the memory
node. As a result, the replies CF and GG enter the injection
buffer in cycle 4. Since CF is a CPU reply, the scheduler
gives it priority over GE in cycle 5; Delegated Replies hence
enhances the effectiveness of priority-based mechanisms.
Since the reply network is now servicing the flits of CF
(and subsequently the remaining flits of GE), the scheduler
delegates GG.

III. EVALUATING PRIOR APPROACHES

While we have now explained how Delegated Replies
effectively alleviates network clogging, we have yet to explain
why existing approaches fall short. Hence, we now delve into
the details of prior cache-centric and NoC-centric approaches
and show that they either have high complexity, high area
overhead, or are ineffective against network clogging.

A. Cache-Centric Approaches

Directory coherence. A well-known approach to exploit
inter-core locality is to add forwarding states to directory-
based cache coherence protocols (e.g., MESIF and MOESI).
In MESIF [28], a single private cache is given responsibility
for servicing requests to a shared (clean) cache block (the
F state), while the MOESI [5] protocol provides similar
functionality for dirty cache blocks (the O state). These
approaches are fundamentally different from Delegated
Replies as they have to track all sharers precisely (for
correctness in case a cache line needs to be invalidated)
while Delegated Replies tracks a single sharer imprecisely,
i.e., erroneously delegating a reply can hurt performance
but the application still executes correctly. Approaches such
as coarse-grain coherence [13] reduce coherence traffic by
tracking memory regions rather than cache lines, but they
are still precise at the region level for correctness.

Precisely tracking sharers incurs a storage cost, and, more
importantly, increases design and verification complexity [53]
— even to the point that protocols of commercial chips may
only be partially verified [2]. Optimizations such as cache-
to-cache transfers [4] or coarse-grain coherence [13] do not
address this inherent source of complexity. Contemporary
GPUs avoid these overheads by implementing cache coher-
ence in software since their programming model enables
straightforwardly identifying synchronization boundaries [8],
[44]. In conclusion, addressing NoC clogging with coherence
is simply too costly.

0

0.5

1

1.5

2

Mesh Crossbar Flattened
butterfly

DragonflyN
o
rm

a
liz

e
d
 I
P

C

Baseline Double NoC bandwidth

(a) GPU performance.

0%

20%

40%

60%

80%

100%

P
e
rc

e
n
ta

g
e
 o

f
c
y
c
le

s

Blocked Not blocked

Mesh Crossbar Flattened Dragonfly
butterfly

BW 2X BW

(b) Memory node blocking rate.

Figure 5: The impact of changing NoC topology and doubling
reply network bandwidth across our GPU benchmarks.
Changing NoC topology does not address network clogging
— because all topologies suffer from memory node blocking.
Doubling NoC bandwidth helps, but is not cost-effective.

Shared GPU L1 caches. Another option is to share L1
caches among GPU cores [29], [30]. Fundamentally, L1
cache sharing improves performance when the benefit of
improved effective L1 cache capacity (i.e., data accessed
by multiple SMs is stored only once) outweighs the cost of
lower effective L1 bandwidth (i.e., multiple SMs accessing
the shared data around the same time results in serialization).
L1 cache sharing is orthogonal to Delegated Replies (see
Section VII).
Realistic probing (RP). RP [31] provides the benefit of
redirecting requests to the private caches of other cores
without incurring overheads of coherence protocols and
shared L1 caches. Unfortunately, RP is inefficient as it first
needs to correctly predict if a cache block is in the private
cache of another core and then probe all other private caches
to be guaranteed to find the requested data. Hence, RP is stuck
between a rock and a hard place: searching too many private
caches wastes bandwidth and energy, while searching too
few makes finding a cached copy unlikely. Delegated Replies
is hence (i) much less complex than RP, and (ii) provides
significantly better performance than RP (see Section VII).

B. NoC-Centric Approaches

Overprovisioned NoC. The most straightforward way to
address NoC clogging is to provide enough bandwidth such
that even the most heavily loaded links perform well. To
evaluate this option, we change the NoC topology and
increase NoC bandwidth, as shown in Figure 5a which reports
GPU performance for the crossbar, flattened butterfly [41] and
Dragonfly [42] topologies with a nominal and increased (2×)
bandwidth, all normalized to our mesh baseline with nominal
bandwidth. We conclude that (i) changing the NoC topology
hardly impacts GPU performance, while (ii) doubling NoC
bandwidth significantly improves performance. The reason is
that clogging in the reply links of the memory nodes results
in the memory nodes being blocked most of the time, see
Figure 5b. Changing NoC topology does not reduce clogging,
as each memory node has a single reply link regardless of
topology, whereas bandwidth overprovisioning helps because
it doubles the bandwidth of the bottleneck links, regardless

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

Baseline Asymmetric VC partitioning

Figure 6: GPU performance with Asymmetric VC partitioning
(AVCP) [33] versus our baseline. AVCP is ineffective.

of the specific network topology. NoC overprovisioning can
be non-uniform [12], but this increases design complexity.

NoC overprovisioning is unfortunately not cost-effective
in terms of chip area and power consumption [20], [27].
Using DSENT [54], we find that the area cost of the double-
bandwidth mesh is 2.5× higher than our baseline (5.76 mm2

versus 2.27 mm2). The reason is primarily that increasing
bandwidth increases the area overhead of the routers. More
specifically, the area overhead of input buffers and virtual
channels increases linearly with channel width, while the
area overhead of the router-internal crossbar is quadratic in
both port count and channel width. In contrast, Delegated
Replies increases NoC area by only 4% (0.092 mm2); the
total area overhead of Delegated Replies is 0.172 mm2 (see
Section IV).

Asymmetric VC partitioning (AVCP). Since NoC over-
provisioning is not cost-effective, AVCP [33] attempts to
better distribute NoC load by allocating more VCs to reply
traffic than to request traffic. While this approach has both
low implementation complexity and low area overhead,
it is ineffective. More specifically, Figure 6 shows that
asymmetrically allocating VCs even in the best case only
improves performance by 3% compared to our baseline;
Harmonic Mean (HM) performance is practically unaffected.
We adopt physically shared request and response networks
in this experiment, as this is required by AVCP, but we
retain the same aggregate bandwidth as the baseline. AVCP
is ineffective because flits get serialized in the output links.
For BP, asymmetric partitioning hurts performance because
it is write-heavy which stresses the (virtual) request network
rather than the (virtual) response network. In summary, AVCP
is ineffective because the limiting factor is the bandwidth
of the clogged links and using more or less VCs for each
traffic class does not affect link bandwidth.

Adaptive routing. To assess the efficacy of adaptive routing
against NoC clogging, we implement and evaluate the
DyXY [45], Footprint [22], and HARE [37] adaptive routing
schemes. Figure 7 compares GPU performance with the
adaptive policies to our baseline which uses CDR routing [3].
Perhaps counter-intuitively, adaptive routing actually reduces
performance. In the request network, there is no unbalanced
congestion which means that we incur the overhead of

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

Baseline DyXY Footprint HARE

Figure 7: GPU performance with adaptive routing schemes
versus our baseline. Adaptive routing is ineffective.

Network on Chip (NoC)

Coalescer

Forward Request
Queue (FRQ)

Arbiter

L1 Cache

MSHRs

Streaming
Multiprocessor

(SM)

New Modified Unchanged

Figure 8: GPU core with support for Delegated Replies.

adaptive routing (i.e., increased congestion in the router-
internal crossbar switch [18]) without getting the benefit.1

In the reply network, all paths from the memory nodes to
the GPU cores are clogged. Hence, it is not possible to
route traffic around the clogged links — reiterating that the
fundamental limitation is link bandwidth.

IV. IMPLEMENTING DELEGATED REPLIES

Architectural support. Figure 8 illustrates the minor ar-
chitectural modifications required to implement Delegated
Replies in a GPU core. The main change is the Forwarded
Request Queue (FRQ) which stores the delegated replies sent
to the GPU core. The L1 cache treats remote memory requests
from other cores in the FRQ similarly to local requests. We
do not merge requests in the FRQ as only 4.8% of FRQ-
entries access the same cache block and fully exploiting
merging requires supporting a multicast mechanism within
the NoC.

To avoid deadlock, we need to give remote requests in
the FRQ higher priority than local requests. Consider two
GPU cores that both experience a local cache miss causing
them to stall on a resource that is temporarily unavailable
(e.g., MSHR entry or cache line). A deadlock may occur if
both cache misses cause remote accesses to the other core.
For example, memory requests from core A and core B first
access the LLC and are forwarded to each other, i.e., the core
IDs of the requested cache lines point to B and A, respectively.
In core A, the local requests may be stalled if the core runs
out of L1 cache resources, i.e., all MSHR entries or all cache

1We also evaluated adaptive routing with 4 and 8 VCs per router. This
partially alleviates router congestion and hence reduces the performance
gap between the adaptive schemes and the baseline. However, our baseline
is the top performer across all configurations.

lines in a set are allocated for outstanding requests that are
sent to the LLC and then to B. Core B may be in the same
situation, in which case both cores are stalled.

The culprit for the deadlock is the fact that priority is given
to local requests. One solution is to switch priority between
local and remote requests when the local requests cannot
proceed due to an L1 stall. This requires monitoring the status
of the L1 cache and switching priority back to local memory
requests when the L1 is no longer stalled. The alternative
solution is to always give priority to remote requests over lo-
cal requests. Both solutions remove the resource dependence
and avoid the deadlock. We experimentally evaluated both
solutions and found that they perform similarly. Hence, we
adopt the latter because of its simplicity.

Processing delegated replies. There are three possible
outcomes when the remote L1 cache serves a delegated
reply: (i) a cache hit and the data is available; (ii) a cache
hit but the data is not yet available — a hit to an outstanding
cache line; or (iii) a cache miss — we call this a remote
miss. In the first case (cache hit), the core sends a reply to
the requesting core through the reply network, i.e., the local
cache sends the requested cache line to the remote core. In
the second case (delayed hit), the memory request will be
added to the list in the MSHR and the core will send the
cache line to the requesting core as soon as the miss returns
(we assume an allocate-on-miss policy in the LLC). In the
third case (remote miss), the memory request will be re-sent
to the LLC without allocating an MSHR entry in the GPU
core, upon which the LLC will send the data and update
the core pointer to the requesting core. Although this third
case incurs extra overhead, the negative impact is minimal
because the extra request network transfer latency is small
and hidden by other memory requests. In addition, keeping
the LLC in the loop provides it with improved knowledge
of which cores are likely to have a copy of the cache block.

NoC modifications. Delegated Replies also introduces extra
requests and replies to enable core-to-core communication.
However, we require no changes to the encoding of reply
packets and only minimal changes to the encoding of request
packets. More specifically, the delegated replies are encoded
as normal requests except that they use the identifier of the
requesting core as the sender ID (even if they are sent from
a memory node). This is necessary for the recipient core to
know which core to supply the data to. In addition, we add
one additional bit to the request packet, called the Do-Not-
Forward (DNF) bit, to support remote misses. This DNF bit
tells the LLC slice to process the request and not forward
it again. The DNF bit does not incur any overhead because
a read request is 8 bytes which is smaller than the typical
channel width (16 bytes in our setup).

Hardware overhead. The hardware cost of Delegated
Replies is (very) small. Assuming 40 GPU cores, each core
pointer requires only 6 bits; we add core IDs to the LLC

and the MSHRs. Assuming a 48-bit address space [52] and
128 B cache lines, the total hardware cost for the core pointers
amounts to 0.08mm2 according to CACTI 6.5 [47] assuming
a 22 nm technology node. We further set the FRQ size to 8
entries. Using DSENT [54], we estimate the total area cost
for the FRQs across all 40 GPU cores to be 0.092mm2. The
overall hardware overhead of Delegated Replies thus amounts
to 0.172 mm2, which is small (less than 0.1%) compared to
a die size of several hundred mm2 for modern-day chips.
Coherence implications. Software and hardware-based ap-
proaches have been proposed by academics [24], [50], [51]
and industry consortia (e.g., CXL [16] and CCIX [14])
to maintain coherence between CPUs and accelerators.
For software-managed full-system coherence, programmers
explicitly specify and copy data between CPU and accelerator
address spaces [1], [8], [44]. For hardware-based full-system
coherence, a directory protocol is employed at block or
region-based granularity [50], [51] to give permission to
access a block or region. Delegated Replies operates within
the GPU coherence domain and does not cross the CPU-GPU
coherence boundary; we model MESI directory coherence
in the CPU-domain.

Within the GPU coherence domain, L1 caches need to
implement a write-through policy and need to be flushed
(invalidated) through compiler-inserted cache control oper-
ations, e.g., at the end of kernel execution [50]. Delegated
Replies can only operate within a region after having obtained
permission, i.e., the GPU cores can only forward shared cache
lines between GPU cores in regions for which the GPU holds
permission. Upon a write to L1, an invalidation request is sent
to the LLC to invalidate the core pointer of the respective
cache to make sure that other cores requesting the same
cache line from the LLC receive the most recent copy, as
in the conventional organization. This means that Delegated
Replies will only benefit shared read-only data which is
fortunately much more common than shared read-write data
in GPU workloads [61]. In addition, when the L1 cache is
flushed (invalidated) in response to coherence instructions, all
corresponding core pointers in the LLC are also invalidated.
We faithfully model the overhead of coherence operations.

V. CHIP LAYOUT AND ROUTING

We now return to our baseline architecture to argue how
it leverages the placement of memory nodes and choice for
dimension-order routing to minimize interference between
CPU and GPU cores. More specifically, we discuss the
four high-level architectures in Figures 1 (our baseline is
Figure 1a). We keep the number of CPU and GPU cores
as well as memory nodes constant across architectures to
maintain the same theoretical performance and hence ensure
fair cross-architecture comparisons. The architectures have a
2.5:1 ratio of GPU cores versus CPU cores, since a CPU core
such as Intel Nehalem is nearly 2–3× larger than a GPU
core that resembles Nvidia’s Fermi [56] scaled to 22 nm

technology, and 8 memory nodes to enable allocating a
complete column/row (similar to prior work [32], [40], [46]).
We explore architectures with different ratios of core types
in Section VI.
Baseline: Traffic isolation. Our baseline layout (Figure 1a)
has the desirable property that CPU traffic and GPU traffic
are isolated from each other except from within memory
node routers where they multiplex onto the links to/from
the memory nodes (see Figure 3). Further, the architecture
maximizes NoC bandwidth between the memory nodes and
both the CPU and GPU cores since the memory nodes
have 8 CPU-facing links and 8 GPU-facing links. To avoid
congestion in the links of the memory column, we employ
CDR routing [3], i.e., YX-order for requests and XY-order
for replies. (We will quantify the impact of this choice.)
Layout B: Memory nodes at die edge. Figure 1b is
inspired by die photos of recent commercial heterogeneous
architectures (e.g., [6]) which place the memory controllers
at the edge of the chip, presumably to simplify package
integration. Hence, we let the memory nodes occupy the top
row of the architecture and allocate columns of CPU and
GPU cores (except for one column which contains two CPU
cores and five GPU cores). Layout B is similar to Baseline,
but prioritizes simplifying integration at the expense of more
interference between CPU and GPU traffic. Since we use XY-
ordering for requests and YX-ordering for replies to avoid
congestion in the memory row, the GPU requests for the three
left-most memory controllers must traverse the CPU/mixed
columns, and vice versa, the CPU requests for the five (or
six) right-most memory controllers must traverse the GPU
columns. The architecture also only provides 8 NoC links
between the memory nodes and CPUs/GPUs.
Layout C: Clustered CPU cores. Figure 1c prioritizes
inter-CPU communication by placing the CPU cores within
as few hops of each other as possible. Hence, it priori-
tizes communication-latency-sensitive CPU workloads at
the expense bandwidth-sensitive GPU workloads. In this
architecture, we are able to separate a fair amount of the
GPU and CPU traffic by adopting an XY-order for requests
and YX-order for replies. Layout C provides less bandwidth
for GPU cores than Baseline and Layout B since vertical
traffic to/from memory nodes is multiplexed onto 4 NoC
links.
Layout D: Traffic distribution. The final architecture we
consider was used in prior work [38], [46], [59] (see
Figure 1d). The intuition behind this architecture is to spread
out the different core types across the chip to better distribute
network traffic. Although this property is desirable, the
architecture (i) does not separate GPU and CPU traffic,
(ii) places CPU cores relatively far from memory nodes,
and (iii) places CPU cores relatively far from each other.
Hence, it prioritizes GPU performance at the expense of
CPU performance. Note that we use XY-ordering for both

0

0.2

0.4

0.6

0.8

1

1.2

Y
X

-X
Y

X
Y

-X
Y

X
Y

-Y
X

X
Y

-X
Y

X
Y

-Y
X

X
Y

-X
Y

X
Y

-X
Y

N
o

rm
a
liz

e
d

 G
P

U
 p

e
rf

o
rm

a
n

c
e

 Baseline Layout B Layout C D

(a) GPU performance

0

0.2

0.4

0.6

0.8

1

1.2

Y
X

-X
Y

X
Y

-X
Y

X
Y

-Y
X

X
Y

-X
Y

X
Y

-Y
X

X
Y

-X
Y

X
Y

-X
Y

N
o

rm
a
liz

e
d

 C
P

U
 p

e
rf

o
rm

a
n
c
e

 Baseline Layout B Layout C D

(b) CPU performance

Figure 9: Average GPU and CPU performance across our
GPU and CPU workloads for different layouts and routing
policies. Overall, our baseline layout with YX-XY routing
provides both good GPU and CPU performance.

requests and replies as applying different routing policies
will not separate GPU/CPU traffic.

Performance Analysis. We now analyze the performance
of the heterogeneous architectures in Figure 1 with various
routing policies (see Section VI for details regarding our
experimental setup). We label the architectures in the form
L RequestOrder-ReplyOrder where L is the layout identifier
and RequestOrder and ReplyOrder are the dimension order
used by CDR-routing in the request and reply networks,
respectively. We normalize CPU (GPU) performance to the
CPU (GPU) performance with Baseline YX-XY. For the
layouts where we propose to use CDR (i.e., Baseline, B,
and C), we also evaluate a configuration that uses the same
dimension order for both requests and replies.

Figure 9 illustrates that Baseline is the only layout
that provides both high CPU and GPU performance: CPU
performance is insensitive to the routing policy while GPU
performance benefits from having its own column of links to
the memory nodes. For Layout B, it is critical to adopt XY-
YX ordering to avoid congestion in the memory controller
row. This hurts GPU performance since Layout B (i) does
not isolate GPU and CPU traffic, and (ii) CPU traffic is given
priority over GPU traffic. As expected, Layout C prioritizes
CPU performance at the expense of GPU performance, but
GPU performance is marginally better with XY-YX ordering
due to better traffic isolation. Layout D provides good GPU
performance and less-than-ideal CPU performance.

VI. EXPERIMENTAL SETUP

Simulation Setup. To evaluate Delegated Replies, we inte-
grate GPGPU-sim v3.2.3 [10] with BookSim 2.0 [36] and
Netrace [26]. We use GPGPU-sim to simulate the GPU cores
and memory nodes; we faithfully model contention between
CPU and GPU requests in the NoC, shared caches, and
memory controllers. Netrace injects CPU network traffic and
models how CPU network latency affects CPU performance.
BookSim enables cycle-accurate NoC simulation.

Table I: Simulated CPU-GPU architecture.

Parameters Value
GPU cores 40 SIMT cores, 1.4 GHz, 2 GTO schedulers/core,

1,536 threads/core, 32 threads/warp, 48 warps/core,
32,768 registers/core, 16 KB shared memory/core,

48 KB L1 cache, 4-way associative, LRU, 128 B line,
round-robin CTA scheduling

CPU cores 16 cores, 2.0 GHz, 32 KB L1 data/inst cache
4-way, 64 B lines, MESI coherence protocol

Shared LLC 8 MB total, 1 MB/MC, 16-way, LRU, 128 B line
DRAM 8 MCs, FR-FCFS, 16 banks/MC, 236 GB/s
GDDR5 tCL=12, tRP=12, tRC=40, tRAS=28,

tRCD=12, tRRD=6, tCCD=2, tWR=12
NoC 8×8 2D mesh with XY-routing, Islip allocator

128-bit channel width, 2 VCs, 4 flits/VC,
358 GB/s bisection bandwidth

Table II: Heterogeneous CPU-GPU workloads.

GPU benchmark CPU bmk#1 CPU bmk#2 CPU bmk#3

Name Grid Dim

2DCON [25] (128,512,1) blackscholes canneal dedup

3DCON [25] (8,32,1) bodytrack dedup fluidanimate

BT [15] (60000,1,1) dedup fluidanimate vips

SC [15] (1954,1,1) bodytrack ferret swaptions

HS [15] (342,342,1) bodytrack ferret x264

LPS [10] (63,500,1) fluidanimate vips x264

LUD [15] (127,127,1) ferret blackscholes swaptions

MM [49] (1000,2000,1) canneal fluidanimate vips

NN [10] (6,6000,1) blackscholes fluidanimate swaptions

SRAD [15] (128,128,1) fluidanimate ferret x264

BP [15] (1,16384,1) blackscholes bodytrack ferret

We use the Baseline layout in Figure 1a as our baseline.
Memory is partitioned by memory address range across the 8
memory controllers (MCs) following PAE’s randomized ad-
dress mapping [43]. We consider a traditional two-level non-
inclusive cache hierarchy with one LLC slice per MC. Each
NoC router features a four-stage pipeline; Islip allocation is
used in the switch and virtual channel (VC) allocator, where
we assign higher priority to CPU packets [59]. Configuration
details of the simulated architecture are provided in Table I.
Our simulation infrastructure faithfully models all the extra
latencies and actions incurred by Delegated Replies.

We use DSENT v0.91 [54] to evaluate NoC power
(22 nm tech node). We import activity factors collected
through timing simulation into DSENT to compute power
consumption. The NoC links are assumed to measure 4.3 mm,
and SM area is estimated to be 18.1 mm2 (from Fermi die
size [56], [59]).
Heterogeneous CPU-GPU Workloads. We evaluate Del-
egated Replies with multi-program CPU-GPU workloads.
The GPU workloads exhibit varying degrees of inter-core
locality and are taken from CUDA SDK [49], GPGPU-
sim [10], Rodinia [15] and PolyBench [25]; we simulate
one billion instructions. The CPU workloads are taken
from Parsec [11]; we consider the medium input for all

-20%

0%

20%

40%

60%

80%

G
P

U
 p

e
rf

o
rm

a
n

c
e

 i
m

p
ro

v
e
m

e
n

t

Realistic Probing Delegated Replies

Figure 10: GPU performance improvement. Delegated
Replies improves GPU performance by 25.7% on average and
up to 65.9% over the baseline. Compared to RP, Delegated
Replies improves performance by 14.2% on average and up
to 30.6%.

benchmarks except two, for which we use the large input
(bodytrack and swaptions). The injection rate is (much)
higher for the GPU workloads (0.324 to 0.704 flits per
cycle) compared to the CPU workloads (0.013 to 0.084
flits per cycle). We construct 33 heterogeneous CPU-GPU
workloads by randomly selecting three CPU benchmarks to
co-run with each of our 11 GPU benchmarks, see Table II.
For each workload, we allocate all CPU cores to the CPU
benchmark, and all GPU cores to the GPU benchmark. We
use instructions per cycle (IPC) to quantify GPU performance.
CPU performance is obtained using Netrace [26] with CPU
network latency as input.

VII. EVALUATION

We now evaluate Delegated Replies in terms of GPU
and CPU performance, effective NoC bandwidth, energy
consumption, chip layout, and various sensitivity analyses.
We compare to the state-of-the-art Realistic Probing (RP) [31]
throughout this section, and we use the best-performing
configuration of RP according to the authors.

GPU Performance. We first evaluate the impact of Delegated
Replies on GPU performance for our baseline architecture.
Delegated Replies improves performance by 25.8% on
average, see Figure 10. We note a consistent performance
improvement across all workloads which goes up to 67.9% for
HS. Further, Delegated Replies improves performance over
RP by 14.2% on average and up to 30.6%. It is interesting
to observe that GPU performance is rather insensitive to the
CPU workload that co-runs with the GPU workload, i.e., the
whiskers denote that the minimum to maximum performance
variability is limited to on average 1.9% and at most 10.6%
(MM). The reason is that although CPU traffic is prioritized
in the memory nodes, this does not significantly affect the
performance on the GPU side because GPU workloads tend
to be latency-tolerant.

The performance improvement strongly correlates with the
increase in effective NoC bandwidth. Figure 11 reports the
received data rate in flits per cycle for the GPU cores: we

0

2

4

6

8

10

12

R
e

c
e

iv
e

d
 d

a
ta

 r
a

te
 (

fl
it
s
/c

y
c
le

)

Baseline Realistic Probing Delegated Replies

Figure 11: Received data rate for a GPU core in flits per cycle.
Delegated Replies improves the effective NoC bandwidth by
28.5% on average and up to 65.8%.

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 C

P
U

 p
a

c
k
e

t
la

te
n

c
y

Baseline Realistic Probing Delegated Replies

Figure 12: CPU network latency. Delegated Replies reduces
CPU network latency by 44.2% on average and up to 59.7%.

find that Delegated Replies increases the received data rate
by 26.5% on average, and up to 70.9% (HS), versus 11.9%
on average for RP. Leveraging core-to-core communication
offloads the GPU-side links of the memory nodes in the reply
network, which improves the effective NoC bandwidth, i.e.,
more replies can be satisfied per unit of time. As GPUs are
mostly bandwidth-sensitive, this improves performance.

CPU Performance. Delegated Replies reduces pressure on
the memory nodes from the GPU side which in turn reduces
the network latency on the CPU side. Figure 12 reports
normalized CPU packet latency for the CPU workloads. Del-
egated Replies reduces network latency by 44.2% on average,
and up to 59.7% (dedup). The reduction in CPU network
latency translates into a CPU performance improvement of
3.8% on average and up to 11.8% (vips), see Figure 13.
The whiskers in Figure 12 and 13 denote the min and
max packet latency and performance, respectively, per CPU
workload across the GPU workloads they co-run with. It is
interesting to note that the variability across CPU workloads
is typically (much) higher than on the GPU side (compare
the whiskers in Figure 13 versus the whiskers in Figure 10).
The reason is that some CPU workloads are latency-sensitive
(e.g., vips) while others are not (e.g., dedup), and depending
on which particular GPU workload co-runs with the CPU
workload, this may lead to a larger or smaller impact on CPU
performance. Across the workloads where GPU traffic causes
significant network clogging, Delegated Replies improves
CPU performance by 8.8% on average (and up to 19.8%)
compared to the baseline (and by 5.2% on average and up to

-5%

0%

5%

10%

15%

20%

C
P

U
 p

e
rf

o
rm

a
n
c
e

 i
m

p
ro

v
e

m
e
n
t

Realistic Probing Delegated Replies

Figure 13: CPU performance improvement. Across the
workloads where GPU traffic causes significant network
clogging, Delegated Replies improves CPU performance by
8.8% on average and up to 19.8%.

0%

20%

40%

60%

80%

100%

L
1

 m
is

s
 b

re
a

k
d

o
w

n

LLC hit remote hit remote miss

Figure 14: L1 cache miss breakdown. Delegated Replies on
average forwards 54.8% of the L1 misses to remote GPU
cores out of which 74.4% are remote hits.

12.8% compared to RP), see the max line in the whiskers.

L1 Miss Breakdown. Figure 14 breaks down the L1 cache
misses into three components: (i) LLC hit, (ii) remote hit,
and (iii) remote miss. On average, 54.8% of the memory
requests are sent to remote cores out of which 40.8% are
satisfied by remote L1s. The applications with the largest
remote hit rate are 2DCON, HS and NN — more than
60% of the local L1 misses hit in the remote L1. This
translates into significant performance improvements for HS
(67.9%), 2DCON (40.9%) and NN (19.5%); the reason for
the somewhat lower performance improvement for NN is its
relatively low L1 miss rate (4.3%). Benchmarks with a high
LLC hit rate and few delegated replies, such as SC, LUD
and BP, are the ones for which Delegated Replies yields
modest performance improvements (less than 13.7%). For
some benchmarks, namely 3DCON, BT and LPS, we note a
fair number of remote misses because of frequent replacement
of the recently accessed cache lines in the remote L1.
Nevertheless, Delegated Replies still improves performance
by 46.3%, 28.1% and 17.5%, respectively, thanks to the
substantial fraction of remote hits.

Inter-core locality optimizations. Inter-core locality among
GPU cores can be improved by L1 cache sharing [29], [30]
and distributed CTA scheduling [8], and we now explore the
performance of Delegated Replies in such architectures (see
Figure 15). We consider the shared L1 schemes DC-L1 [30]
and DynEB [29] under both round-robin and distributed

0%

20%

40%

60%

DC-L1 DynEB DynEB +
Delegated

Replies

G
P

U
 p

e
rf

o
rm

a
n
c
e

im
p
ro

v
e
m

e
n

t

(a) Round-robin scheduling

0%

20%

40%

DC-L1 DynEB DynEB +
Delegated

Replies

G
P

U
 p

e
rf

o
rm

a
n

c
e

im

p
ro

v
e
m

e
n
t

(b) Distributed scheduling

Figure 15: GPU performance improvement due to Dele-
gated Replies on top of inter-core locality optimizations
including DC-L1 and DynEB cache sharing and distributed
CTA scheduling. Optimizing inter-core locality does not
remove NoC clogging, and Delegated Replies still provides
substantial benefits.

CTA scheduling: DC-L1 statically shares one L1 cache
with 4 slices between 8 GPU cores; DynEB dynamically
selects a shared or private L1 organization based on the
effective bandwidth each configuration can achieve for the
current application. Figure 15 shows that DC-L1 and DynEB
improve performance for both CTA scheduling policies.
Detailed analysis reveals that DynEB consistently improves
performance relative to the baseline whereas DC-L1 either
improves performance significantly (e.g., SC and LUD) or
incurs significant slowdowns (e.g., NN and 2DCON). More
specifically, SC and LUD benefit from the higher effective L1
capacity provided by both DC-L1 and DynEB because cache
sharing reduces shared data replication. In contrast, DC-L1
slows down NN and 2DCON substantially (by 87.6% and
32.3%, respectively, under round-robin scheduling) because
the lack of replication leads to lower effective bandwidth as
requests to the same shared data element around the same
time creates congestion in front of L1 cache slices (a well-
known issue in shared GPU caches [60], [61]). DynEB reverts
to the shared L1 cache organization in those cases and hence
performs similarly to our baseline.

We now explore the performance impact of Delegated
Replies on top of DynEB under both round-robin and
distributed CTA scheduling. (We focus on DynEB only since
it outperforms DC-L1.) Delegated Replies improves upon
DynEB by 23.5% on average (up to 67.9%) for round-robin
scheduling versus 9.9% (up to 59.6%) under distributed
scheduling. Delegated Replies is synergistic with locality-
enhancing optimizations for two reasons. First, DynEB
reverts to the baseline private cache organization when it
detects that a shared L1 provides insufficient bandwidth.
By consequence, DynEB does not eliminate NoC clogging,
creating an opportunity for Delegated Replies to further
improve performance. Second, distributed CTA scheduling
typically improves L1 cache locality but it does not reduce the
L1 misses sufficiently to completely remove NoC clogging,
again leaving some opportunity for Delegated Replies. The
bottom line is that inter-core locality optimizations do not
completely eliminate NoC clogging, enabling Delegated
Replies to still provide substantial performance benefits.

0%

20%

40%

60%

80%

G
P

U
 p

e
rf

o
rm

a
n

c
e

 i
m

p
ro

v
e
m

e
n

t

Mesh Flattened butterfly Dragonfly Crossbar

Figure 16: GPU performance improvement across NoC
topologies (normalized to the respective topology). Delegated
Replies consistently improves GPU performance.

0%

20%

40%

60%

80%

G
P

U
 p

e
rf

o
rm

a
n

c
e

 i
m

p
ro

v
e
m

e
n

t

Baseline Layout B Layout C Layout D

Figure 17: GPU performance improvement across chip
layouts (normalized to the respective layout). Delegated
Replies consistently improves GPU performance.

Energy Consumption. Interestingly, dynamic NoC energy
decreases for most benchmarks with Delegated Replies (by
1.1% on average) while it increases with RP (by 9.4% on
average). For Delegated Replies, the reason is that the number
of hops with data can be lower for remote hits, i.e., even if the
single-flit requests first go to the LLC and are then delegated,
the multi-flit replies traverse fewer links because there are on
average fewer hops between the remote GPU core and the
requesting GPU core than there are hops between the memory
node and the requesting GPU core on average. In contrast, RP
spends significant dynamic energy on unsuccessfully probing
other L1 caches. More specifically, RP increases the total
number of NoC requests by 5.9× compared to the baseline.
Delegated Replies (RP) reduces total system energy by 13.6%
(7.4%) on average, primarily due to shorter execution time.

NoC topology. To illustrate that Delegated Replies is insen-
sitive to NoC topology, we evaluate its performance with the
flattened butterfly [41], the Dragonfly [42], and a crossbar
with core-to-core links while keeping channel width the
same as in our baseline (see Figure 16). Delegated Replies
increases average GPU performance by 21.9%, 23.9%, and
28.3%, with the flattened butterfly, dragonfly, and crossbar,
respectively, compared to 25.8% with the mesh. While these
topologies provide higher bandwidth than the mesh, they
do not alleviate clogging — illustrating that the benefits of
Delegated Replies are independent of NoC topology.

0%

20%

40%

60%

C
P

U
 p

e
rf

o
rm

a
n

c
e

 i
m

p
ro

v
e

m
e

n
t

Baseline Layout B Layout C Layout D

Figure 18: CPU performance improvement across chip
layouts (normalized to the respective layout). Delegated
Replies significantly improves CPU performance for layouts
B and D due to more severe CPU-GPU interference.

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
e

rf
o
rm

a
n
c
e

 i
m

p
ro

v
e

m
e

n
t

L1 size LLC size
Virtual

network

Injection

buffer size

Node

count

NoC

bandwidth

Figure 19: Sensitivity analyses. Delegated Replies consis-
tently improves GPU performance across the design space.

Chip Layout Analysis. We find that Delegated Replies
consistently improves GPU performance across the four
layouts discussed in Section V (and their optimal routing
policies), see Figures 17 and 18. The average improvement
is 25.8% (Baseline), 25.3% (B), 29.0% (C) and 27.0% (D).
This suggests that Delegated Replies consistently improves
the effective data rate received by the GPU cores, irrespective
of the specific layout. We observe a wider variety in CPU
performance improvement across the different layouts. Here,
the average improvement is 3.8% (Baseline), 13.4% (B), 2.2%
(C) and 20.9% (D). Network interference between CPU and
GPU traffic leads to higher CPU performance improvements
under Delegated Replies for Layouts B and D compared to
Baseline and Layout C because providing higher priority to
CPU traffic is (relatively) more important when there is more
interference.

Sensitivity analyses. We focus on GPU performance for our
sensitivity analyses, see Figure 19.
L1 size. The size of the L1 cache leads to conflicting
phenomena. A large L1 decreases the L1 miss rate, reducing
the opportunity for Delegated Replies. On the other hand, a
large L1 also increases the possibility for a remote L1 hit,
increasing the opportunity. Overall, we find that Delegated
Replies leads to a net performance increase with increasing
L1 cache size from 22.9% (16 KB) to 30.2% (64 KB).
LLC size. Similar to L1, increasing the LLC size leads to both

a positive and negative contribution. A larger LLC reduces the
opportunity for Delegated Replies because of the increased
hit rate. On the other hand, a larger LLC enables storing
more remote core information, increasing the opportunity.
Overall, we find that Delegated Replies is rather insensitive
to LLC size with performance improvements between 25.0%
and 26.0%.

NoC bandwidth. We evaluate NoC bandwidth sensitivity
by increasing network channel width from 8 byte to 24
byte, thereby increasing NoC bandwidth from 179 GB/s to
537 GB/s. Delegated Replies’ performance improvements
are more significant for constrained NoC configurations.
However, even for 537 GB/s NoC bandwidth, Delegated
Replies still improves performance by 13.9% on average.

Virtual networks. Instead of having a separate request and
reply network as in our baseline, we now consider two virtual
networks sharing the same physical network. We consider one
and two VCs per virtual network, and we give high priority to
remote L1 requests. On average, Delegated Replies improves
performance by 23.4% and 26.9% on average for one VC and
two VCs, respectively. Delegated Replies is hence equally
beneficial in systems with shared and separate request and
reply networks.

Node count. We now increase network size from an 8×8
mesh to a 10×10 and 12×12 mesh while maintaining the
same proportion of CPU, GPU, and memory nodes. Delegated
Replies features good scalability and achieves similarly high
performance improvements across different network sizes.

Injection buffer size. As previously argued, a memory node
blocks when its injection buffer fills up. Increasing the
injection buffer size does not solve the problem, and we
find that the performance improvement through Delegated
Replies is largely insensitive to injection buffer size.

Node mix. We now explore the impact of varying the number
of CPU cores, GPU cores, and memory nodes on a 64-
node architecture (not shown in Figure 19 due to space
restrictions). We first fix the number of memory nodes at 8
and vary the number of CPU and GPU cores. The average
GPU performance improvement of Delegated Replies equals
30.5%, 25.8% and 22.6% with 8, 16 and 24 CPU cores and 48,
40 and 32 GPU cores, respectively. Second, we keep the CPU
cores constant at 8 and vary the number of memory nodes
and GPU cores. In this case, the average GPU performance
improvement of Delegated Replies equals 38.2%, 30.5% and
10.7% with 4, 8 and 16 memory nodes and 52, 48 and 40
GPU cores, respectively. NoC clogging is more severe with
fewer memory nodes and more GPU cores, in which case
Delegated Replies provides the highest performance benefits.
Overall, Delegated Replies offers substantial improvements
across the broad design space, even for configurations with
a relatively high ratio of memory nodes versus GPU cores.

VIII. CONCLUSION

Delegated Replies alleviates NoC clogging in heteroge-
neous architectures. More specifically, it transforms the
clogging-inducing many-to-few request pattern into a more
favorable many-to-many pattern by letting memory nodes
delegate the responsibility of replying to LLC hit requests to
the accelerator core that last accessed the requested cache line
and hence typically has the data available in its local cache.
On heterogeneous CPU-GPU workloads, Delegated Replies
effectively alleviates clogging and thereby improves GPU
performance by 25.8% on average, and up 67.9%, compared
to our carefully designed baseline. For the workloads with
significant network clogging, Delegated Replies improves
CPU performance by 8.8% on average, and up to 19.8%.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments. This work was supported in part by the European
Research Council (ERC) Advanced Grant agreement no.
741097, FWO project G.0144.17N, and NSFC under Grant
no. 62102438. Magnus Jahre is supported by the Research
Council of Norway (Grant no. 286596).

REFERENCES

[1] T. M. Aamodt, W. W. L. Fung, and T. G. Rogers, General-
Purpose Graphics Processor Architectures. Morgan &
Claypool Publishers, 2018.

[2] D. Abts, S. Scott, and D. J. Lilja, “So many states, so
little time: Verifying memory coherence in the Cray X1,”
in Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), 2003.

[3] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and
M. H. Lipasti, “Achieving predictable performance through
better memory controller placement in many-core CMPs,” in
Proceedings of the International Symposium on Computer
Architecture (ISCA), 2009.

[4] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato, “Owner
Prediction for Accelerating Cache-to-Cache Transfer Misses in
a cc-NUMA Architecture,” in Proceedings of the International
Conference on Supercomputing (SC), November 2002, pp. 49–
49.

[5] AMD. (2013) AMD64 Architecture Programmer’s
Manual Volume 2: System Programming. https:
//web.archive.org/web/20170619232736/http://developer.
amd.com/wordpress/media/2012/10/24593 APM v21.pdf.

[6] AMD. (2019) AMD Ryzen 3 3200G with Radeon Vega 8
Graphics. https://www.amd.com/en/products/apu/amd-ryzen-
3-3200g.

[7] Apple. (2020) Apple M1. https://www.apple.com/mac/m1/.

[8] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi,
O. Villa, A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-
GPU: Multi-Chip-Module GPUs for Continued Performance
Scalability,” in Proceedings of the International Symposium
on Computer Architecture (ISCA), June 2017, pp. 320–332.

[9] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-Effective
On-Chip Networks for Manycore Accelerators,” in Proceed-
ings of the International Symposium on Microarchitecture
(MICRO), December 2010, pp. 421–432.

[10] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU
simulator,” in Proceeding of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), April
2009, pp. 163–174.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions,” in Proceedings of International Conference on Parallel
Architectures and Compilation Techniques (PACT), October
2008, pp. 72–81.

[12] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC:
QoS architecture and design process for network on chip,”
Journal of Systems Architecture, vol. 50, no. 2-3, pp. 105–128,
2004.

[13] J. Cantin, J. Smith, M. Lipasti, A. Moshovos, and B. Falsafi,
“Coarse-grain coherence tracking: RegionScout and Region
Coherence Arrays,” IEEE Micro, vol. 26, no. 1, pp. 70–79,
2006.

[14] CCIX Consortium. (2019) An Introduction to CCIX.
https://www.ccixconsortium.com/wp-content/uploads/2019/
11/CCIX-White-Paper-Rev111219.pdf.

[15] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron, “Rodinia: A Benchmark Suite for Het-
erogeneous Computing,” in Proceedings of the International
Symposium on Workload Characterization (IISWC), October
2009, pp. 44–54.

[16] CXL Consortium. (2019) Compute Express Link: The
Breakthrough CPU-to-Device Interconnect. https://www.
computeexpresslink.org/.

[17] W. Dally and B. Towles, Principles and Practices of Inter-
connection Networks. Morgan Kaufmann Publishers Inc.,
2003.

[18] W. J. Dally and H. Aoki, “Deadlock-Free Adaptive Routing
in Multicomputer Networks Using Virtual Channels,” IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 4,
pp. 466–475, April 1993.

[19] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific
hardware accelerators,” Communications of the ACM, vol. 63,
no. 7, pp. 48–57, 2020.

[20] B. K. Daya, C. H. O. Chen, S. Subramanian, W. C. Kwon,
S. Park, T. Krishna, J. Holt, A. P. Chandrakasan, and L. S. Peh,
“SCORPIO: A 36-core research chip demonstrating snoopy
coherence on a scalable mesh NoC with in-network ordering,”
in Proceedings of the International Symposium on Computer
Architecture (ISCA), June 2014, pp. 25–36.

[21] J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-
Generation Intel Core: New Microarchitecture Code-Named
Skylake,” IEEE Micro, vol. 37, no. 2, pp. 52–62, March 2017.

https://web.archive.org/web/20170619232736/http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
https://web.archive.org/web/20170619232736/http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
https://web.archive.org/web/20170619232736/http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
https://www.amd.com/en/products/apu/amd-ryzen-3-3200g
https://www.amd.com/en/products/apu/amd-ryzen-3-3200g
https://www.apple.com/mac/m1/
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/

[22] B. Fu and J. Kim, “Footprint: Regulating Routing Adaptiveness
in Networks-on-Chip,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), June 2017, pp.
691–702.

[23] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx
adaptive compute acceleration platform: Versal architecture,”
in Proceedings of the International Symposium on Field-
Programmable Gate Arrays (FPGA), 2019.

[24] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and
W.-m. W. Hwu, “An Asymmetric Distributed Shared Memory
Model for Heterogeneous Parallel Systems,” in Proceedings
of the International Symposium on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
Month 2010, pp. 347–358.

[25] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and
J. Cavazos, “Auto-tuning a High-Level Language Targeted to
GPU Codes,” in Innovative Parallel Computing (InPar), May
2012, pp. 1–10.

[26] J. Hestness, B. Grot, and S. W. Keckler, “Netrace: Dependency-
driven Trace-based Network-on-chip Simulation,” in Proceed-
ings of the Third International Workshop on Network on Chip
Architectures (NoCArc), December 2010, pp. 31–36.

[27] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar,
“A 5-GHz Mesh Interconnect for a Teraflops Processor,” IEEE
Micro, vol. 27, no. 5, pp. 51–61, 2007.

[28] H. H. Hum and J. R. Goodman, “Forward State for Use in
Cache Coherency in a Multiprocessor System,” July 2005, US
Patent 6922756.

[29] M. A. Ibrahim, O. Kayiran, Y. Eckert, G. H. Loh, and
A. Jog, “Analyzing and leveraging shared L1 caches in GPUs,”
in Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2020, pp.
161–173.

[30] M. A. Ibrahim, O. Kayiran, Y. Eckert, G. H. Loh, and A. Jog,
“Analyzing and leveraging decoupled L1 caches in GPUs,”
in Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), 2021.

[31] M. A. Ibrahim, H. Liu, O. Kayiran, and A. Jog, “Analyz-
ing and Leveraging Remote-Core Bandwidth for Enhanced
Performance in GPUs,” in Proceedings of the International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT), September 2019, pp. 258–271.

[32] H. Jang, J. Kim, P. Gratz, K. Yum, and E. Kim, “A Bandwidth
Efficient On-Chip Interconnects Design for GPGPUs,” in
Proceedings of the Design Automation Conference (DAC),
June 2015, pp. 1–6.

[33] H. Jang, J. Kim, P. Gratz, K. H. Yum, and E. J. Kim,
“Bandwidth-efficient On-chip Interconnect Designs for GPG-
PUs,” in Proceedings of the Design Automation Conference
(DAC), June 2015, pp. 9:1–9:6.

[34] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-
aware memory controller for dynamically balancing GPU and
CPU bandwidth use in an MPSoC,” in Proceedings of the
Design Automation Conference (DAC), Jun. 2012, pp. 850–
855.

[35] N. E. Jerger, T. Krishna, and L. Peh, On-Chip Networks:
Second Edition. Morgan & Claypool Publishers, 2017.

[36] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally,
G. Michelogiannakis, and J. Kim, “A Detailed and Flexible
Cycle-Accurate Network-on-Chip Simulator,” in Proceedings
of the International Symposium on Performance Analysis of
Systems and Software (ISPASS), April 2013, pp. 86–96.

[37] K. Jin, C. Li, D. Dong, and B. Fu, “HARE: History-Aware
Adaptive Routing Algorithm for Endpoint Congestion in
Networks-on-Chip,” International Journal of Parallel Pro-
gramming, vol. 47, no. 3, pp. 433–450, 2019.

[38] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun,
M. T. Kandemir, G. H. Loh, O. Mutlu, and C. R. Das,
“Managing GPU Concurrency in Heterogeneous Architectures,”
in Proceedings of the International Symposium on Microar-
chitecture (MICRO), December 2014, pp. 114–126.

[39] M. Khairy, V. Nikiforov, D. Nellans, and T. G. Rogers,
“Locality-centric data and threadblock management for massive
GPUs,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 2020.

[40] H. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Providing
Cost-effective On-Chip Network Bandwidth in GPGPUs,” in
Proceedings of the International Conference on Computer
Design (ICCD), September 2012, pp. 407–412.

[41] J. Kim, J. Balfour, and W. Dally, “Flattened Butterfly Topology
for On-Chip Networks,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), December 2007,
pp. 172–182.

[42] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-Driven,
Highly-Scalable Dragonfly Topology,” in Proceedings of the
International Symposium on Computer Architecture (ISCA),
June 2008, pp. 77–88.

[43] Y. Liu, X. Zhao, M. Jahre, Z. Wang, X. Wang, Y. Luo, and
L. Eeckhout, “Get Out of the Valley: Power-Efficient Address
Mapping for GPUs,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), June 2018, pp.
166–179.

[44] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi,
A. Jaleel, A. Ramirez, and D. Nellans, “Beyond the Socket:
NUMA-aware GPUs,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), October 2017, pp.
123–135.

[45] Ming Li, Qing-An Zeng, and Wen-Ben Jone, “DyXY - A
Proximity Congestion-Aware Deadlock-Free Dynamic Routing
Method for Network on Chip,” in Proceedings of the 43rd
ACM/IEEE Design Automation Conference (DAC), 2006, pp.
849–852.

[46] A. Mirhosseini, M. Sadrosadati, B. Soltani, H. Sarbazi-Azad,
and T. F. Wenisch, “BiNoCHS: Bimodal Network-on-Chip
for CPU-GPU Heterogeneous Systems,” in Proceedings of
the International Symposium on Networks-on-Chip (NOCS),
October 2017, pp. 7:1–7:8.

[47] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“Cacti 6.0: A tool to model large caches,” HP laboratories,
vol. 27, p. 28, 2009.

[48] NVIDIA. (2019) Tegra processors. https://www.nvidia.com/
object/tegra-x1-processor.html.

[49] NVIDIA CUDA SDK Code Samples. https://developer.nvidia.
com/cuda-downloads. NVIDIA Corporation.

[50] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D.
Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous System
Coherence for Integrated CPU-GPU systems,” in Proceedings
of the International Symposium on Microarchitecture (MICRO),
December 2013, pp. 457–467.

[51] P. Rogers, “Heterogeneous system architecture overview,” in
Proceedings of the Symposium on High Performance Chips
(HOTCHIPS), August 2013, pp. 1–41.

[52] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-
conscious Wavefront Scheduling,” in Proceedings of the
International Symposium on Microarchitecture (MICRO),
December 2012, pp. 72–83.

[53] A. Ros and S. Kaxiras, “Complexity-effective multicore
coherence,” in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques (PACT),
2012, pp. 241–252.

[54] C. Sun, C. H. O. Chen, G. Kurian, L. Wei, J. Miller,
A. Agarwal, L. S. Peh, and V. Stojanovic, “DSENT - A Tool
Connecting Emerging Photonics with Electronics for Opto-
Electronic Networks-on-Chip Modeling,” in Proc. of the Int.
Symp. on Networks-on-Chip (NOCS), May 2012, pp. 201–210.

[55] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. J. Schulte, M. Ig-
natowski, B. M. Beckmann, W. C. Brantley, J. L. Greathouse,
W. Huang, A. Karunanithi, O. Kayiran, M. Meswani, I. Paul,
M. Poremba, S. Raasch, S. K. Reinhardt, G. Sadowski, and
V. Sridharan, “Design and Analysis of an APU for Exascale
Computing,” in Proc. of the Int. Symp. on High Performance
Computer Architecture (HPCA), 2017, pp. 85–96.

[56] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100
GPU Architecture,” IEEE Micro, vol. 31, no. 2, pp. 50–59,
March 2011.

[57] J. Yin, Z. Lin, O. Kayiran, M. Poremba, M. Shoaib Bin
Altaf, N. Enright Jerger, and G. H. Loh, “Modular Routing
Design for Chiplet-Based Systems,” in Proceedings of the
International Symposium on Computer Architecture (ISCA),
June 2018, pp. 726–738.

[58] L. Yunfan and C. Lizhong, “EquiNox: Equivalent NoC
Injection Routers for Silicon Interposer-based Throughput
Processors,” in Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA), February
2020, pp. 203–214.

[59] J. Zhan, O. Kayıran, G. H. Loh, C. R. Das, and Y. Xie,
“OSCAR: Orchestrating STT-RAM cache traffic for heteroge-
neous CPU-GPU architectures,” in Proc. of the Int. Symp. on
Microarchitecture (MICRO), October 2016, pp. 1–13.

[60] X. Zhao, A. Adileh, Z. Yu, Z. Wang, A. Jaleel, and L. Eeck-
hout, “Adaptive Memory-Side Last-Level GPU Caching,” in
Proceedings of the International Symposium on Computer
Architecture (ISCA), June 2019, pp. 307–319.

[61] X. Zhao, M. Jahre, and L. Eeckhout, “Selective replication
in memory-side GPU caches,” in Proc. of the Int. Symp. on
Microarchitecture (MICRO), 2020, pp. 967–980.

https://www.nvidia.com/object/tegra-x1-processor.html
https://www.nvidia.com/object/tegra-x1-processor.html
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

	Introduction
	Explaining Delegated Replies
	Evaluating Prior Approaches
	Cache-Centric Approaches
	NoC-Centric Approaches

	Implementing Delegated Replies
	Chip Layout and Routing
	Experimental Setup
	Evaluation
	Conclusion
	References

