
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

HILP: Accounting for Workload-Level Parallelism
in System-on-Chip Design Space Exploration

Joseph Rogers,† Lieven Eeckhout,‡ and Magnus Jahre†
Norwegian University of Science and Technology (NTNU)†, Ghent University‡

joseph.c.p.rogers@ntnu.no, lieven.eeckhout@ugent.be, magnus.jahre@ntnu.no

Abstract—High-performance System-on-Chip (SoC) architec-
tures are becoming increasingly complex and heterogeneous, and
the days when a single application could utilize all of an SoC’s
hardware resources are all but over. The SoC’s workload, i.e., the
set of independent applications that the SoC typically executes,
therefore has a significant impact on its efficiency. Accounting for
Workload-Level Parallelism (WLP) in early-stage design space
exploration is thus critical as later-stage analysis steps must focus
on favorable design points to yield optimal results. Unfortunately,
state-of-the-art MultiAmdahl and Gables fall short because they
only model the extremes of minimal and maximal WLP.

We hence propose HILP, the first early-stage design space
exploration approach for heterogeneous SoCs that fully accounts
for WLP. Our key observation is that scheduling a workload
of independent multi-phase applications on a heterogeneous SoC
is an instance of the classic job-shop scheduling optimization
problem and thus can be solved using integer linear program-
ming. HILP therefore uses a high-performance integer linear
programming solver to find a near-optimal schedule that mini-
mizes the overall execution time of the workload, i.e., it schedules
the dependent phases of all applications in the workload on the
cores and accelerators of the target SoC to maximize performance
while respecting power consumption and memory bandwidth
constraints. We validate HILP by demonstrating that it captures
the performance effects of Amdahl’s law, the memory wall, and
dark silicon, and then use it to explore the impact of WLP across
a large SoC design space, yielding multiple insights. The key
takeaway is that modeling WLP is necessary to ensure that more
detailed, later-stage design tasks focus on the most favorable parts
of the vast design space of heterogeneous SoCs.

I. INTRODUCTION

Modern high-performance System-on-Chip (SoC) architec-
tures are becoming increasingly complex and heterogeneous
because they must respect a rich set of (mutually conflicting)
requirements and constraints. For example, emerging high-
performance SoCs include an increasing number of DSAs,
typically because DSAs can improve power efficiency by
orders of magnitude compared to general-purpose CPUs [15].
DSAs however also increase chip area which in turn is a
key driver of the SoC’s manufacturing cost and embodied
carbon footprint [7]. Despite the costs, leading mobile SoCs
combine many tens of DSAs with conventional CPU cores and
Graphics Processing Units (GPUs) [52], and SoCs for laptops
and desktops, e.g., Apple M3 [5] and AMD Ryzen 8000 G-
Series processors [2], devote significant resources to the GPU
and DSAs (e.g., neural engines). Server SoCs are following
suit, e.g., AMD MI300A [1] and Nvidia GH200 [49].

Designing high-performance SoCs is hence becoming an
increasingly challenging task. Application complexity is also

increasing, and it is becoming increasingly common that appli-
cations use different accelerators, i.e., a general-purpose GPU
or specialized DSAs, in their various compute phases [29]. The
applications’ setup and teardown phases however remain well-
suited to conventional CPUs. To complicate matters further, it
is exceedingly rare that a single application can fully utilize
all of the SoC’s hardware resources; this trend is already
motivating multi-tasking in homogeneous GPUs [71]. On
the contrary, the common case is that SoCs target a mix
of independent multi-phase applications, which we call its
workload, and it is therefore wasteful to optimize SoCs for
the increasingly uncommon single-application scenario. The
overall efficiency of a heterogeneous SoC is thus intimately
tied to its ability to exploit the parallelism available within the
workload, i.e., Workload-Level Parallelism (WLP)1, which we
define as the number of independent application phases that
are concurrently executing on the SoC.

Early-stage design decisions are especially important for
heterogeneous SoCs because of the sheer size and complexity
of their design space. For example, architects can in principle
add DSAs for any combination of any phase of any application
in the SoC’s target workload. The computer architects that
design these SoCs thus need WLP-aware design exploration
approaches that enable them to understand and prune the
design space in the very early stages of the design cycle
— thereby ensuring that they focus later-stage, oftentimes
simulation-heavy, design tasks on the most favorable parts of
the SoC design space. State-of-the-art MultiAmdahl (MA) [72]
and Gables [28] unfortunately cannot address this need be-
cause they only account for the extreme cases of minimal and
maximal WLP. More specifically, MA assumes that applica-
tion phases are executed in a fixed sequential order whereas
Gables models both a fixed sequential order and fully parallel
execution. MA thus pessimistically assumes minimal WLP,
i.e., at most a single application phase can execute at any
time, whereas Gables’ parallel mode does not account for
phase dependencies or sequential sections, i.e., it optimistically
assumes that the workload is embarrassingly parallel.

Accounting for WLP during early-stage analysis is challeng-

1WLP is a special case of task-level parallelism [25] as it specifically
focuses on parallelism across the independent applications (tasks) of a work-
load. It is complementary to Thread-Level Parallelism (TLP) and Accelerator-
Level Parallelism (ALP) [29] which focus on a single application. The WLP
definition is inspired by Memory-Level Parallelism (MLP) [14] but focuses
on phases of independent applications rather than memory requests.

GPU-compatible phase
Sequential phase (CPU only)

DSA2-compatible phase
DSA1-compatible phase

Workload Constraints

HILP outputs

SoC specification

IL
P

 m
o

d
e
l

S
ol
ve
r

Max. power consumption
Memory bandwidth limit

Execution time with bound.
Utilization, power, and

memory bandwidth profiles.

CPU

CPU

DSA1

DSA2

Application a

Application dApplication c

...

Application b

Area

SM SM
SM SMG

PU
PhaseDependency

a1

d0

a0 a2 b1 b2b0

c1c0 c2

Fig. 1: High-level overview of HILP. HILP fully accounts for
WLP during early-stage SoC design space exploration.

ing because there are many ways to schedule a workload on a
heterogeneous SoC. While it can be trivial to find an optimal
schedule when the number of applications and compute units
is small, naive approaches quickly become intractable for
interesting design points (e.g., the many tens of DSAs in
mobile SoCs [52]). Establishing the quality of the schedule
is however critical to fairly compare SoCs because, otherwise,
we cannot know if the higher performance of SoC1 compared
to SoC2 is (i) due to SoC1 being a better architecture, or
(ii) because the workload was scheduled more efficiently on
SoC1 than on SoC2. In this paper, we consider schedules
to be of similar quality if they provably yield a workload
execution time within 10% of optimal, and we refer to such
schedules as near-optimal. An additional benefit of focusing
on near-optimal schedules is that it decouples the design of
SoC hardware from the (challenging) task of writing efficient
system software for it. Honing in on an architecture that
performs favorably on near-optimal schedules in early design
stages ensures that the system as a whole will become near-
optimal once system software matures sufficiently to schedule
the workload near-optimally at runtime.

We observe for the first time that scheduling a workload of
independent multi-phase applications on a heterogeneous SoC
is an instance of the Job-Shop Scheduling Problem (JSSP) [39]
and thus can be solved using Integer Linear Programming
(ILP). JSSP is a classic constrained optimization problem that
aims to schedule a collection of independent multi-task jobs
onto a set of machines to minimize overall execution time.
Formulating the heterogeneous SoC evaluation problem as
an instance of JSSP enables accounting for WLP as we can
leverage high-performance ILP solvers to find near-optimal
schedules and thereby ensure that we are fairly comparing
SoC architectures. Moreover, it is (relatively) straightforward
to model multiple interacting constraints, such as both power
consumption and memory bandwidth, because they can be
expressed as linear functions of existing decision variables.

We leverage this observation to design HILP2, the first fully
WLP-aware early-stage exploration approach for heteroge-
neous SoCs. HILP models (complex) software that consists of
multiple (dependent) phases, whereas state-of-the-art MA and
Gables simply assume fully sequential or fully parallel execu-
tion. Moreover, HILP is, unlike MA and Gables, easily exten-

2HILP is available from https://github.com/EECS-NTNU/hilp.

sible (see Section VII). Figure 1 explains how HILP achieves
this, and its inputs are (i) a workload of independent (multi-
phase) applications, (ii) an SoC specification, and (iii) power
consumption and memory bandwidth constraints. The SoC
can contain CPUs, a variable-size GPU, and DSAs, and the
objective is to schedule the workload on the SoC to minimize
overall execution time while respecting all constraints. Each
application, e.g., a, consists of multiple dependent phases,
typically setup, compute, and teardown, e.g., a0, a1, and a2,
respectively. While general-purpose CPU cores can execute
any phase, compute phases can typically also execute on the
GPU or possibly a specialized DSA, e.g., phase a1 is only
compatible with the GPU but phase b1 (c1) can execute on
the GPU and DSA1 (DSA2).

HILP processes these inputs to create the matrices required
by our JSSP formulation and then invokes an ILP solver.
The solver returns the best-found workload schedule and its
overall execution time. HILP will not always find a provably
optimal schedule because JSSP is NP-complete with more
than two machines [20]. In this case, we leverage that the
ILP solver also returns an optimality bound, i.e., the best
possible execution time that can exist within the part of the
solution space that the solver has not proved to be infeasible.
Our specific definition of near-optimal is thus that the overall
execution time reported by HILP is within 10% of optimal.

We validate HILP by demonstrating that it successfully cap-
tures the effects of Amdahl’s law [4], the memory wall [67],
and dark silicon [17] before quantitatively comparing HILP’s
performance predictions to MA [72] and Gables [28]. MA’s
fixed sequential order yields overly pessimistic predictions
because it assumes no WLP, whereas Gables’ maximal WLP
assumption results in overly optimistic predictions. In con-
trast, HILP fully accounts for WLP and therefore provides
performance predictions between these two extremes that are
appropriate for the target workload. The quantitative impact
of fully accounting for WLP can be significant. For example,
when considering SoCs that are Pareto-optimal in terms of
area and performance across a design space of 372 SoC
architectures, MA’s highest-performing SoC achieves 40% of
the performance of HILP’s highest-performing SoC at 114%
of the area, thus substantially underestimating performance.
In contrast, Gables massively overestimates performance, i.e.,
its highest-performing SoC predicts 136% higher performance
than HILP at only 45% of the area.

While the quantitative differences between MA, Gables, and
HILP are massive, a perhaps greater concern is that MA’s and
Gables’ simplistic treatment of WLP leads them to recommend
suboptimal design points. More specifically, MA prefers SoCs
with a single large GPU — as this is the most area-efficient
approach to improve performance under sequential execution
— whereas Gables is biased towards SoCs with many small
accelerators — because its fully parallel mode neglects depen-
dencies. In contrast, HILP accounts for both parallelism and
dependencies and recommends SoCs that cater to the specifics
of the workload. For our Default workload constructed from
ten multi-phase Rodinia [10] benchmarks, HILP recommends

https://github.com/EECS-NTNU/hilp

an SoC with 4 CPU cores, a moderate 16-SM GPU, and
DSAs for the compute phases of the HS and LUD benchmarks.
This workload needs 4 CPU cores to utilize the accelerators
effectively (Amdahl’s law), and providing DSAs for HS and
LUD means that the other applications in the workload can
share the GPU without it becoming a performance bottleneck,
thus maximizing performance and minimizing area overhead.
In summary, we make the following key contributions:

• We observe for the first time that scheduling a workload
of independent multi-phase applications on a heteroge-
neous SoC is an instance of the JSSP problem.

• We leverage this insight to design HILP, the first early-
stage design space exploration approach for heteroge-
neous SoCs that fully accounts for WLP.

• We demonstrate that fully accounting for WLP in early-
stage analysis is critical to identify favorable regions in
the vast design space of heterogeneous SoCs, in contrast
to MA and Gables which recommend suboptimal SoCs.

• We use HILP to explore a large SoC design space and
make several observations, e.g., the primary function of
DSAs in the top-performing SoCs is to offload the GPU.

II. EXPLAINING HOW HILP WORKS

Applications and workloads. To explain how HILP works,
we focus on a simple workload that consists of two applica-
tions, m and n. Both applications have a compute phase that
multiplies matrices, see 1 in Figure 2. Application m is a
classic matrix multiplication kernel from the high-performance
computing domain, and application n does neural network
inference. Both applications consist of three phases, setup,
compute, and teardown, which must be executed in order. The
setup phase makes the necessary preparations such as parsing
the command line, reading input files, and allocating memory.
These activities are well-suited to being executed on the CPU
but poorly suited to acceleration. To model such behavior,
HILP requires the architect to supply a compatibility vector
for each application phase. The compatibility vector of the
setup phase records that it can execute on the CPU but not on
the GPU or DSA, see 2 . The compute phase is however well
suited to acceleration and can thus be executed on the CPU,
the GPU, or the matrix-multiply-focused DSA, see 3 .

HILP also associates an execution time vector with each
application phase. We label the phases with integer subscripts
and phase i must complete before phase i + 1 can execute.
In this example, setup is phase 0, compute is phase 1, and
teardown is phase 2. Application m deals with larger matrices
than application n and the execution time of its compute phase
is thus longer, i.e., the execution time of m1 (n1) is 8 (5), 6 (3),
and 5 (2) seconds on the CPU, GPU, and DSA, respectively.
To keep the example simple, we assume that the execution
times of the setup and teardown phases, i.e., m0, m2, n0, and
n2, are the same for both applications. Applications m and
n hence constitute the workload 4 , and the objective is to
schedule the phases of m and n on the SoC 5 to minimize
execution time while respecting dependencies and constraints.

SoC specification. We focus on a simple SoC with a single
CPU, a single GPU, and a single DSA in this example.
The compute cores connect to a shared global memory
through a Network-on-Chip (NoC), and, for the purpose of
this example, we assume that the architecture has sufficient
bandwidth. (HILP also models limited memory bandwidth, see
Section III-C.) HILP also records the power consumption of
the CPU, the GPU, and the DSA, and Figure 2 thus shows
a table that reports active and idle power consumption. We
make the simplifying assumption that the SoC implements an
aggressive power-gating strategy, and the power consumption
of the CPU, GPU, and DSA is hence zero when idle.

Workload scheduling. The performance impact of workload
scheduling can be significant. For example, naively scheduling
all phases of the two-application example workload in Figure 2
on the CPU yields an execution time of 17 seconds. HILP finds
the optimal schedule which executes n1 on the GPU and m1

on the DSA because (i) the execution time of m1 is shorter
on the DSA than on the GPU, and (ii) the execution time of
m1 hides the execution time of n1 when m1 executes on the
DSA and n1 on the GPU, see 6 . The optimal schedule hence
yields a speedup of 2.4× relative to the naive schedule.

To enable analyzing the scheduling problem with ILP, HILP
discretizes time into time steps; this is a common strategy
when using ILP to solve JSSP (see e.g., [36], [68]). Selecting
the size of the time step is a trade-off between resolution —
because the execution times of all phases must be expressed
as an integer number of time steps — and the time overhead
of solving the model — as the solution space grows with
the number of time steps. In general, we must select a time
step size that is short enough to yield architectural insights,
yet large enough for the model to solve within a reasonable
time. (HILP uses an adaptive approach to achieve this, see
Section III-D.) Setting the time step size is fortunately trivial
in our example since (i) a time step size of one second captures
the execution time of all phases exactly, and (ii) the model is
small enough for HILP to find the optimal schedule practically
instantly.

Workload-Level Parallelism (WLP). Recall that we defined
WLP as the number of independent application phases that
are executing concurrently on the SoC, and computing WLP
thus simply amounts to counting the application phases that
co-execute in a given time step. We can further compute
average WLP by taking the arithmetic mean of the per-time-
step WLP values across all the time steps in which at least
one application phase was active.

MA [72] assumes a fixed sequential order which implies
no WLP, i.e., at most a single application phase is executing
on the SoC in all time steps, see 7 in Figure 2. The WLP
value for MA is hence always 1. Gables [28] augments MA’s
sequential order with a fully parallel execution mode, see 8 .
Fully parallel execution is overly optimistic because it does
not respect phase dependencies nor model sequential sections.
Gables thus assumes the maximally achievable WLP. In Fig-
ure 2, the maximum average WLP is 2.4 because 3 application

Application description

m1
n1

Matrix multiplication

Compatibility
vector

Exec. time
vector

Fully parallel execution does
not respect dependencies
and assumes maximal WLP

Neural network
inference

Setup GPUCPU

Exec. time
Compatible

DSA
Yes No No
1/1 - -

Teardown GPUCPU

Exec. time
Compatible

DSA
Yes No No
1/1 - -

Compute GPUCPU

Exec. time
Compatible

DSA
Yes Yes Yes
8/5 6/3 5/2

Schedules

H
IL

P
M

A
G

ab
le

s

Matrix multiplication

for(int i=0;i<N;i++)
 for(int j=0;j<N;j++)
 for(int k=0;k<N;k++)
 C[i][j] += A[i][k] + B[k][j]

Setup

Compute

Teardown

1

2

3
CPU

GPU

N
oC

M
em

.
ct

rl
.

M
em

or
y

DSA

GPUCPU

Idle power
Active power

DSA
2 3 1
0 0 0

Architecture specification5

Workload

4

21

GPU
DSA

CPU
3 4 5 6 7

8

m0

m0

m2

m2

n1n0 n2

m1

m1
HILP accounts for
Workload-Level
Parallelism (WLP)

6
21

GPU
DSA

CPU
3 4 5 6 7

m0

m0

n0

n0

m1

m1

n1

n1

m2

m2

n2

n2

Fixed sequential order assumes no WLP
7

21

GPU
DSA

CPU
3 4 5 6 7 8 9 10 11

m0 n0

m1 n1

m2 n2

Fig. 2: Example illustrating how HILP models a two-application workload on a heterogeneous SoC with a CPU, a GPU, and
a DSA without constraints compared to MultiAmdahl (MA) and Gables. HILP fully accounts for WLP and thereby covers the
design space between the extremes of minimal and maximal WLP which are occupied by MA and Gables, respectively.

Power constraint leaves GPU idle

21P

GPU
DSA

CPU
3 4 5 6 7 8 9

Time steps

m0 m2

n1

n0 n2

m1

(a) Schedule. (b) Power profile.

Fig. 3: An optimal schedule under a 3 W power constraint.
Both m1 and n1 executes on the DSA, leaving the GPU idle.

phases are active in time steps 1, 2, and 3, phases m1 and n2

are active in time step 4, and only m1 is active in time step 5.
Unlike MA and Gables, HILP respects the dependencies of
the workload and finds the optimal schedule 6 . In contrast,
MA’s sequential order adds unnecessary dependencies whereas
Gables’ fully parallel mode discards necessary dependencies.
The average WLP of HILP’s optimal schedule (1.7) is hence
between the average WLP of MA (1) and Gables (2.4).

Power constraint example. Dark silicon [17] has led to many
architectures containing more compute resources than they can
use concurrently without exceeding the system’s power budget.
HILP thus models power constraints. Figure 3 illustrates the
impact of limiting the power consumption of the architecture
in Figure 2 to maximally 3 W; the active and idle power
consumption of each core type is part of the architectural
specification 5 . Since the power consumption of the GPU
is 3 W, it means that it can only be used when the CPU
and the DSA are idle, and it is no longer possible to hide
the execution time of n1 by executing it on the GPU while
m1 executes on the DSA. The power-constrained optimal
schedule will thus allocate both compute phases to the DSA
(see Figure 3a). Figure 3b demonstrates that the unconstrained
optimal schedule exceeds the 3 W power constraint in time
steps 3, 4, and 5 because both the DSA and the GPU are
active. In contrast, the power-constrained schedule consumes
at most 3 W, and, as expected, achieves lower performance
than the unconstrained schedule.

III. THE DETAILS OF HILP

We now focus on describing how HILP formulates the
problem of scheduling a workload of independent applications
onto a heterogeneous SoC using Integer Linear Programming
(ILP). Figure 4 illustrates the SoC architecture template we
focus on in this work which covers SoCs with one or more

SRAM

LLC

LLC

nCPUs
(1..x)

nDSAs
(0..y)

nGPUs
(0..1)

nSMs
(1..a)

nPEs
(1..b) N

e
tw

o
rk

 o
n

C
h
ip

 (
N

o
C

)

M
e
m

o
ry

 C
tr

l.

M
e
m

o
ry

CPU

GPU

DSA

pmax bmax

Fig. 4: HILP SoC architecture template. HILP covers a vast
design space of heterogeneous SoC architectures.

CPUs, an optional GPU with a configurable number of SMs,
and a range of DSAs with a configurable number of Processing
Elements (PEs). To achieve this high degree of configurability
while limiting the number of decision variables and thus
the size of the solution space, HILP represents groups of
identical Compute Units (CUs) as core clusters. In general,
HILP models nc core clusters consisting of nu Compute Units
(CUs); the CUs of a CPU cluster are CPU cores, the CUs
of GPUs are SMs, and the CUs of DSAs are Processing
Elements (PEs). Since CPUs must handle both sequential and
parallel application phases, we model each CPU core as an
independent core cluster (i.e., nu always equals 1 for CPU
core clusters). We model local memory within each CU as
well as a shared memory in each core cluster; this can be a
cache or SRAM. The core clusters connect to the memory
controllers and ultimately main memory through a Network-
on-Chip (NoC) which we assume is dimensioned to deliver at
least the maximum memory bandwidth bmax. The SoC must
operate under a power budget pmax.

A. Notation, Objective Function, and JSSP

Notation. The objective of HILP is to schedule a set of
independent applications A (i.e., the workload) on a set of
core clusters C such that execution time is minimized. Each
application a consists of one or more phases, and we use
an integer subscript to denote the phase; Pa is the set of
phases in application a. Unless stated otherwise, we number
the application phases in ascending order, i.e., ap represents
phase p of application a and must be executed before phase
ap+1. A key input to HILP is the execution time matrix Tcap

which reports the execution time of application phase ap on
core cluster c in integer time steps.

Objective function. Table I summarizes the key variables of
HILP, and we will explain all of them in this section. We start
with the decision variables as these are the unknowns the ILP

TABLE I: HILP Parameters.
Type Sym. Description

Decision
variable

Sap The time step in which phase p of application a starts
executing.

Decision
variable

Cap Holds the identifier of the core cluster that phase p
of application a is allocated to.

Input Tcap The execution time of phase p of application a when
it is executed on core cluster c.

Input Bcap The memory bandwidth required when executing
application phase ap on core cluster c.

Input Pcap The power consumption of phase ap when executing
on core cluster c.

Config.
input

Ecap A binary matrix which is 1 when application phase
ap can be executed on core cluster c and 0 otherwise.

Config.
input

Ucap The maximum number of active core clusters when
phase ap is executing on core cluster c.

solver will assign values to. HILP’s decision variables are Sap

which is set to the time step in which application phase ap
starts execution, and Cap which captures the integer identifier
of the core cluster that application phase ap is allocated to.
The objective of HILP is thus to assign values to the matrices
Sap and Cap to minimize the total execution time t:

t = max(Sap + Tcap) c ∈ C, a ∈ A,∀p, t > 0

subject to Equations 2, 3, 4, 6, 7, and 8.
(1)

Equation 1 states that overall execution time t is the com-
pletion time of the last-completing application phase across
all core clusters. The start time of all application phases
is given by the decision variable Sap, and the core cluster
variable Cap is used together with the phase identifier ap to
retrieve the execution time of ap on core cluster c from the
execution time matrix Tcap. When HILP completes, the best-
performing schedule can be extracted by retrieving start times
from Sap and core cluster allocations from Cap. We can then
plot the schedule, as previously shown in Figures 2 and 3, by
combining these values with the execution time matrix Tcap.
The Job-Shop Scheduling Problem (JSSP). HILP is derived
from the classic combinatorial optimization problem JSSP [39]
which is typically formulated as finding the schedule which
yields the lowest makespan for the execution of a set of jobs
on a set of machines. The jobs in JSSP are partitioned into
(dependent) tasks which may require different machines. To
make the paper more accessible to computer architects, we
describe JSSP using established architectural terms, i.e., jobs
are applications, tasks are phases, and the makespan is overall
execution time. The objective function in Equation 1, the
constraints in Equations 2, 3, and 4, and the helper function in
Equation 5 are commonly used in ILP formulations of JSSP,
but the remaining constraints and architectural modeling are
new contributions of this work.

B. Modeling Applications

Application inputs. HILP takes the execution time matrix
Tcap and the memory bandwidth matrix Bcap as input. Tcap

(Bcap) reports the execution time (memory bandwidth con-
sumption) of application phase ap when executed on core
cluster c. The matrices are populated by profiling scaled

versions of the parallel Rodinia [10] benchmarks on high-
end CPUs and GPUs; we model DSAs at a fixed efficiency
advantage over GPUs. Section IV will describe this process
in detail, and we now turn our attention to describing the
constraints HILP requires to output correct schedules.
Ordering. The Rodinia benchmarks all exhibit three key
phases: setup, compute, and teardown. The phases are de-
pendent, e.g., setup must complete before compute can start.
HILP hence uses the ordering constraint to ensure that phase
ap completes before phase ap+1 starts:

Sa,p + Tcap ≤ Sa,p+1 c ∈ C, a ∈ A, p ∈ Pa. (2)

As we will discuss in Section III-D, complicating the de-
pendency constraint and phase modeling comes at the cost
of increased model complexity and longer solve times. Since
Equation 2 is sufficient to model the Rodinia benchmarks we
focus on in this paper, we hence use it for our validation and
exploration experiments (see Sections V and VI). HILP can
however model applications with arbitrarily complex depen-
dencies and concurrent phases by using a graph to represent
phase dependencies, and we will explain how to do this when
discussing the extensibility of HILP in Section VII.
Non-interference. We must also ensure that a core cluster
only executes a single application phase at the time. This
is addressed by the non-interference constraint which states
that if two application phases are scheduled on the same core
cluster, one will complete before the other starts:

Cap = Cbq =⇒ Sap + Tcap ≤ Sbq ∨ Sbq + Tcbq ≤ Scap

c ∈ C, a ∈ A, b ∈ A,∀p,∀q.
(3)

Compatibility. Application phases can only execute on core
clusters they are compatible with, e.g., sequential phases can
only execute on a CPU. Another example is that compute
phases can only execute on DSAs that support them. HILP
models this through the binary compatibility matrix Ecap in
which a value of 1 (0) means that application phase ap can
(cannot) execute on core cluster c:

Ecap = 1 c ∈ C, a ∈ A,∀p. (4)

The compatibility constraint uses the decision variable Cap to
access the compatibility matrix Ecap and ensures that the value
equals one. Ecap can also be leveraged to perform what-if
analysis. For example, it could be used to explore the impact of
pinning a phase to a specific DSA compared to no restrictions.
This would be encoded by setting Ecap to 1 for the target DSA
and the values for all other core clusters to 0.

C. Modeling Architectures

SoC specification. HILP can model a vast range of heteroge-
neous SoCs by combining the template in Figure 4 with the
compatibility matrix Ecap. The minimum configuration is a
single CPU core, but, beyond that, the HILP user can create
arbitrarily complex architectures by setting appropriate bits in
Ecap. The generality of a core cluster is hence given by the
number of bits that are set for it in Ecap.

Power and bandwidth. HILP’s architectural constraints be-
come easier to formulate if we first capture the time during
which application phase ap executes on core cluster c. The
reason is that it is during this time that ap consumes the
resource in question. We achieve this by defining a helper
set T that contains the start times and completion times of
each application ap and a helper function h which identifies
the relevant time steps:

h(r, t) =

{
r if t ≥ Sap ∧ t < Sap + Tcap

0 otherwise
(5)

Here, r is the resource consumption of application phase ap
which should be exposed if it is executing on core cluster c
in time step t, i.e., ap has started but not yet completed in
time step t. With h and T in place, it is straightforward to
formulate HILP’s power constraint:

|A|∑
a=0

|Pa|∑
p=0

h(Pcap, t) ≤ pmax ∀t ∈ T (6)

The matrix Pcap is an input to HILP and captures the power
consumption of phase ap when running on core cluster c;
pmax is the power budget which is a user-supplied input.
We populate Pcap through measurements on high-end CPUs
and GPUs (see Section IV). The bandwidth constraint is
formulated similarly to the power constraint:

|A|∑
a=0

|Pa|∑
p=0

h(Bcap, t) ≤ bmax ∀t ∈ T (7)

In fact, the only difference between Equations 6 and 7 is that
Equation 7 uses the bandwidth matrix Bcap for the resource
consumption and bmax as the limit.
Modeling CPUs. The sequential setup and teardown phases of
different applications can be executed in parallel if the SoC has
a sufficient number of CPU cores. To support this behavior, we
configure HILP with as many CPU core clusters as there are
CPU cores in the system, i.e., one CPU core per CPU cluster.
CPU cores can however also execute the parallel compute
phase of a single application on multiple cores. Recall that
we require that each application phase can only be allocated
to a single cluster to keep the number of decision variables
low. To support executing parallel application phases on the
CPUs without adding decision variables, we use the input
matrix Ucap to record the number of core clusters that each
application phase ap can use in the same time step when
allocated to core cluster c. Ucap is set to 1 for all sequential
application phases on all CPU clusters and to the number of
CPU cores required for all parallel phases on all CPU clusters.
The following constraint then ensures that HILP never uses
more than umax CPU cores in a single time step:

|A|∑
a=0

|Pa|∑
p=0

h(Ucap, t) ≤ umax ∀t ∈ T (8)

Dynamic Voltage and Frequency Scaling (DVFS). When
exploring architectural design spaces, it is easy to configure

an SoC in which a core cluster cannot be activated because
this would exceed the SoC’s power budget. If this situation
occurs in a real system, system software will apply DVFS
or disable CUs to reduce power consumption sufficiently to
respect the power budget. We account for this by specifying
core clusters with different numbers of CUs, performance, and
power consumption, and then setting Ucap and umax such that
Equation 8 ensures that each application phase activates at
most one of these core clusters. In this way, the ILP solver
will activate the core cluster and operating point, in terms
of active CUs, performance, and power consumption, which
achieves the lowest overall workload execution time.

Note that achieving this idealized operating point can be
a tall order for the runtime DVFS mechanisms of real-
world heterogeneous SoCs. Our motivation for adopting this
idealized model is, as with phase scheduling, that it enables
fairly comparing SoC architectures, i.e., we know that SoC1

is better than SoC2 because it is a better architecture and not
because the DVFS mechanism happened to perform better.
More detailed analysis is of course needed to determine if
this ideal is achievable in practice, and the purpose of HILP
is thus to ensure that the architect focuses their effort on the
part of the design space with the highest potential.

D. Schedule Quality and Scalability

Time step resolution. The time step resolution, i.e., the
amount of time that each time step represents, must be set such
that (i) the execution time differences between applications
are represented, and (ii) the evaluation overhead remains
acceptable. If the time step resolution is too coarse, we might
miss architectural insights because the model is unable to
represent differences in execution time. On the other hand,
if the time resolution is too fine, the solution space may be
too large for the ILP solver to find a near-optimal schedule in
reasonable time. We also need to bound the number of time
steps to consider, i.e., the time horizon, because the search
space would otherwise be infinite. The time horizon however
needs to be large enough for the solver to quickly find a
feasible solution.

HILP addresses this challenge by adopting an adaptive
approach. For our validation experiments in Section V, we
initially run all experiments with a time step resolution of two
seconds and a time horizon of 1,000 steps. This number of
steps was chosen to accommodate the worst-case execution
time of our Rodinia workload (see Section IV) and allows
many configurations to reliably solve to within the optimality
bound on server nodes equipped with 256 GB of memory
in a matter of hours. If a workload completes in less than
200 time steps, we increase the time step resolution by 5×
(e.g., from 2 seconds to 400 milliseconds) and run the solver
again while keeping the time horizon constant at 1,000 time
steps. If necessary, we repeat this process until the overall
execution time of the workload exceeds 200 time steps. When
exploring a large design space, as in Section VI, we adopt
a coarser resolution to maintain a reasonable evaluation time.
More specifically, we use a time horizon of 200 steps, an initial

TABLE II: Benchmarks. (C is short for compute, TD is short for teardown, and bandwidth is measured in GB/s.)

Benchmark Execution time (s) GPU GPU power-law fit (a, b, R2) Scaled benchmark
Setup C-CPU C-GPU TD BW GPU Time GPU BW configuration

Breadth-First Search (BFS) 95.3 17.0 1.0 11.9 86.5 7.83, -0.77, 0.95 0.07, 0.92, 0.98 128M elements
Heartwall (HW) 8.0e-4 78.3 1.2 0.2 7.3 3.77, -0.52, 0.92 0.84, 0.24, 0.30 104 frames
Hotspot3D (HS3D) 0.7 49.2 0.1 51.2 36.4 10.33, -0.86, 1.00 0.14, 0.75, 1.00 512×512×8, 200 iterations
Hotspot (HS) 80.8 395.9 20.5 71.3 40.4 13.93, -1.00, 1.00 0.07, 1.00, 1.00 16K×16K, 512 iterations
LavaMD (LMD) 0.3 163.4 2.5 0.3 0.6 13.98, -0.99, 1.00 0.10, 0.90, 1.00 42 1D boxes
LU Decomposition (LUD) 0.1 444.2 12.0 0.6 61.6 10.26, -0.88, 1.00 0.10, 0.87, 1.00 matrix size 16K
Myocyte (MC) 0.1 77.6 8.3e-2 0.6 0.1 1.01, 8.98e-06, 0.00 2.60, -0.28, 0.15 100K span, 12 w., 0 m.
Nearest Neighbor (NN) 1.6e-3 159.4 3.8e-3 0.3 187.6 8.97, -0.82, 0.98 0.07, 0.95, 0.99 64K size, 2K neighbors
Pathfinder (PF) 72.1 14.0 0.2 0.3 95.2 7.27, -0.76, 0.99 0.27, 0.58, 0.95 400K rows, 5K col., 1 pyr.
Stream Cluster (SC) 1.0e-4 156.0 2.1 0.3 216.1 5.41, -0.62, 0.87 0.07, 0.88, 0.96 30–40 centers, 128K points

TABLE III: GPU power scaling.
Clock frequency Power consumption (W) Power-law fit

(MHz) All SMs Per-SM (a, b, R2)
210 77.2 0.6 0.10, 0.94, 1.00
240 83.5 0.7 0.53, 0.99, 1.00
300 97.1 0.8 0.06, 1.03, 1.00
360 105.1 0.8 0.07, 0.99, 1.00
420 119.9 0.9 0.06, 1.01, 1.00
480 129.5 1.0 0.07, 0.99, 1.00
540 139.8 1.1 0.07, 0.99, 1.00
600 153.6 1.2 0.07, 0.98, 1.00
660 164.0 1.3 0.07, 0.98, 1.00
705 172.9 1.4 0.07, 0.97, 1.00
765 185.4 1.4 0.07, 0.97, 1.00

time step resolution of 10 seconds, and increase resolution by
5× when workloads complete in under 40 time steps.

Finding near-optimal schedules. ILP solvers tighten the
optimality bound by proving that sections of the solution space
are infeasible. We run HILP with a time limit of four hours
until it has converged to a favorable time step resolution.
The overwhelming majority of our experiments achieve an
optimality bound within 10% of overall execution time at
this stage, and we rerun the experiments that do not achieve
this bound with more resources. Depending on workload and
SoC characteristics, we gave the solver more CPU cores, more
memory, or a higher time limit, and we were ultimately able
to get the solver to prove 10%-bounds for all configurations.

Solver thread count. The thread count of the ILP solver
impacts its performance and memory consumption because
each worker thread traverses a different part of the solution
space. This requires duplicating parts of the model and greatly
increases memory usage, but it does not necessarily reduce
solve time proportionally. For example, one of our experiments
required on the order of 90 GB of memory with four threads.
Running the same experiment with 32 threads increases perfor-
mance by 1.4× but increases memory requirements to 230 GB.
We therefore generally run the ILP solver with four threads to
balance solve time and memory overhead.

Scalability. ILP problems become more challenging to solve
as the number of decision variables grows. HILP has two
matrices of decision variables, Sap and Cap, which both grow
by the product of the number of applications and phases (i.e.,
|A|×|Pa|). Another driver of model complexity is the number
of constraints, and HILP’s power consumption and bandwidth
constraints for example both require one constraint for each
time step (see Equations 6 and 7, respectively). As is typical

in modeling, HILP thus also benefits from being as simple as
possible, but no simpler, and this is the reason why we opt
to model the application phase structure at a relatively high
abstraction level in this work.

IV. EXPERIMENTAL SETUP

Benchmarks. We use version 3.1 of Rodinia [10], [70] for our
evaluation because it provides CPU and GPU implementations
of the same benchmarks. We profiled each benchmark on high-
end hardware to measure phase execution time and bandwidth
consumption (see Table II). For the CPUs, we profile the
benchmarks with Linux perf [60] on an AMD EPYC 7543
processor for all possible core counts from 1 to 32. To capture
performance and bandwidth trends on GPUs, we combined
Nvidia Nsight Compute [48] with Nvidia Multi-Instance GPU
(MIG) [50] to profile the benchmarks on an Nvidia A100
(40 GB) with SM counts of 14, 28, 42, 56, and 98; these are
all the configurations MIG supports on this architecture. While
MIG scales LLC capacity and NoC bandwidth proportionally
to SM count, it scales memory bandwidth non-linearly, i.e., the
configurations with 14, 28, 42, 56, and 98 SMs have 375, 375,
750, 750, and 1,500 GB/s of memory bandwidth, respectively.

As NSight cannot measure the energy consumption per
benchmark, we use gpu-burn [61] to get worst-case power
consumption for all MIG configurations and available GPU
core clock frequencies with nvidia-smi [51] (see Table III).
We observe that even while idle, the A100 consumes approx-
imately 30 W. We thus assume that our power measurements
under load have a 30 W static component, the rest being
dynamic; we scale static power linearly with the number of
SMs in the SoC. Our AMD 32-core CPU also does not enable
measuring per-benchmark energy consumption, and we thus
estimate core power consumption from its 225 W Thermal
Design Power (TDP), yielding 7.0 W per core.

To utilize the modern hardware we profile on, we select
the ten Rodinia benchmarks with scalable input parameters
and scale their input set such that executing the benchmark to
completion on a single CPU core takes more than one minute
(see Table II). The relatively long setup and teardown times
of some benchmarks (e.g., BFS, HS), are primarily due to the
generation of input data and writing results to disk. We use
setup and teardown timing from the CPU to model systems
with unified memory, i.e., there are no (blocking) memory
transfers to or from dedicated accelerator memories.

HILP inputs. Recall that HILP takes execution time, memory
bandwidth, and power consumption matrices as input (Tcap,
Bcap, and Pcap, respectively). While it is straightforward to
create these matrices from our CPU profiles because we sweep
all possible core counts, our GPU profiles have gaps that we
need to fill. To this end, we fit a power-law function (i.e.,
y = a × xb) to our data points using least-squares linear
regression; x is the number of SMs and y is performance,
bandwidth, or power normalized to the GPU with 14 SMs.
Table II reports the power-law parameters for execution time
and bandwidth at the baseline clock frequency (765 MHz)
and each curve’s coefficient of determination (i.e., R2); the
power-law curves for all other operating points yield similar
R2 values. Table III reports power consumption as a function
of GPU clock frequency and the power-law curves for each
operating point. R2 is a number between 0 and 1, with 1
indicating that the curve fits the data points perfectly. Tables II
and III mostly report R2 values close to, but not exactly, 1. The
exceptions are MC (both performance and bandwidth) and HW
(bandwidth). These benchmarks are insensitive to the number
of SMs, and we are therefore fitting to random variation in the
performance profiles. The curves of MC and HW are however
flat across the SM-counts we consider, and they thus capture
the underlying trend for these benchmarks even if R2 is low.

We model DSAs at a 4× efficiency advantage compared
to the GPU. The DSAs hence use the same performance and
bandwidth curves as the GPU but only a quarter of the power
and area. This is in line with prior work, e.g., Dally et al. [15]
reports a 2.1× DSA efficiency advantage over a GPU within
deep learning. (We will explore this further in Section VI.)

Workloads. Our Rodinia workload contains a single copy of
each benchmark and uses the time, bandwidth, and power
curves in Tables II and III directly. Several of the Rodinia
benchmarks are however setup and teardown-heavy (e.g., BFS,
HS3D, HS, and PF), and it is not unreasonable to assume that
these phases would have been optimized to varying degrees
in efficiency-sensitive deployments. We therefore define the
Default and Optimized workloads in which we reduce the
setup and teardown times of all benchmarks by 5× and
20×, respectively. These three workloads are thus sensitive to
Amdahl’s law to varying degrees, i.e., Rodinia is most sensitive
and Optimized is least sensitive.

SoC configurations. We describe the SoC design space in
terms of the ranges of CPU cores, GPU SMs, DSAs, and PEs
per DSA for each experiment. Unless otherwise specified, we
model an 800 GB/s HBM3 memory that consumes 7 pJ/bit [65]
and a 600 W power budget. We estimate CPU and GPU area
using the same architecture family that we used for profiling,
i.e., the AMD Zen 3 and Nvidia Ampere, and focus on devices
manufactured in a 7 nm technology node. When including all
compute chiplets and the I/O die, the 64-core AMD EPYC
7763 [59] has a total die area of 1,064 mm2, yielding 16.6 mm2

per core. We include the I/O die to account for the uncore area
required to support each core. The Nvidia GA100 [32] has 128
SMs and an area of 826 mm2, yielding 6.5 mm2 per SM.

0 2 4 6 8
0

10
20
30
40
50

16 SMs 32 SMs 64 SMs

CPU Count

S
pe

ed
up

(a) Amdahl’s law.

0 100 200 300 400
0

10
20
30
40
50
60

16 SMs 32 SMs 64 SMs

Bandwidth (GB/s)

S
pe

ed
up

(b) Memory wall.

0 100 200 300 400
0

20

40

60

16 SMs 32 SMs 64 SMs

Power (W)

S
pe

ed
up

(c) Dark silicon.

Fig. 5: Performance trends across various SoC design spaces.
HILP demonstrates (a) Amdahl’s law, (b) the memory wall,
and (c) dark silicon.

Configuring the ILP solver. We implement HILP’s ILP
model using MiniZinc [44]. The key benefits of MiniZinc are
that (i) it enables us to express the model succinctly (i.e.,
in less than 100 lines of code), and (ii) its FlatZinc model
format is compatible with a wide range of both open-source
and commercial ILP solvers. It is hence possible to select
different solvers without changing the model implementation.
We experimented with Gecode [58], Gurobi [23], and OR-
Tools [21]. OR-Tools yields the highest performance, and we
therefore use it for all the experiments in this paper. Another
benefit of OR-Tools is that it is open source which means that
we can make all necessary components of HILP available to
the community3. We used an in-house cluster running Rocky
Linux 9.2 for our experiments, and our compute jobs ran on
nodes with from 20 to 64 processor cores and 128 GB to 2 TB
of memory.

V. HILP VALIDATION

Before using HILP to explore the SoC design space in
Section VI, we must gain confidence that it reports meaningful
results. We do this by demonstrating that HILP can reproduce
well-known architectural phenomena, i.e., Amdahl’s law [4],
the memory wall [67], and dark silicon [17]; and select
a workload, SoC configurations, and constraints for each
experiment such that the phenomenon we focus on dominates.

Reproducing Amdahl’s law. Figure 5a shows how perfor-
mance scales as we add CPU cores to SoCs with different
GPU configurations (i.e., 16, 32, and 64 SMs) for the Default
workload. The points are SoC configurations, and we report
speedup relative to fully sequential execution on an SoC with
a single CPU core. To fully focus on Amdahl’s law, we do
not constrain power and bandwidth in this experiment and
only consider a GPU accelerator. The dotted lines in the
figure show the maximum speedup that each SoC’s GPU can
achieve for this workload. Figure 5a shows that HILP captures
Amdahl’s law. The single-CPU SoCs are severely limited by
sequential setup and teardown phases, and, in Amdahl’s terms,
the workload thus exhibits a significant sequential section. As
CPU cores are added to the SoC, performance improves and
then saturates at the compute limit of the GPU. The reason is
that increasing the number of CPU cores enables executing

3As mentioned before in the introduction, HILP can be found at https:
//github.com/EECS-NTNU/hilp.

https://github.com/EECS-NTNU/hilp
https://github.com/EECS-NTNU/hilp

0 2 4 6 8

1
2
3
4

0 2 4 6 8

5
10
15
20

MultiAmdahl (MA) Gables HILP

Num CPUs Num CPUs

W
LP

S
pe

ed
up

(a) Rodinia workload.

0 2 4 6 8

1

2

3

0 2 4 6 8

20

40

60

MultiAmdahl (MA) Gables HILP

Num CPUs Num CPUs

W
LP

S
pe

ed
up

(b) Optimized workload.

Fig. 6: Average WLP and speedup for MA, HILP, and Gables.
MA is pessimistic and Gables is optimistic.

the setup and teardown phases while a compute phase is
executing on the GPU, which in Amdahl’s terms equates to
the workload’s sequential section essentially disappearing.

Reproducing the memory wall. We now fix the number of
CPU cores at 4 and sweep memory bandwidth constraints
from 50 to 400 GB/s (see Figure 5b). We still consider SoCs
with a 16-SM, 32-SM, or 64-SM GPU, but we move to the
Optimized workload to reduce the impact of Amdahl’s law.
All SoCs are bandwidth bound at 50 GB/s, but the bandwidth
requirements of the 16-SM SoC are modest, and it hence
becomes compute-bound already with a memory bandwidth of
100 GB/s. The 32-SM configuration becomes compute-bound
at 300 GB/s while the 64-SM SoC is still not completely
compute-bound at 400 GB/s. We can hence conclude that
HILP’s memory bandwidth constraint correctly captures the
performance impact of limited memory bandwidth.

Reproducing dark silicon. We now replace the bandwidth
constraint with a power constraint and sweep power budgets
from 50 W to 400 W (see Figure 5c). 50 W is sufficient for the
16-SM SoC, and it hence reaches its performance potential
regardless of the power budget. In contrast, the 32-SM (64-
SM) SoC requires a power budget of 100 W (150 W) to reach
its performance potential. Interestingly, HILP reports that the
32-SM SoC outperforms the 64-SM SoC under the 50 W
power budget. The reason is that the 50 W power budget
caps the maximum clock frequency of the 64-SM GPU at
300 MHz, whereas the 32-SM GPU can use the full frequency
range. Some benchmarks, e.g., HW, are more sensitive to clock
frequency than SM count. HILP hence makes sure to prioritize
executing these benchmarks with high frequency on the 32-
SM GPU, ultimately resulting in the SoC with the 32-SM GPU
outperforming the SoC with the 64-SM GPU.

Comparing MA and Gables to HILP. Figures 6a and 6b
report average WLP (left) and speedup (right) for MA [72],
parallel-mode Gables [28], and HILP for an SoC with a 64-SM
GPU when increasing the number of CPU cores from 1 to 8
for Rodinia and Optimized, respectively. MA’s fixed sequential

order always yields the minimal WLP value of 1 regardless of
CPU count. MA also consistently reports pessimistic speedups
of 4.9 and 19.8 for Rodinia and Optimized, respectively,
because the GPU configuration does not change in this exper-
iment. Rodinia is heavily CPU-bound with a single core, and
Gables and HILP thus also report WLP close to 1 in this case
(see Figure 6a). Gables optimistically assumes that WLP can
rise to the maximal value of 4.3, while HILP’s WLP saturates
at 2.6 because HILP respects phase dependencies. Setup and
teardown tasks are significantly less prominent in Optimized
compared to Rodinia. Gables optimistically predicts that WLP
will saturate at 3.0 for Optimized, yielding a correspondingly
optimistic speedup of 57.0 (see Figure 6b). HILP reports that
phase dependencies limit saturated WLP (speedup) to 2.5
(48.2). For both workloads, speedup is highly correlated with
WLP, and WLP thus explains the performance trends.

VI. EXPLORING THE SOC DESIGN SPACE WITH HILP
We now explore the design space covered by SoCs with 1,

2, or 4 CPU cores, an optional GPU with 4, 16, or 64 SMs, and
0 to 10 DSAs with 1, 4, or 16 PEs for the Default workload.
Each application is optionally accelerated by its own DSA,
yielding SoCs with up to 10 DSAs since Default contains all
applications. As the number of ways of combining up to 10
DSAs is massive, we first order the benchmarks according to
the CPU execution time of their compute phase (see Table II)
and then allocate DSAs in descending order, effectively pri-
oritizing DSAs for longer-running compute phases. The DSA
in a 1-DSA SoC hence accelerates LUD, the DSAs in a 2-
DSA SoC accelerates LUD and HS, and so on. This yields a
total of 372 possible SoC configurations since we allocate the
same number of PEs to all DSAs in a SoC. It took us about
five days to obtain these results when using on average eighty
compute nodes on NTNU’s Idun cluster [56]. Notice that this
study would be next to impossible to execute on conventional
architectural simulators as HILP considers all possible phase
schedules in a single run, while a conventional simulator would
require separate runs for each possible phase schedule.
Pareto-optimal SoC architectures. Figure 7 shows speedup
versus chip area for this design space as reported by MA,
HILP, and Gables. As in Section V, we report speedup relative
to fully sequential execution on an SoC with a single CPU
core. Since Gables does not support constraining power, we
provide MA and HILP with a power budget of 600 W to ensure
a fair comparison. (We will explore the impact of constraining
power later in this section.) Figure 7a reports the Pareto
fronts of MA, Gables, and HILP, see Figures 7b, 7c, and 7d,
respectively, for the complete design spaces. In these figures,
each point represents an SoC architecture, and we color-code
points based on their accelerator mix. A design point is green
(blue) if it allocates more than 75% of the accelerator area
to the GPU (DSAs). The point is grey if neither the area of
the GPU nor the DSAs exceeds this limit. We label SoCs on
the form (ci,gj ,dlk) where i is the number of CPU cores, j
the number of GPU SMs, k the number of DSAs, and the
superscript l denotes the number of PEs in each DSA.

0 10 20 30 40 50 60
0

100

200

300

400

MA Gables HILP

Speedup

A
re

a
(m

m
\^

2)

c1,g64,d0 c4,g16,d2

c4,g4,d3

0 16

4

(a) Pareto fronts.

0 5 10 15 20
0

500

1000

1500

GPU Dom. DSA Dom. Mixed
1 CPU 2 CPUs 4 CPUs

Speedup

A
re

a
(m

m
\^

2)

(b) MA design space.

0 20 40 60
0

500

1000

1500

GPU Dom. DSA Dom. Mixed
1 CPU 2 CPUs 4 CPUs

Speedup

A
re

a
(m

m
\^

2)

(c) Gables design space.

0 10 20 30 40 50
0

500

1000

1500

GPU Dom. DSA Dom. Mixed

1 CPU 2 CPUs 4 CPUs

Speedup

A
re

a
(m

m
\^

2)

1
C
P
U

2
C
P
U
s

4
C
P
U
s

(d) HILP design space.

Fig. 7: The SoC design space for the Default workload according to MA, Gables, and HILP. MA is generally overly pessimistic
because it assumes a fixed sequential phase order whereas Gables is overly optimistic because it discards phase dependencies.
HILP avoids these pitfalls by fully accounting for WLP.

The key takeaway from Figure 7a is that the Pareto fronts
of MA, Gables, and HILP differ both quantitatively and
qualitatively, leading to our first key insight:

Key Insight 1

Fully accounting for WLP is critical: Simplistic WLP
assumptions lead to recommending suboptimal SoCs.

Figure 7a yet again demonstrates that MA’s assumption of
minimal WLP leads to overly pessimistic speedup predictions
and that parallel-mode Gables’ maximal WLP assumption
is overly optimistic. For MA, the reason is that assuming
fully sequential execution effectively creates phase dependen-
cies that the workload does not have. Gables, in contrast,
predicts unreasonably high speedups for high-performance
SoCs because its fully parallel execution model assumes
no dependencies. In contrast, HILP fully accounts for WLP
and therefore covers the middle ground between these two
extremes and recommends an SoC that is appropriate for the
WLP characteristics of the target workload.
WLP matters quantitatively. The highest-performing Pareto
optimal SoC configurations are (c1,g64,d00), (c4,g4,d43), and
(c4,g16,d162), according to MA, Gables, and HILP, respectively,
and these SoCs demonstrate that the way the approaches
deal with WLP can have a significant quantitative impact.
MA is pessimistic and reports that the (c1,g64,d00) SoC yields
a speedup of 18.2 at an area of 432.6 mm2. In contrast,
Gables optimistically predicts that the (c4,g4,d43) SoC achieves
a speedup of 62.1 at an area of 170.4 mm2. HILP on the
other hand predicts that the (c4,g16,d162) SoC will achieve a
speedup of 45.6 at an area of 378.4 mm2. MA’s recommended
design point (c1,g64,d00) achieves 40% of the performance of
HILP’s recommended design point at 114% of the area, while
Gables predicts that the (c4,g4,d43) SoC achieves 136% of
the performance of HILP’s recommended (c4,g16,d162) SoC at
merely 45% of the area — a significant quantitative difference.
WLP matters qualitatively. The simplified treatment of WLP
in MA and Gables also has qualitative effects. To explain this
in detail, we need to consider the complete design spaces,
i.e., Figures 7b and 7c. MA can only improve performance
by including more and higher-performance accelerators. Its
Pareto front is hence populated by GPU-dominated SoCs (see
the green points in Figure 7b). The reason is no compute
phases can be hidden when WLP is 1, and adding a (large)

general-purpose GPU is thus the most area-efficient way
of accelerating all applications. Gables is conversely biased
towards SoCs with many smaller accelerators, see the blue
and grey points in Figure 7c. The reason is that the workload
becomes embarrassingly parallel when discarding phase de-
pendencies, and Gables hence overly emphasizes SoCs with
many accelerators.

Figure 7d shows the complete design space as viewed by
HILP. In contrast to MA and Gables, HILP respects phase
dependencies and therefore recommends SoCs that cater to the
specifics of the target workload. For example, HILP’s highest-
performing Pareto-optimal configuration is the (c4,g16,d162)
SoC which combines 16-PE DSAs for HS and LUD with a
16-SM GPU. It is beneficial to allocate DSAs for HS and LUD
because they are the applications in Default with the longest
accelerator execution time (see Table II). Allocating DSAs
to these applications thus takes sufficient load off the GPU
for it to accelerate all the other applications in the workload
without becoming a bottleneck — thus achieving maximum
performance at minimal area overhead.

WLP limits the benefits of heterogeneity. The (c1,g0,d00)
SoC is the only Pareto-optimal homogeneous SoC in Figure 7a
and occupies the lowest performance point on the Pareto front.
Architects should thus add accelerators before CPU cores, but
our second key insight notes that provisioning sufficient CPU
cores is critical to fully exploit WLP:

Key Insight 2

Heterogeneity is critical, but neglecting dependencies
and sequential phases leads to suboptimal SoCs.

Adding accelerators is typically more beneficial than adding
CPU cores because they improve performance more than they
increase area; this is why the Pareto front is close to horizontal
in the lower-performance end of Figure 7a. Interestingly, HILP
identifies three clusters of SoC architectures with different
accelerator configurations, and hence (widely) different area
overhead, but the same number of CPU cores (see Figure 7d).
Adding accelerators thus improves performance until the de-
pendencies or sequential sections dominate, at which point
adding more CPU cores can yield substantial performance im-
provements because they unlock the use of additional acceler-
ators. For example, the best-performing Pareto-optimal 2-CPU

0 10 20 30 40 50
0

100

200

300

400

HILP 20W HILP 50W HILP 600W

Speedup

A
re

a
(m

m
\^

2) c4,g16,d2
16

c4,g16,d2
16

c2,g4,d2
4

c2,g0,d10
1

(a) Power constraint.

0 10 20 30 40 50
0

200

400

2X DSA Adv. 4X DSA Adv. 8X DSA Adv.

Speedup

A
re

a
(m

m
\^

2) c4,g64,d0
0

c4,g16,d2
16

(b) Efficiency advantage.

Fig. 8: DSAs versus GPUs. DSAs are most effective when
power is constrained and achieve high workload coverage.

SoC (c2,g4,d162) improves performance by 2.7× compared to
the best-performing 1-CPU SoC (c1,g4,d12).

Specialized DSAs versus general-purpose GPUs. Having
established that heterogeneity is necessary to achieve high
performance, we now use HILP to understand the relative
benefits of general-purpose GPUs and specialized DSAs in
heterogeneous SoCs. In essence, we find that architects should:

Key Insight 3

Only use DSAs for application phases that dominate
workload execution time.

This insight can be observed among the SoCs in the 2-
CPU and 4-CPU clusters in Figure 7d where several GPU-
dominated SoCs achieve the same performance as the Pareto-
optimal SoCs but at higher area overhead (i.e., there are
green clusters just above the Pareto front). Most notably,
the (c4,g64,d00) SoC, which combines 4 CPUs with a 64-SM
GPU and no DSAs, achieves the same performance as the
Pareto-optimal (c4,g16,d162) SoC, but it requires 482.4 mm2 of
area rather than 378.4 mm2. Thus, adding DSAs pays off if
architects are reasonably certain that their target workloads
contain a small number of applications that require significant
accelerator time (e.g., HS and LUD in Default). If not, it could
be just as efficient to go for a general-purpose GPU.

Power-constrained SoCs. Figure 8a reports the Pareto front
of the SoC design space with power constraints of 20 W and
50 W compared to our 600 W baseline. 20 W is a severe power
constraint because we consider server-grade cores, e.g., our
smallest GPU (16 SMs) consumes from 10.4 W to 24.6 W
depending on the selected operating point and can thus easily
use all available power. The power constraint does not affect
the lower-performance Pareto-optimal SoCs because they do
not consume enough power for the constraint to take effect.
For higher-performance SoCs, the power constraint results in
lower performance for the same area. A key advantage of
DSAs when evaluated on single applications is their high
power efficiency [15], but, perhaps surprisingly, we find that
the GPU remains critical when considering whole workloads:

Key Insight 4

SoCs benefit from combining DSAs with a general-
purpose GPU even under severe power constraints.

We focus on the highest performance Pareto-optimal SoCs
with each power constraint. The (c4,g16,d162) SoC is the top
performer at both the 50 W and 600 W power budgets. The
50 W power budget limits the number of accelerators and

CPUs that can be active concurrently, resulting in a 26.4%
performance reduction relative to the 600 W case. At the 20 W
power budget, the top performer is the (c2,g4,d42) SoC which is
a scaled-down version of the same architecture. Interestingly,
the (c2,g0,d110) SoC, which consists of a tiny DSA for all
applications in Default, yields the second highest performance
of the Pareto-optimal 20 W SoCs.
DSA efficiency advantage. Figure 8b reverts to the 600 W
power constraint and explores the impact of changing the
efficiency advantage the DSAs have over the GPU; recall that
our baseline DSAs have a 4× efficiency advantage over the
GPU. Making the DSAs more efficient indirectly increases
their workload coverage because it enables accelerating more
compute phases within the same area budget. The key take-
away is that changing the DSA advantage does not change the
shape of the speedup versus area curve but moves it towards
higher performance and area, leading to our final insight:

Key Insight 5

Workload coverage is king for DSAs.

The highest-performance Pareto-optimal points in Figure 8b
are the (c4,g64,d00), (c4,g16,d162), and (c4,g16,d162) SoCs for
efficiency advantages of 2×, 4×, and 8×, respectively. The
Pareto optimum hence moves from a GPU-only SoC at the
2× advantage to a mixed SoC at the 4× and 8× advantages.
The (c4,g16,d162) SoC yields higher performance at the 8×
advantage compared to 4× because the DSAs are faster.

VII. EXTENDING HILP
Architects typically modify early-stage modeling frame-

works such as MA, Gables, or HILP to fit the problem at hand.
A key advantage of HILP, compared to MA and Gables, is that
it is easily extensible, the key reason being that HILP clearly
separates the formulation of the model from solving it.
Modeling streaming dataflow. To demonstrate the extensi-
bility and flexibility of HILP, we consider a workload of
independent instantiations of the Streaming-Dataflow Applica-
tion (SDA) shown in Figure 9. Each SDA instance consumes
data from three independent sources that must be mapped to
specific DSAs. We label these initial phases DS1, DS2, and
DS3. The outputs of the DS phases are input to a Data Fusion
(DF) phase which joins the streams into a single buffer. This
buffer is then input to three independent compute phases (C1,
C2, and C3) which finally join in a Post Processing (PP) phase.

HILP as described in Section III cannot model SDA because
its ordering constraint does not support fork-join parallelism
(see Equation 2), but a HILP user can remove this restriction
by using a graph to represent phase dependencies. (MA and
Gables cannot model SDA because they do not explicitly
model phase dependencies.) To model arbitrary dependencies,
we first add the input matrix Dapq in which a value of 1 (0)
means that phase aq is dependent on (independent of) phase
ap. We then generalize Equation 2 to use Dapq to decide if
phases are independent rather than the raw phase identifiers:

Sap + Tcap ≤ Saq if Dapq = 1 c ∈ C, a ∈ A, {q, p} ∈ Pa.
(9)

Join data Fork compute Join compute

GPU-compatible phase
CPU-compatible phase

DSA1-compatible phase
DSA2-compatible phase
DSA3-compatible phase

Compute
phase 1 (C1)

Post process
results (PP)

Compute
phase 2 (C2)

Compute
phase 2 (C2)

Data stream 1
(DS1)

Data stream 2
(DS2)

Data stream 3
(DS3)

Data fusion
(DF)

50ms
(DSA)

50ms
(DSA)

50ms
(DSA)

22ms
(CPU)

50ms,18ms
(CPU,GPU)

50ms,10ms
(CPU,GPU)

45ms,15ms
(CPU,GPU)

67ms,10ms
(CPU,GPU)

Fig. 9: Phases of the Streaming Dataflow Application (SDA).

PPC3

C2

C1

DF

DS3

DS2

DS1

PPC3 C2C1

DF

DS3

DS2

DS1

PPC3 C2C1

DF

DS3

DS2

DS1

PPC3 C2C1

DF

DS3

DS2

DS1

0 50 100 150 200 250

GPU
CPU

DSA 3
DSA 2
DSA 1

Time (ms)

D
ev

ic
e

(a) Throughput of the baseline SoC.

PPC3 C2

C1DF

DS3

DS2

DS1

PP

C3

C2C1

DF

DS3

DS2

DS1

PPC3C2

C1DF

DS3

DS2

DS1

PPC3C2

C1DF

DS3

DS2

DS1

0 50 100 150 200 250

GPU
CPU

DSA 3
DSA 2
DSA 1

Time (ms)

D
ev

ic
e

(b) Throughput of SoC with improved CPU.

DF

DS3

DS2

DS1

DF

DS3

DS2

DS1

DF

DS3

DS2

DS1

C1 C1 C1 C1

C
2

C
2

C
2

C
2

C3 C3
PP

C3 C3
PP PP PPDF

DS3

DS2

DS1

0 50 100 150 200 250

GPU
CPU

DSA 3
DSA 2
DSA 1

Time (ms)

D
ev

ic
e

(c) Throughput of SoC with improved GPU.

Fig. 10: HILP phase schedules of the SDA workload.

Exploring SoCs for SDA. The design objectives for the SDA
SoC are to (i) execute the DS1, DS2, and DS3 phases in
parallel, and (ii) overlap data stream processing for sample
i + 1 with the processing of sample i. DS1, DS2, and DS3
are hence pinned on individual DSAs. The DF phase must
execute on a CPU, while C1, C2, C3, and PP can execute on
either a CPU or a GPU. The execution time estimates for each
phase on the baseline SoC is shown in Figure 9. The architect
encodes dependencies with Dapq and core type compatibility
in Ecap. Figure 10a shows HILP’s optimal schedule for the
baseline (c1,g8,d13) SoC, demonstrating that it falls short of its
performance objective. The architect then considers moving to
a CPU that is 2× faster (Figure 10b) or doubling the number
of SMs in the GPU (Figure 10c), and HILP reports that both
approaches yield sufficiently high performance. Figure 10b
shows that the faster CPU can take on more work (i.e., C1
and C3). With the faster GPU, the CPU executes DF while
the GPU attends to the the remaining phases (see Figure 10c).

Other extensions. The dependency graph extension above is
by no means the only possible extension to HILP. We could
for example further include explicit initiation intervals, i.e.,
require that a phase ai starts at the earliest n time steps after
the start time(s) of the phase(s) ai depend(s) on. Another in-
teresting extension is to model the memory hierarchy in more
detail. The first step would be to add new resource constraints
that represent the bandwidth limits at each cache level (e.g.,
L1, L2, and LLC). Bandwidth curves for various memory
system configurations can be obtained through various tools,

e.g., Pin [38] or StatCache [6], and, from the perspective of
HILP, changes in cache capacity would manifest as changes
in these bandwidth curves.

VIII. RELATED WORK

The most closely related works to HILP are MA [43],
[72] and Gables [28] because these are the only early-stage
evaluation models that take WLP into account. They however
only cover the extremes of minimal and maximal WLP which
we demonstrated to be insufficient for exploring heterogeneous
SoC design spaces in Sections V and VI.

Non-WLP-aware early-stage models. Roofline [64] is a high-
level performance model that provides an upper-bound on
application performance through its operational intensity and
inspired numerous follow-up works (e.g., [30], [31], [41],
[53]). While the models derived from Roofline primarily
focus on bandwidth, models derived from Amdahl’s law [4]
primarily focus on modeling sequential and parallel phases.
Marowka [40] uses Amdahl’s law to study how to distribute
the power budget across CPU and GPU cores, and Navigo [24]
uses Amdahl’s law to explore the balance between allocating
area to CPUs and accelerators under power constraints. Hill
and Marty [27] studied homogeneous, asymmetric, and dy-
namic CPU-only architectures and spurred several follow-up
works that provide various extensions (e.g., [8], [13], [57],
[66], [69]). A number of researchers have also leveraged
Amdahl’s law to study various aspects of homogeneous CPU-
only multi-cores [8], [9], [12], [13], [19], [63], while De-
limitrou and Kozyrakis [16] study the impact of CPU core
configuration on tail latency in CPU-only datacenters. The
common denominator of these approaches is that they, unlike
HILP, MA, and Gables, do not account for WLP.

Mathematical optimization in computer architecture.
Nowatzki et al. [46] provide an introduction to mathematical
optimization for computer systems and include several case
studies (e.g., instruction set customization). MA [43], [72] in
fact leverages mathematical optimization, but, in addition to
assuming minimal WLP, MA cannot handle the same breath
of constraints as HILP because it relies on solving the model
analytically. Liu et al. [37] apply mathematical optimization to
understand how to optimally partition off-chip bandwidth, and
AutoTM [26] uses integer linear programming to understand
which tensors to allocate to persistent and regular memory
when training deep neural networks. Mathematical optimiza-
tion has also been used for mapping applications to processing
elements (e.g., [33], [47]). Researchers used mathematical
optimization to study multi-processors in the 60s and 70s (e.g.,
[18], [22]), but these models are not applicable to the highly
heterogeneous SoCs of today.

Other models and simulators. Aladdin [54] is a pre-RTL
framework for modeling single DSAs and thus orthogonal to
HILP, i.e., Aladdin can be used to generate inputs to HILP for
specific DSAs. BigHouse [42] is a high-abstraction simulator
that focuses on CPU-only data centers and achieves short
evaluation time and good scalability by combining queuing

theory and stochastic modeling. LogCA [3] models the of-
floading overheads of accelerators as a function of the amount
of offloaded data, thereby predicting if offloading is beneficial
or not, and Nilakantan et al. [45] explore how to select the
best set of accelerators for a single thread as a function of the
area dedicated to accelerators.
Heterogeneous multi-core CPUs. The benefits of heterogene-
ity was first demonstrated for CPU-only systems [34], [35],
and a large body of work has investigated runtime scheduling
approaches for such architectures (e.g., [11], [55], [62]).

IX. CONCLUSION

We introduced HILP which is the first early-stage explo-
ration approach for heterogeneous SoCs that fully accounts
for Workload-Level Parallelism (WLP). HILP builds upon the
observation that scheduling a workload of independent multi-
phase applications on a heterogeneous SoC is an instance of
the classic JSSP optimization problem and thus can be solved
using integer linear programming. After validating HILP, we
use it to sweep a design space of 372 SoCs and make
several key observations. For example, when considering both
performance and area, the top-performing SoCs use DSAs to
offload the most accelerator-heavy applications from the GPU.
Perhaps surprisingly, this trend persists even under severe
power constraints because the benefits of DSAs over general-
purpose GPUs are intimately tied to workload coverage.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback.
Joseph Rogers is supported by the Research Council of
Norway (Grant No. 286596). Lieven Eeckhout is supported
in part by Research Foundation Flanders (FWO) grants No.
G018722N and G096225N, and UGent-BOF-GOA grant No.
01G01421. Magnus Jahre is supported in part by the Research
Council of Norway (Grant No. 286596), the European Union
Horizon 2020 program (Grant No. 101034240), and a gift from
AMD.

REFERENCES

[1] Advanced Micro Devices, Inc., “AMD Instinct™ MI300A Accel-
erators,” https://www.amd.com/en/products/accelerators/instinct/mi300/
mi300a.html, 2024, accessed: April 12, 2024.

[2] Advanced Micro Devices, Inc., “AMD Ryzen™ 8000 G-Series Pro-
cessors,” https://www.amd.com/en/partner/articles/ryzen-8000G-series-
processors.html, 2024, accessed: April 12, 2024.

[3] M. S. B. Altaf and D. A. Wood, “LogCA: A high-level performance
model for hardware accelerators,” in Proceedings of the Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2017, pp. 375–388.

[4] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the Spring Joint
Computer Conference (AFIPS), 1967, pp. 483–485.

[5] Apple Inc., “Apple unveils M3, M3 Pro, and M3 Max,
the most advanced chips for a personal computer,” https:
//www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-
m3-max-the-most-advanced-chips-for-a-personal-computer/, 2023,
accessed: April 12, 2024.

[6] E. Berg and E. Hagersten, “StatCache: A probabilistic approach to
efficient and accurate data locality analysis,” in IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2004, pp. 20–27.

[7] E. Brunvand, D. Kline, and A. K. Jones, “Dark silicon considered
harmful: A case for truly green computing,” in Proceedings of the
International Green and Sustainable Computing Conference (IGSC),
2018, pp. 1–8.

[8] K. W. Cameron and R. Ge, “Generalizing Amdahl’s law for power and
energy,” Computer, vol. 45, no. 3, pp. 75–77, 2012.

[9] A. S. Cassidy and A. G. Andreou, “Beyond Amdahl’s Law: An objective
function that links multiprocessor performance gains to delay and
energy,” IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–
1126, 2012.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[11] J. Chen and L. K. John, “Efficient program scheduling for heterogeneous
multi-core processors,” in Proceedings of the Annual Design Automation
Conference (DAC), 2009, pp. 927–930.

[12] S. Cho and R. Melhem, “Corollaries to Amdahl’s law for energy,” IEEE
Computer Architecture Letters, vol. 7, no. 1, pp. 25–28, 2008.

[13] S. Cho and R. G. Melhem, “On the interplay of parallelization, program
performance, and energy consumption,” IEEE Transactions on Parallel
and Distributed Systems, vol. 21, no. 3, pp. 342–353, 2010.

[14] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations
for exploiting memory-level parallelism,” in Proceedings of the Annual
International Symposium on Computer Architecture (ISCA), 2004, pp.
76–87.

[15] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware
accelerators,” Communications of the ACM, vol. 63, no. 7, pp. 48–57,
2020.

[16] C. Delimitrou and C. Kozyrakis, “Amdahl’s law for tail latency,”
Communications of the ACM, vol. 61, no. 8, pp. 65–72, 2018.

[17] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proceed-
ings of the International Symposium on Computer Architecture (ISCA),
2011, pp. 365–376.

[18] M. R. Garey and R. L. Graham, “Bounds for multiprocessor scheduling
with resource constraints,” SIAM Journal on Computing, vol. 4, no. 2,
pp. 187–200, 1975.

[19] R. Ge and K. W. Cameron, “Power-aware speedup,” in International
Parallel and Distributed Processing Symposium (IPDPS), 2007, pp. 1–
10.

[20] T. Gonzalez and S. Sahni, “Flowshop and jobshop schedules: Complex-
ity and approximation,” Operations Research, vol. 26, pp. 36–52, 02
1978.

[21] Google LLC, “OR-Tools - Google Optimization Tools,” https://github.
com/google/or-tools, 2024, accessed: July 29, 2024.

[22] R. L. Graham, “Bounds for certain multiprocessing anomalies,” Bell
System Technical Journal, vol. 45, no. 9, pp. 1563–1581, 1966.

[23] Gurobi, “The leader in decision intelligence technology - Gurobi opti-
mization,” https://www.gurobi.com/, 2024, accessed: July 29, 2024.

[24] M. Hempstead, G.-Y. Wei, and D. Brooks, “Navigo: An early-stage
model to study power-contrained architectures and specialization,” in
Workshop on Modeling, Benchmarking, and Simulations (MoBS), 2009.

[25] J. L. Hennessy and D. A. Patterson, Computer architecture - A quanti-
tative approach, 6th ed. Morgan Kaufmann Publishers, 2018.

[26] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella, “Au-
toTM: Automatic tensor movement in heterogeneous memory systems
using integer linear programming,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020, pp. 875–890.

[27] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, 2008.

[28] M. D. Hill and V. J. Reddi, “Gables: A Roofline model for mobile SoCs,”
in Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA), 2019.

[29] M. D. Hill and V. J. Reddi, “Accelerator-level parallelism,” Communi-
cations of the ACM, vol. 64, no. 12, pp. 36–38, 2021.

[30] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrad-
ing the loft,” IEEE Computer Architecture Letters, vol. 13, no. 1, pp.
21–24, 2014.

[31] T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry,
Z. Zhao, R. Gayatri, H. Shan, L. Oliker, J. Deslippe, R. Green, and
S. Williams, “A novel multi-level integrated Roofline model approach for
performance characterization,” in ISC High PerformanceProceedings,
2018, pp. 226–245.

https://www.amd.com/en/products/accelerators/instinct/mi300/mi300a.html
https://www.amd.com/en/products/accelerators/instinct/mi300/mi300a.html
https://www.amd.com/en/partner/articles/ryzen-8000G-series-processors.html
https://www.amd.com/en/partner/articles/ryzen-8000G-series-processors.html
https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/
https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/
https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/
https://github.com/google/or-tools
https://github.com/google/or-tools
https://www.gurobi.com/

[32] R. Krashinsky, O. Giroux, S. Jones, N. Stam, and S. Ramaswamy,
“NVIDIA ampere architecture in-depth,” 2023, accessed: August
1, 2024. [Online]. Available: https://developer.nvidia.com/blog/nvidia-
ampere-architecture-in-depth/

[33] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream
programs on multicore platforms,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2008, pp. 114–124.

[34] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction,” in Proceedings of the International Sympo-
sium on Microarchitecture (MICRO), 2003, pp. 81–92.

[35] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings of the Annual International
Symposium on Computer Architecture (ISCA), 2004.

[36] A. Liu, P. B. Luh, B. Yan, and M. A. Bragin, “A novel integer linear
programming formulation for job-shop scheduling problems,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 5937–5944, 2021.

[37] F. Liu, X. Jiang, and Y. Solihin, “Understanding how off-chip memory
bandwidth partitioning in chip multiprocessors affects system perfor-
mance,” in Proceedings of the International Symposium on High Per-
formance Computer Architecture (HPCA), 2010, pp. 1–12.

[38] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2005, p. 190–200.

[39] A. S. Manne, “On the Job-Shop Scheduling Problem,” Operations
Research, vol. 8, no. 2, pp. 219–223, 1960.

[40] A. Marowka, “Extending Amdahl’s law for heterogeneous computing,”
in International Symposium on Parallel and Distributed Processing with
Applications (ISPA), 2012, pp. 309–316.

[41] D. Marques, A. Ilic, and L. Sousa, “Mansard Roofline model: Rein-
forcing the accuracy of the roofs,” ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, vol. 6, no. 2, pp. 7:1–
7:23, 2021.

[42] D. Meisner, J. Wu, and T. F. Wenisch, “BigHouse: A simulation infras-
tructure for data center systems,” in Proceedings of the International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2012, pp. 35–45.

[43] A. Morad, T. Y. Morad, Y. Leonid, R. Ginosar, and U. Weiser, “Gen-
eralized MultiAmdahl: Optimization of heterogeneous multi-accelerator
SoC,” IEEE Computer Architecture Letters, vol. 13, no. 1, pp. 37–40,
2014.

[44] N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack,
“MiniZinc: Towards a standard CP modelling language,” in Proceedings
of the International Conference on the Principles and Practice of
Constraint Programming (CP), 2007, pp. 529–543.

[45] S. Nilakantan, S. Battle, and M. Hempstead, “Metrics for early-stage
modeling of many-accelerator architectures,” IEEE Computer Architec-
ture Letters, vol. 12, no. 1, pp. 25–28, 2013.

[46] T. Nowatzki, M. Ferris, K. Sankaralingam, C. Estan, N. Vaish, and
D. Wood, “Optimization and mathematical modeling in computer ar-
chitecture,” Synthesis Lectures on Computer Architecture, vol. 8, no. 4,
pp. 1–144, 2013.

[47] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan,
and B. Robatmili, “A general constraint-centric scheduling framework
for spatial architectures,” in Proceedings of the International Conference
on Programming Language Design and Implementation (PLDI), 2013,
pp. 495–506.

[48] Nvidia Corporation, “Developer tools overview,” https://developer.
nvidia.com/tools-overview, 2024, accessed: July 11, 2024.

[49] Nvidia Corporation, “NVIDIA GH200 Grace Hopper Superchip Ar-
chitecture,” https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-
hopper?ncid=no-ncid, 2024, accessed: August 1, 2024.

[50] Nvidia Corporation, “NVIDIA Multi-Instance GPU,” https://www.
nvidia.com/en-us/technologies/multi-instance-gpu/, 2024, accessed: July
11, 2024.

[51] Nvidia Corporation, “System Management Interface SMI,” 2024,
accessed: July 11, 2024. [Online]. Available: https://developer.nvidia.
com/system-management-interface

[52] V. J. Reddi, H. Yoon, and A. Knies, “Two billion devices and counting,”
IEEE Micro, vol. 38, no. 1, pp. 6–21, 2018.

[53] J. Rogers, T. Soliman, and M. Jahre, “AIO: An abstraction for perfor-
mance analysis across diverse accelerator architectures,” in Proceedings
of the International Symposium on Computer Architecture (ISCA), 2024.

[54] Y. S. Shao, B. Reagen, G. Y. Wei, and D. Brooks, “Aladdin: A pre-
RTL, power-performance accelerator simulator enabling large design
space exploration of customized architectures,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), 2014, pp.
97–108.

[55] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar, “HASS: A scheduler for
heterogeneous multicore systems,” SIGOPS Operating Systems Review,
vol. 43, no. 2, pp. 66–75, 2009.

[56] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, “EPIC: An energy-
efficient, high-performance GPGPU computing research infrastructure,”
2024. [Online]. Available: https://arxiv.org/abs/1912.05848

[57] X.-H. Sun and Y. Chen, “Reevaluating Amdahl’s law in the multicore
era,” Journal of Parallel and Distributed Computing, vol. 70, no. 2, pp.
183–188, 2010.

[58] G. Tack and M. Z. Lagerkvist, “GECODE – An open, free, efficient
constraint solving toolkit,” https://www.gecode.org/, 2024, accessed:
July 29, 2024.

[59] TechPowerUp, “AMD EPYC 7763,” 2024, accessed: August 1,
2024. [Online]. Available: https://www.techpowerup.com/cpu-specs/
epyc-7763.c2373

[60] The Linux Foundation, “Linux profiling with performance counters,”
https://perf.wiki.kernel.org/index.php/Main Page, 2020, accessed: July
11, 2024.

[61] V. Timonen, “Multi-GPU CUDA stress test,” 2024, accessed: July 29,
2024. [Online]. Available: https://github.com/wilicc/gpu-burn

[62] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (PIE),” in Proceedings of the International Symposium on
Computer Architecture (ISCA), 2012.

[63] U. Verner, A. Mendelson, and A. Schuster, “Extending Amdahl’s law
for multicores with turbo boost,” IEEE Computer Architecture Letters,
vol. 16, no. 1, pp. 30–33, 2017.

[64] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[65] M. Wissolik, D. Zacher, A. Torza, and B. Day, “Virtex UltraScale+ HBM
FPGA: A Revolutionary Increase in Memory Performance (WP 485),”
Technical Report, Xilinx Inc., 2019.

[66] D. H. Woo and H. H. S. Lee, “Extending Amdahl’s law for energy-
efficient computing in the many-core era,” Computer, vol. 41, no. 12,
pp. 24–31, 2008.

[67] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH Computer Architecture News, vol. 23,
no. 1, pp. 20–24, 1995.

[68] B. Yan, M. A. Bragin, and P. B. Luh, “An innovative formulation
tightening approach for job-shop scheduling,” IEEE Transactions on
Automation Science and Engineering, vol. 19, no. 3, pp. 2526–2539,
2022.

[69] E. Yao, Y. Bao, G. Tan, and M. Chen, “Extending Amdahl’s Law in the
multicore era,” SIGMETRICS Perform. Eval. Rev., vol. 37, no. 2, pp.
24–26, 2009.

[70] H. Yu, “Rodinia Benchmark Suite 3.1,” 2023, accessed: April 7, 2024.
[Online]. Available: https://github.com/yuhc/gpu-rodinia

[71] X. Zhao, M. Jahre, and L. Eeckhout, “HSM: A hybrid slowdown model
for multitasking GPUs,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2020, pp. 1371–1385.

[72] T. Zidenberg, I. Keslassy, and U. Weiser, “MultiAmdahl: How should
I divide my heterogenous chip?” IEEE Computer Architecture Letters,
vol. 11, no. 2, pp. 65–68, 2012.

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/tools-overview
https://developer.nvidia.com/tools-overview
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper?ncid=no-ncid
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper?ncid=no-ncid
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://developer.nvidia.com/system-management-interface
https://developer.nvidia.com/system-management-interface
https://arxiv.org/abs/1912.05848
https://www.gecode.org/
https://www.techpowerup.com/cpu-specs/epyc-7763.c2373
https://www.techpowerup.com/cpu-specs/epyc-7763.c2373
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/wilicc/gpu-burn
https://github.com/yuhc/gpu-rodinia

	Introduction
	Explaining How HILP Works
	The Details of HILP
	Notation, Objective Function, and JSSP
	Modeling Applications
	Modeling Architectures
	Schedule Quality and Scalability

	Experimental Setup
	HILP Validation
	Exploring the SoC Design Space with HILP
	Extending HILP
	Related Work
	Conclusion
	References

