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Abstract—The continuously increasing GPU system scale
and compute capabilities, i.e., increasing number of streaming
multiprocessors (SMs), caches, on-chip and off-chip memory
bandwidth, pose a major challenge for performance evaluation
methodologies. Architectural simulation is time-consuming and
resource-intensive, and because of simulator and/or simulation
host infrastructure limitations, it might not even be possible to
simulate large-scale systems. Scale-model simulation is a recently
proposed performance prediction methodology to predict large-
scale system performance based on (much smaller) scale models.
Prior work in scale-model simulation for general-purpose multi-
core CPUs and specialized graph analytics accelerators, unfortu-
nately, cannot be readily applied to GPUs because different GPU
applications exhibit vastly different scaling behavior with system
size, thereby breaking the one-size-fits-all regression models
deployed in prior work.

This paper proposes a GPU scale-model simulation method-
ology that leverages performance measurements of two scale
models alongside a miss rate curve to predict GPU target system
performance. A key asset of GPU scale-model simulation is
that it does not require access to a simulation model of the
target system, unlike prior work in simulation acceleration.
Our experimental evaluation demonstrates the accuracy of GPU
scale-model simulation for both strong-scaling and weak-scaling
workload scenarios. Under strong scaling, the performance of a
128-SM target system is predicted within 4% error on average,
and at most 17%, using 8-SM and 16-SM scale models. Under
weak scaling, the performance of a 128-SM target system is
estimated with an average error of 1.7%, and at most 4.5%,
while yielding a 9.3× simulation time speedup. We furthermore
demonstrate how scale-model simulation predicts multi-chiplet
GPU performance with an average error of 2.5% (and at most
4.3%). Alternate solutions are substantially less accurate.

I. INTRODUCTION

Graphics Processing Units (GPUs) are widely deployed
hardware accelerators. Not only are GPUs used for traditional
graphics workloads, general programming interfaces such as
CUDA and OpenCL have paved the way for using GPUs to ac-
celerate general-purpose computing. So-called GPU-compute
workloads have consequently emerged from a wide variety
of application domains, ranging from high-performance com-
puting (HPC) [4, 17, 43], graph analytics [5, 61], Artificial
Intelligence (AI) and Machine Learning (ML) [41, 50, 51].
Today, many application domains critically depend on GPU
performance and its scaling.

GPU compute capabilities have exponentially increased over
the past few years. We have seen a dramatic increase in
the number of compute cores, or Streaming Multiproces-
sors (SMs) in Nvidia terminology. To feed the increasing
number of SMs with data at a fast enough pace, on-chip
caches have increased as well as off-chip memory bandwidth.
For example, whereas Nvidia’s Fermi GPU first released in

2010 featured 16 SMs, a 768 KB last-level cache (LLC) and
192 GB/s memory bandwidth, Nvidia’s latest Hopper H100
GPU released in 2022 features 144 SMs, a 60 MB LLC and
3 TB/s memory bandwidth [1]. To scale GPU performance in
the wake of Moore’s Law slowing down, multiple GPU chips
are being integrated into multi-GPU systems with a high-
bandwidth interconnection network, e.g., Nvidia’s NVLink
and NVSwitch [24, 26, 33], or even using interposer-based
interconnects [7].

Increased GPU system scale and compute capabilities pose
a major challenge to performance analysis and evaluation
methodologies. Although significant progress has been made
in analytical performance modeling for GPUs, see for exam-
ple [29, 30, 31, 42, 60], architectural simulation is and remains
the most widely used performance evaluation methodology at
early stages of the design cycle [9, 39, 56, 58]. Simulating
increasingly large system sizes with realistic workloads in
reasonable time budgets is challenging, up to the point that
it becomes impractical or even infeasible to simulate some of
the high-end next-generation system configurations at cycle-
level detail [58]. Not only is architecture simulation extremely
time-consuming, it also takes up considerable resources and
hence comes at a considerable cost, i.e., server farms need
to procured, maintained, and powered on for long periods
of time to support the many simulations that need to be
conducted during architecture exploration. Moreover, because
of simulator and/or simulation host limitations, it might not
even be possible to simulate some of the largest system
configurations.

Architectural simulation acceleration is obviously not a
new topic. The most widely used techniques to speed up
architecture simulation are to sample a workload’s execu-
tion [8, 15, 16, 22, 32, 36, 40, 52, 53, 54, 57, 62, 63], consider
reduced inputs [21, 34, 64], or employ FPGA-accelerated
simulation [14, 18, 19, 37, 59]. All prior work in simulation
acceleration implicitly assumes access to a simulation model
of the target system, which might not be available, and if
available, might have taken considerable time and effort to
develop, and be extremely slow and resource-intensive to use.

Scale-model simulation was recently proposed as an alter-
native solution to the architectural simulation challenge [45].
Scale-model simulation’s key benefit is that it does not require
access to the target system’s simulation model; furthermore,
scale-model simulation is fast and does not involve many hours
of simulation on costly server farms. The idea of scale-model
simulation is (1) to construct a scaled-down version of the
(much) larger target system, called the scale model; (2) to
simulate the scale model to obtain its performance profile;



and (3) to extrapolate the scale model’s performance profile
to predict performance of the target system. By doing so,
scale-model simulation does not require simulating the target
system, saving considerable time and effort, and in some cases
even circumventing the problem that the simulation model for
the large target system is not available.

This paper proposes a scale-model simulation methodology
for GPUs, in contrast to prior work which focused on scale
models for general-purpose multi-core CPUs [45, 46] and
specialized graph accelerators [25]. What makes GPU scale-
model simulation challenging is that different workloads scale
differently with system size: while some workloads scale
linearly, others scale sub-linearly, or even super-linearly. As
a result, the one-size-fits-all regression approach from prior
work leads to inaccurate performance prediction. Instead, the
GPU scale-model simulation methodology proposed in this
work assumes two inputs: (1) performance profiles for at least
two scale models, and (2) miss curves that quantify the number
of LLC misses per thousand instructions as a function of
cache size. Using the performance profiles of the scale models,
alongside the miss curves allows for accurately predicting
GPU target system performance.

Our experimental evaluation covering a wide range of
GPU-compute workloads clearly demonstrates the accuracy
and effectiveness of GPU scale-down simulation for both
weak-scaling and strong-scaling workload scenarios. Under
strong scaling, using scale models with 8 and 16 SMs (with
commensurate LLC capacity, NoC and memory bandwidth),
GPU scale-down simulation predicts performance for 64- and
128-SM target configurations with an average error of 3.5%
(13% max error) and 4% (17% max error), respectively. In
comparison, a naive approach that assumes that performance
increases proportionally with system size leads to an average
error of 22% (and up to 113%); similarly, linear and power-
law regression yields average errors of 17% and 12% (and
up to 68% and 55%), respectively. Under weak scaling, GPU
scale-model simulation predicts 128-SM target system perfor-
mance with an average error of 1.7% (maximum 4.5% error)
while at the same time yielding a 9.3× simulation speedup.
Furthermore, we demonstrate how scale-model simulation can
accurately predict multi-chiplet GPU performance: using scale
models with 4 and 8 chiplets, scale-model simulation predicts
16-chiplet performance with an average error of 2.5% (and
at most 4.5%). The overall conclusion is that scale-model
simulation is a novel and useful complement to the GPU
architect’s and performance analyst’s toolbox.

II. PRIOR WORK IN SCALE-MODEL SIMULATION

Scale models are widely used in various engineering dis-
ciplines, including civil engineering, mechanical engineering,
construction, architecture, etc. Miniatures are often used scale
models to study (much) larger target systems. A critical
property of a scale model hence is that its key properties
and characteristics are the same (or at least similar) as in
the target system. For a scale model to be useful, this needs
to be true along a number of important dimensions, but not

necessarily all. As such, one can use the scale models to study
the behavior of a large target system using a much smaller and
better manageable scale model.

As mentioned in the introduction, scale models were just
recently introduced in the field of computer architecture for
general-purpose multi-core CPUs [45, 46] and specialized
graph accelerators [25]. These scale models are not exact
miniatures of the target system though, but at least some of
the dimensions are scaled down such that the scale models are
predictive for the larger target system. In particular, prior work
found that the shared hardware resources are best proportion-
ally scaled in the scale models compared to the target system.
This means that when scaling the number of cores in a multi-
core system for example, shared cache capacity, the on-chip
interconnection network bandwidth, and the off-chip memory
bandwidth should be scaled proportionally. For example, if the
scale model features a factor F fewer cores than the target
system, the shared LLC, the interconnection network, and
memory bandwidth should be scaled down by a factor of F as
well, so that the performance impact of the shared resources is
(somewhat) similar in the scale model compared to the target
system, relatively speaking. A component that does not change
when scaling system size, e.g., a core’s internal organization,
is kept unchanged in the scale models versus the target system.

Because a scale model does not precisely capture the
interference in the shared resources as observed in the tar-
get system, extrapolation is needed to further fine-tune and
improve the scale model’s predictive power. Indeed, interac-
tions in shared resources could be beneficial (i.e., positive
interference) or detrimental (i.e., negative interference) to
performance, which may manifest themselves only at scale in
the target system. Prior work [45, 46] used machine learning
and regression techniques for scale-model extrapolation. In
particular, a machine learning model is first trained using a
set of benchmarks, and a regression model is then fit to the
training data to yield the final extrapolation model. For the
workload of interest, a number of scale models are simulated,
and their performance figures are then used as input to the
extrapolation model to predict target system performance.

The methodology proposed in prior work faces at least
three limitations. First, prior work focused on general-purpose
CPUs [46] and specialized graph accelerators [25], and can not
directly be applied to GPUs. Second, it relies on a training
phase that involves the simulation of various scale models
using a broad set of training benchmarks. Even though this is a
one-time cost, it can be time-consuming and hence impractical.
Moreover, the benchmarks used during training may not
necessarily be representative of the workload of interest for
which we want to predict target system performance. As a
result, scale-model extrapolation for a workload of interest
that vastly differs from the training benchmarks may lead
to inaccurate predictions. Third, prior work uses the same
regression model for all workloads of interest — logarithmic
regression was found to be more accurate than linear and
power-law regression for general-purpose multi-core CPUs
running multi-program workloads [46]. The problem is that



not all workloads follow a similar scaling trend, breaking the
one-size-fits-all regression approach in prior work. In fact,
we find that different GPU workloads exhibit vastly different
scaling behavior, i.e., some workloads scale linearly while
others scale sub-linearly or even super-linearly with system
size. As a result, a one-size-fits-all regression approach leads
to inaccurate performance predictions, as we demonstrate in
this work.

In conclusion, we need a GPU scale-model simulation
methodology that (1) does not rely on an elaborate training
phase — to mitigate the risk of being non-representative for
a workload of interest — and (2) does not rely on a general
regression model — to mitigate the risk of being unable to ac-
curately capture the specific trend for the workload of interest.
In contrast, we need a methodology that builds a per-workload
regression model that extrapolates GPU performance based
solely on the workload’s scale-model performance profile from
which performance is then extrapolated to the larger scale
target system. The GPU scale-down simulation methodology
proposed in this work achieves exactly this.

III. PROBLEM STATEMENT

Before presenting our GPU scale-model simulation method-
ology in detail, we first elaborate on the exact problem
statement that we address in this work. Recall that the end
goal of scale-model simulation is to predict performance of a
large target system based on scale-model simulation results.
The largest target system considered in this work is a 128-
SM GPU with a 34 MB LLC, 2.7 TB/s on-chip interconnec-
tion bisection bandwidth, and 2.3 TB/s memory bandwidth
interface. In addition, we also consider target systems with
32 and 64 SMs, and commensurate LLC capacity, on-chip
interconnection bandwidth, and memory bandwidth. The scale
models feature only 8 and 16 SMs. We further consider both
strong-scaling and weak-scaling workload scenarios. Strong
scaling assumes that the workload is fixed and independent
of system size. Hence, one can expect the execution time to
reduce with increasing system size. In contrast, under weak
scaling, the workload scales with system size: the larger the
system, the larger the problem size the workload runs.

The first challenge for scale-model simulation is how to con-
struct scale models such that they enable accurate performance
predictions for the larger target system(s). We follow prior
work [46] and scale the GPU’s shared resources proportionally
with system size. For example, a scale model with 16 SMs that
is supposed to be a miniature of a target system with 128 SMs
features an LLC with 1/8th the size of the target system’s LLC;
an on-chip interconnection network with 1/8th the bisection
bandwidth of the target system’s on-chip network; and an off-
chip memory interface with 1/8th the bandwidth of the target
system’s memory bandwidth. See Table I for how we derive
the scale models with 8 and 16 SMs from the largest target
system with 128 SMs through proportional resource scaling.

The second challenge is to predict target-system perfor-
mance based on the simulation results obtained for the scale
models, i.e., how to extrapolate scale-model performance

results to the target system, for example predict performance
for the 128-SM target system using the performance numbers
obtained for the 8-SM and 16-SM scale models. Under a
strong-scaling workload scenario, i.e., the workload remains
constant while scaling system size, this challenge is severely
complicated by the fact that performance scales differently
with system size for different types of workloads. This is
illustrated in Figure 1 which shows system performance (i.e.,
instructions per cycle or IPC) as a function of system size for
the 8-SM and 16-SM scale models, and the 32-SM, 64-SM,
and 128-SM target systems, for three benchmarks. These three
benchmarks exhibit the three fundamentally different scaling
behaviors as a function of system size. (We show only three
benchmarks due to space constraints; other benchmarks follow
similar trends.) While performance scales linearly for pf (right-
most graph), we observe sub-linear scaling for bfs (middle
graph), and super-linear scaling for dct (left-most graph). The
fact that different workloads scale differently calls for an
approach that differs from prior work [46] which assumed
a one-size-fits-all regression approach (namely, logarithmic
regression). It is clear from Figure 1 that different workloads
need a different regression strategy: the linear regression
model illustrates how far off real benchmark scaling deviates
from linear scaling.

A weak-scaling workload scenario, i.e., the workload scales
with system size, poses fewer challenges for scale-model ex-
trapolation than strong scaling. The reason is that under weak
scaling the workload’s input, and thus its working set, scales
proportionally with system size. While we observe super-
linear, sub-linear and linear scaling behavior under strong
scaling, as illustrated in Figure 1, we only notice linear and
sub-linear scaling under weak scaling. The fundamental reason
is that, under strong scaling, super-linear scaling behavior
occurs when the application’s memory footprint suddenly fits
within the on-chip caches as we increase system size from
the scale model(s) to the target system. This effect is absent
under weak scaling assuming that the memory footprint scales
linearly with system size (and its respective cache size); in
other words, the memory footprint remains constant in relative
terms, hence no super-linear scaling behavior occurs.

IV. SCALING BEHAVIOR

As mentioned in the previous section, workloads scale either
linearly, sub-linearly, or super-linearly. We now explain the
execution characteristics that result in the different scaling
behaviors. We find that scaling behavior strongly (inversely)
correlates with last-level cache behavior, see Figures 1 and 2.
In particular, the number of LLC misses per thousand instruc-
tions (MPKI) is a strong indicator for how performance is
affected by the shared resources, including the NoC, the LLC
and main memory. Indeed, MPKI is affected by (1) the number
of accesses to the LLC, i.e., indicating the number of transfers
over the NoC, (2) the LLC miss rate, i.e., indicating the impact
of LLC capacity, and (3) the number of memory accesses,
i.e., impacting main memory bandwidth. While all scaling
behaviors may occur under strong-scaling workload scenarios,



TABLE I: Scale models are derived from the target systems through proportional resource scaling: LLC capacity in MB (each
LLC slice is 64-way set-associative with 64 sets and 128 B cachelines); NoC bisection bandwidth in GB/s; main memory
bandwidth in GB/s: number of memory controllers (MCs) and bandwidth per MC.

#SMs LLC size and configuration NoC bisection BW Main memory bandwidth

Target systems 128 34 MB, 32 slices 2,696 GB/s 2,320 GB/s, 16 MCs, 145 GB/s per MC
64 17 MB, 16 slices 1,348 GB/s 1,160 GB/s, 8 MCs, 145 GB/s per MC
32 8.5 MB, 8 slices 674 GB/s 580 GB/s, 4 MCs, 145 GB/s per MC

Scale models 16 4.25 MB, 4 slices 358 GB/s 337 GB/s, 2 MCs, 145 GB/s per MC
8 2.125 MB, 2 slices 168.5 GB/s 145 GB/s, 1 MCs, 145 GB/s per MC

Fig. 1: Performance as a function of system size under a strong-scaling workload scenario. Different benchmarks scale differently
with system size: super-linear scaling (dct, left), sub-linear scaling (bfs, middle), and linear scaling (pf, right).

Fig. 2: Miss rate curves: misses per thousand instructions (MPKI) as a function of last-level cache (LLC) capacity, assuming
strong scaling. Different benchmarks exhibit differing miss rate curves: sharp decrease (dct, left), gradual decrease (bfs,
middle), and constant (pf, right).

only linear and sub-linear scaling occurs under weak scaling.
These observations underpin the design choices we made when
devising our proposed GPU scale-model simulation method.
We now discuss the three scaling behaviors: linear, super-linear
and sub-linear scaling, and how it is affected by and correlates
with LLC MPKI.

1) Linear Scaling: A compute-intensive workload typically
exhibits linear scaling behavior, i.e., performance scales lin-
early with system size. Indeed, performance of a compute-
intensive workload mostly depends on the available compute
resources (i.e., the number of SMs), while cache capacity,
on-chip network bandwidth, as well as off-chip memory
bandwidth have only minimal impact on performance, simply
because the workload does not stress those parts of the system.
As a result, as we scale system size, the performance of a
compute-intensive workload is expected to scale linearly with
performance.

Counter-intuitively perhaps, some memory-intensive work-
loads also scale linearly with system size. In particular, when
the footprint of the workload largely exceeds the available
cache capacity across the entire system scale, i.e., from the
smallest scale model to the largest target system of interest,

the footprint will never fit inside the available on-chip caches.
Hence, a (significant) fraction of L1 cache misses will need to
traverse the on-chip interconnection network to access the last-
level cache (LLC), and may need to go to off-chip memory
in case they miss in the LLC as well. The extent to which
performance depends on the memory subsystem hinges on
the memory access pattern by the workload as well as on the
available shared resources, i.e., on-chip cache capacity, NoC
bisection bandwidth, and off-chip memory bandwidth. In any
case, the shared resources scale proportionally with system
size — this was done deliberately so that the scale models
are predictive of the target systems. As a result, the relative
impact of the memory accesses remains constant irrespective
of system size. Overall performance hence scales linearly with
system size.

A benchmark that illustrates the linear scaling behavior is pf,
see Figure 1 (rightmost graph). This benchmark features a flat
miss rate curve, see Figure 2 (rightmost graph) which reports
the number of LLC misses per thousand instructions (MPKI)
as a function of system size. The flat miss rate curve indicates
that cache capacity has no measurable impact on the number of
misses. The reason is that pf’s footprint is quite large (404 MB,



see Table II). High data reuse leads to a relatively high and
constant MPKI, ultimately leading to linear scaling behavior.

2) Super-Linear Scaling: As mentioned before, super-linear
scaling may occur under a strong-scaling workload scenario.
In particular, a memory-intensive workload with a working
set that is somewhat comparable to the cache capacity of
the target system may witness super-linear scaling as system
size scales, especially when there is substantial data reuse.
While the working set may be too big to fit in the on-
chip cache for the scale models, it might fit the cache of
the target system. As a result, as soon as the working set
of an application with high data reuse fits inside the on-
chip cache, a significant performance boost can be observed.
This is illustrated in Figure 2 (leftmost graph) for the dct
benchmark: the miss rate curve shows a dramatic drop when
on-chip LLC capacity changes from 17 MB to 34 MB. This
can be explained by considering dct’s working set size of
33 MB, see Table II. This is an example of the cliff behavior
previously reported for CPU workloads [11, 12, 23] where
miss rate curves experience a sudden drop as the working
set fits in the available cache capacity. The cliff in the miss
rate curve leads to a commensurate increase in performance,
as illustrated in Figure 1 (leftmost graph). This explains the
super-linear scaling behavior.

Note that the size of the working set being smaller than
the on-chip LLC is a necessary condition but not a sufficient
condition for super-linear scaling behavior to occur. Indeed,
the working set needs to exhibit sufficient data reuse as well.
Take for instance the ht benchmark as an example. Its footprint
equals 12.5 MB, see Table II, which is smaller than the 17 MB
and 34 MB LLC for the 64-SM and 128-SM target systems.
However, because there is almost zero data reuse, no super-
linear scaling behavior is observed. Instead, we observe linear
scaling behavior, see the rightmost column in Table II for the
benchmarks’ classification.

Note that predicting super-linear scaling behavior is diffi-
cult, if not impossible, by simply looking at the performance
profile of the scale models. Indeed, the performance across
the two scale models for dct increases at a particular rate,
i.e., there is a 1.98× performance improvement comparing the
largest (16-SM) scale model versus the smallest (8-SM) scale
model. The performance increase observed when transitioning
across the cliff is much higher, i.e., performance increases
by more than 4× when comparing the 128-SM target system
against the 64-SM scale model. This sharp increase is impos-
sible to predict solely based on the scale-model performance
profile. The miss rate curve on the other hand provides a hint
that one may expect a significant performance boost when
transitioning across the cliff.

3) Sub-Linear Scaling: There are at least two mechanisms
that could lead to sub-linear performance scaling with system
size. The first mechanism relates to workload-architecture im-
balance under which the number of execution stalls increases
with system size. For example, if the workload is too small,
i.e., there are not enough CTAs to keep the SMs busy all
the time, the number of stall cycles is likely to increase with
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Fig. 3: GPU scale-model simulation workflow under strong
and weak scaling. The one-time cost involves collecting the
miss rate curve and scale-model performance numbers, after
which performance is predicted for the target system of inter-
est. (The miss rate curve is only needed under a strong-scaling
workload scenario, not under weak scaling.)

system size. In other words, the SMs can no longer fully
hide the execution latency of warps by executing other warps,
simply because there are not enough CTAs to select warps
from to execute.

The second mechanism that could lead to sub-linear scaling
is shared data congestion. CTAs executing on different SMs
accessing the same shared data around the same time, leads to
camping in front of the LLC slices [65, 66]. Indeed, the LLC
is a shared cache, i.e., all SMs can access all LLC slices, and a
cache line is stored in only one of the LLC slices — the LLC
slice where it is stored is determined by its address. Because of
the data sharing, more SMs will access the shared data around
the same time as we increase system size. This exacerbates the
camping problem, which could lead to sub-linear scaling.

The bfs benchmark (middle graph in Figure 1) is a work-
load that exhibits sub-linear scaling because of workload-
architecture imbalance. While the largest (16-SM) scale model
configuration is able to achieve a substantial 1.8× performance
improvement compared to the smallest (8-SM) scale model,
the improvement diminishes for the 64-SM target system
relative to the 32-SM scale model (1.55×), and for the 128-SM
target system relative to the 64-SM target system (1.43×).

V. SCALE-DOWN MODEL

We now present our GPU scale-model simulation method.
Figure 3 provides a high-level block diagram. The workflow
starts by collecting performance numbers for the scale models,
which involves simulating the workload of interest for the
scale-model configurations. This is required for both the strong
and weak-scaling workload scenarios. Strong scaling also
requires collecting the miss rate curve. This is a one-time cost
that can be amortized to predict the performance of various
target systems. The workload’s miss rate curve and scale-
model performance numbers are served as input to the scale-
model prediction tool, which then produces a performance



prediction for the target system. We now elaborate on the
various steps in this workflow.

A. Collecting Miss Rate Curves

The first step in the workflow, under the strong-scaling
workload scenario, is to compute the cache miss rate curve.
This curve, as previously illustrated in Figure 2, reports MPKI
as a function of LLC cache capacity. (Note we need to consider
LLC miss rate curves only because we scale the shared LLC
and not the SM-private L1 caches in the scale models.) The
data points included in the miss rate curve should be such
that they cover the cache capacity of the scale models as
well as the envisioned target systems. It is important to note
that these miss rate curves can be obtained efficiently, much
faster (at least two orders of magnitude faster) than detailed
architectural simulation. In fact, there is a long history of
highly efficient algorithms and implementations to collect and
compute miss rate curves. In particular, Conte et al. [20] pro-
pose a single-pass algorithm to compute miss rate curves for
fully-associative caches based on the stack distance or reuse
distance, which is defined as the number of unique memory
accesses between two accesses to the same memory location.
More recent work by Berg et al. [13] leverages interrupt-based
instrumentation and statistical modeling to collect miss rate
curves at low overhead. Eklöv et al. [23] approximate miss
rate curves using statistical techniques based on the number
of (non-unique) references between two accesses to the same
memory location, which is substantially faster to compute than
the number of unique accesses needed for the stack-distance
based approach.

While this body of prior work focused on miss rate curves
for CPU systems, only recently did researchers propose a
method to compute miss rate curves for GPUs. Collecting miss
rate curves is much more challenging for GPUs compared
to CPUs because of the large number of concurrent threads
and the impact the relative timing and interleaving of memory
accesses from the various threads have on the resulting miss
rate. In particular, Nugteren et al. [49] propose a method to
compute accurate miss rate curves based solely on a list of
memory addresses obtained through functional simulation. The
model takes into account the degree of thread-level parallelism
across warps and thread blocks running on the same or
different SMs, the effect warp and memory divergence has
on the interleaving of accesses, as well as uniform versus
non-uniform access latencies, cache associativity, etc. The end
result is a model that predicts cache miss rates within 6% to
8% compared to real hardware, while being 268× faster than
detailed architecture simulation.

B. Scale-Model Performance Profile

The second step in the workflow is to obtain the per-
formance profile for the scale-model configurations through
detailed architectural simulation — required under both strong
and weak scaling. This is done by configuring the number
of SMs, the shared LLC capacity, NoC bisection bandwidth,
and memory bandwidth in the detailed timing simulator such

that the scale models provide a performance profile that is
predictive of the envisioned target systems. As aforementioned
in Section II, we scale the shared resources proportionally
with the number of compute units (SMs). It is important to
note that collecting the scale-model performance profile is
fairly straightforward using existing simulator infrastructure.
The scale models are relatively small in size. By consequence,
the simulators and simulation hosts are powerful enough to
simulate these scale models with reasonable effort. Moreover,
simulating the scale models can typically be done within an
affordable time budget compared to simulating the much larger
target systems, if at all possible.

C. Target-System Performance Prediction

The miss rate curve and the scale-model performance profile
serve as input to the prediction model which forms the core of
the GPU scale-model simulation methodology. The prediction
model, in its most general form for a strong-scaling workload
scenario, considers three regions based on the miss rate curves:
the pre-cliff region, the cliff region, and the post-cliff region.
Under a weak-scaling scenario, the model considers only the
pre-cliff region — which is an oxymoron given there is no cliff
under weak scaling because the workload (and its working set)
scales proportionally with system size. The three regions are
easily defined based on the miss rate curves. The cliff, as
explained in Section IV, marks a disproportional drop in the
miss rate curve, i.e., the miss rate reduces by more than 2×
when doubling cache size and in some cases it even drops to
(near) zero as the workload’s footprint fits within the available
cache capacity. This implies that in the post-cliff region, the
majority of, or even all, misses are cold misses. Looking back
at the miss rate curves shown in Figure 2, the miss rate curves
are in the pre-cliff regions for bfs and pf. For dct on the other
hand, we can clearly identify a pre-cliff region up until 17 MB;
the cliff region is situated between 17 and 34 MB; the post-cliff
region is situated beyond 34 MB. While in theory there could
be multiple cliffs, as (parts of) the working sets progressively
fit within a particular cache level (first L2, then L1) when
scaling system size, we did not observe this behavior for our
workloads; we hence assume at most one cliff without loss of
generality. We now explain the prediction model in each of
these three regions.

1) Pre-Cliff Region: In the pre-cliff region, the miss rate
curve is evolving following a steady pace, by definition, i.e.,
there is no sudden drop in miss rate. This suggests that the
performance trend is likely to scale at a similarly steady pace
with system size. We leverage this insight to make a prediction
in the pre-cliff region. We denote IPCsm;S as the performance
number (IPC) for the smallest scale model of size S, and
IPCsm;L as the IPC for the largest scale model of size L. The
relative scale difference between the smallest and largest scale
model is hence equal to L/S. In this work, the smallest scale
model features 8 SMs, while the largest scale model features
16 SMs; the relative scale difference hence equals 2×.

Ideally, one would hope that the performance of the largest
scale model is L/S times the performance of the smallest



scale model. While this might be the case for a (purely)
compute-intensive workload, most workloads involve non-
trivial memory accesses and hence deviate from this ideal
scaling pattern. The performance of the largest scale model
might be lower than L/S times the performance of the smallest
scale model. Also, and surprisingly perhaps, the performance
of the largest scale model could also be higher than L/S times
the performance of the smallest scale model. We define the
deviation from ideal scaling using a correction factor Csm

measured as follows using the scale models:

Csm,L/S =
IPCsm,L/IPCsm,S

L/S
. (1)

A value higher than one, i.e., Csm > 1, means that perfor-
mance scales super-linearly, while a value lower than one, i.e.,
Csm < 1 means sub-linear scaling.

We predict performance of a target system of size T to be
equal to the performance of the largest scale model (IPCsm,L)
times the relative scale difference between the target system
and the largest scale model (T/L) times the correction factor
Csm,L/S obtained from the scale models:

IPCts,T = IPCsm,L × T

L
× Csm,L/S . (2)

This formula implicitly assumes that performance continues
to scale as it did for the smaller scale models.

2) Cliff Region: In the cliff region, the miss rate curve is
marked by a sudden drop. At cache sizes beyond the cliff, the
workload’s footprint resides in the cache and, by consequence,
there are very few cache misses apart from cold misses. As
a result, the workload will no longer be stalled waiting for
memory. The fraction of the execution time that was spent
waiting for memory at a small (pre-cliff) cache size is hence
eliminated for cache sizes beyond the cliff. The extent to
which this impacts performance depends on the relative impact
memory stalling has on overall performance. In other words,
the larger the memory stall fraction, the more significant the
performance impact of surpassing the cliff. We leverage this
insight in our prediction model.

We estimate performance of a target system of size T to be
equal to the performance of the largest scale model (IPCsm,L)
times the relative scale difference (T/L) times the inverse of
the fraction of time not stalled for memory on the largest scale
model:

IPCts,T = IPCsm,L × T

L
× 1

1− fmem;sm,L
. (3)

In this formula, fmem;sm,L is the fraction of time an SM in the
largest scale model is unable to fetch an instruction because
all available warps are waiting for data to come from memory,
i.e., it is computed as the ratio of the number of cycles that
no instructions were fetched due to a memory stall for all
warps divided by the total number of cycles. Dividing the ideal
performance (IPCsm,L×T/L) with the fraction of time that an
SM does not stall waiting for memory, provides a prediction
for the expected performance on the target system.

3) Post-Cliff Region: Note that the cliff region is interme-
diate, i.e., once beyond the cliff, the miss rate curve is (pretty
much) flat as we increase cache capacity further. The reason is
that the workload’s footprint fits inside the cache, and making
the cache bigger does not affect the miss rate. This implies
that the miss rate curve in the post-cliff region is constant or
follows a steady pace, similarly to what happens in the pre-
cliff region. We leverage this insight to estimate performance
beyond the cliff. In the post-cliff region, we follow the same
model as in the pre-cliff region except that we need to estimate
target system performance starting from the smallest system
in the post-cliff region, rather the largest scale model.

We hence estimate target system performance as follows:

IPCts,T = IPCs,K × T

K
× Csm,L/S . (4)

We first determine the performance of the smallest system
configuration of size K beyond the cliff (i.e., IPCs,K) times
the relative scale with the target system (i.e., T/K). We
subsequently correct this prediction by multiplying it with the
correction factor observed for the scale models (i.e., Csm,L/S).

D. Discussion
As with any other modeling or simulation approach [48], it

is important to understand scale-model simulation’s capabil-
ities and limitations. First, scale-model simulation builds on
the assumption that the scale models are proportionally scaled
down configurations of the target system. More precisely,
scale-model simulation assumes that (1) the private per-SM
resources (i.e., functional units, private L1 caches, scratch-
pad memory, etc.) are the same in the scale models as in the
target system; and (2) the resources that are shared across SMs
(i.e., LLC, on-chip network, main memory, and inter-chiplet
network if applicable) are proportionally scaled down in the
scale models relative to the target system. In other words,
the scale models are proportionally scaled down versions of
the target system while keeping the per-SM configuration
unchanged. In particular, if the scale model is a factor F times
smaller than the target system, this implies that the scale model
features F times fewer SMs, the LLC is F times smaller, the
interconnection network features F times less bandwidth, main
memory bandwidth is F times less. As the same time, the SMs
remain unchanged in the scale model compared to the target
system. This implies that the aggregate per-SM resources
scale proportionally with system size: the aggregate number
of functional units, the aggregate L1 cache size, the aggregate
scratch-pad memory size, etc. are a factor F times smaller in
the scale model compared to the target system. The proposed
scale-model simulation paradigm cannot be readily used when
the scale models’ SM configuration differs and/or when the
shared resources change disproportionally relative to the target
system. For example, if one were to predict performance for a
next-generation target system in which both the per-SM private
resources and the shared resources differ from the previous
generation, one would need to construct a scale model with
the same per-SM resources and proportionally scaled-down
shared resources as in the target system.



TABLE II: Benchmarks under strong scaling: CTA size for the different kernels, footprint (in MB), number of simulated
instructions (in millions), and scaling behavior.

Benchmark Name Abbr. CTA Size Footprint (MB) #Insns (M) Scaling Behavior

Discrete Cosine Transform [3] dct 2,304; 36,864; 512 33.0 10,270 super-linear
FastWalsh Transform [3] fwt 8,192; 4,096; 128 67.1 4,163 super-linear
Back Propagation [17] bp 8,192 18.8 424 super-linear
Vector Add [3] va 16,384 50.3 92 super-linear
Async [3] as 32,768 67.1 218 super-linear
LU decomposition [27] lu 16,384 16.8 146 super-linear
Stencil [55] st 2,096 131.9 557 super-linear
Breadth-First Search [17] bfs 1,024 20.4 257 sub-linear
3D-unet [51] unet from 128 to 21,846 615.0 20,071 sub-linear
Sradv2 [17] sr 4,096 25.2 661 sub-linear
Gradient [3] gr 4,096; 816; 1,536; 2,048 46.1 318 sub-linear
B+trees [17] btree 6,000; 10,000 17.4 670 sub-linear
Path Finder [17] pf 4,630 404.1 4,037 linear
Resnet50 [51] res50 from 64 to 66,904 1388.1 85,067 linear
SSD-Resnet34 [51] res34 from 32 to 306,383 845.8 47,369 linear
HotSpot [17] ht 7,396 12.5 421 linear
Aligned Types [3] at 2,048 100.0 2,150 linear
Matrix-multiply C=alpha.A.B+beta.C [27] gemm 4,096 12.6 7,030 linear
2 Matrix Multiplications [27] 2mm 8,192 21.0 12,921 linear
Lattice-Boltzmann Method [55] lbm 18,000 359.4 553 linear
Black Scholes [3] bs 15,625 80.1 863 linear

TABLE III: Baseline 128-SM target system.
Parameter Value

SM clock frequency 1.0 GHz
No. threads per SM 48 warps/SM, 32 threads/warp, 1,536 threads/SM
CTA scheduling Round-robin
Warp scheduling Greedy-Then-Oldest (GTO)
L1 cache per SM 48 KB, 6-way, LRU, 384 MSHRs
LLC 34 MB total, 64 slices, 64-way per slice
DRAM bandwidth 2.3 TB/s
NoC Crossbar, 2.7 TB/s

Second, scale-model simulation is conceived to perform
well for a broad set of representative workloads and system
configurations. In particular, in this work, we consider a
variety of workloads that exhibit linearly, super-linearly and
sub-linearly scaling behavior on a typical modern-day GPU
architecture. Some of the super-linear scaling benchmarks
exhibit a performance cliff as previously mentioned, namely
dct and fwt. While a workload may potentially exhibit multiple
cliffs, as different sets of the data set progressively fit inside
the various cache levels, we observe only a single cliff for our
workloads and system configuration. Presumably, the reason
is that there is only a single shared cache level (L2) in
our system setup — this is in line with modern-day GPUs
in which the L2 cache is the last-level cache shared by
all SMs, see for example Nvidia’s Hopper H100 GPU [1].
Extending scale-model simulation to support workloads and
system configurations with multiple cliffs is left for future
work but could possibly be accounted for by estimating how
each cliff individually affects the respective memory stall
fraction. For example, in a system configuration with three
cache levels in which L2 and L3 are shared, the cliffs around
the L2 and L3 capacities will drastically reduce the respective
stall components which can be modeled similarly to what is
described above for a single cliff. More generally, evaluating

(and possibly extending) scale-model simulation for an even
broader set of workloads and system configurations is an
interesting avenue for future work.

VI. EXPERIMENTAL SETUP

1) Workloads: The benchmarks we use in this work are
taken from a variety of benchmark suites, including Ro-
dinia [17], Polybench [27], Parboil [55], and CUDA SDK [3].
We also include workloads from the MLPerf Inference suite [2,
51], for which we use the Sieve sampling methodology [47] to
identify representative kernel invocations. We make a distinc-
tion between strong versus weak scaling, see Tables II and IV,
respectively, which report the benchmarks’ CTA size, footprint
(in MB), number of dynamically executed instructions (in
millions), input data set, and scaling behavior. The set of
benchmarks is diverse enough to include benchmarks with
varying scaling behavior (sub-linear, linear, and super-linear),
see the rightmost column in the respective tables. Note further
that the weak-scaling workloads are a subset of the strong-
scaling workloads: the reason is that to support weak scaling,
the workloads’ inputs need to be scalable, which is only
possible for a subset of the workloads.

2) Simulator: We evaluate the proposed GPU scale-model
simulation methodology through detailed architectural sim-
ulation using the Accel-Sim simulation infrastructure [39].
Simulation provides the flexibility to configure scale models
that are proportionally scaled down versions of the target
system. The largest target system considered in this work
is a 128-SM GPU with a 34 MB LLC, a crossbar NoC
with 2.7 TB/s bisection bandwidth, and a 2.3 TB/s memory
interface. Table III provides details about the other system
configuration parameters. The smaller 32-SM and 64-SM tar-
get systems, as well as the 8-SM and 16-SM scale models, are
proportionally scaled-down versions of the 128-SM baseline



as previously reported in Table I. We obtained per-benchmark
miss rate curves using Accel-Sim.

VII. EVALUATION

We now evaluate our proposed GPU scale-model simulation
methodology. As mentioned before, we consider two scale
models, the 8- and 16-SM configurations, to predict the 128-
SM and 64-SM target systems. We compare our GPU scale-
model simulation method against four other scaling models:

• Proportional scaling assumes that the performance
achieved on a target system is S× the performance of
the scale model that is S× smaller. For example, the
performance of a 128-SM target system is assumed to
be 8× as high as the performance of the 16-SM scale
model.

• Linear regression assumes that performance scales lin-
early based on the scale models. A linear regression
model (i.e., y = a · x + b) is built based on the scale
models, which is then used to predict performance for
the target systems.

• Power-law regression assumes power-law performance
scaling (i.e., y = a · xb) with system size.

• Logarithmic regression assumes logarithmic perfor-
mance scaling (i.e., y = a · logb(x)) based on the
scale models. Although logarithmic regression performs
poorly compared to the other regression techniques, as
we will see in the evaluation, we include it here because
this is what prior work proposed for CPU scale-model
extrapolation [46].

A. Prediction Accuracy: Strong Scaling

Figure 4 reports the prediction error for our proposed GPU
scale-model simulation method assuming a strong-scaling
workload scenario for (a) the 128-SM target system and (b)
the 64-SM target system, compared to proportional scaling and
the various regression approaches. The overall conclusion is
that scale-model simulation is substantially more accurate. In
particular, for the 128-SM target system, the average error for
scale-model simulation equals 4% and at most 17%. In con-
trast, the other approaches are (much) less accurate. Logarith-
mic regression is the least accurate approach with an average
error of 69% and up to 86%. Proportional scaling achieves a
lower 22% average prediction error, but the maximum error
goes up to 113%. Linear regression achieves a 17% average
prediction error, and up to 68%. As expected, proportional
scaling and linear regression achieve good accuracy for the
linearly scaling benchmarks, while being largely inaccurate
for the super-linearly scaling workloads (e.g., dct and fwt)
and the sub-linearly scaling workloads (e.g., bfs). Power-law
regression is the most accurate of the regression techniques
with an average prediction error of 12% and up to 55%. Power-
law regression is accurate for the linearly scaling benchmarks,
somewhat accurate for the sub-linearly scaling benchmarks
(except for bfs), but inaccurate for several super-linearly
scaling benchmarks (e.g., dct and fwt). These results confirm
that a one-size-fits-all regression strategy is inaccurate. Our

proposed GPU scale-model prediction method, which provides
a per-workload prediction, is the most accurate approach.

We observe similar results for the 64-SM target system.
Scale-model simulation is the most accurate approach with an
average prediction error of 3.5% (and at most 13%), substan-
tially outperforming proportional scaling and the regression
approaches. The average error equals 48%, 10%, 6%, and
4% for logarithmic regression, proportional scaling, linear
regression, and power-law regression, and max errors of 55%,
52%, 23%, and 13%, respectively.

B. Benchmark Behavior under Strong Scaling

Figure 5 visualizes performance for a subset of the bench-
marks as a function of system size, again assuming strong
scaling. In addition to the real performance curves and the
performance curves as predicted with our proposed scale-
model simulation method, we also report the predicted perfor-
mance curves for the two most accurate regression approaches,
namely linear regression and power-law regression, as well as
proportional scaling. It is interesting to discuss the different
categories of workloads based on their scaling behavior. Note
that the top row in Figure 5 shows super-linearly scaling work-
loads; the middle row shows sub-linearly scaling workloads;
and the bottom row shows linearly scaling workloads.

1) Super-Linearly Scaling Workloads: Proportional scaling
and the various regression techniques are (fundamentally) un-
able to predict the super-linear scaling behavior. Our proposed
scale-model simulation method on the other hand accurately
predicts the super-linear scaling behavior because it is able
to anticipate when the active working set starts fitting in the
on-chip caches as we scale system size (i.e., the cliff region).

2) Sub-Linearly Scaling Workloads: The proportional-
scaling prediction technique is overly optimistic in predicting
target system performance. Linear regression is somewhat
more accurate, but is still unable (fundamentally so) to predict
the sub-linear scaling trend. Power-law regression beats linear
regression, but is still not as accurate as our proposed GPU
scale-model simulation method.

3) Linearly Scaling Workloads: As expected, all methods
accurately predict the performance trend of linearly-scaling
workloads, even power-law regression. As expected, propor-
tional scaling and linear regression are accurate, and so is
scale-model simulation.

C. Prediction Accuracy: Weak Scaling

Predicting target-system performance under weak scaling is
somewhat easier than under strong scaling. Indeed, as reported
in Figure 6, the different prediction techniques achieve higher
accuracy. Nevertheless, scale-model simulation still is the most
accurate approach among all, with an average error of 1.7%
(and max error of 4.5%) for the 128-SM target system, versus
67%, 7%, 5.2%, and 3.6% average error (and 70%, 18%, 12%,
and 9% max error) for logarithmic regression, proportional
scaling, linear regression and power-law regression, respec-
tively. The highest errors are observed for bfs and bs, which



(a) 128-SM target system

(b) 64-SM target system

Fig. 4: IPC prediction error under strong scaling for (a) the 128-SM target system and (b) the 64-SM target system. The
proposed GPU scale-model simulation method is substantially more accurate than proportional scaling and regression.

Fig. 5: Performance for select benchmarks as a function of system size assuming strong scaling: super-linearly scaling
workloads (top row), sub-linearly scaling workloads (middle row), and linearly scaling workloads (bottom row). GPU scale-
model simulation tracks the real scaling trend accurately in contrast to proportional scaling, linear regression and power-law
regression across different workload types with linear, sub-linear, and super-linear scaling behavior.



Fig. 6: IPC prediction error under weak scaling for the 32-SM, 64-SM, and 128-SM target systems. The proposed GPU scale-
model simulation method is substantially more accurate than proportional scaling and the regression regression techniques.

TABLE IV: Benchmark configurations under weak scaling:
total CTA size, footprint (in MB), number of simulated instruc-
tions (in millions), and scaling behavior. The MCM column
denotes the workload configurations used for the multi-chip
module (MCM) GPU experiments in Section VII-D.

Benchmark MCM CTA MB #Insns Scaling

bfs [17] 128 9.4 30 sub-linear
256 5.1 61

✓ 512 10.2 128
✓ 1,024 20.4 257
✓ 2,046 40.9 549

bs [3] ✓ 15,625 40 431 sub-linear
✓ 31,250 80 862
✓ 62,500 160 1,724

125,000 320 3,448
250,000 640 6,898

btree [17] 2,500 4.3 167 linear
5,000 8.7 335

10,000 17.4 670
20,000 34.7 1,341
40,000 69.4 2,682

as [3] 2,048 4.2 13.5 linear
4,096 8.7 27

✓ 8,192 16.78 54
✓ 16,384 33.6 109
✓ 32,768 67.1 218

bp [17] 4,096 2.5 212 linear
✓ 8,192 18.9 424
✓ 16,384 37.7 848
✓ 32,768 75.5 1,696

65,536 151.0 3,392

va [3] 1,024 3.1 5.8 linear
2,048 6.3 11.5

✓ 4,096 12.6 23
✓ 8,196 25.2 46
✓ 16,384 50.3 92

is not unexpected given their sub-linear scaling behavior, see
also Table IV.

Scale-model simulation leads to a substantial speedup under
weak scaling, see Figure 7 which reports scale-model speedup
relative to simulating both the 8-SM and 16-SM scale models.1

1We do not observe a substantial simulation time impact under strong
scaling because the workload simulated on the scale models is the same as
the one simulated on the target system.

Fig. 7: Speedup through scale-model simulation under weak
scaling as a function of target system size normalized to run-
ning simulations for the 8-SM and 16-SM scale models. Scale-
model simulation leads to substantial simulation speedups
under a weak-scaling workload scenario.

The speedup varies from 1.5× to 3.9× and 9.3× for the
32-SM, 64-SM, and 128-SM target systems, respectively.
The reason is the much smaller size of the workload being
simulated on the scale models compared to the target system.

D. Case Study: Multi-Chiplet GPUs

We considered monolithic GPU so far, which, as alluded to
in the introduction, cannot be scaled beyond the reticle limit.
Multi-chip module (MCM) GPUs, which integrate multiple
GPU chiplets within a single package using interposer tech-
nology, provide a way to continue to scale GPU performance.
We now apply the scale-model simulation to predict multi-
chiplet GPU performance scaling. We consider scale models
with 4 and 8 chiplets to predict 16-chiplet performance (16
chiplets with 64 SMs each, for a total of 1,024 SMs). We
consider the multi-chiplet target system configuration from
Table V using the (single-kernel) weak-scaling workloads from
Table IV except for btree due to simulator limitations. The
work within a kernel is scheduled across chiplets for both the
scale models and the target system.

Following the general principle of scale-model simulation,
the scale models are proportionally down-scaled versions of
the target system. In particular, in this case study, we consider
the chiplet’s configuration to be fixed, and we scale the inter-
chiplet network accordingly with system size. More specif-
ically, the 4-chiplet system features an inter-chiplet network
with 1/4th the bisection bandwidth of the 16-chiplet target
system. The aggregate memory bandwidth and total number
of SMs also scale linearly with system size.



TABLE V: The simulated 16-chiplet target system.
Parameter Value

#SMs/chiplet 64
SM clock frequency 1.7 GHz
CTA scheduling Distributed [7]
Page allocation First-touch [7]
LLC 18 MB per chiplet, 64 slices, 64-way per slice
Intra-chiplet NoC crossbar topology, 1.7 TB/s
Inter-chiplet NoC fly topology, 900 GB/s per chiplet
Memory 8 memory controllers, 1.2 TB/s per chiplet

Fig. 8: Multi-chiplet IPC prediction error under weak scaling
for the 16-chiplet system. Scale-model simulation accurately
predicts multi-chiplet performance.

Figure 8 reports IPC prediction error for scale-model sim-
ulation compared to the various prediction techniques. Scale-
model simulation achieves an average prediction error of 2.5%
(and at most 4.3%). Logarithmic regression and proportional
scaling are highly inaccurate with an average error of 25%
and 20%, and up to 33% and 58%, respectively. Although
linear and power-law regression are relatively more accurate
(4.7% and 3.7% average error, respectively), the maximum
error (9% and 8%) is higher than for scale-model simulation.
We also note an average 2.2× (and up to 2.8×) simulation
speedup through scale-model simulation for predicting 16-
chiplet performance relative to the simulation of the 4-chiplet
and 8-chiplet scale-model systems.

VIII. RELATED WORK

Architecture scale-model simulation was recently proposed
for general-purpose multi-core processors running multi-
program workloads. Liu et al. [45, 46] point out that scale
models should be proportionally scaled down versions of the
target system to be able to accurately model the interference
caused by shared resources. To more accurately predict target-
system performance based on the scale-model simulation data,
Liu et al. leverage machine learning techniques alongside
regression. High accuracy is reported when combining support
vector machines with logarithmic regression.

Eyerman et al. [25] propose a scale model for Intel’s
experimental specialized graph accelerator, called PIUMA.
The lack of resource sharing among processor cores in the
PIUMA fabric makes the development of scale models rel-
atively straightforward, because there are no shared caches,
each core has a dedicated memory controller, and a highly
scalable interconnection network provides high bandwidth and
low latency to each individual core.

In contrast to this prior work in scale-model simulation,
this work (1) targets GPUs, (2) lacks the need for training a

machine learning model, (3) does not rely on a one-size-fit-
all regression model, but instead (4) builds on a per-workload
performance model that accurately predicts linear, sub-linear
and super-linear performance scaling.

A wide variety of analytical performance models have been
proposed for GPUs. Analytical performance modeling can
generally be classified in white-box versus black-box models.
Black-box models, e.g., machine-learning based models, are
relatively easy to construct, are generally accurate, but provide
limited insight and often require a significant training effort.
White-box models aim at providing insight by modeling first-
order principles, but they are elaborate to develop. Several
white-box analytical GPU performance models have been
proposed over the past decade with different capabilities,
see in particular [30, 31, 42, 60]. Black-box models have
been proposed as well, see for example [35]. Some machine-
learning based techniques aim at predicting GPU performance
based on CPU implementations [6, 10].

Architectural simulation is and remains the most prevalent
performance evaluation technique. Unfortunately, developing
and maintaining a detailed architectural simulator involves
substantial time and effort, and running simulations is ex-
tremely time-consuming and resource-intensive, i.e., server
farms are extensively used to drive architecture exploration
and analysis during various stages of the design cycle. A
variety of GPU architecture simulators exist, see for example
GPGPU-Sim [9], Accel-Sim [39], MGPUSim [56], gem5-
GPU [28]. These simulators are widely used, but they are
slow, e.g., a typical simulation speed of 6 KIPS is reported
for Accel-Sim [39]. NVArchSim (NVAS) [58] is an Nvidia
trace-driven simulator that can trade off the level of simu-
lation detail to balance speed and accuracy. MGPUSim [56]
exploits parallelism to speed up multi-GPU system simulation
on general-purpose multi-core CPU hardware. Sampling is a
widely used technique to speed up simulation, and several
proposals have been made that are specifically tailored to GPU
simulation, see for example [8, 32, 38, 44]. Synthetic miniature
benchmarks have been proposed as well to accelerate GPU
simulation [64]. The key advantage of scale-model simulation
is that it does not rely on a detailed simulation model of
the target system to predict its performance unlike sampling,
simulator parallelization, and synthetic workloads.

IX. CONCLUSION

This paper proposed a scale-model simulation methodology
for GPUs. Unlike prior work which focused on general-
purpose multi-core CPUs or specialized graph analytics accel-
erators, we find that GPU workloads exhibit different scaling
behavior with system size: some scale linearly, while others
scale sub-linearly or super-linearly. Using miss rate curves and
scale-model performance numbers, the proposed framework
predicts performance for a larger-scale target system under
both strong-scaling and weak-scaling workload scenarios. Our
experimental evaluation demonstrates high accuracy: based on
8- and 16-SM scale models, our framework is able to predict
128-SM target system performance within 4% and 1.7% (and



at most 17% and 4.3%) for strong-scaling and weak-scaling
workload scenarios, respectively. Under weak scaling, scale-
model simulation also yields a 9.3× simulation speedup. We
further illustrate that scale-model simulation predicts multi-
chiplet GPU performance scaling with an average error of
2.5% (and at most 4.3%).
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ARTIFACT APPENDIX

A. Abstract

We now discuss how to redo the experiments presented in
the paper. We describe how to collect the scale-model simula-
tion results — we provide the scale-model (and target-system)
AccelSim configuration files as well as the workload inputs —
and we provide a tool to predict target-system performance.
To enable reproducing the target-system predictions without
having to rerun the scale-model simulations, we also provide
the performance numbers for the scale models as well as
the miss rate curves for all the benchmarks and workload-
scenarios (strong scaling and weak scaling) discussed in the
paper. We also provide target-system performance results such
that the errors for the various prediction methods reported in
the paper can be verified. Finally, we also report simulation
times for the scale models and target systems such that the
reported speedup numbers can be verified. The appendix
mostly focuses on the prediction tool, i.e., we do not repeat
how to run GPU architecture simulations using AccelSim to
collect the inputs for the prediction model.

B. Artifact check-list (meta-information)
• Run-time environment: AMD Ryzen 7 3700X 8-core proces-

sor; Nvidia RTX 3080 GPU; Ubuntu 18.04; Python 3 or above.
• Execution: Collecting benchmark traces and simulating the

scale models using AccelSim takes time, ranging from less than
an hour to several weeks depending on the benchmark. The
prediction step is instantaneous.

• Metrics: The essential metrics to extract from the scale models
include their IPC. Furthermore, as discussed in Section V, miss
rate curves (i.e., MPKI as a function of system size) are needed
to determine the presence of any cliff regions.

• Disk space required: Because AccelSim is trace-based, suffi-
cient disk space is needed for storing the workload traces. The
prediction tool uses very little disk space.

• Publicly available: Yes, open-source.

C. Description

1) How to access: A public repository is available at
https://github.com/scaleDownGPU/scaleModel.git and https:
//figshare.com/projects/scaleDownGPU/187638, and contains
the following: (1) the configuration files for both the scale
models and the target systems, (2) the benchmarks’ inputs
for both strong and weak scaling, (3) the IPC numbers for
the scale models (and target systems for prediction error
evaluation purposes) for all benchmarks, (4) the miss rate
curves for all benchmarks, and (5) the prediction model tool.

2) Input data sets: We use benchmarks from a variety
of widely-used and well-recognized GPU benchmark suites,
see also Section VI. For the strong-scaling scenario, we use
a benchmark’s default input data set. For the weak-scaling
scenario on the other hand, we adjust the benchmark’s input
data set such that the amount of work performed scales
proportionally with system size. We identified six benchmarks
that could be appropriately scaled up with system size, either
by modifying the input or by adjusting the code. We now
describe how the input was scaled for these six benchmarks —

the repository contains the five weak-scaling inputs for these
six benchmarks:

• bfs [17]: The amount of work performed is scaled up by
modifying the input file. Within the benchmark folder,
the graphgen.cpp file can be customized to generate
input files of different sizes.

• bp [17]: The bp benchmark takes a single input value
(multiple of 16), which represents the number of input
elements. By modifying this input value, one can alter
the number of CTAs and, consequently, scale up the
benchmark proportionally to system size.

• btree [17]: To adjust the amount of work performed
by the B-tree benchmark, one can modify the values of
j and k in the command.txt input file. j represents
the order of the B-tree and determines the maximum
number of keys a node in the B-tree can hold — a
higher values of j results in a higher branching factor and
shallower tree structure. k is the size of the working set,
which determines the number of operations to be executed
on the B-tree. Changing the j and k values allows for
changing the amount of work performed.

• bs [3]: In contrast to the above three benchmarks, bs
requires changes to the source code to modify the amount
of work. Specifically, the OPT N variable signifies the
workload’s load (array size).

• as [3]: The specific variable to be altered here is n which
represents the workload’s magnitude (number of elements
to be processed). Note that this variable needs to be a
multiple of 16.

• va [3]: The numElements variable allows for adjusting
the number of array elements in the input.

3) Simulator configuration files: The repository contains
the AccelSim configuration files of the scale models and the
target systems. As mentioned in the paper, the scale models
are obtained by proportionally scaling down the configuration
of the (largest) target system of interest.

4) Scale-model performance results and miss rate curves:
The repository also contains the performance results for the
scale-models (and target systems for error evaluation purposes)
as well as the miss rate curves for all benchmarks such that
the target-system performance predictions can be reproduced
without having to re-simulate the scale models.

D. Installation

We refer to the AccelSim simulator, see https://github.
com/accel-sim/accel-sim-framework, for instructions regard-
ing how to install and use the simulator. The prediction tool
itself only requires having installed Python 3.

E. Experiment Workflow

To facilitate the reproducability of the prediction results, we
provide the prediction model as a Python program.

1) Package Dependencies: To run the model, ensure that
Python 3 is installed with the following packages:
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sudo apt update
sudo apt install python3
python3 -m pip install numpy scipy scikit-learn ruptures

2) How to Run: The model can be run once the packages
are installed. To do so, execute the following command:

python3 scaleModel.py <value1> <value2> <value3>
... <valueN>

As noted, the model needs various inputs:
• <value1>: the IPC of the smallest scale model.
• <value2>: the IPC of the largest scale model.
• <value3> to <valueN>: the miss rate curve, or MPKI

numbers for the scale models and the various target
systems. For example, assuming scale models with N and
2N SMs (or chiplets), and target systems with 4N , 8N
and 16N SMs (or chiplets), these values should be the
respective MPKI numbers for these five systems, sorted
from the smallest to the largest system.

When running the model, the user is asked to provide the
number of SMs (or chiplets) for the smallest scale model —
the largest scale model is assumed to be twice as big. The
model then predicts performance for the target systems by
doubling the number of SMs (or chiplets) for as many MPKI
numbers as provided. For example, if 5 MPKI numbers are
provided with the smallest scale model featuring 8 SMs, the
model will predict performance for target systems with 32,
64 and 128 SMs. If the model detects a cliff, it will prompt
the user to provide fmem;sm,L or the fraction of time an SM
in the largest scale model is unable to fetch instructions due
to a memory stall — this is the case for the dct and fwt
benchmarks for which the cliff appears at 128 SMs. Note that
the same model is used to predict multi-chiplet performance,

e.g., predicting 16-chiplet performance based on 4- and 8-
chiplet scale models is done by providing IPC numbers for
the scale models and MPKI numbers for 4, 8 and 16 chiplets.

Note that the prediction tool is not limited to using the 8-SM
and 16-SM scale models to predict 32-SM, 64-SM and 128-
SM target systems, as done throughout the paper. One could
also use the 16-SM and 32-SM scale models to predict 64-SM
and 128-SM target system performance. We observed (during
artifact evaluation) that the error is higher for the strong-
scaling workload scenario. For the 64-SM target system, we
note an average error of 5% for scale-model simulation, power-
law and linear regression versus 10% for proportional scaling
and 24% for logarithmic regression. For the 128-SM target
system, scale-model simulation achieves an average error
of 10% versus power-law (15%), linear (16%), proportional
(19%) and logarithmic regression (50%). The higher error
results from the 32-SM scale model being an outlier with
respect to the general scaling trend for three benchmarks,
namely bfs (23% and 56% error for scale-model simulation
for the 64-SM and 128-SM target systems, respectively), fwt
(25% and 39% error, respectively) and gr (14% and 30%
error, respectively). Nevertheless, despite the higher absolute
errors, the overall conclusion is that scale-model simulation
outperforms the alternate approaches including proportional
scaling, linear, power-law and logarithmic regression.

F. Evaluation and expected results

The output of the scaleModel.py program is threefold:
(1) measured IPC for the scale models; (2) predicted IPC for
the target system(s); and (3) a graph showing performance
as a function of system size for the four prediction methods
evaluated in the paper: logarithmic, linear, and power-law
regression, as well as scale-model prediction.
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